
Computers & Operations Research 137 (2022) 105545

A
0

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

Dynamized routing policies for minimizing expected waiting time in a
multi-class multi-server system
Vahid Nourbakhsh, John Turner ∗

The Paul Merage School of Business, University of California, Irvine, CA 92697, United States of America

A R T I C L E I N F O

Keywords:
Expected queue waiting time
Routing policy
Convex programming
Transportation on demand
Call center

A B S T R A C T

Minimizing queue waiting time in multi-class multi-server systems, where the service time depends both on
the job type and the server type, has wide applications in transportation systems such as emergency networks
and taxi networks, service systems such as call centers, and distributed computing platforms. However, the
optimal dynamic policy for this problem is not known and remains a hard open problem. In our approach,
we develop a math program to model a static variant of this routing problem and use the solution from
this math program to construct several novel dynamic policies. In three categories, namely, (i) policies that
do not block jobs, (ii) policies that block jobs statically (i.e., blocking jobs using a predetermined blocking
probability), and (ii) policies that block jobs dynamically (i.e., blocking jobs when all feasible servers are busy),
we compare the performance of our policies with Fastest-Server-First (FSF), a well-known routing policy for such
problems in practice and in the literature. Our experiments show that our proposed overflow dynamic routing
policies outperform FSF and its extensions, FSFStaticBlock and FSFDynamicBlock. Moreover, to showcase our
methodology, we apply our proposed policies to the problem of assigning fire incidents in Irvine, CA, to fire
stations.
1. Introduction

We study the problem of minimizing expected waiting time in
a multi-class multi-server queueing system, where service times are
both job-type and server-type dependent. For this queueing system the
service time that a job experiences depends on the routing decision,
i.e., the server to which the job is routed. This endogeneity of service
time, i.e., the dependency of the service time on the routing deci-
sion, complicates the routing problem. In fact, the optimal dynamic
policy for this queueing system is unknown (Mehrotra et al., 2012).
Nevertheless, simple greedy dynamic policies can perform reasonably
well in such settings, and provide a meaningful practical benchmark.
In our context, a simple greedy dynamic policy which is commonly
implemented in practice is the Fastest-Server-First (FSF) policy, which
always routes each arriving job to an available (i.e., not busy) server
that is the fastest at handling this job type. While the FSF policy is
known to be near-optimal for the single job-type special case (i.e., it
is provably optimal in the Halfin–Whitt regime), we will demonstrate
that its performance is suboptimal when there are multiple job types.

On the other hand, static policies derived from the solution of
math programs can match supply and demand in a richer way than
simple dynamic policies, and in some cases such static policies can

∗ Corresponding author.
E-mail addresses: vahid.nourbakhsh@uci.edu (V. Nourbakhsh), john.turner@uci.edu (J. Turner).

be ‘‘dynamized’’, i.e., combined with some elements of a simpler dy-
namic policy to produce excellent results. We introduce a convex
math program which we use to produce an optimal static policy, and
then show how this static policy can be dynamized into a number of
related dynamic policies which depend on the math program’s solution.
We dynamize our static policy using FSF as our guide, and using a
comprehensive set of simulated instances, we evaluate the performance
of our dynamized policies and empirically show that several of our
dynamized policies outperform FSF.

The routing problem that we consider arises in different applica-
tions, including allocating vehicles to requesters in Transportation On
Demand (TOD) systems, routing calls to agent groups at call centers,
and allocating user tasks to distributed processors (also known as load
balancing). Our problem is quite general, and is at its core a routing
problem for a multi-class multi-server system with Poisson arrivals and
service rates that are exponentially-distributed and depend on both the
job type and server type. We seek to minimize the jobs’ Expected queue
Waiting time (𝐸𝑊).

In TOD systems such as emergency systems (i.e., ambulances, fire
trucks, police patrols, etc.), courier services and taxi networks, the
system randomly receives service requests. For each request, a server
vailable online 4 September 2021
305-0548/© 2021 The Authors. Published by Elsevier Ltd. This is an open access ar

https://doi.org/10.1016/j.cor.2021.105545
Received 28 April 2018; Received in revised form 30 July 2021; Accepted 30 Augu
ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

st 2021

http://www.elsevier.com/locate/cor
http://www.elsevier.com/locate/cor
mailto:vahid.nourbakhsh@uci.edu
mailto:john.turner@uci.edu
https://doi.org/10.1016/j.cor.2021.105545
https://doi.org/10.1016/j.cor.2021.105545
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2021.105545&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Computers and Operations Research 137 (2022) 105545V. Nourbakhsh and J. Turner

T
u

t
i
i
d
s
t
o
S

2

g
o
2
c
t

n
h
s
h
r

t

(i.e., an ambulance, fire truck, police patrol, courier or taxi) is dis-
patched to the requester’s location, serves the requester, finishes the
service, returns to its base, becomes available and waits for the next
request. In this setting, both requesters and vehicles are geographically
distributed. This gives rise to job-and-server dependent service rates
since the service rate depends on the distance between the vehicle base
and the requester (cf., Cho et al., 2014). For an excellent survey on
TOD, please refer to Cordeau et al. (2007).

In a call center, calls of different types arrive randomly and a
specialized switch called an Automatic Call Distributor (ACD) routes
calls to agents. Agents within different groups have different skill sets
and consequently different service rates for serving each job type. For
an excellent survey on skill-based routing for call centers, see Gans et al.
(2003).

In computer systems, a dispatcher distributes jobs generated by
users over a set of processors; for an excellent review of load balancing
see Combé and Boxma (1994). In this context, job-and-server depen-
dent service times can occur for two different reasons, namely (i) users
and processors are geographically distributed and consequently latency
(the time to transfer a job to a processor) is job-and-server dependent,
and (ii) processors are of different speeds and jobs are of different types.

Our main contributions are as follows. Combé and Boxma (1994)
used a math program to design dynamic policies for a single class,
multi-server problem. We take a similar approach for multi-class multi-
server systems, and formulate a math program to first compute an
optimal static policy. Then, we use the solution to our math program
to build policies that take into account the state of the system when
routing jobs; we call this step ‘‘dynamizing’’ the static policy. We prove
that our math program is convex and thus can be solved efficiently. Our
simulation experiments show that several of our dynamized policies
beat the well-known FSF policy and its variants. While the focus
of this study is on designing a dynamic policy, our proposed math
program can also be extended by incorporating general convex con-
straints, which allows for the solution of planning problems such as
(i) determining the optimal number of servers that guarantee a desired
expected waiting time, or (ii) determining the optimal location of server
groups. Moreover, in Supplementary Appendix C, we extend our results
and show that similar dynamic policies can be easily derived for the
performance metrics Expected Sojourn time (ES), i.e., the expected time
in system defined as queue waiting time plus service time, and Expected
hroughput (ET), i.e., the expected number of jobs that are not blocked
pon arrival and consequently receive service.

The rest of this paper is organized as follows. In Section 2 we review
he related literature, in Section 3 we formally define our problem, and
n Section 4 we characterize the optimal static policy. In Section 5 we
ntroduce several dynamized routing policies, and in Section 6, we con-
uct computational experiments to compare these policies. Finally, we
howcase the application of dynamized policies for routing fire engines
o incident locations in Irvine, California in Section 7. Extensions of
ur model and conclusions follow in Supplementary Appendix C and
ection 8, respectively.

. Literature review

As mentioned earlier, the optimal dynamic policy for routing hetero-
eneous jobs to heterogeneous servers when the service time depends
n the job type and the server group is not known (cf., Mehrotra et al.,
012). While most of the research on dynamic policies in this context
oncerns a single job type, we review some of the most related papers
hat also have service times that depend on the routing decision.

For the special case with one job type and multiple heteroge-
eous servers (i.e., the single-class multi-server setting), Armony (2005)
as shown that the FSF dynamic policy asymptotically minimizes the
teady-state expected waiting time in the Halfin–Whitt many-server
eavy-traffic regime also known as the Quality and Efficiency Driven
egime. Moreover, also in a single-class with multiple heterogeneous
2

servers setting, Armony and Ward (2010) seek to minimize expected
waiting time while considering fairness among servers. They prove that
a threshold policy based on the total number of customers in the system
is optimal in the Halfin–Whitt many-server heavy-traffic limit regime.
As we discuss in Section 4.1, our method is also capable of handling
fairness constraints such as limits on workloads or utilizations.

Under a many-server asymptotic regime, Tezcan and Dai (2010)
have shown that the FSF policy is asymptotically optimal for a system
with two job types and two server groups, where one group can serve
only one job type and the other can serve both (also known as the N-
model). But, in their paper, service times are independent of job type
(i.e., not job-and-server dependent).

In a seminal work, Mandelbaum and Stolyar (2004) showed that
the generalized 𝑐𝜇-rule (i.e., the 𝐺𝑐𝜇-rule) asymptotically minimizes
convex holding costs. Roughly speaking, the 𝐺𝑐𝜇-rule is a routing
policy that myopically tries to maximize the rate of decrease of the
immediate holding cost. However, this policy cannot be applied to
linear holding costs, such as expected waiting time. In fact, Dai and
Tezcan (2008) discuss that applying the 𝐺𝑐𝜇-rule to linear holding costs
can lead to system load explosion.

In the absence of an optimal routing policy for multi-class multi-
server systems, FSF has been used in the literature for minimizing
expected waiting time (cf., Mehrotra et al., 2012; Gopalakrishnan et al.,
2016). Dai and Tezcan (2008) provide some insight into the challenge
of finding the optimal dynamic policy for this problem.

Chan et al. (2014) propose more complex dynamic routing policies
than FSF, applied to a variety of sophisticated performance measures
such as a convex combination of job waiting time and server idle time.
Although the metrics themselves are practical, their use in a routing
optimization problem presents challenges as the optimization problem
is non-convex. The authors propose a Modified Genetic Algorithm to
solve what they call a black box-type problem for optimizing (tuning)
the parameters of their routing policies. In this paper, our objective is
to show the benefits that come from ‘‘dynamizing’’ an optimal solution
to a static optimization problem. Consequently, we insist that our rout-
ing optimization problem is convex, and make modeling assumptions
consistent with this convexity requirement.

Furthermore, as noted in the introduction, since our optimization
problem is convex, it can be efficiently embedded into larger planning
problems that also tackle staffing and scheduling concerns. The con-
vexity of our model improves the solution efficiency of such problems.
With regard to call center staffing, the interested reader may wish to
consult Ta et al. (2016) which covers a number of important issues in
that problem.

Finally, although our study is limited to queuing systems with no
abandonment, in a sense blocking (which we model, both static and
dynamic variants) has a similar effect on keeping the workload of the
system stable. For a more explicit treatment of dynamic abandonment,
see Pichitlamken et al. (2003) who model a system in which a caller’s
patience time follows an exponential distribution with a mean that
changes during the day.

3. Problem

In our multi-class multi-server system, jobs of types 𝑖 ∈ 𝐼 arrive
according to independent Poisson processes with rates 𝑑𝑖. When a job
arrives, the router can either accept or block it. If the job is accepted,
it stays in the system until it is served, i.e., there is no abandonment
or retrial following the acceptance stage. Each accepted job must be
routed to a server group 𝑗 ∈ 𝐽𝑖, where 𝐽𝑖 is the set of server groups
hat are eligible to serve jobs of type 𝑖. At each server group 𝑗, there are
𝑘𝑗 identical servers. Service times are independent, each exponentially
distributed with mean service time 𝜏𝑖𝑗 .

For completeness, we will also denote 𝐽 as the full set of server
groups (henceforth known simply as groups), 𝐼𝑗 as the set of job
types that can be served by group 𝑗, and 𝐹 = ∪ {(𝑖, 𝑗)} as the
𝑖∈𝐼,𝑗∈𝐽𝑖

Computers and Operations Research 137 (2022) 105545V. Nourbakhsh and J. Turner

a
t
r

a
d
g
c
s

T
M

b
c

𝐸

𝐸

C
d
t

(

t
t
q
m
i
𝜖
C

set of tuples (𝑖, 𝑗) representing all feasible job-type to server-group
ssignments. Note also that in the call center literature, the terms job
ype and server group are referred to as call type and agent group,
espectively.

In this setting, we seek to minimize the expected waiting time of an
rbitrary job, i.e., a random job of any type. A routing policy needs to
ecide, for each job that arrives and has a certain type 𝑖, which server
roup 𝑗 that job should be processed on. This decision may consider the
urrent availability of the servers, as well as the fact that the expected
ervice time 𝜏𝑖𝑗 depends on both the job type 𝑖 and the server group 𝑗.

In the policies that follow, the queues where jobs wait for service
can either be before or after jobs are routed to a specific server
group. Consequently, the placement of queues within the model is
a policy-specific decision, and is omitted from the formal problem
definition.

4. Optimal static policy

In this section we characterize the optimal static policy that mini-
mizes the expected waiting time of an arbitrary job. First, in Section 4.1
we formulate a math program which we use to compute the aggregate
volume of jobs that should be assigned to each server group. Then,
in Section 4.2 we introduce XRand, a static routing policy constructed
from the solution of our math program.

4.1. A math program for determining the optimal static routing policy

In our math program the decision variable 𝑥𝑖𝑗 determines the num-
ber of jobs of type 𝑖 to be served by group 𝑗 per unit time. A job
routed to group 𝑗 which finds all servers in that group busy waits in
a queue in front of that server group. For each queue 𝑗 we assume that
the service discipline is First-Come First-Served (FCFS). Moreover, as
described earlier in Section 3, no abandonment or retrial exists once a
job enters a group’s queue. Although jobs are not blocked at the groups
(i.e., after being routed to a group), jobs might be blocked upon arrival
to job nodes (i.e., before being routed to a group). This allows the
routing policy, via the 𝑥𝑖𝑗 variables, to control the workload sent to
each queue.

To construct a math program, we additionally assume static routing
so that the model preserves Poisson arrivals at each group. Thus, queues
at groups are M/M/k and the delay probability at group 𝑗, i.e., the
probability that a randomly-chosen job of type 𝑖 find all servers in group
𝑗 busy is computed using the Erlang-C function (Cooper, 1981) defined
as,

𝐸𝐶(𝑘𝑗 , 𝑟𝑗) =
𝑟
𝑘𝑗
𝑗

(𝑘𝑗 − 1)(𝑘𝑗 − 𝑟𝑗)
×
[

𝑘𝑗−1
∑

𝑛=0

𝑟𝑛𝑗
𝑛!

+
𝑟
𝑘𝑗
𝑗

(𝑘𝑗 − 1)!(𝑘𝑗 − 𝑟𝑗)

]−1
, (1)

where the symbol (!) is the factorial function, 𝑟𝑗 denotes the workload
of group 𝑗 as defined in (3) below, and 𝑘𝑗 is the number of servers
in group 𝑗 irrespective of their status, i.e., busy or available. Although
this formula is exact only when we assume exponential service times,
we expect our model to be useful even when service times are not
exponential since others (cf., Kimura, 2010) have shown the Erlang-C
function tends to be a good approximation for the delay probability of
a M/G/k queue, which has no known closed-form formula.

The arrival rate to group 𝑗 is the sum of the rates at which we
process jobs of the types that this group serves,

𝜆𝑗 =
∑

𝑖∈𝐼𝑗

𝑥𝑖𝑗 ∀𝑗 ∈ 𝐽 . (2)

The workload of group 𝑗 is,

𝑟𝑗 =
∑

𝑖∈𝐼𝑗

𝜏𝑖𝑗𝑥𝑖𝑗 ∀𝑗 ∈ 𝐽 . (3)

The mean service time at group 𝑗 is,

𝜎𝑗 ∶=
𝑟𝑗 ∀𝑗 ∈ 𝐽 . (4)
3

𝜆𝑗 a
able 1
odel notation.
Indices and sets

𝑖 ∈ 𝐼 Index for job types; set of all job types
𝑗 ∈ 𝐽 Index for server groups; set of all server groups
𝐼𝑗 The subset of job types that group 𝑗 can serve
𝐽𝑖 The subset of groups that can serve jobs of type 𝑖
𝐹 Set of tuples (𝑖, 𝑗) representing all feasible job-type to

server-group assignments

Parameters

𝑑𝑖 Expected arrival (demand) rate of job type 𝑖
𝜏𝑖𝑗 Mean service time for a server at group 𝑗 to serve a job of type 𝑖
𝑘𝑗 Number of servers at group 𝑗
𝐶𝐹 𝑝𝑎𝑟𝑎𝑚 A number between zero and one indicating the minimum

fraction of jobs that should be covered (routed)

Variables

𝑥𝑖𝑗 Number of jobs of type 𝑖 to be served by group 𝑗 per unit time
𝜆𝑗 Total number of jobs to be served by group 𝑗 per unit time
𝑟𝑗 Workload assigned to group 𝑗
𝜎𝑗 Mean service time at group 𝑗

The model is schematically depicted in Fig. 1 with the notation
summarized in Table 1.

Expected Waiting time (𝐸𝑊), also known as the Average Speed of
Answer (ASA) for call centers, is the expected time a job spends in the
queue before being served. For the M/M/k queue at group 𝑗, 𝐸𝑊 can
e written as the delay probability multiplied by the expected delay
onditional on the job being delayed (cf., Hokstad, 1978),

𝑊 (𝜆𝑗 , 𝑟𝑗) = 𝐸𝐶(𝑘𝑗 , 𝑟𝑗)
𝑟𝑗

𝜆𝑗 (𝑘𝑗 − 𝑟𝑗)
, (5)

where the Erlang-C function 𝐸𝐶(𝑘𝑗 , 𝑟𝑗) is defined in (1) and provides
the delay probability. While the above function measures the expected
waiting time of jobs at a single group (i.e., at the queue before a
group), we are interested in an aggregate measure that can help the
decision-maker evaluate the performance of the whole system. For this
purpose, we define the expected queue waiting time of a random job
(or equivalently, an arriving job of any type) denoted by 𝐸𝑊𝑎𝑣𝑔 as,

𝐸𝑊𝑎𝑣𝑔 ∶=
∑

𝑗∈𝐽 𝜆𝑗𝐸𝑊 (𝜆𝑗 , 𝑟𝑗)
∑

𝑗∈𝐽 𝜆𝑗
, (6)

where the numerator is called the total expected waiting time, 𝐸𝑊𝑡𝑜𝑡,

𝑊𝑡𝑜𝑡 ∶=
∑

𝑗∈𝐽
𝜆𝑗𝐸𝑊 (𝜆𝑗 , 𝑟𝑗). (7)

onsider minimizing 𝐸𝑊𝑎𝑣𝑔 in the math problem (𝑃 1) below, which
etermines 𝑥𝑖𝑗 ’s, the number of jobs allocated to each group per unit
ime,

𝑃 1) min 𝐸𝑊𝑎𝑣𝑔

s.t. Constraints (2) and (3),

𝑟𝑗 ≤ 𝑘𝑗 + 𝜖 ∀𝑗 ∈ 𝐽 , (8)
∑

𝑗∈𝐽𝑖

𝑥𝑖𝑗 ≤ 𝑑𝑖 ∀𝑖 ∈ 𝐼, (9)

Optional convex constraints, (10)

𝑥𝑖𝑗 ≥ 0 ∀(𝑖, 𝑗) ∈ 𝐹 . (11)

Constraint (8) assures the workload at each group does not exceed
he number of servers at that group, and is required for the system
o be in steady state. If workload exceeds the number of servers the
ueue would explode. Since strict inequalities cannot be present in
ath programs, we introduced a new parameter, 𝜖 > 0, and write this

nequality as 𝑟𝑗 ≤ 𝑘𝑗 + 𝜖 instead of 𝑟𝑗 < 𝑘𝑗 . Any reasonable value for
, such as 𝜖 = 0.001, will prevent the queues from becoming unstable.
onstraint (9) makes sure that for each job type 𝑖, the covered jobs
re less than or equal to the arrival rate (also called demand) at node

Computers and Operations Research 137 (2022) 105545V. Nourbakhsh and J. Turner
Fig. 1. Schematic representation of the multi-class multi-server routing system modeled by our math program.
𝑖. Because Constraint (9) is an inequality, it allows for the possibility
that some jobs are blocked upon arrival, i.e., (𝑃 1) determines alloca-
tion and coverage rate of each job type simultaneously. To preserve
Poisson arrivals at the group queues, this blocking is done randomly
proportional to 𝑥𝑖𝑗 ’s. Constraint (10) indicates that one has the option
to impose additional constraints that are convex in the variables 𝑥𝑖𝑗 ,
𝑟𝑗 , and 𝜆𝑗 . For example, we can make sure that the workload is fairly
distributed between groups by imposing lower and upper bounds on
the 𝑟𝑗 ’s. Or, we can embed (𝑃 1) into a larger math program to link
additional decisions. Finally, Constraint (11) ensures all 𝑥𝑖𝑗 variables
are nonnegative.

If we were to minimize 𝐸𝑊𝑎𝑣𝑔 in (𝑃 1), we would find that because
we did not impose a minimum coverage constraint, the optimal solution
would be degenerate, have no congestion, and not serve any job. Thus,
we add Constraint (12), which exogenously defines a global coverage
level,
∑

𝑗∈𝐽
𝜆𝑗 ≥ 𝐶𝐹 𝑝𝑎𝑟𝑎𝑚

∑

𝑖∈𝐼
𝑑𝑖, (12)

where 0 ≤ 𝐶𝐹 𝑝𝑎𝑟𝑎𝑚 ≤ 1 is a parameter we call the global coverage
factor.

Given a feasible instance of (𝑃 1) with Constraint (12) in place, then
Constraint (12) binds at optimality (See Proposition 1 below). Indeed,
one cannot improve 𝐸𝑊𝑎𝑣𝑔 by increasing the coverage, ∑𝑗∈𝐽 𝜆𝑗 , beyond
the minimum required coverage, 𝐶𝐹 𝑝𝑎𝑟𝑎𝑚 ∑

𝑖∈𝐼 𝑑𝑖.

Proposition 1. Assuming that problem (𝑃 1) with Constraint (12) is
feasible, the coverage Constraint (12) is binding.

Proof. See Appendix A. □

Proposition 1 indicates that at optimality 𝐸𝑊𝑎𝑣𝑔 becomes,

𝐸𝑊𝑎𝑣𝑔 =
∑

𝑗∈𝐽 𝜆𝑗𝐸𝑊 (𝜆𝑗 , 𝑟𝑗)
∑

𝑗∈𝐽 𝜆𝑗
=

∑

𝑗∈𝐽 𝜆𝑗𝐸𝑊 (𝜆𝑗 , 𝑟𝑗)

𝐶𝐹 𝑝𝑎𝑟𝑎𝑚 ∑

𝑖∈𝐼 𝑑𝑖
=

𝐸𝑊𝑡𝑜𝑡

𝐶𝐹 𝑝𝑎𝑟𝑎𝑚 ∑

𝑖∈𝐼 𝑑𝑖
.

(13)

Since 𝐶𝐹 𝑝𝑎𝑟𝑎𝑚 ∑

𝑖∈𝐼 𝑑𝑖 is a constant, optimizing 𝐸𝑊𝑎𝑣𝑔 in Problem
(𝑃 1) with Constraint (12) is equivalent to optimizing 𝐸𝑊𝑡𝑜𝑡 with Con-
straint (12). Consequently, although we are most interested in solving
(𝑃 1) with the 𝐸𝑊𝑎𝑣𝑔 objective and Constraint (12), we will do this by
solving (𝑃 2) defined as,

(𝑃 2) min 𝐸𝑊𝑡𝑜𝑡

s.t. Constraints (2), (3), (8), (9), (10) and (11),
∑

𝜆𝑗 = 𝐶𝐹 𝑝𝑎𝑟𝑎𝑚
∑

𝑑𝑖. (14)
4

𝑗∈𝐽 𝑖∈𝐼
The following proposition proves that 𝐸𝑊𝑡𝑜𝑡 is non-linear but con-
vex in 𝑟𝑗 , which makes it amenable to numerical optimization. More
specifically, since the objective function 𝐸𝑊𝑡𝑜𝑡 is a convex function
of the decision variables, and all constraints are linear, (𝑃 2) with the
𝐸𝑊𝑡𝑜𝑡 objective is a convex math program, which can be solved by a
commercial convex solver such as KNITRO.

Proposition 2. 𝐸𝑊𝑡𝑜𝑡 =
∑

𝑗∈𝐽 𝜆𝑗𝐸𝑊 (𝜆𝑗 , 𝑟𝑗) is convex in 𝑟𝑗 and
independent of 𝜆𝑗 .

Proof. See Appendix B. □

In particular, for the special case of problem (𝑃 2) when there is
exactly one server at each group (i.e., 𝑘𝑗 = 1 ∀𝑗 ∈ 𝐽), the Erlang-C
function 𝐸𝐶(𝑘𝑗 = 1, 𝑟𝑗) simplifies to workload 𝑟𝑗 , and 𝐸𝑊𝑡𝑜𝑡 becomes,

𝐸𝑊𝑡𝑜𝑡 =
∑

𝑗∈𝐽
𝜆𝑗𝑟𝑗

𝑟𝑗
𝜆𝑗 (1 − 𝑟𝑗)

=
∑

𝑗∈𝐽

𝑟2𝑗
1 − 𝑟𝑗

.

Notice that although 𝐸𝑊𝑡𝑜𝑡 is nonlinear and non-quadratic, it is can
be written as a convex function of the 𝑟𝑗 variables, which makes it
amenable to convex optimization.

In the following, we introduce XRand, a static routing policy that
uses the solution {𝑥𝑖𝑗} which we obtain from solving problem (𝑃 2) to
route jobs to servers in real-time.

4.2. XRand : The optimal static policy

Given 𝑥𝑖𝑗 ’s from solving problem (𝑃 2), the XRand policy works as
follows. Upon arrival of a job of type 𝑖, with probability �̄�𝑖∕𝑑𝑖 the job
is blocked, where �̄�𝑖 = 𝑑𝑖 −

∑

𝑗∈𝐽𝑖 𝑥𝑖𝑗 is the number of un-covered
jobs of type 𝑖. Each non-blocked job is randomly routed to group 𝑗
with probability 𝑥𝑖𝑗∕

∑

𝑗′∈𝐽𝑖 𝑥𝑖𝑗′ . If the job finds all servers at group 𝑗
busy, it waits in a FCFS queue in front of group 𝑗 with no blocking or
abandonment.

Note that Mehrotra et al. (2012) implemented a similar policy they
call XRand, where they obtain routing probabilities from solving a
slightly different mathematical program. While we minimize 𝐸𝑊𝑡𝑜𝑡 in
Problem (𝑃 2), Mehrotra et al. (2012) maximize total call resolution
rate.

XRand is a static policy that does not consider the state of the
system (i.e., the availability of servers) when making routing decisions.
Its usefulness stems from the interpretation of 𝑥𝑖𝑗 ’s as scaled routing
probabilities. On the other hand, dynamic policies that use the actual
real-time state of the system to choose how to route jobs to servers
would outperform XRand. In the following section, we introduce rout-
ing policies that use both the 𝑥 ’s computed from solving (𝑃 2) and the
𝑖𝑗

Computers and Operations Research 137 (2022) 105545V. Nourbakhsh and J. Turner

𝑗

5

p
a
h
t
l
t
g
c
j
t
f
g

5

d
t
p
t
i
d
o
s
c
X
t
X

5

j
a
(
𝐶
l

5

b
t
m
e

5

(
j
W

actual real-time state of the system to dynamically assign jobs to server
groups. As we will see, the 𝑥𝑖𝑗 ’s contain important information about
how to assign workloads to server groups in aggregate that is useful for
constructing a well-performing dynamic policy.

5. Dynamic routing policies

We now develop several dynamic routing policies that use the
solution from our planning problem (𝑃 2) to decide how to assign jobs
of each type 𝑖 to each server group 𝑗 in real-time. We also describe
the Fastest-Server-First (FSF) dynamic policy, which is a well-known
and common dynamic policy for the multi-class multi-server setting
and does not use the solution to (𝑃 2) as input (Mehrotra et al., 2012;
Armony, 2005). Then, in the following section we will empirically
compare the performance of all policies.

Recall that to construct the math program (𝑃 2) in Section 4.1, we
assumed that queueing occurred after the routing decision, i.e., each
server had a queue in front of it. Putting the queues at the servers
allowed us to model each group’s queue as an M/M/k queue, which
led to expressions that are amenable to convex programming. However,
our dynamic policies as well as the FSF policy flips things around, and
instead places the queues on the job-type side of the graph (i.e., on
the left side of the graph depicted in Fig. 1). This has the effect of
postponing the routing decision until the system’s status is realized
(i.e., until a server becomes available or a job arrives), which enhances
the performance of the resulting dynamic policies.

We divide the dynamic routing policies into three categories as
follows: (i) policies that do not block jobs, (ii) policies that block jobs
statically, and (iii) policies that block jobs dynamically.

5.1. Dynamic routing policies with no blocking

The first three dynamic policies that we describe do not block any
jobs. While serving all jobs that arrive may be an important criterion
for some systems, expected waiting time can suffer when the inability
to block jobs leaves the system congested.

5.1.1. FSF policy
We begin describing the Fastest-Server-First (FSF) policy, since it is

both a benchmark and its logic is incorporated into some of our policies.
This intuitive policy is known as an overflow policy, as its operation can
be described by job-to-group and group-to-job priority lists as follows.
When a job of type 𝑖 arrives, a job-to-group priority list for that job type
determines the order in which the groups are checked for a free server
(if a free server is found, the job is assigned to it). This priority list is
an ordered list of all groups that can serve job 𝑖, i.e., 𝑗 ∈ 𝐽𝑖, sorted from
smallest to largest service times 𝜏𝑖𝑗 . The policy is called FSF because the
fastest server group has the highest priority in the list, and therefore if
the fastest server is free it will always be the one assigned. There is
one queue for each job type 𝑖 ∈ 𝐼 , and if a job of type 𝑖 finds all groups
in 𝐽𝑖 busy, it will enter queue 𝑖 and be served in FCFS order relative
to other jobs of type 𝑖. Moreover, when a server in group 𝑗 becomes
free and there are waiting jobs in at least one queue 𝑖 ∈ 𝐼𝑗 , a group-to-
job list for that server group determines which waiting job is picked.
Specifically, the group-to-job list for group 𝑗 is a list of all job types
that server group 𝑗 can serve, i.e., 𝑖 ∈ 𝐼𝑗 , again sorted from smallest to
largest service times 𝜏𝑖𝑗 (i.e., from the server’s perspective, the policy
follows a ‘‘fastest job-type first’’ rule by picking the waiting job that is
the fastest to process). If all queues in the list are empty, then the server
stays free. Finally, without loss of generality, if fairness to individual
servers at a group is a consideration, then whenever more than one
server is idle at the assigned group, we may choose the server with the
5

longest idle time, i.e., follow the Longest Idle Server First (LISF) rule. F
5.1.2. XOverflow policy
We construct an overflow policy that, like FSF, uses priority lists

to determine routings. However, instead of determining priorities by
rank-orders of service time 𝜏𝑖𝑗 , our XOverflow policy uses the rank-
orders of the solution 𝑥𝑖𝑗 obtained from solving problem (𝑃 2) to sort
the list, i.e., job-to-group and group-to-job lists are sorted from largest
to smallest 𝑥𝑖𝑗 . We omit matching groups and job types whose 𝑥𝑖𝑗 values
are zero, since the solution to (𝑃 2) suggests no jobs of type 𝑖 should be
processed by group 𝑗. Consequently, the job-to-group list for job type 𝑖
may have fewer members than |𝐽𝑖|, and the group-to-job list for group

may have fewer members than |𝐼𝑗 |.

.1.3. XFSF policy
This overflow policy is a combination of the XOverflow and FSF

olicies. First, we initialize the priority lists so that they are the same
s in the XOverflow policy, i.e., groups and jobs are rank-ordered from
ighest to lowest 𝑥𝑖𝑗 . Then, we append additional groups (and jobs) to
he end of job-to-group (and group-to-job) lists in order of smallest to
argest mean service time 𝜏𝑖𝑗 , which is consistent with FSF. In essence,
he priority lists use 𝑥𝑖𝑗 as a primary criterion to rank-order matching
roups and jobs whenever 𝑥𝑖𝑗 is strictly positive, and 𝜏𝑖𝑗 as a secondary
riterion to rank-order matching groups and jobs for those groups and
obs that have 𝑥𝑖𝑗 = 0. As a consequence, the priority lists may be longer
han those used by the XOverflow policy. Indeed, the job-to-group list
or job type 𝑖 always has |𝐽𝑖| members, and the group-to-job list for
roup 𝑗 always has |𝐼𝑗 | members.

.2. Dynamic routing policies with static blocking

Our next three policies block some jobs from obtaining service, but
o so in a purely random fashion without adapting the blocking rate to
he current state of the system (i.e., real-time server availability). Com-
ared to not blocking at all, static blocking improves expected waiting
ime by reducing workloads at server groups and keeping congestion
n check. On the other hand, throughput (the number of served jobs)
ecreases. Whereas our non-blocking policies all had a coverage factor
f 1 (i.e., all jobs get served), our static-blocking policies block jobs
o that in expectation, the actual coverage factor matches the desired
overage factor, 𝐶𝐹 𝑝𝑎𝑟𝑎𝑚. Note that the optimal static routing policy,
Rand, also blocks jobs in a static fashion, and so it is interesting

o compare the performance of the policies in this section to that of
Rand.

.2.1. XOverflowStaticBlock policy
Upon arrival of a job of type 𝑖, with probability �̄�𝑖∕𝑑𝑖 we block the

ob and do not serve it. This static blocking probability is the same
s defined by XRand, and requires the solution to the math program
𝑃 2) to compute the planned number of blocked jobs for each job type,
̄𝑖 = 𝑑𝑖−

∑

𝑗∈𝐽𝑖 𝑥𝑖𝑗 . Non-blocked jobs are routed according to the priority
ists defined by our XOverflow policy.

.2.2. XFSFStaticBlock policy
This is a variant of our XFSF policy in which arrivals of type 𝑖 are

locked with probability �̄�𝑖∕𝑑𝑖. Non-blocked jobs are routed according
o the priority lists defined by our XFSF policy. Note that again, we
ust solve (𝑃 2) to compute the planned number of blocked jobs for

ach job type, �̄�𝑖.

.2.3. FSFStaticBlock policy
This is a variant of the FSF policy which blocks all arriving jobs

irrespective of type) with probability 𝐶𝐹 𝑝𝑎𝑟𝑎𝑚, and routes non-blocked
obs according to the priority lists defined by the regular FSF policy.

e use this policy as a benchmark for our static-blocking policies. Like
SF, this policy does not use any information from the solution of (𝑃 2).

Computers and Operations Research 137 (2022) 105545V. Nourbakhsh and J. Turner

j
a

t

6

u
i
q
a
h
s
f

(
q
o
𝐶

5.3. Dynamic routing policies with dynamic blocking

Our final three policies dynamically block some jobs from obtaining
service by using the real-time state of the system (i.e., server availabil-
ity) to decide when to block a job. While there are potentially many
ways to dynamically block jobs, our intent here is to demonstrate that,
for a given type of dynamic-blocking policy, we can improve its per-
formance by using information from the solution of the math program
(𝑃 2). Consequently, we establish this result with the most canonical
dynamic-blocking policy.1 Specifically, we set the queue length for each
ob type to zero, and block type-𝑖 jobs whenever no server is available at
ny server group matching job type 𝑖. Since for our dynamic-blocking

policies the queue length is zero, expected waiting time is also zero.
Therefore, we use the actual coverage factor (percentage of jobs served)
to measure the performance of these policies.

5.3.1. FSFDynamicBlock policy
When a job arrives, we traverse the corresponding job-to-group

priority list and assign the job to the first server group that has an idle
server. If all matching server groups are completely busy, the job is
blocked. This is our dynamic-blocking benchmark, as the job-to-group
priority lists are ordered from smallest to largest mean service time 𝜏𝑖𝑗
just like in the FSF policy, and no information from the math program
(𝑃 2) is used to direct the policy.

5.3.2. XDynamicBlock policy
This is a variant of our XOverflow policy in which arrivals are

blocked dynamically. When a job arrives, we traverse the correspond-
ing job-to-group priority list and assign the job to the first server group
that has an idle server. If all matching server groups are completely
busy, the job is blocked. Priority lists are defined as in our XOverflow
policy, i.e., they are ordered from largest to smallest planned allocation
volume 𝑥𝑖𝑗 , where the allocation volumes are computed by solving
math program (𝑃 2).

5.3.3. XFSFDynamicBlock policy
This is a variant of our XFSF policy in which arrivals are blocked

dynamically. When a job arrives, we traverse the corresponding job-to-
group priority list and assign the job to the first server group that has
an idle server. If all matching server groups are completely busy, the
job is blocked. Priority lists are defined as in our XFSF policy, i.e., we
initialize the priority lists so that groups and jobs are rank-ordered from
highest to lowest 𝑥𝑖𝑗 . Then, we append additional groups (and jobs) to
the ends of job-to-group (and group-to-job) lists in order of smallest to
largest mean service time 𝜏𝑖𝑗 . Note that again, we must first solve (𝑃 2)
o compute the planned allocation volumes 𝑥𝑖𝑗 .

. Experiments

In this section, we measure the performance of our routing policies
sing a simulation. We implemented the convex math program (𝑃 2)
n AMPL 2017.01.26 on a Windows PC with 16 GB of RAM and a
uad core CPU running at 3.1 GHz, and solved it using KNITRO 10.1,
commercial solver for convex programs. In Section 6.1 we explain

ow we generated our test instances, in Section 6.2 we describe the
imulation we use to measure the performance of our policies, and
inally in Section 6.3 we report our simulation’s results.

1 More advanced dynamic-blocking policies could be constructed by either
a) setting a finite non-zero queue length and blocking when all matching
ueues are full, or (b) dynamically adapting queue length and/or amount
f work admitted to each queue, based on either the global coverage factor
𝐹 𝑝𝑎𝑟𝑎𝑚 or the job type-specific blocking probabilities �̄�𝑖∕𝑑𝑖 computed by the

math program (𝑃 2). We leave the analysis and measurement of these more
6

advanced dynamic-blocking policies for future work.
6.1. Data

We generate a total of 20 instances in two sets, (i) a planar dataset of
6 instances for transportation-on-demand systems, and (ii) a non-planar
dataset of 14 instances for call centers and load balancing systems.
For each instance we generate parameters 𝑘𝑗 , 𝑑𝑖 and 𝜏𝑖𝑗 as well as the
adjacency sets 𝐼𝑗 and 𝐽𝑖. For summary statistics of all instances see
Supplementary Appendix A. Below, we explain how we generate our
instances.

For both datasets, we generate the expected arrival (demand) rate
𝑑𝑖 of each job type 𝑖 and the number of servers 𝑘𝑗 at each group 𝑗
randomly according to the uniform distribution between 1 and 10 and
the discrete uniform distribution between 1 and 10, respectively.

For our non-planar instances, we generate expected service times
𝜏𝑖𝑗 ’s randomly from a uniform distribution with support on the interval
[0.5, 3.5]. To generate links (𝑖, 𝑗) in the bipartite graph between job types
and servers, we proceed as follows. For each (𝑖, 𝑗) combination, we
generate a uniform random number between 0 and 1 and add the link
(𝑖, 𝑗) to the graph if this random number is greater than a threshold we
call graph density. Graph density is a number between 0 and 1, and is
defined as the proportion of links that our graph should have compared
to the complete bipartite graph on the same set of nodes (See Table 1
in Supplementary Appendix A for the graph densities of our instances).
The adjacency sets 𝐽𝑖 and 𝐼𝑗 are computed directly from the graph.

For our planar instances, we generate random points for job nodes
and group nodes uniformly on a plane measuring 100 × 100 units. We
define a coverage radius of 10 units for each group to determine if a
group can serve a job node. If job 𝑖 is covered by group 𝑗, i.e., 𝑖 ∈ 𝐼𝑗 ,
the Euclidean distance between 𝑖 and 𝑗 gives us the service time, 𝜏𝑖𝑗 .

For many of our instances we consider several coverage factors
(𝐶𝐹 𝑝𝑎𝑟𝑎𝑚). In total, we solve problem (𝑃 2) and simulate our policies
for 42 test cases (i.e., 42 {instance, coverage factor} combinations).

6.2. Simulation design

We implemented our simulation using the ContactCenters Java li-
brary of Buist and L’Ecuyer (2005). In our simulation, jobs of each
type 𝑖 arrive independently according to Poisson processes with arrival
rates 𝑑𝑖. Service rates are independent, each exponentially distributed
with mean service time 𝜏𝑖𝑗 . We run a 14-month simulation and discard
the results from the first warm-up month and the fourteenth wrap-up
period. We replicate the simulation 10 times and report average per-
formance for both expected waiting time, 𝐸𝑊𝑎𝑣𝑔 , and actual coverage
factor, i.e., proportion of jobs served as measured by the simulation,
𝐶𝐹 𝑎𝑐𝑡.

We use this simulation to compare the performance of our ten
policies (the static policy XRand, as well as the nine dynamic policies
defined in Section 5). Specifically, we subdivide our ten policies into
three categories based on how jobs are blocked as follows:

(i) No-Blocking Policies: FSF, XOverflow, and XFSF. Because these
policies serve all jobs, the actual coverage factor 𝐶𝐹 𝑎𝑐𝑡 is always
1. Performance is measured by expected waiting time, 𝐸𝑊𝑎𝑣𝑔 .

(ii) Static-Blocking Policies: XRand, FSFStaticBlock, XOverflowStat-
icBlock, and XFSFStaticBlock. Because these policies block a
pre-computed fraction of arriving jobs, in expectation (i.e., in
the long run) the actual coverage factor will equal the desired
coverage factor, i.e., 𝐶𝐹 𝑎𝑐𝑡 = 𝐶𝐹 𝑝𝑎𝑟𝑎𝑚. Performance is measured
by expected waiting time, 𝐸𝑊𝑎𝑣𝑔 .

(iii) Dynamic-Blocking Policies: FSFDynamicBlock, XDynamicBlock,
and XFSFDynamicBlock. Because for these policies queue length
is zero, expected waiting time 𝐸𝑊𝑎𝑣𝑔 is also zero. Performance
is measured by actual coverage factor 𝐶𝐹 𝑎𝑐𝑡.

Computers and Operations Research 137 (2022) 105545V. Nourbakhsh and J. Turner
Fig. 2. Irvine fire stations and the census block groups considered in the study. Excluded block groups are those with centroids that are either (i) outside of the city boundary,
or (ii) too far from any fire station, i.e., the Acceptable Waiting Time (AWT) of 8 min 45 s would always be exceeded.
6.3. Results

We compare policies in each blocking category separately. For each
policy, we report the number of instances (out of 42) that the policy
outperforms the other policies in its category. Table 2 summarizes our
results. Note that because two or more policies can be best-performing
for a given instance, within a category the sum of percentages in the
right-most column may exceed 100%. Numerical results for all 42 test
cases in the non-blocking, static-blocking, and dynamic-blocking tests
are provided in the Supplementary Appendix B (see Tables 2, 3, and 4,
respectively).

Among policies that do not block jobs (i.e., FSF, XOverflow, and
XFSF), XOverflow outperforms the other two policies. In the static-
blocking category, XOverflowStaticBlock and XFSFStaticBlock are the
best-performing polices. Finally, XFSFDynamicBlock outperforms
among the dynamic-blocking policies.

In all 42 test cases, FSF and its variants (FSFStaticBlock and FSFDy-
namicBlock) are dominated by one or more of our dynamized policies.
We attribute this result to the fact that FSF and its variants are myopic
and decentralized, i.e., each job chooses the fastest available server
without considering other jobs, while our dynamized policies which use
the solution to problem (𝑃 2) consider the overall system congestion and
7

Table 2
Summary of results: Number of instances (out of 42 instances) that each policy is
best-performing in its category.

Policy category Performance
criterion

Policy Number of instances that
the policy is the best.

No blocking
(𝐶𝐹 𝑎𝑐𝑡 = 1) 𝐸𝑊𝑎𝑣𝑔

FSF 4 (9.5%)
XOverflow 34 (81.0%)
XFSF 7 (16.7%)

Static blocking
(𝐶𝐹 𝑎𝑐𝑡 =
𝐶𝐹 𝑝𝑎𝑟𝑎𝑚)

𝐸𝑊𝑎𝑣𝑔

XRand 4 (9.5%)
FSFStaticBlock 2 (4.8%)
XOverflowStaticBlock 25 (59.5%)
XFSFStaticBlock 27 (64.3%)

Dynamic
blocking
(𝐸𝑊𝑎𝑣𝑔 = 0)

𝐶𝐹 𝑎𝑐𝑡
FSFDynamicBlock 4 (9.5%)
XDynamicBlock 16 (38.1%)
XFSFDynamicBlock 38 (90.5%)

may route a job to a server that is not the fastest available server, but

keeps the fastest available server for a future incoming job or even a

job of a different type. Indeed, our dynamized policies try to balance

server workloads to benefit the whole system, and are less greedy.

Computers and Operations Research 137 (2022) 105545V. Nourbakhsh and J. Turner

c
j
s
p

7

i
S
a
S

7

p
a
c
C
t
8
i
t
B
c
c
p
m
l
i
r
g
c
f
c
i
d
c
o
t
S
d
c
a
o
c
(
c
d

b

c

d

Our simulation results show that the solution to our math program
(𝑃 2) is useful for building dynamized routing policies for online set-
tings. Particularly, XOverflow, XFSFStaticBlock, XOverflowStaticBlock,
and XFSFDynamicBlock are all well-performing policies in their cat-
egories. This illustrates that there is a benefit from hybridizing a
static policy computed by solving a math program, which effectively
apportions aggregate workloads from heterogeneous jobs types to het-
erogeneous servers, with a dynamic policy such as FSF that is provably
near-optimal for special cases (i.e., only one job type) and takes into
account real-time state information about the availability of servers.

Finally, we also point out that blocking some jobs upon arrival can
be important to keep servers from becoming overloaded. In general,
finding the optimal blocking level for each job type is non-trivial
because service rates are job-server dependent and servers’ workloads
depend on the routing. Another use of our math program (𝑃 2) is to
ompute job-type specific coverage ratios, which can be interpreted as
ob-type specific blocking probabilities, �̄�𝑖∕𝑑𝑖. These were used by the
tatic policy XRand, as well as the dynamic-routing-with-static-blocking
olicies XOverflowStaticBlock and XFSFStaticBlock.

. Fire stations case

To illustrate the applicability of our methodology, we now assign
ncidents to fire stations in Irvine, California. We describe the data in
ection 7.1, visually depict some key routing policies in Appendix C,
nd finally compare the numerical performance of routing policies in
ection 7.2.

.1. Data

For emergency calls, the Orange County Fire Authority (OCFA) dis-
atches vehicles to incident locations in Orange County, California. We
pplied our model to the 11 OCFA stations in Irvine, a 66-square-mile
ity in Orange County with a population of 212,375 (US Department of
ommerce: United States Census Bureau, 2010a) and 13 dedicated fire
rucks (Orange County Fire Authority, 2014). In 2010, OCFA received
5,212 emergency calls; we allocate these to 1822 census block groups
n Orange County (OC) proportional to their population according to
he 2010 US census (US Department of Commerce: United States Census
ureau, 2010b). We assume each incident occurs at the centroid of the
ensus block group where it originates; see Fig. 2 for a map of Irvine’s
ensus block groups and their centroids. We make this assumption
rimarily for tractability, as the problem would be too large if we
odeled the exact location of each incident. In any case, the exact

ocations of past incidents may not represent the locations of future
ncidents, and so one could view using the centroids as a reasonably
obust alternative. Among the 1822 block groups in OC, 124 block
roups either completely fall in or intersect with the boundaries of the
ity of Irvine. Among these 124 block groups, 117 have centroids that
all in Irvine (See blue and orange block groups in Fig. 2), and 7 have
entroids that do not fall in Irvine (See red block groups in Fig. 2). Since
ncident rates are low relative to station capacities, the performance of
ifferent routing policies are similar. To compare routing policies, we
reate congestion in the system by increasing incident rates by a factor
f 20. It should be noted that in this paper our goal is to compare
he static XRand policy with the dynamic policies we developed in
ection 5 using non-synthetic data, not to provide policy recommen-
ations for OCFA. Indeed, several factors, including the need to cover
ommercial and industrial facilities with diverse risk portfolios, as well
s the need to protect against large-scale wildfires which may encroach
n entire subdivisions, may indeed require significant excess capacity
ompared to our rough estimates. We refer the reader to L’Ecuyer et al.
2018) for a more explicit treatment of bursty arrivals coming from
orrelated emergencies that spawn from a single event such as a natural
isaster.
8

Table 3
Simulation results for the Irvine fire stations case.

Policy type Routing policy Performance measure 𝐶𝐹 𝑝𝑎𝑟𝑎𝑚a

0.80 0.85 0.90

No blocking

FSFc 𝐶𝐹 𝑎𝑐𝑡b 1
𝐸𝑊𝑎𝑣𝑔 0.51

XOverflow 𝐶𝐹 𝑎𝑐𝑡 1
𝐸𝑊𝑎𝑣𝑔 0.44 0.49 0.75

XFSF 𝐶𝐹 𝑎𝑐𝑡 1
𝐸𝑊𝑎𝑣𝑔 0.43d 0.46 0.56

Static

FSFStaticBlock 𝐶𝐹 𝑎𝑐𝑡 0.80 0.85 0.90
𝐸𝑊𝑎𝑣𝑔 0.49 0.50 0.50

XRand 𝐶𝐹 𝑎𝑐𝑡 0.80 0.85 0.90
𝐸𝑊𝑎𝑣𝑔 0.45 0.51 0.74

XOverflowStaticBlock 𝐶𝐹 𝑎𝑐𝑡 0.80 0.85 0.90
𝐸𝑊𝑎𝑣𝑔 0.08 0.13 0.17

XFSFStaticBlock 𝐶𝐹 𝑎𝑐𝑡 0.80 0.85 0.90
𝐸𝑊𝑎𝑣𝑔 0.08d 0.12 0.16

Dynamic

FSFDynamicBlock 𝐶𝐹 𝑎𝑐𝑡 0.68
𝐸𝑊𝑎𝑣𝑔 0e

XDynamicBlock 𝐶𝐹 𝑎𝑐𝑡 0.60 0.60 0.60
𝐸𝑊𝑎𝑣𝑔 0e 0 0

XFSFDynamicBlock 𝐶𝐹 𝑎𝑐𝑡 0.74d 0.77 0.77
𝐸𝑊𝑎𝑣𝑔 0e 0 0

a𝐶𝐹 𝑝𝑎𝑟𝑎𝑚 is the coverage factor parameter used in the math program (𝑃 2).
𝐶𝐹 𝑎𝑐𝑡 is the actual coverage factor measured by the simulation.
The coverage factor parameter 𝐶𝐹 𝑝𝑎𝑟𝑎𝑚 does not apply to the FSF policy.
Bold face denotes the best routing policy in each blocking type category.

eRecall queueing does not occur in our dynamic-blocking policies (jobs are blocked
when all feasible groups are busy).

The service time 𝜏𝑖𝑗 is the time it takes for a vehicle to travel from
its station 𝑗 to the incident location (i.e., the centroid of the block group
𝑖), serve the incident, return to its station 𝑗 and become ready for the
following incident. The travel time is calculated based on the street
maps in Irvine using the mapping software ArcGIS 10. In computing
the driving time, we consider the speed limit of the streets, the traffic
direction and other traffic flow constraints. OCFA standards indicate
that a fire engine should arrive at the incident’s location within an
acceptable waiting time of 8 min 45 s (Orange County Fire Authority,
2014). Using this acceptable waiting time, we build sets 𝐽𝑖 and 𝐼𝑗 ,
i.e., block group 𝑖 is covered by station 𝑗 if centroid 𝑖 is within 8 min
45 s driving distance of 𝑗. There are two centroids that are not within
the 8 min 45 s driving distance of any fire station and thus are not
considered in our experiment (See light red block groups in Fig. 2).

For visualization, we illustrate policies XRand and XFSFStaticBlock
in Appendix C figures.

7.2. Results

We simulate each of the dynamic policies mentioned in Section 5
as well as our static policy XRand, and list the results in Table 3.
Among policies that do not block jobs, we find XFSF is the best rout-
ing policy, followed closely by XOverflow. Among the static-blocking
policies, XFSFStaticBlock is the best routing policy, followed closely by
XOverflowStaticBlock. Finally, XFSFDynamicBlock is the best dynamic-
blocking policy. These results are generally consistent with our simula-
tion results from Section 6. Of note, we see that although XRand maps
workloads to groups and chooses blocking rates using the solution of
(𝑃 2), it underperforms several other policies. Yet, by judiciously using
information coming from the solution of (𝑃 2), our dynamized policies
can outperform both the static policy XRand and simple dynamic
policies based on FSF.

Finally we illustrate XFSFStaticBlock in Fig. C.4, which shows the
first three priorities for each block group. Other policies can be mapped

similarly.

Computers and Operations Research 137 (2022) 105545V. Nourbakhsh and J. Turner
Fig. C.3. Block groups assigned to stations based on the XRand policy. The XRand policy does not cover all the block groups. Some blocks groups are partially covered and
some are completely uncovered. Also, there are block groups that are covered by more than one station. In these cases, the XRand policy randomly picks a station for each
incident according to the solution of problem (𝑃2). Alternatively, one can divide such block groups into zones and assign each zone to one station. This is depicted in Fig. D.5 in
Appendix D.
8. Conclusions

Expected waiting time is an important performance measure for
transportation networks and call centers. We showed that for multi-
class multi-server systems, this performance measure is convex in the
arrival rate and workload. While our math programming model is use-
ful for planning purposes and can be embedded in larger optimization
problems, we showed that its solution can also be used to construct
good routing policies for real-time routing. We used the solution to
our planning problem with expected waiting time objective function
to build static and dynamic routing policies. Our experiments and fire
station case showed that we can produce well-performing dynamic
policies that outperform Fastest-Server-First (FSF) and its extensions,
namely, FSFStaticBlock and FSFDynamicBlock.

In Supplementary Appendix C we show that our method can be
easily applied to other queue performance measures, namely, expected
system time and expected throughput. Moreover, performance mea-
sures can appear in constraints as well as the objective function; for
example, a limit for the queue waiting time.

Our study is valuable because it designs dynamic policies that
outperform the FSF policy, which is a common routing policy used
in the literature and in practice for multi-class multi-server systems.
Moreover, the dynamic policies we construct are overflow policies that
are easy to implement. Future research directions based on our work
9

𝑥

include, (i) designing dynamic routing policies for other performance
measures, and (ii) embedding our math program into larger planning
problems such as staffing and scheduling problems.

CRediT authorship contribution statement

Vahid Nourbakhsh: Methodology, Software, Data curation, Formal
analysis, Writing - original draft. John Turner: Conceptualization,
Methodology, Writing - review & editing, Supervision.

Appendix A. Proof of Proposition 1 : Binding coverage constraint

Proof. Assume that for the optimal solution
{

𝑥∗𝑖𝑗
}

with the corre-

sponding arrival rate
{

𝜆∗𝑗
}

and workload
{

𝑟∗𝑗
}

the minimum coverage

imposed in Constraint (12) is not binding, i.e.,
∑

𝑗∈𝐽
𝜆∗𝑗 > 𝐶𝐹 𝑝𝑎𝑟𝑎𝑚

∑

𝑖∈𝐼
𝑑𝑖.

Construct binding solution
{

�̄�𝑖𝑗
}

with corresponding
{

�̄�𝑗
}

and
{

�̄�𝑗
}

as
follows,

̄ = 𝛽𝑥∗ ∀(𝑖, 𝑗) ∈ 𝐹 ,
𝑖𝑗 𝑖𝑗

Computers and Operations Research 137 (2022) 105545V. Nourbakhsh and J. Turner

𝑟

Fig. C.4. Block groups assigned to stations based on the XFSFStaticBlock policy. Similar to the FSF policy depicted in Fig. C.3 the router checks blue, green, and red links in this
order for an available fire engine.
where,

𝛽 =
𝐶𝐹 𝑝𝑎𝑟𝑎𝑚 ∑

𝑖∈𝐼 𝑑𝑖
∑

𝑗∈𝐽 𝜆∗𝑗
.

Note that 0 ≤ 𝛽 < 1 and ∑

𝑗∈𝐽 �̄�𝑗 = 𝐶𝐹 𝑝𝑎𝑟𝑎𝑚 ∑

𝑖∈𝐼 𝑑𝑖. Then,

�̄�𝑗 =
∑

𝑖∈𝐼
�̄�𝑖𝑗 =

∑

𝑖∈𝐼
𝛽𝑥∗𝑖𝑗 = 𝛽𝜆∗𝑗 < 𝜆∗𝑗 ∀𝑗 ∈ 𝐽 , (A.1)

̄𝑗 =
∑

𝑖∈𝐼
𝜏𝑖𝑗 �̄�𝑖𝑗 =

∑

𝑖∈𝐼
𝜏𝑖𝑗𝛽𝑥

∗
𝑖𝑗 = 𝛽𝑟∗𝑗 < 𝑟∗𝑗 ∀𝑗 ∈ 𝐽 , (A.2)

and

�̄�𝑗 =
�̄�𝑗
�̄�𝑗

=
𝛽𝑟∗𝑗
𝛽𝜆∗𝑗

= 𝜎∗𝑗 ∀𝑗 ∈ 𝐽 .

Lemma 3 (which follows) proves that 𝐸𝑊 (𝜆, 𝑟) is strictly increasing in
𝜆 and 𝑟 with fixed mean service time 𝜎 > 0. Thus,

𝐸𝑊 (�̄�𝑗 , �̄�𝑗) < 𝐸𝑊 (𝜆∗𝑗 , 𝑟
∗
𝑗) ∀𝑗 ∈ 𝐽 .

Using inequalities (A.1) and (A.2), the following inequality follows,

𝐸𝑊 𝑎𝑣𝑔 =
∑

𝑗∈𝐽 �̄�𝑗𝐸𝑊 (�̄�𝑗 , �̄�𝑗)
∑

𝑗∈𝐽 �̄�𝑗

=

∑

𝑗∈𝐽 𝜆∗𝑗𝐸𝑊 (�̄�𝑗 , �̄�𝑗)
∑ ∗
10

𝑗∈𝐽 𝜆𝑗
<

∑

𝑗∈𝐽 𝜆∗𝑗𝐸𝑊 (𝜆∗𝑗 , 𝑟
∗
𝑗)

∑

𝑗∈𝐽 𝜆∗𝑗
= 𝐸𝑊 ∗

𝑎𝑣𝑔 ,

which contradicts the optimality assumption for solution
{

𝑥∗𝑖𝑗
}

with
objective value 𝐸𝑊 ∗

𝑎𝑣𝑔 . □

Lemma 3. Expected waiting time 𝐸𝑊 (𝜆, 𝑟) is strictly increasing in 𝜆 and
𝑟 with fixed mean service time 𝜎 > 0.

Proof. Lee and Cohen (1983) have proved that Erlang-C formula
𝐸𝐶(𝑘, 𝑟) is strictly increasing in workload 𝑟. Also, 𝜎∕(𝑘 − 𝑟) is positive
and strictly increasing in 𝑟 with fixed 𝜎. Thus, 𝐸𝑊 (𝜆, 𝑟) as a product
of two positive strictly increasing functions is positive and strictly
increasing in 𝑟. Fixing 𝜎 > 0 drives 𝜆 linear in 𝑟 = 𝜎𝜆. Thus, 𝐸𝑊 (𝜆, 𝑟)
is jointly increasing in 𝜆 and 𝑟 with fixed 𝜎. □

Appendix B. Proof of Proposition 2: 𝑬𝑾𝒕𝒐𝒕 Convexity

Proof. According to Little’s law (i.e., queue length = arrival rate ×
waiting time), for each group 𝑗 the corresponding term 𝜆𝑗𝐸𝑊 (𝜆𝑗 , 𝑟𝑗) is
the expected queue length (denoted by 𝐸[𝐿]) for that group, i.e.,

𝐸[𝐿𝑗] = 𝜆𝑗𝐸𝑊 (𝜆𝑗 , 𝑟𝑗) = 𝐸𝐶(𝑘𝑗 , 𝑟𝑗)[𝑟𝑗∕(𝑘𝑗 − 𝑟𝑗)],

where 𝐿𝑗 is the random number of jobs in the group 𝑗’s queue. Grass-
mann (1983) proved that expected queue length 𝐸[𝐿] is convex in
𝑗

Computers and Operations Research 137 (2022) 105545V. Nourbakhsh and J. Turner
Fig. D.5. Static routing map corresponding to the XRand map in Fig. C.3.
traffic intensity 𝜌𝑗 and since 𝑟𝑗 = 𝜌𝑗𝑘𝑗 , 𝐸[𝐿𝑗] is convex in workload
𝑟𝑗 with fixed 𝑘𝑗 . Since sum preserves the convexity, ∑

𝑗∈𝐽 𝐸[𝐿𝑗] =
∑

𝑗∈𝐽 𝜆𝑗𝐸𝑊 (𝜆𝑗 , 𝑟𝑗) is convex in 𝑟𝑗 ’s. Note that 𝐸[𝐿𝑗] is a function of
𝑟𝑗 and variables 𝜎𝑗 and 𝜆𝑗 do not appear in 𝐸[𝐿𝑗]. □

Appendix C. Illustrations of key routing policies

We depict the XRand policy in Fig. C.3. Recall that for the XRand
policy, when an incident in block group 𝑖 occurs it is randomly routed
to station 𝑗 ∈ 𝐽𝑖 with a probability proportional to 𝑥𝑖𝑗 . In practice,
such random assignments may be undesirable. However, if desired we
can build an equivalent map that is not subject to randomization but
instead subdivides each block group into a number of smaller zones.
We produce one zone for each station 𝑗 with non-zero 𝑥𝑖𝑗 value, and
assign all incidents within that zone to station 𝑗. Moreover, we choose
the boundary of each zone such that the proportion of the block group’s
incidents occurring in the zone is equal to the proportion of incidents
that would be assigned to station 𝑗 in the equivalent randomized policy.
Note that we can also use this scheme to subdivide a region subject
to static (probabilistic) blocking into two subregions: one where no
arrivals are blocked and another where all arrivals are blocked. For
further details, see Appendix D. Finally, it is worth mentioning that
blocking in practice could mean that another fire management system
outside our jurisdiction takes over, or that a dispatcher takes all calls
and rejects a call if the call is deemed redundant, irrelevant or not
urgent. Our exposition is agnostic to these details.
11
Appendix D. XRand map and the corresponding static routing
map

In the XRand policy, when an incident in block group 𝑖 occurs it
is randomly routed to 𝑗 ∈ 𝐽𝑖 according to the 𝑥𝑖𝑗 ’s. We use 𝑥𝑖𝑗 ’s to
build new zones where each zone is either not covered or is assigned to
exactly one fire station. In this new map there is no random assignment
as opposed to the original XRand. We divide the block groups according
to the 𝑥𝑖𝑗 ’s to build a new map with new arrival rates. For example,
let the demand at block group 𝐴 be 2, i.e., 𝑑𝐴 = 2. Also, assume that
we route 𝑥𝐴1 = 0.8 to station 1 and 𝑥𝐴2 = 1.2 to station 2, i.e., we
do not block jobs upon arrival. We divide block group 𝐴 into two
zones, 𝐵 and 𝐶 with areas proportional to 𝑥𝐴1∕(𝑥𝐴1 + 𝑥𝐴2) = 0.4 and
𝑥𝐴2∕(𝑥𝐴1 + 𝑥𝐴2) = 0.6. Zone 𝐵 is entirely assigned to group 1 with the
new arrival rate equal to 𝑥𝐵1 = 𝑥𝐴1, zone 𝐶 is entirely assigned to group
2 with the arrival rate equal to 𝑥𝐶2 = 𝑥𝐴2, and 𝑥𝐵2 = 𝑥𝐶1 = 0. With this
mapping the routings are predetermined and all the incidents in a zone
are assigned to a fixed station with no randomization. Moreover, the
new routing map has the same performance as its corresponding XRand
policy, because the arrival rates to the fire stations are preserved under
this new map.

We build a routing map for Irvine fire stations based on the XRand
policy (See Fig. C.3). As depicted in Fig. C.3 block group 𝑖 is linked to
station 𝑗 ∈ 𝐽𝑖, if 𝑥𝑖𝑗 is strictly positive. There are multiple ways to split
a block to multiple zones and Fig. D.5 shows one static routing map
corresponding to the map in Fig. C.3. In Fig. D.5 each zone is linked to
at most one station.

Computers and Operations Research 137 (2022) 105545V. Nourbakhsh and J. Turner
Online Supplementary Appendix. Supplementary data

Supplementary material related to this article can be found online at
https://doi.org/10.1016/j.cor.2021.105545. This includes (a) detailed
descriptions of simulation instances, (b) detailed simulation results, (c)
model extensions to optimize Expected System time (waiting time plus
service time) and Expected Throughput (flow rate of non-blocked jobs).

References

Armony, M., 2005. Dynamic routing in large-scale service systems with heterogeneous
servers. Queueing Syst. 51 (3–4), 287–329.

Armony, M., Ward, A.R., 2010. Fair dynamic routing in large-scale heterogeneous-server
systems. Oper. Res. 58 (3), 624–637.

Buist, E., L’Ecuyer, P., 2005. A java library for simulating contact centers. In:
Proceedings of the 37th Conference on Winter Simulation. Winter Simulation
Conference, pp. 556–565.

Chan, W., Koole, G., L’Ecuyer, P., 2014. Dynamic call center routing policies using call
waiting and agent idle times. Manuf. Serv. Oper. Manage. 16 (4), 544–560.

Cho, S.-H., Jang, H., Lee, T., Turner, J., 2014. Simultaneous location of trauma
centers and helicopters for emergency medical service planning. Oper. Res. 62 (4),
751–771.

Combé, M., Boxma, O.J., 1994. Optimization of static traffic allocation policies. Theoret.
Comput. Sci. 125 (1), 17–43.

Cooper, R.B., 1981. Introduction to Queueing Theory. North Holland.
Cordeau, J.-F., Laporte, G., Potvin, J.-Y., Savelsbergh, M.W., 2007. Chapter 7 transporta-

tion on demand. In: Barnhart, C., Laporte, G. (Eds.), Transportation. In: Handbooks
in Operations Research and Management Science, vol. 14, Elsevier, pp. 429–466.

Dai, J.G., Tezcan, T., 2008. Optimal control of parallel server systems with many servers
in heavy traffic. Queueing Syst. 59 (2), 95–134.

Gans, N., Koole, G., Mandelbaum, A., 2003. Telephone call centers: Tutorial, review,
and research prospects. Manuf. Serv. Oper. Manage. 5 (2), 79–141.

Gopalakrishnan, R., Doroudi, S., Ward, A.R., Wierman, A., 2016. Routing and staffing
when servers are strategic. Oper. Res. 64 (4), 1033–1050.
12
Grassmann, W., 1983. The convexity of the mean queue size of the M/M/c queue with
respect to the traffic intensity. J. Appl. Probab. 916–919.

Hokstad, P., 1978. Approximations for the M/G/m queue. Oper. Res. 26 (3), 510–523.
Kimura, T., 2010. The M/G/s queue. In: Cochran, J.J., Cox, L.A., Keskinocak, P.,

Kharoufeh, J.P., Smith, J.C. (Eds.), Wiley Encyclopedia of Operations Research and
Management Science. John Wiley & Sons, Inc., p. 5.

L’Ecuyer, P., Gustavsson, K., Olsson, L., 2018. Modeling bursts in the arrival process
to an emergency call center. In: Proceedings of the 2018 Winter Simulation
Conference. In: WSC ’18, IEEE Press, pp. 525–536.

Lee, H.L., Cohen, M.A., 1983. A note on the convexity of performance measures of
M/M/c queueing systems. J. Appl. Probab. 20 (4), 920–923.

Mandelbaum, A., Stolyar, A.L., 2004. Scheduling flexible servers with convex delay
costs: Heavy-traffic optimality of the generalized c𝜇-rule. Oper. Res. 52 (6),
836–855.

Mehrotra, V., Ross, K., Ryder, G., Zhou, Y.-P., 2012. Routing to manage resolution
and waiting time in call centers with heterogeneous servers. Manuf. Serv. Oper.
Manage. 14 (1), 66–81.

Orange County Fire Authority, 2014. Standards of Coverage and Deployment Plan.
URL: http://www.ocfa.org/Uploads/Orange%20County%20Fire%20Authority%
20SOC_FINAL.pdf, Accessed: 2016-09-30.

Pichitlamken, J., Deslauriers, A., L’Ecuyer, P., Avramidis, A.N., 2003. Modelling and
simulation of a telephone call center. In: Winter Simulation Conference, Vol. 2. pp.
1805–1812.

Ta, T.A., L’Ecuyer, P., Bastin, F., 2016. Staffing optimization with chance constraints
for emergency call centers. In: MOSIM 2016 - 11th International Conference on
Modeling, Optimization and Simulation. Montréal, Canada. URL: https://hal.inria.
fr/hal-01399507.

Tezcan, T., Dai, J., 2010. Dynamic control of N-systems with many servers: Asymptotic
optimality of a static priority policy in heavy traffic. Oper. Res. 58 (1), 94–110.

US Department of Commerce: United States Census Bureau, 2010a. Quick Facts,
Irvine city, California. URL: https://www.census.gov/quickfacts/table/POP010210/
0636770, Accessed: 2016-09-30.

US Department of Commerce: United States Census Bureau, 2010b. US Cen-
sus Block Data. URL: https://www.census.gov/geo/maps-data/data/tiger-data.html,
Accessed: 2016-09-30.

https://doi.org/10.1016/j.cor.2021.105545
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb1
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb1
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb1
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb2
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb2
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb2
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb3
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb3
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb3
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb3
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb3
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb4
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb4
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb4
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb5
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb5
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb5
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb5
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb5
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb6
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb6
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb6
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb7
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb8
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb8
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb8
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb8
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb8
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb9
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb9
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb9
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb10
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb10
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb10
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb11
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb11
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb11
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb12
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb12
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb12
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb13
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb14
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb14
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb14
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb14
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb14
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb15
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb15
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb15
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb15
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb15
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb16
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb16
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb16
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb17
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb17
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb17
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb17
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb17
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb18
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb18
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb18
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb18
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb18
http://www.ocfa.org/Uploads/Orange%20County%20Fire%20Authority%20SOC_FINAL.pdf
http://www.ocfa.org/Uploads/Orange%20County%20Fire%20Authority%20SOC_FINAL.pdf
http://www.ocfa.org/Uploads/Orange%20County%20Fire%20Authority%20SOC_FINAL.pdf
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb20
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb20
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb20
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb20
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb20
https://hal.inria.fr/hal-01399507
https://hal.inria.fr/hal-01399507
https://hal.inria.fr/hal-01399507
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb22
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb22
http://refhub.elsevier.com/S0305-0548(21)00281-1/sb22
https://www.census.gov/quickfacts/table/POP010210/0636770
https://www.census.gov/quickfacts/table/POP010210/0636770
https://www.census.gov/quickfacts/table/POP010210/0636770
https://www.census.gov/geo/maps-data/data/tiger-data.html

	Dynamized routing policies for minimizing expected waiting time in a multi-class multi-server system
	Introduction
	Literature review
	Problem
	Optimal static policy
	A math program for determining the optimal static routing policy
	XRand : The optimal static policy

	Dynamic routing policies
	Dynamic routing policies with no blocking
	FSF policy
	XOverflow policy
	XFSF policy

	Dynamic routing policies with static blocking
	XOverflowStaticBlock policy
	XFSFStaticBlock policy
	FSFStaticBlock policy

	Dynamic routing policies with dynamic blocking
	FSFDynamicBlock policy
	XDynamicBlock policy
	XFSFDynamicBlock policy

	Experiments
	Data
	Simulation design
	Results

	Fire stations case
	Data
	Results

	Conclusions
	CRediT authorship contribution statement
	Appendix A. Proof of Proposition 1 : Binding coverage constraint
	Appendix B. Proof of Proposition 2: EWtot Convexity
	Appendix C. Illustrations of Key Routing Policies
	Appendix D. XRand map and the corresponding static routing map
	Online Supplementary Appendix . Supplementary data
	References

