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a b s t r a c t 

Mobile object tracking, which has broad applications, utilizes a large number of Internet of Things (IoT) devices to 

identify, record, and share the trajectory information of physical objects. Nonetheless, IoT devices are energy con- 

strained and not feasible for deploying advanced tracking techniques due to significant computing requirements. 

To address these issues, in this paper, we develop an edge computing-based multivariate time series (EC-MTS) 

framework to accurately track mobile objects and exploit edge computing to offload its intensive computation 

tasks. Specifically, EC-MTS leverages statistical technique (i.e., vector auto regression (VAR)) to conduct arbitrary 

historical object trajectory data revisit and fit a best-effort trajectory model for accurate mobile object location 

prediction. Our framework offers the benefit of offloading computation intensive tasks from IoT devices by using 

edge computing infrastructure. We have validated the efficacy of EC-MTS and our experimental results demon- 

strate that EC-MTS framework could significantly improve mobile object tracking efficacy in terms of trajectory 

goodness-of-fit and location prediction accuracy of mobile objects. In addition, we extend our proposed EC-MTS 

framework to conduct multiple objects tracking in IoT systems. 
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. Introduction 

With the advance of Internet of Things (IoT) and big data sharing

nd analytics, massive number of IoT devices (sensors, actuators, etc.)

re deployed to enable the monitoring and control of things under minor

r no human intervention [1–7] . Mobile object tracking, a typical IoT

pplication, along with other smart-world applications, such as smart

rid, smart transportation, smart health, and smart manufacturing, are

nvolving more and more IoT devices so that automatic monitoring and

racking on physical objects, including moving targets, vehicles, assets,

tc., can be supported [8–12] . 

Nonetheless, it is a common practice that IoT devices are energy

nd computing constrained, and they are not competent to consistently

andle complex mobile object tracking tasks, which are computation-

lly intensive and consume lots of energy resources. Thus, computation

ffloading in IoT systems is a critical issue for accurate and efficient

obile object tracking. Our proposed scheme in this paper, designated

dge Computing-based Multivariate Time Series (EC-MTS) framework,

ndeavors to apply complex tracking technique to improve mobile ob-

ect tracking performance in IoT systems and employs edge computing

o offload computation intensive tasks that energy constrained IoT de-

ices cannot handle. With an intent to understand how to track mobile
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bjects in IoT systems and design corresponding solutions, a number

f research efforts have been conducted [13–19] . The existing efforts

emonstrate that the advance of mobile object tracking could support a

iverse array of smart-world IoT applications (e.g., video surveillance,

obot navigation, etc.) in dynamic environments. 

Nonetheless, most of the existing efforts merely focused on enhanc-

ng mobile object tracking accuracy through the adoption of rather

omplex tracking algorithms (distributed searching, correlation filter-

ng, etc.) [20] and overlooked the energy constraint of IoT devices in

unning computation intensive techniques. Consequently, the battery of

oT devices could be quickly drained due to computation intensive track-

ng tasks, and eventually incur failures on delivering sustainable mobile

bject tracking services. Thus, it is important to develop a mobile object

racking framework in IoT systems, which can ensure a high-level object

racking accuracy, and does not burden energy constrained IoT devices

n dealing with computation intensive tasks at the same time. 

The primary contributions of this paper are summarized as follows: 

• Framework: We propose an edge computing-based multivariate

time series (EC-MTS) framework to model mobile object trajectory

over a long time duration in IoT systems and predict mobile ob-

ject locations at multiple upcoming time points. EC-MTS is designed

to improve the goodness-of-fit in trajectory modeling and the accu-
P. Tian), ycao43@uic.edu (Y. Cao), ge_linqiang@columbusstate.edu (L. Ge), 

eptember 2021 
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Fig. 1. EC-MTS Platform. 
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racy in mobile object location prediction. Specifically, EC-MTS uti-

lizes the statistical technique vector auto regression (VAR) [21,22] to

model mobile object trajectory with the consideration of the histor-

ical mobile object location data. Particularly, EC-MTS takes advan-

tage of edge computing to offload the intensive computation tasks,

and could thus walk back arbitrary steps to thoroughly revisit trajec-

tory data. Given the understanding of the mobile object trajectory,

EC-MTS finally predicts the mobile object locations at prospective

time points on the basis of the multivariate least squares estimators

(MLSE) [23,24] . With the arbitrary historical trajectory investiga-

tion, EC-MTS could obtain desirable trajectory goodness-of-fit and

object location prediction accuracy for mobile object tracking. We

also extend the EC-MTS framework from the perspective of multiple

objects tracking in IoT systems. 

• Evaluation: We evaluate our proposed EC-MTS framework through

extensive performance evaluation in terms of trajectory goodness-of-

fit and mobile object location prediction accuracy. To be specific, we

conduct the experimentation from the perspectives of data collection

and tracking evaluation. In data collection, we assemble real-world

object location data to constitute the mobile object trajectory. In

tracking evaluation, our proposed EC-MTS framework is assessed,

consisting of trajectory goodness-of-fit evaluation and mobile ob-

ject location prediction evaluation. Our experimental results confirm

that our EC-MTS achieves desirable performance with respect to tra-

jectory goodness-of-fit and location prediction accuracy. 

The remainder of this paper is organized as follows: In Section 2 , we

ntroduce system model. In Section 3 , we present our approach in detail.

n Section 4 , we show experimental results to validate the efficacy of our

pproach. In Section 5 , we discuss an extension. In Section 6 , we review

elated works. Finally, we conclude the paper in Section 7 . 

. System model 

Mobile object tracking [13–15] is designed to detect moving targets,

eep an eye on their trajectories, and send their location reports to inter-

sted parties. Thus, it highly relies on the sensing and computing capa-

ilities of IoT devices, which hold the functionalities of object detecting,

ignal processing, resource scheduling, and location prediction, among

thers. IoT systems involve a tremendous number of devices (sensors,

ctuators, etc.) and enable connectivity between them with little or no

uman intervention. It has been the backbone of smart-world systems,

upporting a wide range of mobile object tracking applications (e.g.,

riminal chasing in the public surveillance and vehicle tracing on the

ighway and others). 

To effectively track mobile objects, IoT devices need to support most

f the mobile object tracking functionalities, such as object sensing and

ocation prediction, which consume a lot of energy resources. Thus,

ome IoT devices could fail quickly due to energy drain. For example,

bject location prediction algorithms are critical for mobile object track-

ng, and they could enable the actuators, one type of IoT devices, in

oT systems to activate devices around the mobile object and deactivate

hose that are far away. Nonetheless, complicated mobile object predic-

ion schemes commonly have very high computing complexity, which

ould cost the lifetime of IoT devices. 

With the development of modern technology, IoT systems have

volved into three domains: device domain, network domain, and com-

uting domain [2,12] , as shown in Fig. 1 . In mobile object tracking,

oT devices (i.e., sensors) in the device domain are used to detect the

oving targets and collect their location data. The location information

s forwarded through the network domain to the centralized cloud do-

ain that could be far away from IoT devices. The cloud domain has

normous computing resources, and is capable of hosting the compu-

ation intensive functionalities (e.g., location prediction). Finally, the

rocessed useful information is forwarded back to IoT devices for fur-

her actions. 
2 
Nonetheless, the long latency of data transmission from IoT devices

o the centralized cloud can not only pose significant overhead to the

etwork, leading to network congestion, but also might eventually lose

he track of moving targets. Thus, we involve edge computing servers at

etwork edge, which are more close to IoT devices. The edge comput-

ng servers could provide sufficient computing resources for the com-

utation intensive functionalities in mobile object tracking tasks, while

educing the data transmission cost to the centralized cloud. With the

dge computing infrastructure, our proposed EC-MTS framework can be

eployed for carrying out both object trajectory modeling and object lo-

ation prediction on edge computing servers. For the sake of simplicity,

e focus on EC-MTS over one mobile object, which can be extended to

ultiple mobile object tracking scenarios as discussed in Section 5 . 

. Our approach 

In this section, we first introduce the basic idea of our approach, and

hen illustrate its key components. 

.1. Basic idea 

Our proposed EC-MTS framework tends to precisely model and pre-

ict the object trajectory so that efficient and accurate mobile object

racking in IoT systems can be provided. It utilizes the advanced statis-

ical technique and can efficiently avoid using the energy in IoT devices.

To be specific, EC-MTS applies statistical technique called VAR (vec-

or auto regression) [21,22] to walk back arbitrary steps, and look at

istorical mobile object location data to provide inference on current

bject location estimation. Unlike univariate auto regression time series

odels, VAR is a multivariate model that correlates a current variable

bservation with its past observations and the past observations of other

ariables in the system. In our case, it considers both the influence of

agged object locations on the current object location and the influence

f any unobservable errors on the current object location, which will

e discussed shortly. Once a mobile object trajectory is formed, EC-MTS

urther utilizes it to accurately predict the impending mobile object lo-

ations on the basis of multivariate least squares estimators (MLSE). In

ddition, EC-MTS exploits edge computing to reduce the energy burden

rom the computation intensive tasks and the lifetime of IoT devices is

hus prolonged. 

We consider two metrics, trajectory goodness-of-fit and mobile ob-

ect location prediction accuracy, to assess the efficacy of EC-MTS frame-

ork. With the introduction of historical mobile object location data and



Y. Wu, P. Tian, Y. Cao et al. High-Confidence Computing 2 (2022) 100045 

h  

e  

v

 

(  

b  

(  

k  

m  

c  

b  

i

3

 

h  

t  

t  

s  

t  

f  

o  

a  

t  



  

 

fi  

a  

t  

  

t  

t  

t  

r  

t  

T  

j  

⎛⎜⎜⎝
+

w

𝑥

+

 

i  

(  

t  

b  

b  

i  

t  

s

3

 

m  

o  

i  

T  

  

V  

F  

c

  

w  

p



p

 

s  

t  

p  

c  

d  

v

(

  

t

  

a  

m  

t  

e

3

 

o  

c  

a  

d  

  

t

  

a  

t  

 

E  

b  

c  

j  

e  

N  

p  

S  

c  

a  

v  

d  

e

idden errors, EC-MTS endeavors to improve the mobile object tracking

fficiency in IoT systems without bundling energy constrained IoT de-

ices. 

Our proposed EC-MTS framework consists of three key components:

i) Trajectory modeling estimates the current mobile object location

ased on the historical object locations and any unobservable errors,

ii) Trajectory parameter estimation specifies the values for the un-

nown parameters in the mobile object trajectory model on the basis of

ultivariate least squares (MLS) technique [23,24] , and (iii) Object lo-

ation prediction forecasts multiple upcoming mobile object locations

y leveraging the MLSE. In the following, we describe these components

n detail. 

.2. Trajectory modeling 

Trajectory modeling is critical to mobile object tracking as it could

elp us understand the characteristics of the objects’ motion trail, and

hus provide useful guidance for mobile object location prediction. In

his paper, we consider the locations of mobile objects as three dimen-

ional coordinates and associate them with time stamps. Thus, a sequen-

ial number of mobile objects’ locations will be a multivariate time series

rom the perspective of statistics [25] . Denote the location of a mobile

bject at time point 𝑡 ( 𝑡 = 0 , 1 , 2 , …) as  𝑡 , then  𝑡 could be represented

s a 3 × 1 (3 rows and 1 column) vector ( 𝑥 𝑡 , 𝑦 𝑡 , 𝑧 𝑡 ) ′. If we apply the sta-

istical technique VAR( 𝑝 ) ( 𝑝 is a positive integer and 𝑝 ≤ 𝑡 ) to estimate

 𝑡 , we have 

 𝑡 = 𝐜 +  1  𝑡 −1 +  2  𝑡 −2 + …+  𝑝  𝑡 − 𝑝 + 𝐞 𝑡 . (1)

Here, c is a constant matrix to smooth the equation,  are the coef-

cient matrices for historical mobile object locations  𝑡 −1 through  𝑡 − 𝑝 ,

nd e 𝑡 is the unobservable error matrix at time point 𝑡 . Note that the ma-

rices c ,  , e 𝑡 in Equation (1) are in the format of 3 × 1 and the matrices

 are in the format of 3 × 3 . With Equation (1) , we shall also notice

hat the statistical technique VAR( 𝑝 ) estimates the current location of

he mobile object by walking back 𝑝 steps to include the influences of

he historical mobile object locations (  𝑡 −1 ,  𝑡 −2 , … ,  𝑡 − 𝑝 ) on the cur-

ent one (  𝑡 ), VAR( 𝑝 ) also looks at the random errors at the current

ime point, which might affect the current location of the mobile object.

his location estimation procedure could indicate the mobile object tra-

ectory well. If we unfold Equation (1) by using ( 𝑥 𝑡 , 𝑦 𝑡 , 𝑧 𝑡 ) ′, we have
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here 𝑥 𝑡 could be explicitly denoted as follows: 

 𝑡 = 𝑐 1 +  

11 
1 𝑥 𝑡 −1 +  

12 
1 𝑦 𝑡 −1 +  

13 
1 𝑧 𝑡 −1 + …

  

11 
𝑝 
𝑥 𝑡 − 𝑝 +  

12 
𝑝 
𝑦 𝑡 − 𝑝 +  

13 
𝑝 
𝑧 𝑡 − 𝑝 + 𝑒 1 

𝑡 
. 

(3) 

Note that the coordinate 𝑥 𝑡 in Equation (3) is estimated not only by

ts own lagged values (i.e., 𝑥 𝑡 −1 ,..., 𝑥 𝑡 − 𝑝 ), but also by the lagged values

i.e., 𝑦 𝑡 −1 ,..., 𝑦 𝑡 − 𝑝 and 𝑧 𝑡 −1 ,..., 𝑧 𝑡 − 𝑝 ) of other coordinates 𝑦 𝑡 and 𝑧 𝑡 , respec-

ively. The unobservable error term 𝑒 1 
𝑡 

is additionally included. Likewise,

oth 𝑦 𝑡 and 𝑧 𝑡 could be derived from Equation (2) and they are affected

y the other coordinates and the random errors as well. Thus, VAR( 𝑝 )

s a comprehensive statistical technique, which is capable of capturing

he dependencies between diverse coordinates of multiple location time

eries. This helps build an accurate mobile object trajectory. 

.3. Trajectory parameter estimation 

With the description in Section 3.2 , we understand that the current

obile object location could be estimated on the basis of the historical
3 
bject location data. Nonetheless, the parameter set  = ( c  1  2 ⋯  𝑝 )
n the VAR( 𝑝 ) model (i.e., Equation (1) in Section 3.2 ) are all unknown.

hus, it is a necessity to estimate the most proper parameter values for

 based on the mobile object location observations. Then, the fitted

AR( 𝑝 ) model could be utilized for accurate object location prediction.

or the sake of simplicity, we first transform the VAR( 𝑝 ) model into a

oncise form 

 𝑡 =   𝑡 −1 + e 𝑡 , (4)

here  𝑡 = (  𝑝  𝑝 +1 ⋯  𝑡 ) and e 𝑡 = ( e 𝑝 e 𝑝 +1 ⋯ e 𝑡 ) . Particularly,  is ex-

ressed as 

 𝑡 −1 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

1 1 … 1 
 𝑝 −1  𝑝 …  𝑡 −1 
 𝑝 −2  𝑝 −1 …  𝑡 −2 
⋮ ⋮ ⋱ ⋮ 
 0  1 …  𝑡 − 𝑝 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
, (5) 

lease refer to [23,24] for detailed explanations. 

In this paper, we utilize statistical technique multivariate least

quares (MLS) technique to estimate the most appropriate values for

he parameter set  , which is able to make VAR( 𝑝 ) to ultimately ap-

roximate the real mobile object trajectory. Specifically, MLS tends to

hoose a parameter set that minimizes the sum of the squares of the

ifferences between the estimated and observed mobile object location

alues. Denote the number of the observed mobile object locations as 𝜏

a positive integer). We could represent the squares function (  ) as 

(  ) = ‖ 𝜏 −   𝜏−1 ‖2 , (6)

his would give us the estimated parameter set ̂ as 

̂
 = arg min 

 
(  ) =  𝜏 𝜏−1 ′(  𝜏−1  𝜏−1 ′) −1 , (7)

nd ̂ is the multivariate least squares estimators (MLSE) and they could

inimize the random errors that are incurred by the difference between

he estimated and observed mobile object locations. Thus, MLS is a best-

ffort technique to model the real mobile object trajectory. 

.4. Object location prediction 

Mobile object location prediction is critical to conducting accurate

bject tracking in IoT systems. The accurately predicted object locations

ould actually provide guidance for activating the nearest IoT devices

round the mobile object. With the elaboration in Section 3.3 , we un-

erstand that the fitted VAR( 𝑝 ) model for mobile object trajectory is

 𝑡 = ̂  𝑡 −1 + e 𝑡 under 𝜏 observations. Thus, it is straight forward to ob-

ain the one step ahead prediction ̃ 𝜏+1 as follows 

̃
 𝜏+1 = ̂  𝜏 + e 𝜏 , (8)

nd we could utilize the predicted ̃ 𝜏+1 as the mobile object location at

ime point 𝜏 + 1 to subsequently carry out multi-step ahead predictions.

It is worth noting that the energy consumption of VAR( 𝑝 ) in our

C-MTS framework will be larger when the value of 𝑝 (the number of

ackward steps to investigate historical mobile object location data) in-

reases. In other words, when 𝑝 increases, more historical mobile ob-

ect location data is included in the whole procedure of trajectory mod-

ling, trajectory parameter estimation, and object location prediction.

onetheless, we offload this intensive computation task to the edge com-

uting infrastructure by leveraging our proposed EC-MTS platform in

ection 2 . Thus, the energy constraint of IoT devices is properly over-

ome. Moreover, VAR in statistics prefers low order parameter, and it is

 good practice to limit the value of 𝑝 up to 12, because the presence of

ariations most likely will occur within 12 steps (say for monthly data

ue to seasonality [21] ). We also conduct traversal of p up to 12 in our

xperimentation. 
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o  
. Performance evaluation 

We now demonstrate the experimental results of our proposed EC-

TS framework with respect to trajectory goodness-of-fit and mobile

bject location prediction accuracy. We have conducted our extensive

imulation in Python. 

Data Collection. In this particular experimentation, we choose the

lobal positioning system (GPS) tracking data to validate the efficacy

f our proposed EC-MTS framework. In the GPS tracking system, the

atitude, longitude, and altitude of the mobile object are continuously

ecorded with GPS loggers and GPS phones, which will then be transmit-

ed to data centers for analysis. Specifically, we have utilized the user

PS tracking data collected from the city of Beijing, China, and it is

ublicly available at GeoLife GPS Trajectories 1 [26–28] . This dataset

onsists of the trajectory data of 182 users, and it was recorded in a

eriod of five years from April 2007 to August 2012. In particular, this

ataset has a wide variety of trajectories associated with the users ac-

ivities, including daily commute, working, traveling, sports activities,

hopping, dining, etc. In each record of the dataset, there are always

alues for the latitude, longitude, altitude along with timestamps. The

hole dataset covers a total distance of 1,292,951 km within a total of

0,176 hours. 

As stated in Section 3 , three dimensional data is desired in trajectory

odelling, trajectory parameter estimation, and object location predic-

ion. Thus, we extract the latitude, longitude, and altitude columns for

ne user from the dataset and fit them into our proposed EC-MTS frame-

ork in our experimentation. Particularly, we use the trajectory data of

ser 000 on 2009-04-04 and select one trajectory from each period of the

ay (morning: 10:09:59–10:21:54, afternoon: 14:27:49–14:35:09, and

ate night: 01:06:15–01:24:35) for diversity. There are 147, 102, and

48 records in those trajectories, respectively. 80% (117, 82, and 198)

f them will be used for mobile object trajectory fitting, and the rest

0% (30, 20, and 50) are for mobile object location prediction. 

Goodness-of-fit Evaluation. In order to obtain accurate location

rediction for mobile object tracking, we first need to derive an object

rajectory model that could describe the object moving phenomenon.

n this experimentation, we use the following metrics to evaluate the

obile object trajectory goodness-of-fit: AIC (Akaike’s information cri-

erion), BIC (Bayesian information criterion), and HQIC (Hannan-Quinn

nformation criterion). Specifically, AIC indicates the quality of a fitted

odel (the lower, the better); BIC (the lower, the better) is closely rel-

vant to AIC, but the value of BIC may be slightly higher when more

arameters are involved in the fitted model; HQIC also has the same

unction of AIC with lower values preferred and they tend to be close

f models are well fitted. In our experimentation, we implement VAR( 𝑝 )

vector auto regression) in Python, walk through the 𝑝 values from 1 to

2 and choose one best-effort model to conduct mobile object location

rediction. 

Figs. 2 (a), 2 (b), and 2 (c) summarize our experimental results for

AR model selection in EC-MTS framework. Based on the evaluation

esults of Fig. 2 (a), we understand that the AIC, BIC, and HQIC values

re the smallest when 𝑝 equals to 3. Thus, 𝑝 = 3 is the best fitted model

or morning trajectory data and we select it in this experimentation for

orning trajectory fitting and prediction. Likewise, 𝑝 = 2 will be utilized

or both afternoon and late night trajectory fitting and prediction on the

asis of the evaluation results in Figs. 2 (b) and 2 (c) 

It is worth noting that the difference between the AIC, BIC, and HQIC

alues of the optimal 𝑝 and those of the non-optimal 𝑝 s in Fig. 2 is rather

mall. Thus, we would expect the performance of diverse models to dif-

er not that much. Nonetheless, it is not desirable to choose the models

ith higher AIC, BIC, and HQIC values since lower values are preferred

or those metrics. In this experimentation, we select a single model to

onduct mobile object trajectory fitting and prediction, and 𝑝 value min-
1 https://www.microsoft.com/en-us/download/details.aspx?id = 52367 

i  

t  

c  

4 
mizing the AIC, BIC, and HQIC values is still the optimal choice. In the

uture, if we decide to choose multiple models to apply model averaging,

he non-optimal 𝑝 s of AIC, BIC, and HQIC values close to those of the

ptimal 𝑝 would be combined and integrated with the optimal model. 

In order to further validate the goodness-of-fit of VAR(3), VAR(2),

nd VAR(2) in EC-MTS framework for morning, afternoon, and late

ight trajectories, we also look at the residual autocorrelation after their

tting. With the illustration in Section 3.2 , we understand that each vari-

ble (i.e., 𝑥 , 𝑦 , 𝑧 ) in EC-MTS is affected by its own lagged values and the

agged values of the other two. Figs. 3 (a) through 3 (i) show the auto-

orrelation of moving users’ latitude, longitude, and altitude (i.e., 𝑥 , 𝑦

nd 𝑧 in EC-MTS framework) residuals over the lagged values. For exam-

le, Fig. 3 (a) indicates the autocorrelation between the morning latitude

esiduals after the latitude values are fitted by VAR(3) over the lagged

orning latitude, longitude and altitude values. As we can see from the

gures, the autocorrelation falls in between the shaded areas, which in-

ers that the autocorrelation between latitude residuals is not significant

fter fitting and VAR(3) is a very well fitted model for morning latitude

n EC-MTS. Fig. 3 (b) demonstrates the longitude residual autocorrela-

ion after longitude values are fitted by using VAR(3) over the lagged

atitude, longitude, and altitude values, while Fig. 3 (c) is for the altitude.

hey both as well indicate that VAR(3) is a well fitted model. Likewise,

igs. 3 (d), 3 (e), 3 (f) and Figs. 3 (g), 3 (h), 3 (i) show that VAR(2) is the

ell fitted model for both afternoon and late night trajectory data. It

s worth noting that the thresholds for the shaded areas in Figs. 3 (a)

hrough 3 (i) are set as 0.2, which is an acceptable rate of false positive.

his is conventionally and universally adopted in statistics [21,22,25] . 

In addition, Figs. 4 (a) through 4 (i) demonstrate the comparison be-

ween the fitted latitude, longitude, and altitude values and their ob-

erved ones for morning, afternoon, and late night trajectories, respec-

ively. As we can see from the figures, the actual and fitted values are

early overlapped with each other. Thus, VAR(3) and VAR(2) are again

roved to be very good for mobile object trajectory fitting. 

Prediction Accuracy Evaluation. With the positive evaluation re-

ults from mobile object trajectory goodness-of-fit of VAR(3) for morn-

ng trajectory data and VAR(2) for afternoon and late night trajectory

ata in EC-MTS, we could now make predictions for the future mobile

bject locations. Specifically, we forecast ahead 30, 20, and 50 steps

or morning, afternoon, and late night trajectories and compare the pre-

icted object locations with the observed ones. Due to the space limita-

ion, we only show the first six comparison data for morning, afternoon,

nd late night trajectories, respectively and the observation from the

hole comparison data set is consistent. For example, Table 1 shows

he comparison between the predicted latitude, longitude, and altitude

alues and the actual observed ones for morning trajectory. As we can

ee from the table, both the latitude and longitude predictions capture

he trends of the observed values, and the MSE (mean squared error:

.000430773439554 for morning latitude and 0.000225591483211 for

orning longitude) of prediction is very close to 0. Thus, both the lat-

tude and longitude predictions for morning trajectory are convincing.

onetheless, the result for the altitude predictions shows fluctuation.

his is actually reasonable and explainable, because there may be sud-

en changes in the height when users are going up and down in ele-

ators, overpasses, etc. Thus, VAR(3) in EC-MTS is able to obtain accu-

ate mobile object location prediction for morning trajectory. Likewise,

ables 2 and 3 demonstrate that VAR(2) performs well in mobile ob-

ect location prediction for afternoon and late night trajectories, respec-

ively. 

. Extension 

In this section, we extend our proposed EC-MTS framework to carry

ut the tracking of multiple objects in IoT systems. In single object track-

ng, we process the measurements of IoT device (sensor, camera, etc.)

o determine the location of a moving object (e.g., athletes on court and

ars on street), while the number of mobile objects and their locations

https://www.microsoft.com/en-us/download/details.aspx?id=52367
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Fig. 2. Trajectory Fitting Evaluation. 

Fig. 3. Autocorrelation of Trajectory Residuals. 

Table 1 

Morning Trajectory Prediction Evaluation. 

Latitude: Observation vs. Prediction —— MSE: 0.000430773439554 

39.984202 39.984108 39.984131 40.00954219 40.00934515 40.00900074 

39.984179 39.984005 39.983759 40.00853639 40.00742469 40.00685885 

Longitude: Observation vs. Prediction —— MSE: 0.000225591483211 

116.316481 116.316933 116.317537 116.31511833 116.31492436 116.31459963 

116.318170 116.318517 116.318504 116.31414705 116.31287534 116.31207979 

Altitude: Observation vs. Prediction —— MSE: 27117.753291455003 

208.000000 201.000000 201.000000 142.51170039 152.82097859 164.28603840 

199.000000 167.000000 156.000000 174.47273894 184.47318551 182.87566252 

5 
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Fig. 4. EC-MTS Fitting with Trajectory. 

Table 2 

Afternoon Trajectory Prediction Evaluation. 

Latitude: Observation vs. Prediction —— MSE: 5.610408135110442e-09 

40.009542 40.009542 40.009544 40.00961492 40.00962773 40.00963888 

40.009567 40.009595 40.009598 40.00964889 40.00966614 40.00967347 

Longitude: Observation vs. Prediction —— MSE: 1.0101777230082494e-08 

116.315085 116.315085 116.315087 116.31519294 116.31518841 116.31517523 

116.315116 116.315153 116.315156 116.31515792 116.31512159 116.31510544 

Altitude: Observation vs. Prediction —— MSE: 21.507589175517786 

128.000000 128.000000 128.000000 136.56639051 137.06975004 137.55180958 

129.000000 135.000000 135.000000 137.96908244 138.44937863 138.48204944 

Table 3 

Late Night Trajectory Prediction Evaluation. 

Latitude: Observation vs. Prediction —— MSE: 9.11823059895649e-09 

40.009672 40.009702 40.009683 40.00961035 40.00961399 40.00961328 

40.009731 40.009698 40.009698 40.00961038 40.00960299 40.00959978 

Longitude: Observation vs. Prediction —— MSE: 3.07024547517837e-08 

116.315015 116.315071 116.315123 116.31518544 116.31516802 116.31513916 

116.315127 116.315191 116.315191 116.31510550 116.31503971 116.31501174 

Altitude: Observation vs. Prediction —— MSE: 622.1220770880293 

103.000000 107.000000 104.000000 136.71135434 137.10246600 137.19986903 

109.000000 107.000000 107.000000 137.05784651 136.30314498 135.80098490 

6 



Y. Wu, P. Tian, Y. Cao et al. High-Confidence Computing 2 (2022) 100045 

h  

e  

l  

T  

fi

 

m  

e  

t  

a  

s  

r  

t  

f  

i  

l  

m  

fi  

b  

p

 

i

(  

𝑦  

t  

a  

I  

r  

m  

o  

i  

b

(

  

w

 

t  

p  

c  

h  

d  

I  

i  

𝑜  

o  

t  

w  

b  

t  

m



I  

t  

I  

i

 

(  

t  

t  

i  

t  

c  

j  

𝑑  

a  

f  

t  

v  

n  

b

 

h  

c  

b  

p  

  

I  

d  

o  

t  

𝑜

 

b  

e  

r  

s  

t  

o  

m  

a  

b  

r

𝑐  

w  

f  

t  

r∑
𝑘

 

6

 

f  

e  

m  

e

v  

f  

d  

b  

l  

a  

a  

c  

r  

l  

i  

d  

e  

d  
ave to be identified simultaneously in multiple objects tracking. This

nables a diverse array of critical applications, such as public surveil-

ance, automatic driving, pedestrian detection, among others [29,30] .

hus, it is important to extend our proposed EC-MTS framework in the

eld of multiple object tracking. 

With the elaboration in Section 2 , we know that the location infor-

ation of mobile objects is collected by IoT devices and forwarded to

dge computing severs for object trajectory modeling and object loca-

ion prediction. For simplicity, we assume that the location information

ssembled by an IoT device could be transmitted to edge computing

ervers either directly (edge computing servers are within transmission

ange of IoT device) or indirectly (edge computing servers are out of

ransmission range of IoT device) via relay of other IoT devices. In the

ollowing, we discuss multiple object tracking in general without spec-

fying any particular time points for simplicity of illustration. Nonethe-

ess, the algorithm could be easily unfolded over time series for any

obile objects, please refer to Section 3 for details. In addition, we de-

ne the capacity of an edge computing server as the number of resource

locks it holds. It is also worth noting that the locations of edge com-

uting servers and IoT devices do not change over time. 

If we assume the number of edge computing servers in the area of

nterest as 𝑁 𝑠 ( 𝑁 𝑠 = 1 , 2 , …), then the location and capacity of the 𝑖 th 

 𝑖 = 1 , 2 , … , 𝑁 𝑠 ) edge computing server 𝑠 𝑖 can be represented as ( 𝑥 𝑠 𝑖 ,

 𝑠 𝑖 
, 𝑧 𝑠 𝑖 ) and 𝐶 𝑠 𝑖 

(positive integer number of resource blocks), respec-

ively. Likewise, we denote the number of IoT devices within the same

rea as 𝑁 𝑑 ( 𝑁 𝑑 = 1 , 2 , …) and the location of the 𝑗 th ( 𝑗 = 1 , 2 , … , 𝑁 𝑑 )

oT device 𝑑 𝑗 as ( 𝑥 𝑑 𝑗 , 𝑦 𝑑 𝑗 , 𝑧 𝑑 𝑗 ), respectively. We also denote the sensing

ange of 𝑑 𝑗 as 𝑅 𝑑 𝑗 
(positive real number). If the distance between the

obile object and one IoT device is not greater than the sensing range

f the IoT device, then the IoT device can be used to collect the location

nformation of the object. Suppose that there are 𝑁 𝑜 ( 𝑁 𝑜 = 1 , 2 , …) mo-

ile objects in this area, the set of usable sensing IoT devices  𝑜 𝑘 for 𝑘 th 

 𝑘 = 1 , 2 , … , 𝑁 𝑜 ) mobile object 𝑜 𝑘 can be represented as follows: 

 𝑜 𝑘 
= { 𝑑 𝑗 | ∀𝑗 √ ∑

𝑣 ∈{ 𝑥,𝑦,𝑧 } 
( 𝑣 𝑑 𝑗 − 𝑣 𝑜 𝑘 

) 2 ≤ 𝑅 𝑑 𝑗 
} (9)

here 𝑣 𝑜 𝑘 = ( 𝑥 𝑜 𝑘 , 𝑦 𝑜 𝑘 , 𝑧 𝑜 𝑘 ) is the location of the mobile object 𝑜 𝑘 . 

In this extension, we suppose that one IoT device is needed to sense

he arrival of an mobile object and collect its location information for

rocessing at the edge computing servers. The status of an IoT device

ould be busy with sensing and transmitting information or idle without

andling anything. In addition, the mobile object can be immediately

etected the moment when it enters the sensing range of an IoT device.

n other words, the mobile object can be detected and handled by the

dle IoT device with the largest sensing range. Thus, the mobile object

 𝑘 can be first detected by the idle IoT device, which is within the set

f usable sensing IoT devices  𝑜 𝑘 and most distant from 𝑜 𝑘 at the same

ime. Denote the status of IoT device 𝑑 𝑗 as 𝕊 𝑑 𝑗 , if we suppose 𝕊 𝑑 𝑗 = 1
hen 𝑑 𝑗 is busy, then 𝕊 𝑑 𝑗 = 0 when 𝑑 𝑗 is idle. Note that there might

e multiple IoT devices that are idle and have the same distance from

he mobile object. Thus, the final candid set of IoT devices ̂ 𝑜 𝑘 to sense

obile object 𝑜 𝑘 can be represented by 

̂
 𝑜 𝑘 

= { 𝑑 𝑗 | ∀𝑑 𝑗 ( 𝑑 𝑗 ∈  𝑜 𝑘 
∧ 𝕊 𝑑 𝑗 = 0 ∧ arg max 

𝑑 𝑗 

√ ∑
𝑣 ∈{ 𝑥,𝑦,𝑧 } 

( 𝑣 𝑑 𝑗 − 𝑣 𝑜 𝑘 
) 2 )} . 

(10) 

f ̂ 𝑜 𝑘 is a non-empty set, one of the IoT devices will be randomly selected

o collect the location information of mobile object 𝑜 𝑘 . Otherwise, all the

oT devices are currently busy and ̂ 𝑜 𝑘 will be recalculated as 𝑜 𝑘 moves

n the area over time. 

In Section 3.4 , we highlight that the energy consumption of VAR( 𝑝 )

vector auto regression) technique to model and predict mobile object

rajectory at edge computing server in EC-MTS framework is propor-

ional to 𝑝 , which is the number of steps for VAR( 𝑝 ) to go back and

nvestigate the historical mobile object location data. Assume that 𝑑 𝑜 𝑘 is
7 
he chosen IoT device from Equation (10) to collect and forward the lo-

ation information of 𝑜 𝑘 to edge computing server for mobile object tra-

ectory modeling and prediction. In order to reduce transmission time,

 ̂𝑜 𝑘 
will select the closest edge computing server with enough number of

vailable resource blocks to conduct trajectory modeling and prediction

or 𝑜 𝑘 . If we assume the number of resource blocks needed for VAR ( 𝑝 )

echnique when 𝑝 = 1 as 𝑁 𝑟 and the number of backward steps to in-

estigate the historical location data of mobile object 𝑜 𝑘 as 𝑝 𝑜 𝑘 , then the

umber of resource blocks to model and predict the trajectory of 𝑜 𝑘 will

e 𝑐𝑝 𝑜 𝑘 𝑁 𝑟 , where 𝑐 is a coefficient to adjust and smooth the formula. 

Note that there also might be several edge computing servers that

ave enough available resource blocks and the same distance from the

hosen IoT device 𝑑 𝑜 𝑘 . If we suppose the available number of resource

locks at edge computing server 𝑠 𝑖 as 𝐶′𝑠 𝑖 , the usable set of edge com-

uting servers to handle mobile object 𝑜 𝑘 via 𝑑 𝑜 𝑘 can be represented by

 

𝑑 𝑜 𝑘 
= { 𝑠 𝑖 | ∀𝑖 ( 𝑐𝑝 𝑜 𝑘 𝑁 𝑟 ≤ 𝐶′𝑠 𝑖 ∧ arg min 

𝑠 𝑖 

√ ∑
𝑣 ∈{ 𝑥,𝑦,𝑧 } 

( 𝑣 𝑠 𝑖 − 𝑣 
𝑑 𝑜 𝑘 

) 2 )} . (11)

f  
𝑑 𝑜 𝑘 

is a non-empty set, one of the edge computing servers will be ran-

omly utilized to conduct trajectory modeling and prediction for mobile

bject 𝑜 𝑘 by using VAR( 𝑝 𝑜 𝑘 ). Otherwise, all edge computing servers in

his area are currently not available and  
𝑑 𝑜 𝑘 

will be calculated again as

 𝑘 moves over time. 

Finally, it is intuitive that the total requested number of resource

locks from diverse mobile objects in the area towards one particular

dge computing server cannot exceed its capacity. Otherwise, we might

isk losing the target due to resource scarcity. It is also better to make

ure that the number of mobile objects in the area of interest is less than

hat of IoT devices. This (meaning 𝑁 𝑜 ≤ 𝑁 𝑑 ) assures that there is at least

ne IoT device to deal with the sensing and transmitting task of any

obile object. If we assume 𝑠̂ 
𝑑 𝑜 𝑘 

as the selected edge server to model

nd predict the trajectory of mobile object 𝑜 𝑘 , the requested resource

locks from mobile object 𝑜 𝑘 must be less than or equal to the available

esource blocks at edge computing server 𝑠̂ 
𝑑 𝑜 𝑘 

: 

𝑝 𝑜 𝑘 
𝑁 𝑟 ≤ 𝐶′𝑠̂ 

𝑑 𝑜 𝑘 

, (12)

hich also guarantees that the total requested number of resource blocks

rom all mobile objects in the area of interest is less than or equal to the

otal capacity of all edge computing servers in this area. This can be

epresented by 

𝑁 𝑜 

 =1 
𝑐𝑝 𝑜 𝑘 

𝑁 𝑟 ≤ 

𝑁 𝑠 ∑
𝑖 =1 

𝐶 𝑠 𝑖 
. (13)

. Related works 

The demand of computing power and storage space draws challenges

or massive and accurate mobile object tracking. A number of research

fforts have been conducted in the IoT context to improve the perfor-

ance of mobile object tracking [13,17,31–40] . For example, Noguchi

t al. [13] proposed a search architecture that utilizes real-time “live ”

ideo data from shared devices to discover the most appropriate devices

or an IoT service (i.e., mobile object tracking). They also developed a

istributed and dynamic search function architecture to cope with ar-

itrary searches. Zhang et al. [17] proposed a region proposal corre-

ation filter fitting algorithm for edge devices in IoT. Their developed

lgorithm employs response confidence level to detect tracking status

nd update tracking model with a lightweight computing, such that it

ould track target under challenging conditions with high tracking accu-

acy and robustness. Han et al. [35] developed an effective hierarchical

ocation caching scheme in an IoT system, which acclimates the exist-

ng location caching scheme to a hierarchical architecture of location

atabases to fast lookup an object and reduce the signalling traffic. Wei

t al. [36] utilized the highly-directional 60 GHz millimeter-wave ra-

ios technology to enable a practical design mTrack, which leverages a
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iscrete beam scanning scheme to identify the initial location of object

nd track its trajectory. mTrack could also suppress interference from

ackground reflections and achieve passive writing object tracking with

0-percentile error under 8 mm. In addition, Jiang et al. [37] designed a

exible framework Remix to accept a latency budget and derive an im-

ge partition and model execution plan. This plan applies off-the-shelf

eural networks on non-uniformly partitioned image blocks to improve

bject detection accuracy by 18% to 70%. 

Moreover, edge computing or fog computing is widely recognized as

 promising solution for the time-sensitive and mission-critical applica-

ion of object tracking [14,41–45] . For example, Gu et al. [14] devel-

ped a collaborative edge-cloud architecture to enhance object tracking

n IoT. Their designed architecture featured offloading computations to

he centralized cloud and utilizing convolution neural networks to reg-

larly check edge device statuses, such that the track errors could be

ectified quickly and accurately. In addition, Pudasaini et al. [45] de-

igned a framework that detects and tracks the object in the edge devices

hile performing pattern recognition in the cloud device. Their frame-

ork converts the video data into text on the edge so as to reduce the

raffic transmitted to the network. 

. Conclusion 

In this paper, we proposed an edge computing-based multivariate

ime series (EC-MTS) framework for accurate mobile object tracking in

oT systems. Specifically, EC-MTS utilizes classic statistical technique

AR (vector auto regression) to model the mobile object trajectory by

alking back arbitrary steps to investigate the historical object location

ata. Our proposed framework is also able to take advantage of the fit-

ed best-effort object trajectory model to accurately predict mobile ob-

ect locations. EC-MTS additionally exploits edge computing to offload

omputation intensive tasks from the energy constrained IoT devices.

ur experimental results demonstrate that EC-MTS could obtain bet-

er object trajectory goodness-of-fit and object location prediction accu-

acy for mobile object tracking. We also extended our proposed EC-MTS

ramework to enable multiple objects tracking in IoT systems. 
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