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A B S T R A C T

This paper focuses on a novel finite element formulation which can predict the bending moment-shear force-axial 
force interaction of reinforced concrete frames and walls, and validate it against 170 experiments available in 
literature. This distributed plasticity element is established on force-based finite element method, where the 
relationship between element nodal forces and section forces are exactly known. Hence, element discretization is 
nonessential when modelling frames using this formulation, reducing the number of degrees of freedom in the 
numerical model compared to displacement-based formulations. The computations are carried out at four hi-
erarchical levels, namely structure, element, section and fibre. There are two nested iterative procedures at the 
structure level and the section level. In the existing formulation, these iterative procedures are computationally 
demanding due to use of initial stiffness matrices. Furthermore, it uses Modified Compression Field Theory at the 
fibre level, which has inherent drawbacks compared to its more evolved version, the Disturbed stress Field 
Model. The current study refines the iterative procedures at structure and section levels to fully operate with 
tangent stiffness matrices to improve the speed of convergence. In addition, the Modified Compression Field 
Theory is replaced with the Disturbed stress Field Model at the fibre level to compute fibre resisting force for a 
given fibre deformation, accounting for both averaged behaviour and local crack slip. The novel element is 
validated by comparing the predicted results with experimental results of 170 tests found in the literature. It is 
shown that the novel element predicts the load carrying capacity well with an average experimental-to-predicted 
load carrying capacity ratio of 0.99 and a coefficient of variation of 12.8%. Furthermore, the element can be used 
to discuss the different failure mechanisms of reinforced concrete frame elements.   

1. Introduction

Developing a robust, rational and computationally efficient numer-
ical tool to perform nonlinear analyses of reinforced concrete (RC) 
frames accounting for bending moment-shear force-axial force (M-V-N) 
interaction is a challenging problem. Modelling RC frames with fibre 
beam-column elements have become popular over the years owing to its 
balanced accuracy of prediction and computational efficiency. The 
relationship between nodal forces and nodal deformations of such ele-
ments can be derived using displacement-based [1–4], force-based or 
mixed finite element methods [5–7]. Among these methods, force-based 
finite element method is preferred to be used with fibre beam-column 
elements as it waives the need for element discretization owing to the 
exactly known force interpolation functions [8–18]. The nonlinear 
force-based fibre beam-column element [19–21] included in OpenSees 
software [22] is widely used by the structural engineers to predict 
bending moment-axial force (M-N) interaction of RC frame structures. 
However, the structural engineers are still in short of a rigorous line 

element formulation to account M-V-N interaction. Guner and Vecchio 
[23,24] have introduced a displacement-based finite element formula-
tion capable of predicting M-V-N interaction of RC frames incorporating 
Disturbed Stress Field Model (DSFM) [25] at the fibre level. In this 
formulation, element discretization is mandatory to get an approxi-
mately accurate curvature distribution along frame members, which 
increases the number of degrees of freedom (DOFs) required to model a 
structure. Furthermore, the global analysis of this formulation is per-
formed using a single secant stiffness-based iterative procedure and it 
does not directly evaluate element or section level equilibrium. The 
implicit satisfaction of section equilibrium sometimes becomes inade-
quate to minimize section unbalanced forces and thus the iterative 
procedure fails to converge within the maximum number of iterative 
steps [26]. Addressing these issues, Rajapakse et al. (2019) [27], 
introduced a force-based fibre beam-column element formulation 
capable of predicting M-V-N interaction of RC frames and walls under 
static and monotonic loading conditions. This formulation uses Modified 
Compression Field Theory (MCFT) [28] as the constitutive relationship 
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at the fibre level. The element formulation is based on two nested iter-
ative procedures at structure level and section level. The structure level 
iterative procedure minimizes the difference between external loads and 
structure resisting force while section level employs modified Newton- 
Raphson method to compute the updated section stiffness matrix for a 
given section force increment. Both of these iterative procedures operate 
with initial stiffness matrices, and as a result they consume a significant 
computational time. Furthermore, the MCFT implemented at fibre level, 
imposes a constraint that the principal stress directions and principal 
strain directions should coincide, does not calculate explicit slip de-
formations and consists of a cumbersome crack check. 

This study aims to address the above issues and improve the 
formulation developed by Rajapakse et al. (2019) [27]. In the improved 
formulation, both iterative procedures fully operate with tangent stiff-
ness matrices and are well harmonized to capture M-V-N interaction of 
RC frames and walls. The MCFT implemented at the fibre level is 
replaced with DSFM, allowing to explicitly calculate slip deformations of 
the fibres. The explicit computation of slip deformation releases the 
constraint that principal strain directions and principal stress directions 
should coincide. It further allows to omit computationally cumbersome 
crack check and provides a better representation of failure mechanisms. 
Furthermore, the shear strain profile of the sections is assumed to be 
parabolic throughout the analysis as it significantly reduces the 
computational time without compromising the accuracy of results in 
general engineering applications [29,30]. Furthermore, and in addition 
to the results used in the previous research [27], the improved element 
was experimentally validated against 170 reinforced concrete specimens 
available in literature. These specimens have varying shear span-depth 
ratios, percentages of longitudinal and transverse reinforcements, con-
crete strengths, section depths, boundary conditions and different fail-
ure modes. The proposed formulation is assessed for its accuracy of 
predicting load-deformation response, load-carrying capacity and fail-
ure mode. 

2. Proposed formulation

The computations of the proposed formulation are based on four
state determination procedures, namely structure state determination, 
element state determination, section state determination and fibre state 
determination, for an applied displacement increment. 

The structure state determination computes the nodal force incre-
ment {ΔF} and the nodal displacement increment {ΔU} corresponding 
to a displacement increment ΔU2 applied at the displacement control-
ling DOF. Fig. 1 provides an overview of the structure state determina-
tion. The element state determination computes the incremental 
element nodal resisting force vector, when the element nodal displace-
ment increment vector of a particular structure level iteration is known. 
Fig. 2 presents an overview on the element state determination. The 
section state determination computes the updated section deformation 
and section stiffness matrix for a given section force increment, {ΔS}i. 
Fig. 3 presents an overview on the section state determination. 

Once, {ΔS}i of a particular section is known, the Newton-Raphson 
method is employed to iteratively find the updated section deforma-
tion and section stiffness matrix. A schematic diagram of section state 
determination is shown in Fig. 4. In the jth section level iteration, the 
section deformation increment {Δe}j , section stiffness matrix [Ksec]j, 
section resisting force {Sres}j and the section unbalanced force {ΔSunb}j 

are computed in sequence. The iterative procedure continues until the 
{ΔSunb}j vector becomes less than a specified tolerance value. More 
details of this process can be found in [31]- [33] 

To calculate {Sres}j and [Ksec]j for a given section deformation {e}j, 
the axial stresses σx, shear stresses Γxy, and fibre stiffness matrices of all 
the fibres of the section should be computed. For this purpose, the DSFM 
can be used if the strain state at a point (axial strain εx, shear strain γxy 

and transverse strain εy) is known. For a given {e}j, εxand γxy can be 
computed adhering to the assumptions that plane sections remain in- 
plane and the shear strain variation through the depth of each section 

Fig. 1. Structure state determination.  
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is parabolic. However, since the transverse strain component εy is an 
unknown, it is initially assumed as the transverse strain of the previous 
iteration. A solution algorithm is employed to compute the εy value 
which gives the transverse stress σy zero, which is a reasonable 
assumption when the section lies in a B-region. This process is summa-
rized in Fig. 3. The constitutive model used to compute the stress state {
σxσyΓxy} when the strain state {εxεyγxy} of a fibre is known, is discussed 
in the following section. 

3. Constitutive model

The DSFM implemented at the fibre level is a smeared cracked
concrete constitutive model which computes the averaged response of a 
fibre using uniaxial material models defined in principal directions. The 
averaged response is subsequently modified incorporating slip de-
formations computed at the local crack locations satisfying equilibrium. 

Initially, the known net strain state 
{

εxεyγxy

}T 
and the previous slip

deformation {εs
previous} referring the x-y coordinate system of the fibre are 

used to derive the total strain state {εtxεtyγtxy}
T , net principal strains (εc1,

εc2) and principal stress orientation θ : 

{εtxεtyγtxy}
T
= {εxεyγxy}

T
+{εs

prev} (1)  

ε2,1 =
εx + εy

2
∓

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(εx − εy

2

)2
+
(γxy

2

)2
√

(2)  

Ḯ =
1
2

tan− 1
( γxy

εy − εx

)

(3) 

Subsequently, the net principal stresses (fc1, fc2) in concrete are 
computed using the uniaxial constitutive relationships defined in the 
principal directions. The post-cracking principal tensile stress fc1 is 
computed based on the dominant mechanism out of the tension stiff-
ening [34] and tension softening (linear) mechanisms. The latter is 
dominant in lightly reinforced fibres located away from the main lon-
gitudinal bars while the former is dominant in well reinforced fibres. On 
the other hand, the principal compressive stress fc2 is calculated based 
on the Modified Kent and Park model [35] accounting compression 

softening [34] and confining effects [35]. At the same time, the trans-
verse steel stress fsy is computed based on the steel bilinear material 
model, assuming a perfect bond between steel and concrete. Subse-
quently, the fibre tangent and secant stiffness matrices are derived: 

[Dtangent] =Trot
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(5)  

where px, py and Trot are respectively the smeared reinforcement ratios of 
the fibre in x, y directions and the transformation matrix: 

Trot =

⎡

⎣
cos2Ï ́ sin2Ḯ cos̈Ísin̈Í
sin2Ḯ cos2Ḯ − cos̈Ísin̈Í

− 2cos̈Ísin̈Í 2cos̈Ísin̈Í cos2Ḯ − sin2Ḯ

⎤

⎦ (6) 

In the next stage, the local crack shear stress Vci of the fibre is 
computed based on the equilibrium, compatibility and steel constitutive 
relationship at local cracks. Based on Vci, the slip displacement of the 
fibre is computed using both the stress-based approach [36] and the 
constant lag-based approach as described in [25]. To find the slip 
deformation vector{εs} , the maximum slip displacement along cracks 
obtained out of the two approaches is transformed in to the fibre local 
co-ordinate system (x,y). Detailed descriptions of these computations 
can be found in [23,26], and [37]. Subsequently, the stress state of a 
fibre can be computed using Eq. (7): 

Fig. 2. Element state determination.  
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{

σx
σy
Γxy

} = [Dsecant]{εtxεtyγtxy}
T
− [Dc,secant]{εs

previous} (7) 

The explicit computation of slip deformation {εs} releases the 
constraint that principal strain directions and principal stress directions 

should coincide. It further allows to omit computationally cumbersome 
crack check and provides a better representation of failure mechanisms. 

4. Experimental database

The proposed formulation is validated against 170 reinforced con-
crete specimens found in literature including 161 simply supported 
beams, 6 shear walls, and 3 planar frames. The specimens are selected 
from experimental studies of Bresler and Scoredelis (1963) [38], Krefeld 
and Thurston (1966) [39], Lefas et al. (1990) [40], Vecchio and Balo-
poulou (1990) [41], Vecchio and Emara (1992) [42], Angekolas et al. 
(2001) [43], Vecchio and Shim (2004) [44], Duong et al. (2007) [45], 
and Sherwood et al. (2007) [46]. In the selected specimens, shear span- 
depth ratio varies from 2 to 9.8, percentage of longitudinal reinforce-
ment ratio varies from 0.5% to 3.96%, percentage of transverse rein-
forcement ratio varies from 0% to 0.8%, depth varies from 0.3 m to 1.51 
m, and concrete strength varies from 12.2 MPa to 48.5 MPa. The ge-
ometry, loading conditions, material properties, experimental load 
carrying capacities (Vexp), and predicted load carrying capacities (Vpred) 
of all the specimens are given in Appendix I. 

5. Results and discussion

This section presents a detailed discussion on the load-deformation

Fig. 3. Section state determination.  

Fig. 4. Schematic diagram of section level iterative procedure.  
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responses and the failure modes of selected simply supported beams, 
shear walls and planar frames. 

5.1. Simply supported beams 

All the simply supported beams are modelled using two elements, 
each of which have 6 integration points. Each integration point is 
assigned a fibre section that is discretized in to 60 number of layers. The 
norm for force tolerance at the structure and section level iterative 
procedures is 0.001. The schematic diagram given in Fig. 5 shows the 
element and section numbering of the numerical model. 

The first set of beams selected for the validation is the classic beam 
test series in Bresler and Scordelis (1963) [38], which is extensively used 
as benchmark data for calibrating and verifying models for RC beams, 
especially when they are shear critical. The testing has been carried out 
on 12 simply supported beams loaded monotonically at the mid span. 
The details of the specimens are given in Appendix I. 

The experimental load-deformation responses are compared with the 
predicted responses as illustrated in Fig. 6. The comparison shows 
excellent agreement in terms of the initial stiffness, post-cracking stiff-
ness and load carrying capacity of beams B2, C2, OA2, A3, B3, C3, and 
OA3. However, an over-estimation of the post-cracking stiffness could 
be observed in beams A1, A2, B1, C1 and OA1 which have the lowest 
shear span to depth ratios. The imposed section kinematic assumption of 
parabolic shear strain variation along the depth of the section may leads 
to an under-estimation of the shear strains in the tensile zone of the 
beam [1]. As a result, the beam displacement may be under-estimated in 
the post-cracking branch, in beams with significant shear deformations. 

The experimental failure modes of the above twelve beams were 
reported to be of three different modes, namely shear-compression 
failures, diagonal-tension failures, and flexure-compression failures. 
The following discussion presents how these experimental failure modes 
are predicted in the analytical results obtained from the proposed 
formulation. 

5.1.1. Shear-compression failure 
In this experimental program, the beam specimens A1, A2, B1, B2, 

C1 and C2 were reinforced in both longitudinal and transverse directions 
and they had shear span-depth ratios of 4 and 5 for series 1 and series 2 
beams, respectively. These specimens displayed diagonal shear cracks 
distributed in the shear span region. The failures of these beams were 
observed as concrete crushing in the compression zone near the loading 
plate due to the combined effects of flexure and shear. The following 
discussion presents how the failure mode of beam specimen A1 is pre-
dicted in the numerical model. 

The principal compressive stress, principal tensile stress and shear 
stress variations along the depths of all the integration points of element 
1 (see Fig. 5 for integration point/ section numbering), at the failure of 
the beam specimen A1 are shown in Fig. 7(a)-(c), respectively. The 

principal compressive stress variation of sections 5 and 6 in Fig. 7(a) 
illustrates that the top fibres have reached the peak compressive 
strength. Furthermore, the predicted crack orientations in Fig. 8(e) 
illustrate the inclination of the concrete compression direction near the 
loading point. These observations confirm the initiation of concrete 
crushing in an inclined direction near the loading point due to combined 
action of shear and bending. This predicted failure mode is consistent 
with failure mode observed in the experiment. 

In the proposed algorithm, the pre-cracking tensile response of a 
fibre in the first principal direction is linear-elastic while the post- 
cracking response is governed by either tension softening or tension 
stiffening models, based on which phenomenon is dominant. If the fibre 
is well reinforced, the tension stiffening mechanism becomes dominant, 
while the tension softening mechanism becomes dominant when the 
fibre is lightly reinforced or unreinforced. Due to the three different 
tension carrying mechanisms, the principal tensile stress given in Fig. 7 
(b) display a discontinuous variation. The top fibres behave linear- 
elastically in tension while tension softening model govern the tensile 
behaviour of middle fibres due to their low reinforcement ratios. At 
failure, the principal tensile stress of these middle fibres has reached 
zero in sections 2 to 5, as the tension softening model reaches zero 
tensile stress at relatively lower strain compared to tension stiffening 
model. The zero principal tensile stresses observed in the middle fibres 
in the sections 2 to 5 reflect the generation of diagonal shear cracks 
distributed along the shear span as shown in the crack width diagram 
given in Fig. 7(e). Furthermore, significant slip deformations were also 
predicted at these cracks as evident from crack slip diagram in Fig. 7(d). 

5.1.2. Diagonal-tension failure 
It was reported in the experiment that, the beam specimens without 

transverse reinforcement OA1, OA2, and OA3, fail suddenly with the 
opening of a single major diagonal-tension crack. The proposed 
formulation is capable of numerically predicting this failure mode as 
discussed in the following referring beam specimen OA2. 

When using the proposed formulation to model RC members without 
transverse reinforcement, some of the fibres which are away from lon-
gitudinal steel bars will be locally unreinforced in both directions. In 
such fibres, the post-cracking principal tensile stress will be governed 
only by the tension softening phenomenon. Once the principal tensile 
strain of such fibres in a particular section reaches the terminal strain of 
the tension softening mechanism, the principal tensile stress of those 
fibres will become zero. As a result, the crack widths of those fibres will 
be significantly increased with the application of displacement in-
crements. When a crack width as high as 20 mm is numerically pre-
dicted, the formulation will predict the failure of that element. Fig. 8 
shows the variation of principal compressive stress, principal tensile 
stress and shear stress along the depths of all the integration points of 
element 1, just before the failure of the beam OA2. The principal tensile 
stress variations in Fig. 8(b) illustrate that the tension softening effect 
has become zero in the locally unreinforced middle fibres in section 4. 
Subsequently, a large crack width is numerically predicted on those fi-
bres, simulating the single dominant diagonal crack observed in the 
experiment. 

The beam A1 discussed in section 5.1.1 has transverse reinforcement 
and develops a number of significant inclined shear cracks distributed in 
the shear span. In contrast, the beam specimen OA2 discussed here is 
unreinforced in the transverse direction and it fails by forming a single 
dominant shear crack. These failure modes are consistent with the 
predicted principal tensile stress variations at failure, shown in Figs. 7(b) 
and 8(b). In the beam specimen A1, the principal tensile stress of mid 
fibres of all the sections in the shear span have reached zero (Fig. 7(b)) 
reflecting the distribution of cracks in the shear span. In the beam 
specimen OA2, the principal tensile stress has reached zero only in a 
single section (see Fig. 8(b)) reflecting the generation of a single 
dominant diagonal crack. Furthermore, the shear-compression crushing 
previously observed in beam A1 is not observed in beam OA2. 

Fig. 5. Element numbering and section/ integration point numbering of the 
numerical model for simply supported beams. 
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Fig. 6. Load deformation comparison of Bresler and Scordelis (1963) beams.  

Fig. 7. Sectional plots of A1 at failure.  
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5.1.3. Flexure-compression failures 
The beam specimens A3, B3, and C3 were reinforced in both di-

rections and have relatively higher shear span to depth ratio of 7. It was 
reported in the experiment that they develop significant flexural cracks 
at the bottom and fail by flexure-driven compression crushing of con-
crete near the loading point. The proposed formulation is capable of 
numerically predicting this failure mode as discussed in the following 
referring beam specimen A3. 

Fig. 9(a)-(c) show the principal compressive stress, principal tensile 
stress and shear stress variations of the beam specimen A3 along the 
depths of all the integration points of element 1. The principal 
compressive stress variation of section 6 in Fig. 9(a) illustrates the 
degradation of principal compressive stresses in the top fibres near the 
loading point. The predicted crack pattern shown in Fig. 9 (e) illustrates 
that the principal compressive directions of fibres in the compression 
zone are approximately horizontal. These observations confirm that the 
crushing of concrete occurs in an approximately horizontal direction 
near the loading point mainly due to flexural effects. This predicted 
failure mode is consistent with failure mode observed in the experiment. 

The beam A1 discussed in section 5.1.1 has a relatively low shear 
span-depth ratio and thus has a higher shear deformation compared to 
the relatively slender beam A3 discussed here. Due to higher shear de-
formations, the compression direction of A1 near the loading point is 
inclined while it is approximately horizontal in beam A3. Therefore, the 
concrete crushing in A1 occurs in an inclined direction due to both shear 

and flexural effects while the compression crushing of A3 occurs in an 
approximately horizontal direction governed by only flexural effects. 
Furthermore, the principal tensile stresses in the mid fibres of A3 have 
not reached zero implying that the shear cracks are not dominant in the 
shear span. This argument can be further strengthened by observing the 
crack slip and crack width diagrams in Fig. 9(d) and 9(e). 

Another experimental program was carried out at the University of 
Toronto to investigate the shear capacity of large lightly reinforced 
concrete beams [43]. This program aimed to examine the effect of 
longitudinal reinforcement and concrete compressive strength on the 
shear capacity of large lightly reinforced members with and without 
transverse reinforcement. Twelve simply supported beams having a 
depth of 1 m, width of 0.3 m and a shear span to depth ratio of 2.7 were 
monotonically loaded at the mid span until failure. The details of these 
beams are summarized in Appendix I. The comparisons of the experi-
mental and numerical load-deformation responses are given in Fig. 10. 

The initial stiffnesses of the beams are accurately predicted, however 
a deviation of the stiffness is observed in all the specimens after the 
initiation of flexural cracks at the bottom of the beams. This deviation 
can be explained by the assumption of parabolic shear strain variation 
along the section depths which can underestimate the shear strains in 
the tensile zone and thus the beam shear deformation when the mem-
bers are deep. Furthermore, the behaviour of large concrete beams with 
low unevenly distributed reinforcement is governed by the concrete 
cracking strength and the post-cracking tension softening phenomenon. 

Fig. 8. Sectional plots of OA2 at failure.  

Fig. 9. Sectional plots of A3 at failure.  
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The scattered nature of concrete cracking strength prediction and the 
use of linear tension softening model might have not accurately 
modelled the actual post-cracking tensile behaviour in the experiment, 
which can cause a stiffness over-prediction. Even though there is a de-
viation in post-cracking stiffness, the load-carrying capacities of the 
beams are predicted with good accuracy. The failure modes of all the 
specimens were accurately predicted by the proposed formulation as 
diagonal-tension failures. Single major diagonal cracks were 

numerically predicted in all the beams as discussed in the failure mode 
of beam specimen OA2 in the section 5.1.2. The experimental post-peak 
behaviour of all the beams except DB230 display a sudden drop of 
strength at the load carrying capacity and then retain a degrading re-
sidual strength. This sudden strength drop is due to the generation of a 
major diagonal crack in the shear span of the beams. The proposed 
formulation is capable of predicting the load carrying capacity of the 
beams, however it cannot predict the residual strengths after the 

Fig. 10. Load deformation comparison of Angekolas et al. (2001) beams.  

Fig. 11. Load deformation comparison of Lefas et al. (1990) shear walls.  
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generation of a single dominant diagonal crack. The residual strength 
and related displacement predictions of these kinds of beams are very 
difficult through sectional analyses algorithms and require further 
study. Furthermore, modelling high strength beams too require further 
study and thus high strength beams in this series were not modelled 
using the proposed formulation. 

5.2. Shear walls 

Six cantilever shear walls were selected from the experimental pro-
gram conducted by Lefas et al. (1990) [40] at the Imperial College, 
London. The walls were subjected to constant axial loads and a mono-
tonically increasing horizontal loads on the tip. The details of these walls 
are summarized in Appendix I. 

Each wall is modelled using a single element having six Gauss- 
Lobatto integration points. The fibre sections at each integration point 
are discretized into 40 number of layers. Both structure level and section 
level iterative procedures are assigned with a force norm tolerance of 
0.001. The comparison of experimental and numerical load-deformation 
responses given in Fig. 11 are in good agreement in terms of initial 
stiffness and load carrying capacity. A deviation of post-cracking stiff-
ness was observed again as in previous analyses, which can be explained 
by the under-prediction of the shear deformation in the tensile zone 
when assuming parabolic shear strain variations along the depth of the 

sections. 
The predicted failure modes of these shear walls are governed by 

crushing of concrete in the compression zone at the base of the walls, 
due to the combined action of axial force, bending moment and shear 
force. A series of significant inclined cracks and slip displacements are 
predicted along the wall height as shown in Fig. 12 (d) and (f), while the 
wall failure occurred due to inclined crushing of concrete near the wall 
base as shown in Fig. 12 (a). These results are consistent with the 
experimentally observed failure mode. 

5.3. Planar frames 

The first RC frame used for the validation is a two-storey single bay 
frame, experimented by Duong et al. (2007) [45]. Fig. 13 shows the 
loading arrangement, geometry and cross-sectional details of the frame. 
The motivation for this experimental study was to observe the behaviour 
of the first storey beam, which was intentionally designed to fail in 
shear. The testing of the frame was carried out in two phases, namely A 
and B, where in phase A, the frame was loaded until significant shear 
damage occur and the loading was subsequently reversed. In phase B, 
the frame was repaired and tested again for a sequence of complete 
cycles at multiples of yield displacement. The numerical predictions 
from the proposed formulation are compared with the results from phase 
A. 

Fig. 12. Sectional plots of SW23 at failure.  
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The frame is modelled using 12 elements as shown in Fig. 13. Each 
element is monitored at 6 Gauss-Lobatto integration points and each 
section is discretized in to 30 number of layers. The analysis is carried 
out by applying 0.2 mm lateral displacement steps. Both the structure 
level and section level iterative procedures converged to a force norm of 
0.001. It is evident from Fig. 14 that the analytical and experimental 
load-deformation responses are in good agreement. However, a slight 
over-estimation of post-cracking stiffness is observed along with a slight 
under-estimation of the ultimate displacement which are in line with the 
observations made in previously analysed RC beams and walls. 

The experimental loads and analytical loads for significant events of 
the frame behaviour are summarized and compared in Table 1. The load 
levels for initiation of flexure and shear cracks, yielding of longitudinal 

and transverse reinforcement and the peak load are predicted with a 
good accuracy. 

The experimental failure mode of the frame was governed by a single 
dominant diagonal-tension crack in the first storey beam, due to its low 
transverse reinforcement ratio. In the numerical results, the failure is 
observed in the second section of element 9 (see Fig. 13), where the 
principal tensile stresses of the mid fibres reached zeros due to yielding 
of transverse reinforcement. This behaviour is not observed in other 
sections of element 9 which reflects that there is only one dominant 
diagonal-tension crack. These observations are consistent with the 
experimentally observed failure mode and also follows the diagonal- 
tension failure mode discussed for beams with low transverse rein-
forcement ratios in Section 6.1.2. 

The second frame used for the validation of the proposed element is a 
large scale, two-storey single bay planar RC frame tested by Vecchio and 
Emara (1992) [42] with the aim of observing the shear deformations of 
RC frames. Fig. 15 shows the geometry, loading arrangement and cross- 
sectional details. More details of the material properties can be found in 
[42]. 

The frame is modelled using 8 of the proposed elements, where each 
element is monitored at 6 Gauss-Lobatto integration points. Each inte-
gration point is discretized in to 60 number of layers. The analysis is 
carried out by applying 0.6 mm displacement steps with a force norm 
tolerance of 0.001 at both section level and structure level iterative 
procedures. The experimental and analytical load-deformation re-
sponses are shown in Fig. 16. 

The initial stiffness of the frame is accurately predicted, however, a 
slight over prediction of stiffness is observed after the initial concrete 
cracking. The load carrying capacity and the frame stiffness after lon-
gitudinal reinforcement yielding are accurately predicted. The plateau 
of post-peak ductility is predicted accurately for a certain extent; how-
ever, the full ductility is not captured by this model as it neglects the 
effects of geometrical nonlinearity. 

The experimental failure mode was observed due to development of 
plastic hinges at the first storey beam ends and column bases. The pre-
dicted sectional plots at failure, show the reinforcement yielding and the 
concrete crushing at the first storey beam ends and column bases. The 
crack patterns illustrated that the concrete crushing at these locations 
occur in an approximately parallel direction to the beam/ column 
orientation which implies flexure dominant cracking. These observa-
tions are consistent with the experimental failure mode and they follow 
the failure mode of flexure critical beam A3 discussed in section 6.1.3. 

The third frame used for the validation of the proposed element is a 
two-storey single bay RC frame, monotonically loaded vertically from 
the first storey beam mid span experimented by Vecchio and Balopoulou 

Fig. 13. Loading arrangement, geometry and cross-sectional details of Duong et al. (2007) frame [45].  

Fig. 14. Experimental and analytical load-deformation response Duong 
frame [45]. 

Table 1 
Comparison of experimental and numerical predictions of Duong frame [45].  

Observed frame behaviour Experimental 
load (kN) 

Analytical 
load (kN) 

Percentage 
difference (%) 

Flexural cracks at first- and 
second-storey beams 

75 58  29.3 

Shear cracks at the first- 
storey beam 

148 136  8.8 

Yielding of longitudinal 
steel at beam ends of the 
first-storey 

295 253  16.6 

Yielding of stirrups of the 
first storey beam 

320 321  − 0.3 

Peak load 326 335  − 2.7  

H.M.S.S. Hippola et al.                                  



Engineering Structures 251 (2022) 113483

11

(1990) [41]. The details about the geometry, loading arrangement, and 
the cross-sectional details are shown in Fig. 17. 

The frame is modelled using 9 elements, where each element is 
monitored at 4 Gauss-Lobatto integration points. Each integration point 
is discretized in to 40 layers. The analysis was carried out by applying 
0.1 mm displacement steps and the force norm tolerance is taken as 
0.001 for both structure and section level iterative procedures. The 

comparison of analytical and experimental load-deformation responses 
is shown in Fig. 18. 

The load-carrying capacity of the frame is predicted with very good 
accuracy. However, the stiffness of the frame, prior to yielding of rein-
forcement is different in the experimental and numerical responses. This 
difference can be explained by the significant drying related shrinkage 

Fig. 15. Geometry, loading arrangement, and cross-sectional details of Vecchio and Emara (1992) frame [42].  

Fig. 16. Experimental and analytical load-deformation responses of Vecchio 
and Emara (1992) frame. 

Fig. 17. Geometry, loading arrangement, and cross-sectional details of Vecchio and Balopoulou (1990) frame [41].  

Fig. 18. Experimental and analytical load-deformation responses of Vecchio 
and Balopoulou (1990) frame [41]. 
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cracks (0.2–0.25 mm) observed in the experiment, as they lead to an 
experimental load-deformation response with significantly lower stiff-
ness. The experimental failure mode of the frame was reported as for-
mation of plastic hinges at first storey beam ends and the mid span. The 
numerically predicted principal compressive stress diagram in Fig. 19(b) 
demonstrate the compression crushing at the first storey beam ends and 
mid span. The stresses of top and bottom steel shown in Fig. 19(c) 
demonstrate the yielding of longitudinal steel (fy = 418 MPa) at the 
beam ends and the mid span. 

These observations imply the development of plastic hinges at first 
storey beam ends and mid span. 

6. Summary of the experimental validation

In this section, a summary of load-carrying capacity predictions of

167 RC specimens is presented. The details of the 161 beams, and 6 walls 
are summarized in Appendix I. Fig. 20 shows the predicted and exper-
imental load carrying capacities with respect to the 45◦ line. 

The proposed formulation produces an average load carrying ca-
pacity experimental-to-predicted ratio of 0.99 with a coefficient of 
variation (COV) of 12.8%. The most conservative prediction is 1.3 while 
the most un-conservative prediction is 0.7. 

Fig. 21(a)-(e) illustrate the distribution of experimental-to-predicted 
load carrying capacity ratios Vexp

Vpred 
of all the specimens with respect to 

shear span to depth ratios (a/d), longitudinal reinforcement ratios (px), 
transverse reinforcement ratios (py) , beam depths (d) and concrete 
compressive strengths f’

c , respectively. These graphs illustrate that the 
RC specimens selected for the experimental validation cover wide ranges 
of a/d, px, py, d, and f’

c values. Fig. 21(f) illustrates the distribution of 

experimental-to-predicted ultimate displacements δult,exp
δult,pred 

for the RC 
specimens discussed in this paper. 

The proposed element formulation under-estimates the ultimate 
displacement of members with low shear span to depth ratios. Two 
sources could be identified for this inaccuracy; the imposed kinematic 
constraint of parabolic shear strain variation along the depth of the 
section under-estimates the contribution of shear deformation to the 
displacement, and the inability of sectional analysis algorithms to pre-
dict post-peak behaviour of shear critical members which have shear- 
compression or diagonal-tension failure modes. However, the capacity 
predictions from the proposed formulation show a consistent distribu-
tion in all the ranges of these parameters showing the applicability of the 
proposed formulation for a wide range of reinforced concrete frames and 
walls to predict shear capacity. 

7. Conclusions

This paper presents a novel force-based line element formulation

Fig. 19. Sectional plots of ele 5 and 6 of Vecchio and Balopoulou (1990) frame at failure.  

Fig. 20. Experimental and predicted load carrying capacities of all 
the specimens. 
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which accounts for bending moment-shear force-axial force interaction 
of reinforced concrete and its application to predict the response rein-
forced concrete beams, walls and frames found in literature. Unlike in 
displacement-based line element formulations, element discretization is 
not required since the force interpolation functions are exactly known 
through equilibrium. The formulation is based on the distributed plas-
ticity method and kinematic constraints of plane section remain plane 
and parabolic shear strain variation along the depth of the section are 
imposed at the section level. There are two nested iterative procedures 
at structure level and section level. Both iterative procedures work with 

tangent stiffness matrices and thus the convergence is faster than in 
element formulations which utilize initial and secant stiffness matrices 
for the iterative procedures. At the fibre level, the Disturbed Stress Field 
Model (DSFM) is implemented as the constitutive relationship. The 
DSFM relieves the constraint that the principal stress and strain direc-
tion of a material point should coincide and facilitates the explicit 
computation of the slip deformations. The proposed line element 
formulation was validated against an experimental database with 170 
specimens. The selected specimens had varying shear span-depth ratios 
from 2 to 9.8, longitudinal reinforcement ratios from 0.5% to 3.96%, 

Fig. 21. Experimental and predicted load carrying capacities with respect to different parameters.  
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transverse reinforcement ratios from 0% to 0.8%, depths from 0.3 m to 
1.51 m, and concrete strengths from 12.2 MPa to 48.5 MPa. The load- 
deformation responses were in good agreement in terms of initial stiff-
ness, initial tensile cracking, and load carrying capacity. The load car-
rying capacity of the 170 specimens were accurately predicted, with a 
mean experiment-to-predicted ratio of 0.99 and a COV of 12.8%. In 
addition, the proposed element also displayed the capability to accu-
rately predict shear-compression, diagonal-tension and flexure- 
compression failure modes. However, the prediction of the ultimate 
displacements of shear critical members was unsatisfactory and two 
sources of inaccuracies were identified, which require further study. 
First, in the post-cracking branch, the sectional kinematic constraint of 
parabolic shear strain variation leads to an under-estimation the shear 
strains in the tensile zone and subsequently the element displacements, 
resulting a stiffer load-deformation response. Secondly, the proposed 
formulation is unable to predict the strength degradation and corre-
sponding displacements for the shear-compression and the diagonal- 
tension failure modes. These draw-backs limits the usage of the cur-
rent formulation in the calculation of ductility demands and energy 
dissipations of shear critical elements. However, the proposed element 

formulation is suitable to identify shear critical members in large frame 
structures with many elements, predict distribution of internal forces, 
crack patterns of members, load carrying capacities, and failure modes, 
which are important in the ultimate limit state design of frame struc-
tures, assessment of the safety of existing structures prone to brittle 
failures and determination of suitable retrofitting strategies. 
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Appendix A  

F6No. ID b 
(m) 

h 
(m) 

Ls(m)  a
d  

f’
c(MPa)  ag(mm)  ρx(%)  fyx(MPa)  ρy(%)  fyy 

(MPa)  
Vexp 

(kN)  
Vpred(kN)  Vexp

Vpred

Bresler and Scordelis (1963) – Simply supported beams 
1 BS-OA1  0.31 0.556  1.83 3.97 22.6 19 1.5 555 0 – 167 173.8 0.96 
2 BS-OA2  0.305 0.561  2.29 4.9 23.7 19 1.88 555 0 – 178 190 0.94 
3 BS-OA3  0.307 0.556  3.2 6.93 37.6 19 2.27 552 0 – 189 204 0.93 
4 BS-A1  0.307 0.561  1.83 3.92 24.1 19 1.64 [345 555 555] 0.1 325 233.5 253.1 0.92 
5 BS-A2  0.305 0.559  2.29 4.93 24.3 19 2.04 [345 555 555 

555] 
0.101 325 244.5 267.4 0.91 

6 BS-A3  0.307 0.561  3.2 6.87 35.1 19 2.39 [345 552 552] 0.1 325 233.5 249.3 0.94 
7 BS-B1  0.231 0.556  1.83 3.97 24.8 19 2.2 [345 555 555] 0.147 325 222.5 218.9 1.02 
8 BS-B2  0.229 0.561  2.29 4.91 23.2 19 2.2 [345 555 555] 0.148 325 200 206.8 0.97 
9 BS-B3  0.229 0.556  3.2 6.95 38.8 19 2.73 [345 552 552 

552] 
0.148 325 178 206.1 0.86 

10 BS-C1  0.155 0.559  1.83 3.95 29.6 19 1.78 [345 555 555] 0.199 325 155.5 159.5 0.97 
11 BS-C2  0.152 0.559  2.29 4.92 23.8 19 3.33 [345 555 555] 0.202 325 162.5 183.6 0.89 
12 BS-C3  0.155 0.554  3.2 6.98 35.1 19 3.3 [345 552 552] 0.199 325 134.5 144.4 0.93  

Krefeld and Thurston (1966) – Simply supported beams 
13 II4A3  0.203 0.457  0.91 2.34 30.6 25 1.76 400 0 – 109.9 115.6 0.95 
14 II5A3  0.203 0.457  0.91 2.34 29.9 25 2.64 400 0 – 170.4 134.8 1.26 
15 II11A2  0.152 0.381  0.91 2.91 30.2 25 2.82 400 0 – 73.4 88.02 0.83 
16 II12A2  0.152 0.305  0.91 3.85 30.1 25 3.52 400 0 – 64.05 77.72 0.82 
17 III18A2  0.152 0.381  0.91 2.89 19.3 25 2.22 370 0 – 63.16 71.69 0.88 
18 III18B2  0.152 0.381  0.91 2.89 19.9 25 2.22 370 0 – 72.06 72.64 0.99 
19 III18C2  0.152 0.381  0.91 2.89 22.6 25 2.22 370 0 – 73.4 77.18 0.95 
20 III18D2  0.152 0.381  0.91 2.89 22.1 25 2.22 370 0 – 60.05 76.29 0.79 
21 IV13A2  0.152 0.381  0.91 2.87 19.9 25 0.67 379 0 – 48.49 44.46 1.09 
22 IV14A2  0.152 0.305  0.91 3.77 20.7 25 0.84 379 0 – 35.14 35.66 0.99 
23 IV15A2  0.152 0.381  0.91 2.89 20.1 25 1.11 370 0 – 45.82 57.48 0.8 
24 IV15B2  0.152 0.381  0.91 2.89 20.7 25 1.11 370 0 – 52.04 58.14 0.9 
25 IV16A2  0.152 0.305  0.91 3.81 22.2 25 1.39 370 0 – 41.81 44.24 0.95 
26 IV17A2  0.152 0.305  0.91 3.77 22 25 1.67 379 0 – 44.04 57.45 0.77 
27 IV18E 2  0.152 0.381  0.91 2.89 19.8 25 2.22 370 0 – 81.85 72.51 1.13 
28 IV19A2  0.152 0.305  0.91 3.81 20.5 25 2.78 370 0 – 46.26 64.29 0.72 
29 IV20A2  0.152 0.305  0.91 3.85 21 25 3.52 400 0 – 50.71 67.07 0.76 
30 IV21A2  0.203 0.305  0.91 3.85 19.9 25 3.96 400 0 – 76.51 86.88 0.88 
31 V1AC  0.152 0.305  1.22 4.77 21.9 25 0.84 379 0 – 32.92 26.88 1.22 
32 V2AC  0.152 0.305  1.22 4.8 23 25 1.09 394 0 – 37.81 37.26 1.01 
33 V3AC  0.152 0.305  1.22 4.77 20.8 25 1.67 379 0 – 44.04 48.21 0.91 
34 V4AC  0.152 0.305  1.22 4.8 16.5 25 2.18 394 0 – 37.81 50.52 0.75 
35 V5AC  0.152 0.305  1.22 4.83 18.3 25 2.78 370 0 – 41.81 55.8 0.75 
36 V6AC  0.152 0.305  1.22 4.87 22.8 25 3.52 400 0 – 53.38 68.09 0.78 
37 V1CC  0.152 0.305  1.52 5.96 18.9 25 0.84 379 0 – 26.69 22.95 1.16 
38 V2CC  0.152 0.305  1.52 6 20.8 25 1.09 394 0 – 30.25 30.44 0.99 
39 V3CC  0.152 0.305  1.52 5.96 20.5 25 1.67 379 0 – 35.59 38.06 0.93 
40 V4CC  0.152 0.305  1.52 6 20.5 25 2.18 394 0 – 40.03 48.45 0.83 
41 V5CC  0.152 0.305  1.52 6.04 20.3 25 2.78 370 0 – 44.48 48.15 0.92 

(continued on next page) 
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(continued ) 

F6No. ID b 
(m) 

h 
(m) 

Ls(m)  a
d  

f’
c(MPa)  ag(mm)  ρx(%)  fyx(MPa)  ρy(%)  fyy 

(MPa)  
Vexp 

(kN)  
Vpred(kN)  Vexp

Vpred

42 V6CC  0.152 0.305  1.52 6.09 20.5 25 3.52 400 0 – 44.48 48.49 0.92 
43 V3EC  0.152 0.305  1.83 7.16 18.8 25 1.67 379 0 – 37.81 32.1 1.18 
44 V4EC  0.152 0.305  1.83 7.2 21.2 25 2.18 394 0 – 41.81 41.01 1.02 
45 V5EC  0.152 0.305  1.83 7.24 19.5 25 2.78 370 0 – 39.59 38.05 1.04 
46 V6EC  0.152 0.305  1.83 7.3 19.1 25 3.52 400 0 – 42.26 36.74 1.15 
47 V3GC  0.152 0.305  2.13 8.35 22.4 25 1.67 379 0 – 31.58 35.06 0.9 
48 V4GC  0.152 0.305  2.13 8.4 21 25 2.18 394 0 – 36.92 33.85 1.09 
49 V5GC  0.152 0.305  2.13 8.45 21.9 25 2.78 370 0 – 41.81 36.8 1.14 
50 V6GC  0.152 0.305  2.13 8.52 21.4 25 3.52 400 0 – 40.48 36.25 1.12 
51 V3JC  0.152 0.305  2.44 9.54 22.2 25 1.67 379 0 – 28.02 25.75 1.09 
52 V4JC  0.152 0.305  2.44 9.6 22.2 25 2.18 394 0 – 31.58 31.02 1.02 
53 V5JC  0.152 0.305  2.44 9.66 22.8 25 2.78 370 0 – 40.03 33.48 1.2 
54 V6JC  0.152 0.305  2.44 9.74 21.4 25 3.52 400 0 – 35.14 32.65 1.08 
55 VII6C  0.152 0.305  0.91 3.62 20.1 25 2.78 370 0 – 51.15 62.75 0.82 
56 VIII3AAC  0.152 0.305  0.91 3.58 34.5 25 1.67 379 0 – 55.6 60.42 0.92 
57 VIII4AAC  0.152 0.305  0.91 3.6 29.2 25 2.18 394 0 – 57.83 60.25 0.96 
58 VIII5AAC  0.152 0.305  0.91 3.62 32.8 25 2.78 370 0 – 56.94 74.66 0.76 
59 VIII6AAC  0.152 0.305  0.91 3.65 34.4 25 3.52 400 0 – 60.05 82.72 0.73 
60 VIII3AC  0.152 0.305  1.22 4.77 31.8 25 1.67 379 0 – 53.38 55.27 0.97 
61 VIII4AC  0.152 0.305  1.22 4.8 30.5 25 2.18 394 0 – 53.82 63.87 0.84 
62 VIII5AC  0.152 0.305  1.22 4.83 32.8 25 2.78 370 0 – 54.27 73.22 0.74 
63 VIII6AC  0.152 0.305  1.22 4.87 34.1 25 3.52 400 0 – 59.16 69.77 0.85 
64 VIII4CC  0.152 0.305  1.52 6 38.4 25 2.18 394 0 – 52.49 60.85 0.86 
65 VIII5CC  0.152 0.305  1.52 6.04 37.4 25 2.78 370 0 – 57.38 67.6 0.85 
66 VIII6CC  0.152 0.305  1.52 6.09 38.4 25 3.52 400 0 – 63.16 79.17 0.8 
67 VIII4EC  0.152 0.305  1.83 7.2 36.8 25 2.18 394 0 – 51.6 48.28 1.07 
68 VIII5EC  0.152 0.305  1.83 7.24 37.4 25 2.78 370 0 – 53.38 55.48 0.96 
69 VIII6EC  0.152 0.305  1.83 7.3 33.8 25 3.52 400 0 – 48.93 63.15 0.77 
70 IX3AAC  0.152 0.305  0.91 3.58 12.5 25 1.67 379 0 – 40.48 42.07 0.96 
71 IX4AAC  0.152 0.305  0.91 3.6 12.9 25 2.18 394 0 – 42.7 37.91 1.13 
72 IX5AAC  0.152 0.305  0.91 3.62 15.4 25 2.78 370 0 – 50.26 56.8 0.88 
73 IX6AAC  0.152 0.305  0.91 3.65 13.4 25 3.52 400 0 – 62.28 51.92 1.2 
74 IX3AC  0.152 0.305  1.22 4.77 13.7 25 1.67 379 0 – 36.92 41.92 0.88 
75 IX4AC  0.152 0.305  1.22 4.8 12.9 25 2.18 394 0 – 40.03 40.3 0.99 
76 IX5AC  0.152 0.305  1.22 4.83 15.4 25 2.78 370 0 – 43.59 48.86 0.89 
77 IX6AC  0.152 0.305  1.22 4.87 12.4 25 3.52 400 0 – 40.92 38.73 1.06 
78 IX3CC  0.152 0.305  1.52 5.96 12.2 25 1.67 379 0 – 31.14 31.42 0.99 
79 IX4CC  0.152 0.305  1.52 6 17.1 25 2.18 394 0 – 35.14 41.6 0.84 
80 IX5CC  0.152 0.305  1.52 6.04 14.7 25 2.78 370 0 – 34.25 37.98 0.9 
81 IX6CC  0.152 0.305  1.52 6.09 13.7 25 3.52 400 0 – 39.59 35.83 1.1 
82 IX4EC  0.152 0.305  1.83 7.2 14.3 25 2.18 394 0 – 35.59 30.29 1.17 
83 IX5EC  0.152 0.305  1.83 7.24 15.1 25 2.78 370 0 – 34.7 31.84 1.09 
84 XC  0.203 0.533  1.52 3.16 16.8 25 1.4 394 0 – 84.52 88.29 0.96 
85 XIPCa  0.152 0.305  1.83 7.3 36.3 25 3.52 400 0 – 53.38 66.18 0.81 
86 XIPCb  0.152 0.305  1.83 7.3 36.3 25 3.52 400 0 – 53.38 66.18 0.81 
87 SIOCa  0.152 0.305  1.52 6 35.7 25 2.18 394 0 – 48.49 56.94 0.85 
88 SIOCb  0.152 0.305  1.52 6 39 25 2.18 394 0 – 52.49 58.29 0.9 
89 SIIOCa  0.254 0.508  1.83 4.01 38.3 25 2 370 0 – 146.8 157.8 0.93 
90 SIIOCb  0.254 0.508  1.83 4.01 38.3 25 2 370 0 – 133.4 157.8 0.85 
91 SI-23–5  0.152 0.305  1.52 6 38.5 25 2.18 394 0.475 341 60.94 57.47 1.06 
92 SI-26a  0.152 0.305  1.52 6 34.7 25 2.18 394 0.277 341 59.61 56.9 1.05 
93 SI-26b  0.152 0.305  1.52 6 34.7 25 2.18 394 0.277 341 62.28 56.9 1.09 
94 SI-210a  0.152 0.305  1.52 6 38 25 2.18 394 0.166 341 60.5 55.2 1.1 
95 SI-210b  0.152 0.305  1.52 6 38 25 2.18 394 0.166 341 63.16 58.38 1.08 
96 SI-210c  0.152 0.305  1.52 6 39 25 2.18 394 0.166 341 66.72 58.96 1.13 
97 SI-212a  0.152 0.305  1.52 6 39.5 25 2.18 394 0.139 341 64.94 59.17 1.1 
98 SI-212b  0.152 0.305  1.52 6 39.5 25 2.18 394 0.139 341 68.95 59.17 1.17 
99 SII-24–1  0.254 0.508  1.83 4.01 37.3 25 2 370 0.249 341 244.7 223.1 1.1 
100 SII-26–1  0.254 0.508  1.83 4.01 40.1 25 2 370 0.166 341 206.8 208.9 0.99 
101 SII-29a-1  0.254 0.508  1.83 4.01 38.8 25 2 370 0.111 341 159.7 158.8 1.01 
102 SII-29b-1  0.254 0.508  1.83 4.01 37.6 25 2 370 0.111 341 160.1 181.5 0.88 
103 SII-213–5-1  0.254 0.508  1.83 4.01 38.9 25 2 370 0.074 341 148.1 169.2 0.88 
104 SII-24–5-2  0.254 0.508  1.83 4.01 37.6 25 2 370 0.222 372 243.8 222.4 1.1 
105 SII-29a-2  0.254 0.508  1.83 4.01 37.2 25 2 370 0.111 372 216.6 183.9 1.18 
106 SII-29b-2  0.254 0.508  1.83 4.01 41.4 25 2 370 0.111 372 202.4 190.9 1.06 
107 SII-29c-2  0.254 0.508  1.83 4.01 24.1 25 2 370 0.111 372 161.5 162 1 
108 SII-29d-2  0.254 0.508  1.83 4.01 30.4 25 2 370 0.111 372 165 174.2 0.95 
109 SII-29e-2  0.254 0.508  1.83 4.01 48.5 25 2 370 0.111 372 206.4 201.1 1.03 
110 SII-29f-2  0.254 0.508  1.83 4.01 41.8 25 2 370 0.111 372 234.4 191 1.23 
111 SII-29 g-2  0.254 0.508  1.83 4.01 15.7 25 2 370 0.111 372 149.9 142.4 1.05 
112 SII-213-5a-2  0.254 0.508  1.83 4.01 37 25 2 370 0.074 372 161.5 167.6 0.96 
113 SII-218a-2  0.254 0.508  1.83 4.01 37.6 25 2 370 0.055 372 164.1 165.9 0.99 
114 SII-24–5-3  0.254 0.508  1.83 4.01 35.4 25 2 370 0.222 237 232.6 198.9 1.17 
115 SII-29–3  0.254 0.508  1.83 4.01 34.3 25 2 370 0.111 237 177.9 162.9 1.09 
116 SII-39–1  0.254 0.508  1.83 4.01 37.2 25 2 370 0.245 517 248.2 222.7 1.11 

(continued on next page) 
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(continued ) 

F6No. ID b 
(m) 

h 
(m) 

Ls(m)  a
d  

f’
c(MPa)  ag(mm)  ρx(%)  fyx(MPa)  ρy(%)  fyy 

(MPa)  
Vexp 

(kN)  
Vpred(kN)  Vexp

Vpred

117 SII-313–5-1  0.254 0.508  1.83 4.01 37.2 25 2 370 0.164 517 251.3 219 1.15 
118 SII-318–1  0.254 0.508  1.83 4.01 40.5 25 2 370 0.123 517 220.2 218 1.01 
119 SII-321–1  0.254 0.508  1.83 4.01 38.7 25 2 370 0.105 517 163.7 202.4 0.81 
120 SII-39–2  0.254 0.508  1.83 4.01 37.1 25 2 370 0.245 352 248.7 220.8 1.13 
121 SII-313–5-2  0.254 0.508  1.83 4.01 39.6 25 2 370 0.164 352 234.9 209.5 1.12 
122 SII-318–2  0.254 0.508  1.83 4.01 38.9 25 2 370 0.123 352 177 190.5 0.93 
123 SII-321–2  0.254 0.508  1.83 4.01 38 25 2 370 0.105 352 166.8 143.7 1.16 
124 SII-39–3  0.254 0.508  1.83 4.01 42.7 25 2 370 0.245 276 239.8 227.1 1.06 
125 SII-313–5-3  0.254 0.508  1.83 4.01 42.7 25 2 370 0.164 276 213.5 199 1.07 
126 SII-318–3  0.254 0.508  1.83 4.01 43 25 2 370 0.123 276 174.8 184.4 0.95 
127 SII-321–3  0.254 0.508  1.83 4.01 43 25 2 370 0.105 276 140.6 179.5 0.78 
Lefas et al. (1990) – Shear walls 
128 SW21  0.065 0.65  1.3 2 35.7 10 3.3 470 0.8 520 127 119 1.07 
129 SW22 (N = 182 

kN)  
0.065 0.65  1.3 2 42.2 10 3.3 470 0.8 520 150 143 1.05 

130 SW23 (N = 343 
kN)  

0.065 0.65  1.3 2 39.8 10 3.3 470 0.8 520 180 163.5 1.1 

131 SW24  0.065 0.65  1.3 2 40.3 10 3.3 470 0.8 520 120 122 0.98 
132 SW25 (N = 325 

kN)  
0.065 0.65  1.3 2 37.5 10 3.3 470 0.8 520 150 155 0.97 

133 SW26  0.065 0.65  1.3 2 25.1 10 3.3 470 0.4 520 123 123 1 
Angekolas et al. (2001) – Simply supported beams 
134 DB0.530  0.3 1  2.7 2.92 32 10 0.5 550 0 – 165 134 1.23 
135 DB120  0.3 1  2.7 2.92 21 10 1.01 550 0 – 179 170.5 1.05 
136 DB130  0.3 1  2.7 2.92 32 10 1.01 550 0 – 185 176.3 1.05 
137 DB140  0.3 1  2.7 2.92 38 10 1.01 550 0 – 180 181.2 0.99 
138 DB230  0.3 1  2.7 2.92 32 10 2.09 550 0 – 257 243.2 1.06 
139 DB120M  0.3 1  2.7 2.92 21 10 1.01 [435 550] 0.402 508 282 315.4 0.89 
140 DB140M  0.3 1  2.7 2.92 38 10 1.01 [435 550] 0.402 508 277 392.6 0.71 
141 DB0.530 M  0.3 1  2.7 2.92 32 10 0.5 [435 550] 0.402 508 263 255.4 1.03 
Vecchio and Shim (2004) – Simply supported beams 
142 VS-OA1  0.305 0.552  1.83 4 22.6 20 1.43 [445 436] 0 – 165.5 150.9 1.1 
143 VS-OA2  0.305 0.552  2.29 5 25.9 20 1.84 [440 436] 0 – 160 169.7 0.94 
144 VS-OA3  0.305 0.552  3.2 7 43.5 20 2.26 [445 436] 0 – 192.5 189.8 1.01 
145 VS-A1  0.305 0.552  1.83 4 22.6 20 1.6 [315 445 436] 0.1 600 229.5 228.1 1.01 
146 VS-A2  0.305 0.552  2.29 5 25.9 20 2.02 [315 440 436] 0.1 600 219.5 230.4 0.95 
147 VS-A3  0.305 0.552  3.2 7 43.5 20 2.49 [315 445 436] 0.1 600 210 210.2 1 
148 VS-B1  0.229 0.552  1.83 4 22.6 20 2.22 [315 445 436] 0.148 600 217 219.3 0.99 
149 VS-B2  0.229 0.552  2.29 5 25.9 20 2.22 [315 440 436] 0.148 600 182.5 179.8 1.01 
150 VS-B3  0.229 0.552  3.2 7 43.5 20 2.77 [315 445 436] 0.147 600 171 166.8 1.03 
151 VS-C1  0.152 0.552  1.83 4 22.6 20 2.15 [315 436] 0.202 600 141 130.9 1.08 
152 VS-C2  0.152 0.552  2.29 5 25.9 20 3.34 [315 440 436] 0.202 600 145 158.5 0.91 
153 VS-C3  0.152 0.552  3.2 7 43.5 20 3.34 [315 445 436] 0.201 600 132.5 138.7 0.95 
Sherwood et al. (2007) – Simply supported beams 
154 SB10N1  0.3 1.51  4.05 2.89 38.4 10 0.83 [487 452] 0 – 277 233.6 1.19 
155 SB10N2  0.3 1.51  4.05 2.89 40.3 10 0.83 [487 452] 0 – 254 233.6 1.09 
156 SB20N1  0.3 1.51  4.05 2.89 31.4 20 0.83 [487 452] 0 – 277 238.6 1.16 
157 SB20N2  0.3 1.51  4.05 2.89 33.2 20 0.83 [487 452] 0 – 277 238.7 1.16 
158 SB40N1  0.3 1.51  4.05 2.89 28.1 40 0.83 [487 452] 0 – 254 237.9 1.07 
159 SB40N2  0.3 1.51  4.05 2.89 28.5 40 0.83 [487 452] 0 – 300 237.9 1.26 
160 SB50N1  0.3 1.51  4.05 2.89 41 50 0.83 [487 452] 0 – 283 238.6 1.19 
161 SB50N2  0.3 1.51  4.05 2.89 40.1 50 0.83 [487 452] 0 – 310 238.6 1.3 
162 SSB10N1  0.122 0.33  0.81 2.89 41.9 10 0.83 494 0 – 36.6 39.77 0.92 
163 SSB10N2  0.122 0.33  0.81 2.89 41.9 10 0.83 494 0 – 38.3 39.77 0.96 
164 SSB20N1  0.122 0.33  0.81 2.89 39.2 20 0.83 494 0 – 39.1 39.77 0.98 
165 SSB20N2  0.122 0.33  0.81 2.89 38.1 20 0.83 494 0 – 38.2 39.77 0.96 
166 SSB40N1  0.122 0.33  0.81 2.89 29.1 40 0.83 494 0 – 41.9 39.77 1.05 
167 SSB40N2  0.122 0.33  0.81 2.89 29.1 40 0.83 494 0 – 34.9 39.6 0.88              

Mean 0.99              
COV (%) 12.8  
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