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1. Introduction

Volatility-managed strategies have been the subject of considerable research during the past few
years. These strategies are characterized by conservative positions in the underlying factors when
volatility was recently high and more aggressively levered positions when volatility was recently low.
Barroso and Santa-Clara (2015) and Daniel and Moskowitz (2016) show that volatility-managed
momentum strategies virtually eliminate momentum crashes and nearly double the Sharpe ratio of
the original momentum strategy. Moreira and Muir (2017) extend the analysis to nine equity factors
and find that volatility-scaled factors produce significantly positive alphas relative to their unscaled
counterparts. However, Cederburg, O’Doherty, Wang, and Yan (2020) show that the trading
strategies implied by the spanning regressions of Moreira and Muir’s (2017) are not implementable
in real time and reasonable out-of-sample versions do not outperform simple investments in the
original, unmanaged portfolios.!

Previous studies of volatility-managed strategies focus exclusively on total volatility. In this
paper, we examine downside volatility-managed strategies. The motivation for our focus on down-
side volatility is twofold. First, there is a long-standing literature contending that downside risk is
a more appropriate measure of risk because investors typically associate risk with downside losses
rather than upside gains. Markowitz (1959), for example, advocates the use of semivariance as a
measure of risk. Second, there is considerable evidence that downside volatility contains valuable
information about future volatility and returns (e.g., Barndorff-Nielsen, Kinnebrock, and Shephard
(2010), Feunou, Jahan-Parvar, and Tédongap (2013), Patton and Sheppard (2015), Bollerslev, Li,
and Zhao (2019), and Atilgan, Bali, Demirtas, and Gunaydin (2020)). If downside volatility is per-
sistent and negatively predicts future returns, then downside volatility-managed strategies should
exhibit superior performance because taking less risk when downside volatility was recently high
not only avoids high future volatility but also avoids poor future returns.

We estimate downside volatility from negative returns by following the approach of Patton

'Barroso and Maio (2018) and Eisdorfer and Misirli (2020) find that volatility-scaled betting-against-beta and
financial distress strategies significantly outperform their corresponding unscaled strategies. Liu, Tang, and Zhou
(2019) argue that the volatility-managed strategies of Moreira and Muir (2017) contain a look-ahead-bias and cannot
be implemented in real time. Barroso and Detzel (2021) examine whether volatility-managed strategies survive
trading cost. Much of this recent literature follows from Fleming, Kirby, and Ostdiek (2001) and Fleming, Kirby,
and Ostdiek (2003), who document large economic gains from volatility timing for short-term investors across several
asset classes.
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and Sheppard (2015) and Bollerslev et al. (2019). We then construct downside volatility-managed
portfolios similarly to total volatility-managed portfolios except that we scale returns by lagged
downside volatility instead of lagged total volatility. For ease of comparison, we examine the same
nine equity factors studied by Moreira and Muir (2017), namely, M KT, SM B, and HML from
the Fama and French (1993) three-factor model, MOM from the Carhart (1997) four-factor model,
RMW and CW A from the Fama and French (2015) five-factor model, ROE and IA from Hou,
Xue, and Zhang’s (2015) g¢-factor model, and lastly the BAB factor of Frazzini and Pedersen
(2014).2 We also examine the 94 anomaly portfolios considered by Cederburg et al. (2020) in order
to draw more general conclusions. We follow the previous literature and evaluate the performance
of volatility-managed portfolios by using three approaches: Spanning regressions, real-time trading
strategies, and direct Sharpe ratio comparisons. Our general finding is that downside volatility-
managed portfolios exhibit significantly better performance than total volatility-managed portfolios.
The improved performance in out-of-sample real-time trading strategies is especially noteworthy
in light of the recent controversy about the real-time performance of volatility-managed portfolios
(Cederburg et al. (2020)).

Our first approach to evaluating the performance of volatility-managed portfolios is to estimate
the spanning regressions of Moreira and Muir (2017), i.e., regressing volatility-managed factors on
their corresponding unmanaged factors. We confirm the findings of Moreira and Muir (2017) and
find significantly positive spanning regression alphas for volatility-managed M KT, HML, MOM,
RMW , ROE, IA, and BAB and insignificant alphas for volatility-managed SM B and CM A. In
comparison, downside volatility-managed factors exhibit positive and significant spanning regression
alphas across all nine factors examined by Moreira and Muir (2017). The two factors for which
Moreira and Muir (2017) find insignificant alphas now generate positive alphas that are statistically
significant at the 10% level. This performance improvement extends to the sample of 94 anomalies.
Looking at total volatility-managed portfolios, we find that about two thirds of the anomalies (62
out of 94 anomalies) exhibit positive spanning regression alphas. This finding is consistent with
Moreira and Muir (2017) and Cederburg et al. (2020). In comparison, nearly 95% of the anomalies

(89 out of 94 anomalies) exhibit positive alphas for downside volatility-managed portfolios. Overall,

2Moreira and Muir (2017) also examine a currency carry trade factor. Similar to Cederburg et al. (2020), we focus
on their nine equity factors.
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our results indicate that downside volatility-managed portfolios perform significantly better than
total volatility-managed portfolios in spanning regressions.

To explore the sources of the performance of volatility-managed portfolios, we decompose the
spanning regression alpha into two components, volatility timing and return timing. The volatility
timing component is positive if lagged volatility is positively related to future volatility. The return
timing component is positive if lagged volatility is negatively related to future returns. Volatility
clustering is one of the most robust stylized facts in finance, so the volatility timing component is
likely to be positive. However, the literature is ambiguous about the volatility-return relation (e.g.,
French, Schwert, and Stambaugh (1987), Glosten, Jagannathan, and Runkle (1993), and Brandt
and Kang (2004)).> If the conditional expected return is positively related to lagged volatility,
then the benefit of volatility timing is likely to be offset by the cost of negative return timing
and, as a result, volatility-managed strategies will not work. If the conditional expected return is
uncorrelated or even negatively correlated with lagged volatility, then volatility-managed strategies
are likely to perform well because they take advantage of the attractive risk-return trade-off when
volatility is low and avoids the poor risk-return trade-off when volatility is high.

Our decomposition results indicate that the positive alphas of total volatility-managed portfolios
stem primarily from volatility timing. The large contribution from volatility timing is unsurprising
because volatility is highly persistent. The small, and sometimes even negative contribution from
return timing suggests that total volatility is largely unrelated to future returns. Volatility timing
also plays a major role in explaining the superior performance of downside volatility-managed
strategies. However, the enhanced performance of downside volatility-managed strategies relative to
total volatility-managed portfolios is almost entirely attributable to the return-timing component.
For total volatility-managed strategies, the return-timing component is positive among just two of
the nine equity factors and 42 of the 94 anomalies. In contrast, eight of the nine equity factors and
71 of the 94 anomalies exhibit a positive return-timing component for downside volatility-managed
strategies. The positive return-timing component associated with downside volatility-managed
strategies suggests that high downside volatility tends to be associated with low future returns. In

summary, we find that the superior performance of downside volatility-managed factors is a result

3Barroso and Maio (2019) is the first study on the risk-return trade-off of long-short equity factors. They find the
trade-offs to be weak or nonexistent for most factors.
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of both volatility timing and return timing, but the improvement over total volatility-managed
portfolios is attributed to return timing.

Cederburg et al. (2020) point out that the trading strategies implied by the spanning regres-
sions, i.e., combining the volatility-managed portfolio and the unmanaged portfolio using ex post
optimal weights, are not implementable in real time because the optimal weights for the volatility-
managed portfolio and the unmanaged portfolio depend on full-sample return moments, which are
not known to real-time investors. Therefore, in our second approach we evaluate the real-time (i.e.,
out-of-sample) performance of volatility-managed strategies. We follow Cederburg et al. (2020)
and compare the performance of two real-time strategies: the comibination strategy and the orig-
inal, unmanaged strategy. Consistent with Cederburg et al. (2020), we find little evidence that
managing total volatility is systematically advantageous for real-time investors—the combination
strategy that incorporates total volatility-managed portfolios outperforms the unmanaged strategy
in 50 of the 103 equity factors and anomaly portfolios, while underperforming in the remaining
53. Managing downside volatility, however, significantly improves the performance of the combina-
tion strategy. Specifically, the combination strategy that incorporates downside volatility-managed
portfolios outperforms the original, unmanaged strategy in 70 of the 103 equity factors and anoma-
lies. A simple binomial test indicates that the null hypothesis of equal performance between the
combination strategy and the unmanaged strategy is rejected at the 1 percent level.

The relatively poor out-of-sample performance of the real-time combination strategies is primar-
ily due to parameter instability and estimation risk (Cederburg et al. (2020)). A potential remedy
for this issue, therefore, is to examine combination strategies that use fixed portfolio weights. These
fixed weights, e.g., 50% in the volatility-managed portfolio and 50% in the original portfolio, are un-
likely to be optimal ex post, but employing them removes the need to estimate “optimal” weights in
real time and therefore may improve performance. We find that fixed-weight strategies indeed per-
form better than standard real-time strategies. Depending on the specific weight, we show that the
combination strategy that incorporates total volatility-managed portfolios outperforms the original,
unmanaged strategy in 64-68 (out of 103) equity factors and anomalies. Recall that the correspond-
ing number is only 50 for standard real-time strategies. For downside volatility-managed portfolios,
the combination strategy with fixed weights outperforms the original, unmanaged strategy in 80-81

equity factors and anomalies (compared to 70 for standard real-time strategies). In summary, we
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find that fixed-weight strategies outperform standard real-time strategies. Moreover, we continue to
find that downside volatility-managed portfolios significantly outperform the performance of total
volatility-managed portfolios.

Most prior studies (e.g., Barroso and Santa-Clara (2015), Daniel and Moskowitz (2016), Bar-
roso and Maio (2018), Cederburg et al. (2020), and Eisdorfer and Mirsirli (2020)) assess the value
of volatility management by directly comparing the Sharpe ratios of volatility-managed portfolios
with the Sharpe ratios of unmanaged portfolios. We follow these studies and employ direct Sharpe
ratio comparison as our third approach to evaluating the performance of volatility-managed portfo-
lios. Our findings are similar to those for the spanning regressions and real-time trading strategies.
That is, downside volatility-managed portfolios perform significantly better than the total volatility-
managed portfolios. Specifically, total volatility-managed portfolios exhibit higher Sharpe ratios
than original, unmanaged portfolios among 63 (out of 103) equity factors and anomalies. The
corresponding number increases sharply to 93 for downside volatility-managed portfolios, suggest-
ing that, as stand-alone investment, downside volatility-managed portfolios are also beneficial to
investors. A direct comparison between downside and total volatility-managed portfolios indicates
that downside volatility-managed portfolios exhibit higher Sharpe ratios in 8 out of 9 equity factors
and 80 out of 94 anomalies.

Our paper makes several contributions to the growing literature on volatility-managed strate-
gies. First, we show that managing downside volatility instead of total volatility significantly
improves the performance of volatility-managed portfolios. This finding is important in light of
the recent controversy on whether total volatility-managed portfolios are systematically benefi-
cial to investors. In contrast to the inconsistent, and sometimes mediocre performance of total
volatility-managed portfolios, we find that downside volatility-managed portfolios exhibit superior
performance across all methodologies, i.e., spanning regressions, real-time trading strategies, and
direct Sharpe ratio comparisons.

Second, we provide a first analysis of the sources of the performance of volatility-managed port-
folios. We find that the positive spanning regression alphas of total volatility-managed portfolios
are driven entirely by volatility timing, whereas the superior performance of downside volatility-
managed portfolios are due to both return timing and volatility timing. Moreover, the enhanced

performance of downside volatility-managed portfolios relative to total volatility-managed portfolios
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is due to return timing, i.e., downside volatility negatively predicts future returns.

Third, we propose an approach to improving the poor out-of-sample performance of real-time
volatility-managed strategies. Specifically, we show that fixed-weight strategies significantly out-
perform standard strategies that estimate portfolio weights in real time. Fixed-weight strategies
remove the need to estimate portfolio weights in real time and therefore mitigates the parameter
instability and estimation risk concerns. Our approach is general (i.e., not specific to volatility-
managed portfolios) and can be applied to other settings that involve real-time trading strategies.

Qiao, Yan, and Deng (2020) also find that downside volatility-managed portfolios expand the
mean-variance frontiers constructed using the original portfolios and the total volatility-managed
portfolios. Our paper differs from Qiao et al. (2020) in several important ways. First, in addition to
spanning regressions, we also evaluate the performance of downside volatility-managed portfolios
using real-time trading strategies and direct Sharpe ratio comparisons. Second, in addition to
equity factors, we also examine 94 anomaly portfolios. Third, we explore the sources of the superior
performance of downside volatility-managed portfolios. Fourth, we perform a trading cost analysis
for downside volatility-managed strategies.  Finally, we show that using fixed-weights significantly
improves the real-time performance of volatility-managed strategies.

The remainder of the paper is organized as follows. Section 2 describes the data and empirical
methods to evaluate the performance of volatility managed strategies. Section 3 presents the

empirical results. Section 4 concludes.

2. Data and Methodology

2.1. Data

We use two sets of test assets. The first group consists of the nine equity factors considered by
Moreira and Muir (2017), i.e., the market (M KT), size (SM B), and value (HM L) factors from
the Fama and French (1993) three-factor model, the momentum (MOM) factor from Carhart’s
(1997) 4-factor model, the profitability (RMW) and investment (CMA) factors from the Fama
and French (2015) five-factor model, the profitability (ROE) and investment (I A) from Hou, Xue,
and Zhang’s (2015) g-factor model, and the betting-against-beta factor (BAB) from Frazzini and

Pedersen (2014). We obtain daily and monthly excess returns for the above factors from Kenneth
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French’s website, Andrea Frazzini’s website, and Lu Zhang.* The sample period starts in August
1926 for M KT, SM B, and HM L; January 1927 for MOM; August 1963 for RMW and CM A;
February 1967 for ROFE and I A; and February 1931 for BAB. The sample periods end in December
2018.

The second group of test assets includes 94 stock market anomalies. Although the nine equity
factors examined by Moreira and Muir (2017) provide a reasonable representation of factors in lead-
ing asset pricing models, recent studies suggest that more characteristics are needed to summarize
the cross-section of stock returns (e.g., Kelly, Pruitt, and Su (2019) and Kozak, Nagel, and Santosh
(2020)). We therefore follow Cederburg et al. (2020) and augment the nine equity factors with a
comprehensive sample of stock market anomalies from Hou, Xue, and Zhang (2015) and McLean
and Pontiff (2016). We restrict our sample to anomaly variables that are continuous (rather than
an indicator variable) and can be constructed using the CRSP, COMPUSTAT, and I/B/E/S data.
We also exclude anomalies that are based on industry-level variables. Table Al in the appendix
contains the detailed list of the 94 anomaly variables along with their definitions, sources, and
sample periods. Many anomalies are based on related characteristics. We follow Hou et al. (2015)
and group them into seven major categories, including accrual (N = 10), intangibles (N = 10),
investment (N = 9), momentum (N = 8), profitability (N = 20), trading (N = 19), and value (N
= 18).

We construct the anomaly variables following the descriptions in Hou et al. (2015), McLean
and Pontiff (2016), and Cederburg et al. (2020). We begin with all NYSE, AMEX, and NASDAQ
common stocks (with a CRSP share code of 10 or 11) during the period from 1926 to 2018 with
data necessary to compute anomaly variables and subsequent stock returns. We exclude financial
stocks and stocks with a price lower than $5 at the portfolio formation date. We also remove stocks
whose market capitalization is ranked in the lowest NYSE decile at the portfolio formation date.
We remove low-priced and micro-cap stocks to ensure that our results are not driven by small,
illiquid stocks that comprise a tiny fraction of the market. We sort all sample stocks into deciles

based on each anomaly variable and then construct value-weighted portfolios. The hedge strategy

‘Data on MKT, SMB, HML, MOM, RMW, and CMA are from Kenneth French’s website at
http://mba.tuck.dartmouth.edu/pages/faculty /ken.french/. Data on BAB are from Andrea Frazzini’s website at
http://people.stern.nyu.edu/afrazzin/. We thank Kenneth French and Andrea Frazzini for making these data avail-
able. We thank Lu Zhang for sharing the data on ROE and I A.
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goes long on stocks in the top decile and short those stocks in the bottom decile, where the top
(bottom) decile includes the stocks that are expected to outperform (underperform) based on prior

literature.

2.2.  Construction of volatility-managed portfolios

We follow prior literature (Barroso and Santa-Clara (2015)) and construct the volatility-managed
portfolio as a scaled version of the original portfolio, with the investment position proportional to

the inverse of lagged realized volatility:®

c*

fa,t = fta (1)

Ot—1

where f; is the monthly excess return for the original portfolio, oy_1 is the realized volatility of the
original portfolio in month ¢ — 1 computed from daily returns, and c* is a constant chosen such that
f+ and f,; have the same full-sample volatility. We note that c¢* is not known to investors in real
time, but some performance measures such as Sharpe ratios and appraisal ratios are invariant to the
choice of this parameter. We also note that f; is the excess return of a zero-cost portfolio. Therefore,
the dynamic investment position in the original portfolio, ¢*/o;_1, is a measure of leverage.

For a given asset pricing factor or stock market anomaly, we construct two versions of volatility-
managed portfolios following Equation (1), one scaled by total volatility and the other scaled by
downside volatility. We first compute realized total volatility and downside volatility in month ¢ as

follows:

(2)

3)

where f; represents the return on day j in month ¢, and N; is the number of daily returns in month
t. That is, we compute total volatility using all daily returns in month ¢ and compute downside

volatility using only negative daily returns in month ¢. If the number of negative daily returns is

SMoreira and Muir (2017) scale factor returns by lagged realized variance. We decide to use lagged realized
volatility primarily because it leads to less extreme investment weights and hence lower turnover and trading cost.
Our results are slightly weaker if we use realized variance instead of realized volatility, but the main conclusions are
qualitatively unchanged.
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less than three in month ¢, then 0 pown,t is measured using negative daily returns over both month
t and month ¢ — 1.

We then construct total volatility- and downside volatility-managed portfolios as follows:

E3

Total ¢
ot = s (4)
OTotal t—1
P
=y, ()
0 Down,t—1

To understand the relation between total volatility- and downside volatility-managed portfolios,

Wwe can express f{’w” as a function of fggml:

i
fDown — c Total (6)
a’,t O Down,t—1 0—7t ’
OTotal,t—1
where ¢l = & /c*.
Down

Essentially, one can think of f

ot " as a managed portfolio of f:;’: otal taking a larger position

in fgj otal when downside volatility is relatively low and vice versa. Equation (6) suggests that, if
the total volatility-managed portfolio tends to perform better when downside volatility is relatively
low, then downside volatility-managed portfolio will tend to outperform total volatility-managed

portfolio.

3. Empirical Results

3.1.  Spanning regressions

Our first approach to evaluating the performance of volatility-managed portfolios is to estimate
the spanning regressions of Moreira and Muir (2017), i.e., regressing volatility-managed portfolio

returns on their corresponding unmanaged portfolio returns as follows:

for =a+Bft+e. (7)

5We thank an anonymous referee for suggesting this connection between total volatility- and downside volatility-
managed portfolios.
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We extend Moreira and Muir (2017) by estimating Equation (7) for both total volatility-managed

portfolios and downside volatility-managed portfolios.

8.1.1. Baseline results

Table I presents the annualized alphas from the spanning regressions for the nine equity factors.
Panel A reports the results for total volatility-managed factors. Consistent with Moreira and Muir
(2017), we find that volatility-managed factors often produce positive and significant alphas relative
to their corresponding unmanaged factors. Specifically, the spanning regression alpha is positive
and statistically significant at the 5% level for volatility-managed M KT, HML, MOM, RMW,,
ROE, and BAB, and is positive and significant at the 10% level for volatility-managed I A. The
volatility-managed CM A and SM B exhibit insignificant alphas.

Panel B of Table I presents the spanning regression results for downside volatility-managed
factors. We find that downside volatility-managed factors perform significantly better than total
volatility-managed factors. In particular, all nine equity factors exhibit positive and significant
spanning regression alphas in Panel B. The two factors for which Moreira and Muir (2017) find
insignificant spanning regression alphas now generate positive alphas that are statistically significant
at the 10% level. Specifically, downside volatility-managed SM B has an alpha of 1.11% per year (t-
statistic = 1.66), compared to —0.44% (t-statistic = —0.78) for the total volatility-managed SM B.
Similarly, downside volatility-managed C'M A has an alpha of 0.88% per year (t-statistic = 1.73),
compared to 0.08% (t-statistic = 0.20) for total volatility-managed C'M A. Moreover, among six of
the remaining seven factors, downside volatility-managed factors exhibit larger alphas and higher
t-statistics than total volatility-managed factors. For example, total volatility-managed M KT has
an alpha of 3.34% per year with a t-statistic of 3.39, while downside volatility-managed M KT
exhibits an alpha of 4.83% with a t-statistic of 4.10.7

We follow Moreira and Muir (2017) and also control for the Fama-French (1993) three factors
in the spanning regressions. From an economic perspective, including the Fama and French factors

as controls likely provides a better characterization of the investment opportunity set for investors

"The betting-against-beta factor (BAB) from Frazzini and Pedersen (2014) is beta-rank-weighted. Novy-Marx
and Velikov (2018) show that the value-weighted BAB factor exhibits insignificant average returns. We are able
to confirm this finding. Moreover, we find that the spanning regression alpha of the value-weighted BAB factor is
positive but statistically insignificant when scaled by total volatility and is positive and marginally significant when
scaled by downside volatility.

10
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sophisticated enough to consider volatility-managed strategies. Our results indicate that downside
volatility-managed portfolios continue to outperform total volatility-managed portfolios in spanning
regressions when we include Fama-French three factors as controls.®

We also extend the analyses to the sample of 94 anomalies in order to draw broader conclusions.
The results are summarized in Table II. To conserve space, we report the total number of positive
and negative alphas, as well as the number of significant alphas across the 94 anomalies instead of
detailed anomaly-by-anomaly results. Looking at total volatility-managed portfolios, we find that
two thirds of the anomalies (62 out of 94 anomalies) exhibit positive spanning regression alphas,
with 15 of them statistically significant at the 5% level. The number of negative alphas is 32,
with only 2 being statistically significant. This evidence is consistent with Cederburg et al. (2020)
and supports the finding of Moreira and Muir (2017). In comparison, when we examine downside
volatility-managed portfolios, nearly 95% of the anomalies (89 out of 94 anomalies) exhibit positive
alphas, and 34 of them are statistically significant at the 5% level. Among the five anomalies with
negative alphas, none is statistically significant. This broad sample evidence confirms our previous
finding from the nine equity factors that downside volatility-managed portfolios exhibit significantly
higher spanning regression alphas than total volatility-managed portfolios.

To further demonstrate that downside volatility-managed portfolios outperform total volatility-
managed portfolios, we estimate an alternative spanning regression in which we regress the return
of the downside volatility-managed portfolio on the return of the total volatility-managed portfolio.
In essence, we are trying to gauge whether downside volatility-managed portfolios are spanned by
total volatility-managed portfolios. We present the results of this analysis in Table III. Panel A
presents the results for the nine equity factors, and Panel B presents the results for 94 anomalies.
Our results are overwhelmingly in favor of downside volatility-managed portfolios. Specifically,
we find that the spanning regression alpha is significantly positive among eight of the nine equity
factors in Panel A. The only exception is the momentum factor, for which the alpha is insignificant.
Among the 94 anomalies, we find that the alpha is positive in 84 anomalies, with 43 statistically
significant. Among the 10 negative alphas, none is statistically significant. These results suggest

that downside volatility-managed portfolios are not spanned by total volatility-managed portfolios

8In Table IA.1 in the Internet Appendix, we show that our results are robust to including Fama-French five factors
(Fama and French (2015)) or six factors (Fama and French (2018)) as controls.

11
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and that they provide significant incremental benefits to investors beyond those offered by total

volatility-managed portfolios.

3.1.2. Transaction costs

Implementing volatility-managed investment strategies requires significant amount of trading.
Therefore, an important question is whether the significant spanning regression alphas of volatility-
managed portfolios are robust to transaction costs. We note that it is beyond the scope of this
paper to provide detailed transaction cost estimates associated with the construction of the equity
factors and anomaly portfolios by using stock-level data. Instead, we consider several reasonable
estimates of trading cost. Specifically, we follow Moreira and Muir (2017) and consider the trading
costs of 1 basis point, 10 basis points, and 14 basis points. The 1 basis cost is from Fleming et al.
(2003) and is a reasonable trading cost only for the market factor. The 10 and 14 basis points
are motivated by Frazzini, Israel, and Moskowitz (2015) and represent a reasonable trading cost
for for large institutional investors and selected equity factors. In addition, we also consider 25
and 50 basis points, which are more relevant for individual investors or anomaly portfolios that
are expensive to construct and trade. These larger trading cost estimates are consistent with those
documented by Hasbrouck (2009), Novy-Marx and Velikov (2016), and Barroso and Detzel (2021).

We report before- as well as after-cost spanning regression alphas of both total- and downside-
volatility managed portfolios for the nine equity factors in Table IV. We also compute the break-even
transaction costs that render the spanning regression alpha zero. In addition, we report the average
absolute change in investment weights, which is an estimate of turnover in the equity factors.”.

Panel A presents the results for total volatility-managed portfolios. We find that most of the
spanning regression alphas remain positive for low-level transaction costs, i.e., 1, 10, and 14 basis
points. However, at 25 and 50 basis points, most of the equity factors exhibit negative spanning
regression alphas. This latter finding is consistent with Barroso and Detzel (2021), who find that
only the volatility-managed market factor survives trading cost.

Panel B presents the results for downside volatility-managed factors. Here, we again find evi-
dence that the spanning regression alphas are robust to low levels of trading cost. At higher levels

of trading cost, some of the alphas turn negative. Comparing between Panel A and Panel B, we

9This turnover estimate does not account for the stock-level turnover of the equity factors themselves.
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find that downside volatility-managed portfolios exhibit higher turnover rates than total volatility-
managed portfolios. In addition, downside volatility-managed portfolios tend to have higher alphas
than total volatility-managed portfolios at lower levels of trading costs, but perform similarly to
total volatility-managed portfolios at higher levels of trading costs. This finding, along with the
turnover result, suggests that the superior before-cost performance of downside volatility-managed
portfolios may be due to limits to arbitrage.

We also implement the above analysis for the 94 anomaly portfolios. For brevity, we report the
results in Table TA.2 in the Internet Appendix. We find that total volatility-managed portfolios
tend to exhibit positive alphas at trading costs up to 14 basis points, while downside volatility-
managed portfolios tend to exhibit positive alphas at trading costs up to 25 basis points. Both
total and downside volatility-managed portfolios tend to exhibit negative alphas at the trading cost
of 50 basis points.

Overall, our results suggest that some investors, particularly trading cost savy institutional
investors, may be able to implement volatility-managed strategies profitably. However, for investors
facing high trading cost and for anomaly portfolios that are expensive to construct and trade, the
volatility-managed trading strategies are unlikely to be profitable. Finally, downside volatility-
managed portfolios tend to outperform total volatility-managed portfolios at low levels of trading

costs, but the outperformance evaporates at high levels of trading costs.

3.2. Decomposition

To understand the sources of the superior performance of downside volatility-managed portfo-
lios, consider an investor who allocates between a risky asset and a risk-free asset. To maximize
the unconditional Sharpe ratio of the investor’s portfolio, the optimal weight placed on the risky
asset should be proportional to the ratio between the conditional expected return and the condi-
tional variance (Daniel and Moskowitz (2016) and Moreira and Muir (2019)). Volatility-managed
strategies, i.e., increasing (decreasing) the investment position when volatility was recently low
(high), are therefore consistent with Sharpe ratio maximization if (i) lagged volatility is positively
related to future volatility (volatility timing), and (ii) lagged volatility is not strongly and positively
related to future returns (return timing). Volatility clustering is one of the most robust stylized

facts in finance, so (i) is likely to be true. The literature is ambiguous about the volatility-return
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relation (e.g., French et al. (1987), Glosten et al. (1993), and Brandt and Kang (2004)), so (ii)
is uncertain. If the conditional expected return is positively related to lagged volatility, then the
benefit of volatility timing is likely to be offset by the cost of negative return timing and, as a result,
volatility-managed strategies will not work. If the conditional expected return is uncorrelated or
even negatively correlated with lagged volatility, then volatility-managed strategies are likely to
perform well because they take advantage of the attractive risk-return trade-off when volatility is
low and avoid the poor risk-return trade-off when volatility is high.

We formalize the above idea by building on prior work on conditional asset pricing models
(Lewellen and Nagel (2006), Boguth, Carlson, Fisher, and Simutin (2011), and Cederburg and
O’Doherty (2016)) and decomposing the spanning regression alpha of volatility managed strategies
into return-timing and volatility-timing components. The return-timing component reflects the
relation between lagged volatility and the conditional returns, and the volatility-timing component
reflects the relation between lagged volatility and future volatility.

We begin with the definition of the volatility-managed portfolio in Equation (1), fo; = weft,

where w; = ¢*/oy—1. Taking unconditional expectations, we obtain

E(fot) = E(w)E(ft) + cov(wy, fr). (8)

The spanning regression alpha of f5; relative to f; is given by

& =E(f,1) — BE(f) 9)

=E(ft)[E(wt) — B] + cov(wy, fr). (10)

Let wy = E(w;) + e, where e; is the time-varying component of the investment position in the
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original portfolio, f;. The unconditional beta is

/@:w (11)

Var(ft)
_cov[(fe(E(wi) + er), fi]
N Var(f;) (12)
_ E(wg)Var(f;) + cov(ey, f?) — cov(es, f)E(f:)
o V&I'(ft) (13)
(1) - gt cos(un ) + ) (14
Substituting Equation (14) into Equation (10), we obtain
Y= Ez(f) cov(w - (/) cov(wy, f2
= (14 gl contun, 1) — g ov(in ). (15)

Equation (15) shows that the spanning regression alpha can be decomposed into return-timing

and volatility-timing components, & = RT + VT, where RT = (1 + \/E:r((fct)))cov(wt, fi) and VT =
—%cov(wt, f?). The return-timing component depends on the covariance between the in-
vestment weight and portfolio returns; and the volatility-timing component is determined by the
covariance between the investment weight and the second moment of the portfolio returns. Given
that wy = ¢* /o1, the return-timing component will be positive when lagged volatility is negatively
related to current factor return, and the volatility-timing component will be positive when lagged
volatility is positively related to current factor volatility.

A positive spanning regression alpha can arise either from return timing or volatility timing, or
both. To assess the relative contribution of volatility timing and return timing to the performance of
volatility-managed portfolios, we perform a decomposition according to Equation (15). We present
the results for the nine equity factors in Table V. Panel A reports the alpha decomposition for total
volatility-managed factors. We find that all nine volatility-managed factors have positive volatility-
timing components, consistent with volatility persistence. However, the return-timing component
is negative among seven of the nine equity factors. In the case of SM B, the negative return timing
effect (—1.35%) is large enough to offset the positive volatility timing effect (0.91%), resulting in a

negative spanning regression alpha of —0.44% per year. Overall, we find that the positive spanning

regression alphas of total volatility-managed factors are primarily due to volatility timing, and the
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return-timing component is often negative. It is worth noting that volatility-managed M OM has
large and positive volatility timing as well as return timing components. This explains why the
volatility-managed momentum strategies perform so well in Barroso and Santa-Clara (2015) and
Daniel and Moskowitz (2016).

Panel B of Table V presents the decomposition results for downside volatility-managed factors.
We find that, similar to total volatility-managed factors, the volatility-timing component is positive
across all nine factors. In addition, the magnitudes of the volatility timing component are simi-
lar between total volatility-managed factors and downside volatility-managed factors. For example,
total volatility-managed ROFE has a volatility-timing component of 2.45% per year, while the down-
side volatility-managed ROE has a volatility-timing component of 2.40% per year. In contrast to
the results for total volatility-managed factors, we find that the return-timing component for down-
side volatility-managed factors is positive for eight of the nine equity factors (the only exception is
CMA). Recall that the return-timing component is negative among seven of the nine factors for
total volatility-managed factors. Therefore, although volatility timing contributes significantly to
the superior performance of downside volatility-managed factors, the return-timing component is
the reason why downside volatility-managed factors outperform total volatility-managed factors.
For example, the return-timing component for total volatility-managed SM B is —1.35%, but it in-
creases to 0.29% for downside volatility-managed SM B. Given that volatility-timing components
are similar, the spanning regression alpha increases from —0.44% for total volatility-managed SM B
to 1.11% for downside volatility-managed SM B. This pattern of negative return timing changing
to positive return timing also applies to five other equity factors, i.e., MKT, HML, RMW 6 IA
and BAB. The improvement in the return timing component is also quite large for ROE (from
0.87% to 2.01%) and CM A (from —1.07% to —0.09%). For the remaining factor M OM, downside
volatility-managed factor has a similar return-timing component to the total volatility-managed
factor.

Table VI summarizes alpha decomposition results for the 94 anomalies. We find qualitatively
similar results to those in Table V. For both total and downside volatility-managed portfolios,
we find that the volatility-timing component is positive among 80 out of 94 anomalies. There is,
however, a large difference in the return timing component between total volatility and downside

volatility-managed portfolios. For total volatility-managed portfolios, the return-timing component
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is positive in just 42 of the 94 anomalies. In contrast, 71 of the 94 anomalies exhibit a positive
return-timing component for downside volatility-managed strategies. The positive return-timing
component associated with downside volatility-managed strategies suggests that downside volatility
tends to negatively predict future returns. At first glance, this result appears to be at odds with
prior finding (e.g., Kelly and Jiang (2014)) that downside risk or tail risk commands a return
premium. We note that a critical difference between our analysis and prior studies is that we focus
on the downside risk of equity factors and anomaly portfolios rather than the downside risk of
individual stock returns.

To summarize, our decomposition analysis in this section indicates that volatility timing, i.e.,
volatility persistence, is an important reason for the positive spanning regression alphas for both
total and downside volatility-managed portfolios. The volatility-timing component, however, is
similar across total volatility and downside volatility managed portfolios. The enhanced perfor-
mance of managing downside volatility relative to managing total volatility, therefore, primarily
arises from the return-timing component. Although downside volatility and total volatility are
highly correlated with each other, they differ significantly in their predictive content for future
returns. It is this difference that explains the superior performance of downside volatility-managed

portfolios.

3.3.  Real-time Strategies

The spanning regression results indicate substantial in-sample benefits of volatility manage-
ment. Cederburg et al. (2020), however, point out that the trading strategies implied by the
spanning regressions are not implementable in real time because they require investors to combine
the volatility-managed portfolio and the unmanaged portfolio using ex post optimal weights, which
are not known to real-time investors. A natural question is whether real-time investors can cap-
ture the economic gains implied by the spanning regression. Therefore, in our second approach
we evaluate the out-of-sample performance of real-time trading strategies implied by the spanning
regressions. Prior literature suggests that estimation risk and parameter instability are key factors
in the out-of-sample, mean-variance portfolio choice problem, making real-time portfolios often

underperform relative to their in-sample optimal counterparts.
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3.8.1.  Methodology

As in Cederburg et al. (2020), our out-of-sample tests focus on quantifying the impact of incor-
porating a volatility-managed portfolio in the investment opportunity set. We follow Cederburg et
al. (2020) and compare the performance of two real-time strategies: (1) a strategy that allocates
between a given volatility-managed portfolio, its corresponding original, unmanaged portfolio, and
a risk-free asset; and (2) a strategy constrained to invest only in the original portfolio and the
risk-free asset. For ease of exposition, we refer to the first strategy as the “combination strategy”
and the second one as the “unmanaged strategy”.

For each asset pricing factor and stock market anomaly, we start with 7" monthly excess return
observations. We use the first K months as the training period to estimate the return moments to
decide the weights to construct the combination strategy and the unmanaged strategy, respectively.
We evaluate the portfolio performance over the out-of-sample period of 7' — K months. Following
Cederburg et al. (2020), we set our initial training period as K = 120 months, and employ an
expanding-window approach to estimate the relevant parameters. At the beginning of each month
t in the out-of-sample period, we first estimate the real-time scaling parameter, ¢}, as the constant
that allows the original and volatility-managed portfolios to have the same volatility over the
training period preceding month ¢.

To determine the portfolio weights for the combination strategy in month ¢, consider an in-
vestor with mean-variance utility who is allocating between volatility-managed portfolio (fy), and
unmanaged portfolio (f;). The optimal allocation to f,+ and f; is the solution to the following
problem:

max U (w;) = w, fiy — %w;rgtwty (16)
wt

where fiy = [fot, ft]T is the vector of mean excess returns and X; is the variance-covariance matrix
over the training period before month ¢, and ~ is the investor’s risk aversion parameter.'® The

vector of optimal weights on f,; and f; for month ¢ is

T it 1 S—1 A
we = 7 = _Et ll,tt. (17)
Tt v

OWe follow Cederburg et al. (2020) and assume v is equal to 5. Our results are robust to alternative risk aversion
values.
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The setup implicitly allows the investor to have access to a risk-free asset. The investor’s optimal

policy allocates a weight of z,; to the volatility-managed portfolio and a weight of x; to the

unmanaged portfolio. Given the definition of the volatility-managed portfolio, i.e., f,; = Uil It
the combination strategy can be considered based on a dynamic investment rule on the unmanaged
portfolio, with the weight (wf) of z; + %xmt. Therefore, the excess return of the combination
strategy for month ¢ is wf{ f;. Similarly, for the unmanaged strategy the optimal weight (w}') on f;
is simply %o%, where fi and 62 are the mean and variance of f; over the training period preceding
month ¢. Accordingly, we construct the portfolio excess return for the unmanaged strategy as wy' f.

The magnitude of w§ and wf' is essentially a measure of leverage. Extreme leverage may occur
in out-of-sample analysis for two reasons. First, volatility-managed portfolios, by definition, call
for substantial leverage following periods of low volatility. Second, mean-variance optimization
often leads to extreme values of portfolio weights. Following Cederburg et al. (2020), we impose
a leverage constraint of |w§|(|wy'|) < 5. The above out-of-sample real-time trading strategy results
in a time series of T' - K monthly excess returns for the combination strategy and the unmanaged
strategy, respectively. We compute the Sharpe ratio for each strategy and the difference in Sharpe

ratio between the two strategies. We assess whether the Sharpe ratio difference is statistically

significant following the approach of Kirby and Ostdiek (2012).!1

"let f1; and &; be the mean and standard deviation of excess returns for portfolio i over a period of length T.
Similarly, fi; and &; are the mean and standard deviation for portfolio j, and &;,; is the covariance between excess

returns for the two portfolios. * A; and j\j denote the estimated Sharpe ratios for portfolios ¢ and j. To test the
null hypothesis of equal Sharpe ratios for portfolios ¢ and j, we compute the test statistic, which is asymptotically

distributed as a standard normal: . .
5=VT (Aﬂ' - Ai) ,

Vi

To estimate Vi, we follow Kirby and Ostdiek (2012) and use the generalized method of moments to construct the
following estimator. Let

Ty — 6’15\1

Ty — (}jj\j
(7“7; — (5’15\1)2 — (5'1-2
(rj —6;)* = 63
where 0 = (Ai, Aj,62,6%). VT(6 —6) X N(0,D"'SD™), where D = (1/T) Sih de:(0)00" and S = Ty +
S (L =1/ (m+ 1)(D + 1) with Ty = (1/T) 37 er(B)ec—i(8). We follow Kirby and Ostdiek (2012) and set
m=>5. V)\ = ‘?22 — 2‘721 + ‘711, where V = ﬁ_lgb_ll.

6,5(@) =
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3.3.2. Results

Table VII reports results for the out-of-sample performance of the combination strategy and the
unmanaged strategy for the nine equity factors. We consider two combination strategies, one based
on total volatility-managed factors and the other based on downside volatility-managed factors. We
present the Sharpe ratio of the unmanaged strategy as well as the Sharpe ratios of two combination
strategies over the evaluation period from month K + 1 to month 7. In addition, we report three
pairwise Sharpe ratio differences among the three strategies.

The results indicate that, the combination strategy that incorporates total volatility-managed
factors significantly outperforms the unmanaged strategy among three of the nine factors, i.e.,
MOM, ROFE, and BAB. That is, the difference in Sharpe ratio between the combination strategy
and the unmanaged strategy is positive and statistically significant for these three factors. Across
the remaining six factors, the difference in Sharpe ratio is not statistically significant. Half of them
(MKT, RMW , and IA) show positive differences, and the other half (SM B, HML, and CM A)
show negative differences.

Incorporating downside volatility-managed factors improves the real-time performance of the
combination strategy. Specifically, the difference in Sharpe ratio between the combination strategy
and the unmanaged strategy is positive for eight equity factors, and is statistically significant at the
5% level for four of them (HML, MOM, ROE, and BAB). For MKT, SMB, RMW , and I A, the
combination strategy outperforms the unmanaged strategy, but the difference is not statistically
significant. For the remaining factor, CM A, the combination strategy slightly underperforms the
unmanaged strategy (0.50 versus 0.51).

To assess the relative merit of downside volatility management versus total volatility manage-
ment, we can also directly compare the performance of the combination strategy that incorpo-
rates downside volatility-managed factors with the combination strategy that incorporates total
volatility-managed factors. This direct comparison indicates that the Sharpe ratio of the combi-
nation strategy based on downside volatility-managed factors is higher than that based on total
volatility-managed factors across seven equity factors (M KT, SMB, HML, RMW, CMA, 1A,
and BAB). The performance improvement ranges from 0.02 to 0.22, and statistically significant

among four factors. For example, the Sharpe ratio of the combination strategy is 0.36 for total
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volatility-managed HM L, and is 0.58 for downside-volatility-managed HM L. For the remaining
two factors (MOM and ROF), the combination strategy based on total volatility-managed factors
performs better than the combination strategy based on downside volatility-managed factors.

We repeat the above real-time analyses for the broader sample of 94 anomalies. Table VIII sum-
marizes the results. Specifically, the table shows the number of positive and negative Sharpe ratio
differences between the combination strategy and the unmanaged strategy. Panel A presents the
results for total volatility-managed portfolios. We find that the combination strategy outperforms
the unmanaged strategy among only 44 of the 94 anomalies. For the remaining 50 anomalies, the
combination strategy underperforms the unmanaged strategy. In contrast, we find in Panel B that
the combination strategy that incorporates downside volatility-managed portfolios outperforms the
original, unmanaged strategy in 62 of the 94 anomalies. A simple binomial test of the null hypoth-
esis that the combination strategy performs the same as the unmanaged strategy is rejected with a
two-sided p-value of 0.002. In Panel C, we find that downside volatility-based combination strategy
outperforms total volatility-based combination strategy among 69 out of 94 anomalies, while un-
derperforming among 25 anomalies. Our findings in this section are consistent with Cederburg et
al. (2020) that managing total volatility is not systematically advantageous for real-time investors.
However, managing downside volatility significantly improves the performance of the combination

strategy and is beneficial for real-time investors.

3.3.3.  Fized-weight stralegies

Cederburg et al. (2020) point out that the relatively poor out-of-sample performance of the real-
time combination strategy is primarily due to parameter instability and estimation risk. DeMiguel,
Garlappi, and Uppal (2009) note that optimal portfolios constructed from sample moments often
exhibit extreme weights that fluctuate dramatically over time. They further demonstrate that such
strategies often underperform simpler approaches to portfolio formation including a naive rule of
equally weighting the assets under consideration. Prior literature (e.g., Jobson (1979) and Chopra
and Ziemba (1993)) also shows that the global minimum variance (GMV) portfolio often performs
better than other mean-variance efficient portfolios because we can estimate its weights without

estimating expected returns, which alleviates a large part of the estimation risk.'> With two assets,

12Merton (1980) shows that expected returns are particularly difficult to estimate precisely.
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the GMV portfolio has an estimated weight on the first asset of the form

~Q AAA

a 05 — 0102012

W1= 252752 95 505"
o1+ 03 0102012

(18)

where p12 is the estimated correlation between the returns for the two assets. Now suppose the
two assets under consideration are the original, unmanaged factor (f;) and the volatility-managed
factor (f,+). Because f,+ is constructed such that it has the same estimated variance as f;, the
estimated weights of the GMV portfolio are simply w; = 1/2 and wy = 1/2 for all values of pio.
This provides a rationale for looking at a naive diversification strategy.

Motivated by the above arguments, we next examine combination strategies that assign fixed
relative weights to the volatility-managed and original portfolios. In addition to the naively diversi-
fied portfolio (i.e., w=50%), we also consider the following relative weights in the volatility-managed
portfolios: 10%, 25%, 75%, and 90%. These fixed weights are unlikely to be optimal ex post, but
employing them removes the need to estimate portfolio weights in real time and therefore may
improve performance.

The real-time portfolio construction is similar to that outlined in Section 3.3.1. We set an
initial training sample of K = 120 months paired with an expanding estimation window. At the
beginning of month ¢ in the out-of-sample period, we first compute the scaling parameter for the
volatility-managed portfolio, ¢;, and then form a combination of the volatility-scaled and unscaled
portfolios using the specified static weight vector, for example, 50% invested in the volatility-
managed portfolio and 50% in the original strategy. Finally, the investor optimally allocates between
the fixed-weight risky portfolio and the risk-free asset. We benchmark this strategy by comparing
it with a portfolio that allocates between the original, unmanaged factor and the risk-free asset in
real time. The positive in-sample spanning regression intercepts for many volatility-scaled factors
and anomaly portfolios suggest that we should expect some static combination to perform well in
each case. The more interesting question is whether a specific fixed weight leads to consistent and
economically large gains across the broad set of strategies under consideration.

Table IX presents the results for the nine equity factors. Panel A compares the combina-
tion strategy that incorporates total volatility-managed factors with the unmanaged strategy. For

brevity, we only report the Sharpe ratio difference between these two strategies. A positive (nega-
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tive) number suggests that the combination strategy outperforms (underperforms) the unmanaged
strategy. We find that real-time strategies with fixed weights generally produce better out-of-sample
performance than that for the standard real-time strategies. For example, when the relative weight
for the volatility-managed portfolio is fixed at 25%, the out-of-sample performance for the com-
bination strategy is better than that of the unmanaged strategy in eight out of the nine equity
factors. The only exception is SM B, where the combination strategy underperforms by 0.02 with
a p-value of 0.39. Across all fixed weights we examine, the combination strategy outperforms the
unmanaged strategy for at least seven of the nine equity factors. Recall that in the previous section
we document that standard combination strategy underperforms the unmanaged strategy among
three of the nine factors.

Panel B of Table IX shows results for the fixed-weight strategies that incorporate downside
volatility-managed factors. The results are striking. We find that, for each of the fixed weights
we consider, the combination strategy outperforms the unmanaged strategy across all nine equity
factors. The Sharpe ratio difference between the combination strategy and the unmanaged strategy
is statistically significant in most cases. For example, for the fixed weight of 25% in the downside
volatility-managed factor, seven of the nine Sharpe ratio differences are statistically significant at
the 5% level and one at the 10% level. These results are stronger than the standard real-time
strategies we examined in the previous section, where only four of the Sharpe ratio differences are
statistically significant at the 5% level and one Sharpe ratio difference is actually negative. The
results are also significantly stronger than those reported in Panel A, and continue to suggest that
downside volatility-managed strategies tend to outperform total volatility-managed strategies.

We repeat the fixed weight real-time analysis for the extended sample of 94 anomaly portfolios
and report the results in Table X. We consider the same set of fixed weights as in Table IX. As
in Table VIII, we present the number of positive and negative Sharpe ratio differences between
the combination strategy and the unmanaged strategy across the 94 anomaly portfolios. The main
takeaways are in line with those from Table IX. In Panel A, we find that the combination strategy
that incorporates total volatility-managed portfolios tends to outperform the unmanaged strategy.
Depending on the specific weight, between 57 and 60 (out of 94) stock market anomalies exhibit
positive Sharpe ratio differences. Recall that the corresponding number is only 44 for standard real-

time strategies. In Panel B, for downside volatility-managed portfolios, the combination strategy
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with fixed weights outperforms the original, unmanaged strategy in 71-72 anomalies. These numbers
are significantly higher than the 57-60 for total volatility-managed strategies reported in Panel A.
It is also significantly higher than the corresponding number for the standard real-time strategies
(i.e., 62) reported in Table VIIL. Overall, we continue to find that downside volatility-managed
portfolios dominate the performance of total volatility-managed portfolios. Moreover, using fixed
portfolio weights leads to significant improvements in out-of-sample performance of the combination

strategy.

3.4.  Direct Performance Comparisons

Most prior studies (e.g., Barroso and Santa-Clara (2015), Daniel and Moskowitz (2016), Barroso
and Maio (2018), Cederburg et al. (2020), and Eisdorfer and Misirli (2020)) assess the value
of volatility management by directly comparing the Sharpe ratio of volatility-managed portfolios
with the Sharpe ratio of original, unmanaged portfolios. For example, Barroso and Santa-Clara
(2015) and Daniel and Moskowitz (2016) demonstrate that volatility-managed momentum factor
exhibits significantly higher Sharpe ratios than the original, unmanaged momentum factor. We
follow these studies and employ direct performance comparison as our third approach to evaluating
the performance of volatility-managed portfolios. In addition to Sharpe ratio, we also examine
an alternate performance measure—Sortino ratio, which is defined as the average excess return
divided by downside volatility. Sortino ratio is similar to Sharpe ratio in that it captures a reward-
to-volatility ratio. Instead of using total volatility, the Sortino ratio scales the average excess return
by downside volatility. This measure is appropriate for us because of our focus on downside risk.

Table XI presents results for the nine equity factors. Panel A presents the results for Sharpe
ratio, while Panel B presents the results for Sortino ratio. In each panel, we report the results for the
original factor, total-volatility-managed factor, and downside volatility-managed factor. We also
report the three pairwise differences among these three versions of factors. We follow the approach
of Kirby and Ostdiek (2012) to determine whether each difference is statistically significant.

In Panel A, we find that total volatility-managed M KT, MOM, ROE and BAB achieve sta-
tistically significant Sharpe ratio gains compared to the original, unmanaged factor. The remaining
five factors exhibit differences in Sharpe ratios that are statistically insignificant. We also find that

downside volatility-managed factors exhibit higher Sharpe ratios than both the original factors
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and total volatility-managed factors. The Sharpe ratio difference between the downside volatility-
managed factor and the original factor is positive across all nine equity factors. Seven of these
differences are statistically significant at the 5% level. Moreover, downside volatility-managed fac-
tors achieve higher Sharpe ratios than their total volatility-managed counterparts among eight of
the nine factors, and statistically significant for four of these eight factors. For example, total
volatility-managed H M L exhibits a Sharpe ratio of 0.42, while downside volatility-managed HM L
produces a Sharpe ratio of 0.57. The momentum factor, again, is the only one for which the
downside volatility-managed factor does not outperform the total volatility-managed factor.

The results for the Sortino ratio presented in Panel B are largely the same as those based on
the Sharpe ratio. We find that downside volatility-managed factors outperform the original factors
across all nine factors, and significantly so for five factors.  Downside volatility-managed factors
also outperform the total volatility-managed factors among eight of nine factors, and significantly
so for four of them. Overall, we find that downside volatility-managed factors outperform their
total volatility-managed counterparts based on direct Sharpe ratio and Sortino ratio comparisons.

Table XII summarizes the Sharpe ratio and Sortino ratio differences among the volatility-
managed and original portfolios for 94 anomalies. Panel A compares total volatility-managed
portfolios with the original portfolios. Panel B compares downside volatility-managed portfolios
with the original portfolios. Panel C compares total volatility-managed portfolios with downside
volatility-managed portfolios.

In particular, each panel presents the number of Sharpe ratio or Sortino ratio differences that are
positive or negative and the number of these differences that are statistically significant at the 5%
level. In Panel A, we find that total volatility-managed portfolios exhibit higher Sharpe ratios than
the original, unmanaged portfolios among 56 anomalies. In Panel B, the corresponding number
increases sharply to 84 for downside volatility-managed portfolios. Panel C reveals that downside
volatility-managed portfolios have higher Sharpe ratios than total volatility-managed portfolios
among 80 of the 94 anomaly portfolios. The results for Sortino ratio are qualitatively similar to
those for Sharpe ratio.

Therefore, the findings from the direct performance comparison are similar to those for the first
two approaches. That is, we find that downside volatility-managed portfolios perform significantly

better than the total volatility-managed portfolios. Overall, across all three approaches—spanning
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regressions, real-time trading strategies, and direct Sharpe ratio comparisons—we find consistent
evidence that downside volatility-managed portfolios exhibit significant improvement in perfor-

mance relative to total volatility-managed portfolios.

3.5.  Robustness Tests and Additional Analyses

In this section, we discuss the results of a number of robustness tests and additional analyses.

For brevity, we present the detailed results of these analyses in the Internet Appendix.

8.5.1. Awverage Return Decomposition

In Section 3.2, we decompose the spanning regression alphas into a return timing component
and a volatility timing component. We find that the superior performance of downside volatility-
managed portfolios relative to the total volatility-managed portfolios stems primarily from the
return timing component. In this section, we present an alternative decomposition.

Recall that each volatility-managed portfolio is constructed as

c*

fod = ft = wi ft, (19)

Ot—1

where ¢* is a constant, and oy is the realized volatility in month ¢ — 1. Because f; and f,; are
constructed to have the same unconditional standard deviation, comparing f; and f,; based on
Sharpe ratio is equivalent to comparing them based on average return. We can decompose the

average return difference as

fa,t — fi = cov(w, fi) + fe(w, — 1), (20)

where w; is the volatility-managed portfolio’s average investment position in the unmanaged port-
folio. For a strategy with positive average return (f; > 0), Equation (20) shows that volatility
management enhances average return and Sharpe ratio if the investment weight w; positively pre-
dicts the unscaled portfolio’s return (the return forecast component), and/or the scaled portfolio
takes a levered position (i.e., w; > 1) in the unscaled portfolio on average (the leverage compo-

nent). The return forecast component here is analogous to the return timing in our decomposition
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in Section 3.2.

Panel A of Table IA.3 presents the results for the nine equity factors, while Panel B summarizes
the results for the 94 anomalies. Across all nine equity factors, we find that the return forecast
component of downside volatility-managed portfolios is higher than that for the total volatility-
managed portfolios. Across 94 anomalies, we also find that the return forecast component is more
likely to be positive in downside volatility-managed portfolios than in the total volatility-managed
portfolios. These results confirm our finding in Section 3.2 that the enhanced performance of
downside volatility-managed portfolios relative to the total volatility-managed portfolios stems

primarily from the ability of downside volatility to predict future returns.

3.5.2.  Volatility-managed strategies based on past two-month and three-month volatility

In our main analysis, we follow Moreira and Muir (2017) and estimate volatility based on past
one-month of daily returns. In this robustness test, we estimate volatility based on past two or
three months of daily returns and then re-estimate spanning regression alphas. We present the
detailed results in Tables IA.4 and TA.5 in Internet Appendix. Overall, our results are qualitatively

and quantitatively similar to our main results.

3.5.83. Volatility-managed stralegies based on expected and unexpected volatility

In this section, we decompose the realized volatility into expected and unexpected volatility and
examine which component is driving our results. Specifically, we decompose the realized volatility
into expected and unexpected volatility components as o441 = p2zi+1, where py = E(o441) and
ziy1 > 0 satisfies Ei(zi41) = 1. To estimate uy, we use an exponential smoothing model by

finding the value of A that minimizes Zthl(Ut — p—1)?, where pp = py—1 + Moy — p—1) with

wo = (1/7T) Zle o¢. The expected volatility-managed portfolio is constructed as f,; = uf; ft, and
the unexpected volatility-managed strategy is given by f,; = Ztc—il ft, where ¢* and ¢* are constants.

We then construct volatility-managed portfolios separately for expected and unexpected volatil-
ity and then estimate spanning regression alphas. Tables IA.6 and IA.7 in the Internet Appendix
present the detailed results. Our main results can be summarized as follows. First, the ex-

pected volatility component is important for the performance of both total volatility- and downside

volatility-managed portfolios. Second, the unexpected volatility component does not contribute to
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the performance of total volatility-managed portfolios, but plays a positive role in the performance
of downside volatility-managed portfolios. Third, the performance difference between downside
volatility-managed portfolios and total volatility-managed portfolios is primarily attributed to the

unexpected volatility component.

3.5.4.  Daily volatility-managed strategies

Existing literature has examined volatility-managed strategies at the monthly frequency. In this
robustness test, we examine the performance of daily volatility-managed strategies. We estimate the
daily volatility, o, based on the squared daily returns, f-2. We obtain the exponential smoothing
estimator of a = E; (f]—i—l) by minimizing Z] 1(f2 - JZ 1)? over a length of period N, where
012. = ?_1 + A( fj2 — ]2_1) with o = (1/N) ijl fj2. The volatility-managed portfolio based on

daily returns is constructed as

C*
= 21
foi= 5 - (21)

where ¢* is a constant chosen such that f; and f5 ; have the same full-sample volatility.
To construct the daily downside volatility, we note that the exponential smoothing estimator

can be expressed as

j=1 N
of =D AN, | AN AN DS
y=0 k=1
which can also be written as a%otal y O’%Own 5t aUp ;- The estimated daily downside volatility is
given by
i1 , N
0Daun = A | D= NI, <offy | + (=N 1/N) Y Ty <O,
y=0 k=1

The downside volatility-managed portfolio based on daily returns is

C*

= f. 22
0 Down,j—1 f] ( )

Down
07]

We present the results in Table IA.8 in the Internet Appendix. The qualitative results are
similar to those for monthly volatility-managed portfolios. We find that both total and downside

volatility-managed portfolios exhibit positive alphas, but downside volatility-managed portfolios
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outperform total volatility-managed portfolios.

3.5.5.  Volatility-managed strategies based on realized variance

Previous studies scale factor returns by either realized volatility or realized variance. In this
paper we use realized volatility because it leads to less extreme investment weights. As a robustness
test, we re-estimate spanning regressions by using volatility-managed portfolios scaled by realized
variance. Table TA.9 presents the results. Overall, our results are slightly weaker than those for

realized volatility-scaled portfolios, but the main conclusions are qualitatively unchanged.

3.5.6.  Upside Volatility

The innovation of our paper is to focus on downside volatility instead of total volatility. For
completeness, we also estimate spanning regressions for upside volatility-managed portfolios. We
present the results in Table IA.10 in the Internet Appendix. Overall, we find that the performance of
upside volatility-managed portfolios is significantly worse than that of downside volatility-managed

portfolios.

4. Conclusions

The recent literature shows mixed evidence on the performance of volatility-managed portfo-
lios (Barroso and Santa-Clara (2015), Daniel and Moskowitz (2016), Moreira and Muir (2017) and
Cederburg et al. (2020)). We document that volatility-managed strategies that scale portfolio ex-
cess returns by prior downside volatility generates significantly better performance than strategies
scaled by total volatility. In contrast to the inconsistent, and sometimes mediocre performance
of total volatility-managed portfolios, we find that downside volatility-managed portfolios exhibit
superior performance in spanning regressions, direct Sharpe ratio comparisons, and real-time trad-
ing strategies. The superior performance of managing downside volatility is confirmed across nine
equity factors and a broad sample of market anomalies. We find that the positive spanning regres-
sion alphas of total volatility-managed portfolios are driven entirely by volatility timing, whereas
the superior performance of downside volatility-managed portfolios are due to both return timing

and volatility timing. Moreover, the enhanced performance of downside volatility-managed portfo-
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lios relative to total volatility-managed portfolios is due to return timing, i.e., downside volatility
negatively predicts future returns. We find that downside volatility-managed portfolios tend to
outperform total volatility-managed portfolios at lower levels of trading costs, but the outper-
formance evaporates at higher levels of trading costs. We also present evidence that real-time
strategies with fixed weights perform significantly better than standard real-time strategies. This
finding is particularly important in light of the controversy surrounding the real-time performance
of volatility-managed portfolios. A promising area of future research is to look into why high
downside volatility predicts low future returns. One might also study whether the performance
of downside volatility-managed portfolios varies with macroeconomic conditions in order to better

understand the underlying economics.
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Table I: Spanning regressions for the 9 equity factors

This table reports results from spanning regressions of volatility-managed factor returns on the corresponding
original factor returns. The spanning regressions are given by fs: = o+ Bf; + €;, where fs; is the monthly
return for volatility-managed factor, and f; is the monthly return for the original factor. Panel A reports
results for total volatility-managed strategies, and Panel B reports those for the downside volatility-managed
strategies. In addition to univariate spanning regressions, we also control for the Fama-French (1993) three
factors. The reported alphas are in annualized, percentage terms. The appraisal ratio is «/o., where o, is
the root mean square error. MKT, SMB and HML are obtained from Fama and French (1993), MOM
is from Carhart (1997), RMW and CM A are from Fama and French (2015), ROE and IA are from Hou
et al. (2015), and BAB is from Frazzini and Pedersen (2014). Numbers in parentheses are t-statistics based
on White (1980) standard errors.

MKT SMB HML MOM  RMW CMA ROFE IA BAB

Panel A: Total volatility-managed strategy

Panel A.1: Univariate regressions

Alpha, o 3.34 —0.44 1.48 9.36 1.35 0.08 3.32 0.75 3.99
(3.39)  (=0.78)  (2.21)  (6.74)  (2.26) (0.20)  (4.64)  (1.93)  (5.96)

R? 0.72 0.72 0.65 0.62 0.67 0.78 0.76 0.80 0.71

Panel A.2: Controlling for Fama-French (1993) three factors

Alpha, « 3.99 —0.24 2.14 7.31 1.95 -0.21 3.68 0.44 3.81
(4.06)  (—0.44) (3.15)  (6.30)  (3.25)  (—0.52) (5.13) (L10)  (5.46)

R? 0.73 0.73 0.67 0.65 0.73 0.78 0.78 0.80 0.72

Panel B: Downside volatility-managed strategy

Panel B.1: Univariate regressions

Alpha, a 4.83 1.11 3.47 8.32 2.83 0.88 4.41 1.70 6.16
(4.10) (1.66)  (483)  (5.33)  (4.14) 1.73)  (5.18)  (3.76)  (8.25)

R? 0.62 0.60 0.60 0.41 0.53 0.67 0.52 0.70 0.51

Panel B.2: Controlling for Fama-French (1993) three factors

Alpha, a 5.27 1.37 4.11 6.57 3.49 0.56 4.52 1.50 5.95
(4.50) (2.02) (5.63)  (4.97)  (4.80) (1.50)  (5.66) (3.15)  (7.86)

R? 0.62 0.60 0.62 0.43 0.57 0.67 0.53 0.70 0.51

38



Journal Pre-proof

Table II: Spanning regressions for the 94 anomalies

This table summarizes results from spanning regressions for the 94 stock market anomalies. The spanning
regressions are given by f,; = a+ Bf; + €, where f;, is the monthly return for volatility-managed anomaly
returns, and f; is the monthly return for the original strategy. Panel A reports results for total volatility-
managed strategies, and Panel B reports those for the downside volatility-managed strategies. The results
in columns (3) and (4) correspond to univariate spanning regressions, and those in columns (5) and (6) are
for regressions that add the Fama-French (1993) three factors as controls. The table reports the number of
alphas that are positive, positive and significant at the 5% level, negative, and negative and significant at
the 5% level. Statistical significance of the alpha estimates is based on White (1980) standard errors.

Controlling for
Univariate regressions Fama-French (1993) factors

a > 0 [Signif.] a < 0 [Signif.] a > 0 [Signif] a < 0 [Signif.]
(1) (2) 3) (4) (5) (6)

Panel A: Total volatility-managed strategy

All 94 62 [15] 32 [2] 60 [14] 34 [2]
Accruals 10 7 (2] 3 [0] 6 [1] 4 [0]
Intangibles 10 4 11] 6 [0] 4 [0] 6 [0]
Investment 9 4 10] 5 [0] 4 [0] 5 [0]
Momentum 8 8 [7] 0 [0] 8 [7] 0 [0]
Profitability 20 17 [0] 3.[0] 17 [2] 3 [0]
Trading 19 13 [3] 6 [1] 13 [3] 6 [2]
Value 18 9 [2] 9] 8 [1] 10 [0]
Panel B: Downside volatility-managed strategy
All 94 89 [34] 5 [0] 84 [37] 10 [0]
Accruals 10 10-(3] 0 [0] 10 [5] 0 [0]
Intangibles 10 10 [2] 0 [0] 10 [2] 0 [0]
Investment 9 8 [2] 1 [0] 7 (2] 2 [0]
Momentum 8 8 [6] 0 [0] 8 [6] 0 [0]
Profitability 20 19 [8] 1 (0] 19 [11] 1 [0]
Trading 19 17 [7] 2 [0] 13 [5] 6 [0]
Value 18 17 [6] 1[0] 17 [6] 1[0]

39



Journal Pre-proof

Table III: Spanning regression of downside volatility-managed strategies on total
volatility-managed strategies

This table reports results from spanning regressions of downside volatility-managed portfolio returns on the
corresponding total volatility-managed returns. The spanning regressions are given by f{""" =a+p fg otal 4
€t OT ftow” =a+0 fgj otal 1 f, + ¢ , where 3 otal( ff;’“’") is the monthly return for total volatility-managed
(downside volatility-managed) portfolio returns and f; is the monthly return for the original factor. Panel A
reports results from spanning regressions for the nine equity factors. The reported alphas are in annualized,
percentage terms. Numbers in parentheses are t-statistics based on White (1980) standard errors. The
appraisal ratio is a/o.. Panel B presents summary results of the number of alphas that are positive, positive
and significant at the 5% level, negative, and negative and significant at the 5% level for the 94 anomaly
portfolios.

Panel A: Factors
MKT SMB HML MOM RMW CMA ROE IA BAB
Panel A.1: Results from fP0vn = o + gflotal 4 ¢,

o,t g,
Alpha, o 1.53 1.52 2.22 —0.30 1.55 0.78 1.33 0.96 2.51
(2.53)  (3.17)  (545)  (—0.40)  (4.64) (240) (3.22) (3.74)  (5.77)
R? 0.90 0.82 0.86 0.77 0.83 0.87 0.75 0.90 0.75
Panel A.2: Results from f27*" = a + BfL9" + f, + ¢
Alpha, « 1.49 1.50 2.19 —0.88 1.55 0.80 1.16 0.97 2.45
(248)  (3.04) (55)  (~L19) (4.67). (242) (2.98) (3.77)  (5.58)
R? 0.90 0.82 0.86 0.78 0.83 0.87 0.75 0.90 0.76

Panel B: Anomalies

a > 0 [Signif ] a < 0 [Signif.]

Panel B.1: Results from f2p“" = a+ gfroel 4 ¢

All o4 84 [43] 10 [0]
Accruals 10 10 [4] 0 [0]
Intangibles 10 10 [7] 0 [0]
Investment 9 9 [3] 0 [0]
Momentum 8 5 [0] 3 [0]
Profitability 20 20 [12] 0 [0]
Trading 19 13 [6] 6 [0]
Value 18 17 [11] 1 [0]
Panel B.2: Results from £t0w” =a+ ﬁf,;fgt“l + fi+e

All 04 83 [43] 11 [0]
Accruals 10 10 [4] 0 [0]
Intangibles 10 10 [7] 0 [0]
Investment 9 9 [3] 0 [0]
Momentum 8 4 10] 4 10]
Profitability 20 20 [12] 0 [0]
Trading 19 13 [6] 6 [0]
Value 18 17 [11] 1 [0]
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Table I'V: Transaction costs of volatility managed factors

This table reports the alphas of volatility managed factors after accounting for transaction costs. | Aw | is
the average absolute change in monthly weights. We consider five levels of transaction costs: 1 bps, 10 bps,
14 bps, 25 bps, and 50 bps. apreak—_even 18 the implied transaction costs needed to drive alphas to zero. All
results are in annualized, percentage terms. M KT, SMB and HML are obtained from Fama and French
(1993), MOM is from Carhart (1997), RMW and CM A are from Fama and French (2015), ROE and I A
are from Hou et al. (2015), and BAB is from Frazzini and Pedersen (2014).

MKT SMB HML MOM RMW CMA ROE IA BAB

Panel A: Total volatility-managed strategy

« 3.34 -0.44 1.48 9.36 1.35 0.08 3.32 0.75  3.99
| Aw | 0.36 0.31 0.38 0.49 0.33 0.28 0.29 0.27  0.33
Q1bps 3.30 -0.48 1.43 9.30 1.31 0.05 3.29 0.72 395
Q10bps 2.91 -0.81 1.03 8.77 0.96 -0.26 2.97 042  3.59
O14bps 2.74 -0.96 0.85 8.54 0.80 -0.39 2.84 0.29 343
Q25bps 2.27 -1.37 0.35 7.90 0.37 -0.77 2.45 -0.07 299
Q50bps 1.21 -2.30 -0.77 6.43 -0.61 -1.61 1.59 -0.89  2.00
QBreak—even  0.78 -0.12 0.33 1.60 0.34 0.02 0.96 0.23  1.00
Panel B: Downside volatility-managed strategy
« 4.83 1.11 3.47 8.32 2.83 0.88 4.41 1.70  6.16
| Aw | 0.69 0.49 0.53 0.75 0.46 0.45 0.48 042 0.51
Q1bps 4.75 1.05 341 8.23 2.77 0.83 4.35 1.65 6.10
Q10bps 4.00 0.53 2.83 7.42 2.28 0.33 3.84 1.19  5.55
14bps 3.67 0.29 2.58 7.05 2.05 0.12 3.61 0.99 531
25bps 2.76 -0.35 1.88 6.06 1.45 -0.48 2.98 0.43 4.64
Q50bps 0.69 -1.81 0.29 3.80 0.06 -1.85 1.55 -0.83  3.12
OBreak—cven ~ 0.58 0.19 0.55 0.92 0.51 0.16 0.77 0.34 1.01

41



Journal Pre-proof

Table V - Decomposition for the 9 equity factors

This table provides alpha decomposition of volatility-managed factors attributable to return timing and
E2(f:)

volatility timing. The return-timing effect is estimated as (14 ¢ &) Yeou( Ufil , f+), and the volatility-timing
effect is estimated as — Vii{’z)cov(dfil , f?), where o;_; is a volatility measure from month ¢ — 1, and f; is

the monthly return for the original factor, and ¢* is a constant chosen such that the original strategy and the
volatility-managed strategy have the same full-sample volatility. F(f;) and Var(f;) are the expected return
and variance of the original factor returns. Panel A reports results for total-volatility managed factors, and
Panel B provides results for downside volatility-managed factors. All results are converted to annualized,
percentage terms.

MKT SMB HML  MOM RMW  CMA  ROE IA BAB

Panel A: Total volatility-managed strategy

Return Timing -0.09 -135 —1.16 2.88 —-0.28 —-1.07 0.87 —-0.60 —0.51

Volatility Timing 3.43 0.91 2.65  6.49 1.64 1.15 245 1.35 4.50

Total 334 —0.44 1.48  9.36 1.35 0.08  3.32 0.75 3.99
Panel B: Downside volatility-managed. strategy

Return Timing 0.79 0.29 1.13  2.93 1.34  —-0.09 2.01 0.49 2.33

Volatility Timing 4.04 0.83 2.34  5.39 1.49 0.97 240 1.22 3.83

Total 4.83 1.11 347  8.32 2.83 0.88 441 1.70 6.16
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Table VI: Decomposition for the 94 anomalies

This table summarizes results from alpha decomposition of volatility-managed factors attributable to
return timing and volatility timing for the 94 anomalies. The return-timing effect is estimated as

(14 f :T((f;t)) )cov(%, f+), and the volatility-timing effect is estimated as — Vb;%})t)cov( < f2), where oy_1,
where o;_1 is a volatility measure from month ¢ —1, and f; is the monthly return for the original portfolio. c*
is a constant chosen such that the original strategy and the volatility-managed strategy have the same full-
sample volatility. E(f;) and Var(f;) are the expected return and variance of the original portfolio returns.
Panel A reports results for total volatility-managed anomalies, and Panel B provides results for downside
volatility-managed anomalies. The table reports the number of return- (volatility-) timing that are positive

and negative.

Ot—1

Return timing Volatility timing

Positive Negative Positive Negative

Panel A: Total volatility-managed strategy

All 94 42 52 80 14
Accruals 10 3 7 10 0
Intangibles 10 2 8 7 3
Investment 9 3 6 9 0
Momentum 8 8 0 7 1
Profitability 20 10 10 16 4
Trading 19 11 8 14 5
Value 18 5 13 17 1
Panel B: Downside volatility-managed strategy
All 94 71 23 80 14
Accruals 10 7 3 10 0
Intangibles 10 8 2 7 3
Investment 9 B 4 9 0
Momentum 8 7 1 7 1
Profitability 20 19 1 16 4
Trading 19 12 7 14 5
Value 18 13 5 17 1
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Table VIII: Real time performance for the 94 anomalies

The table summarizes results for real-time portfolio strategies that combine original portfolios and volatility-
managed portfolios for the 94 anomalies. The initial training period length (K) is 120 months. We use an
expanding-window design for the out-of-sample tests, and the out-of-sample period runs from month K+1
to month T', where T is the total number of sample months for a given anomaly. The “unmanaged strategy”
is based on the real-time combination of the original factor and the risk-free asset, and the “combination
strategy” corresponds to the real-time combination of the original factor, the volatility-managed factor, and
the risk-free asset. For each anomaly, we compute the difference between two strategies. The table reports
the number of Sharpe ratio differences that are positive, positive and significant at the 5% level, negative,
and negative and significant at the 5% level. Statistical significance of the Sharpe ratio is based on the
approach in Kirby and Ostdiek (2012). We use a risk aversion parameter of v = 5 and impose a leverage
constraint that the sum of absolute weights on the risky factors is less than or equal to five.

Sharpe ratio difference

Positive [Signif.] Negative [Signif.]

Panel A: Combination strategy (Total volatility) — Unmanaged strategy

All 94 44 [6] 50 [4]
Accruals 10 3 [0] 7 1]
Intangibles 10 5 [0] 5 [0]
Investment 9 3 [0] 6 [1]
Momentum 8 8 [3] 0 [0]
Profitability 20 & [1] 12 [0]
Trading 19 10 {0] 9 [1]
Value 18 7[2) 11 [1]
Panel B: Combination strategy (Downside volatility) — Unmanaged strategy
All 94 62 [8] 32 [1]
Accruals 10 6 [0] 4 10]
Intangibles 10 7[2] 3 [0]
Investment 9 4 10] 5 [0]
Momentum 8 6 [3] 2 [0]
Profitability 20 17 [1] 3 [0]
Trading 19 11 [0] 8 [1]
Value 18 11 [2] 7 [0]
Panel C: Combination strategy (Downside volatility) — Combination strategy (Total volatility)
All 04 69 [11] 25 [4]
Accruals 10 8 [1] 2 [0]
Intangibles 10 8 [1] 2 [0]
Investment 9 8 [0] 1 [0]
Momentum 8 110] 7 (2]
Profitability 20 19 [6] 1[0]
Trading 19 12 [3] 7 (1]
Value 18 13 [0] 5 [1]
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Table IX: Fixed-weight real time analysis for the 9 equity factors

The table reports results for real-time portfolio strategies combining original factors and volatility-managed
factors with fixed relative weights. For each factor and out-of-sample design, we present the difference
between the Sharpe ratio of the strategy that combines the original factor, the volatility-managed factor,
and the risk-free asset (with fixed relative weights on the two risky assets) and that of the strategy that
combines the original factor and the risk-free asset. The initial training period length (K) is 120 months. We
use an expanding-window design for the out-of-sample tests, and the out-of-sample period runs from month
K+1 to month T, where T is the total number of sample months for a given anomaly. Panel A reports
results for total volatility-managed strategies and Panel B reports those for the downside volatility-managed
strategies. The numbers in brackets are p-values for the Sharpe ratio differences, following the approach in
Kirby and Ostdiek (2012).

(Wot, W) MKT SMB HML MOM  RMW CMA ROFE IA BAB
Panel A: Total volatility

(0.10, 0.90) 0.01 —0.01 0.01 0.07 0.02 0.00 0.03 0.01 0.04
[0.10] [0.46] [0.18] [0.00] [0.00] [0.86] [0.00] [0.13] [0.00]
(0.25, 0.75) 0.03 —0.02 0.02 0.16 0.05 0.00 0.09 0.02 0.10
[0.14] [0.39] [0.25] [0.00] [0.00] [0.97] [0.00] [0.17] [0.00]
(0.50, 0.50) 0.05 —0.04 0.03 0.29 0.10 —0.01 0.18 0.03 0.18
[0.24] [0.29] [0.41] [0.00] [0:00] [0.84] [0.00] [0.35] [0.00]
(0.75, 0.25) 0.05 —0.07 0.03 0.38 0.15 —0.02 0.28 0.03 0.25
[0.35] [0.22] [0.59] [0.00] [0.01] [0.66] [0.00] [0.52] [0.00]
(0.90, 0.10) 0.05 —0.09 0.02 0.42 0.18 —0.03 0.33 0.03 0.28
[0.41] [0.20] [0.69] [0.00] [0.02] [0.55] [0.00] [0.62] [0.00]
Panel B: Downside volatility
(0.10, 0.90) 0.02 0.01 0.04 0.06 0.04 0.01 0.04 0.02 0.06
[0.02] [0.18] [0.00] [0.00] [0.00] [0.07] [0.00] [0.01] [0.00]
(0.25, 0.75) 0.05 0.03 0.08 0.14 0.10 0.03 0.11 0.05 0.15
[0.03] [0.21] [0.00] [0.00] [0.00] [0.08] [0.00] [0.01] [0.00]
(0.50, 0.50) 0.08 0.05 0.14 0.23 0.20 0.06 0.22 0.07 0.28
[0.08] [0.27] [0.00] [0.00] [0.00] [0.14] [0.00] [0.04] [0.00]
(0.75, 0.25) 0.09 0.06 0.17 0.27 0.29 0.06 0.34 0.09 0.37
[0.15] [0.34] [0.00] [0.00] [0.00] [0.26] [0.00] [0.07] [0.00]
(0.90, 0.10) 0.09 0.06 0.19 0.28 0.35 0.06 0.41 0.10 0.41
[0.21] [0.39] [0.00] [0.01] [0.00] [0.38] [0.00] [0.10] [0.00]
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Table X: Fixed-weight real time analysis for the 94 anomalies

The table reports results for portfolio strategies combining original anomalies and volatility-managed anoma-
lies with fixed relative weights. For each anomaly and out-of-sample design, we present the difference between
the Sharpe ratio of the strategy that combines the original portfolio, the volatility-managed portfolio, and
the risk-free asset (with fixed relative weights on the two risky assets) and that of the strategy that combines
the original portfolio and the risk-free asset. The initial training period length (K) is 120 months. We use
an expanding-window design for the out-of-sample tests. Panel A reports results for total volatility-managed
strategies, and Panel B reports those for the downside volatility-managed strategies. This table presents
summary results of the number of Sharpe ratio differences that are positive, positive and significant at the
5% level, negative, and negative and significant at the 5% level for the 94 anomaly portfolios. The p-values
are computed following the approach in Kirby and Ostdiek (2012).

Sharpe ratio difference

Positive [Signif.] Negative [Signif.]
Panel A: Total volatility
(0.10, 0.90) 94 60 [13] 34 [1]
(0.25, 0.75) 94 60 [12] 34 [1]
(0.50, 0.50) 94 57 [10] 37 [2]
(0.75, 0.25) 94 57 [8] 37 [3]
(0.90, 0.10) 94 57 7] 37 [3]
Panel B: Downside volatility
(0.10, 0.90) 94 72 [31] 22 [2]
(0.25, 0.75) 94 72 [29] 22 [2]
(0.50, 0.50) 94 72 [27] 22 [1]
(0.75, 0.25) 94 72 [23] 22 [1]
(0.90, 0.10) 94 71 [19] 23 [1]
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Table XI: Direct comparisons for the 9 equity factors

The table reports the Sharpe ratio and the Sortino ratio for original, total volatility-managed and downside
volatility-managed factors. Sharpe ratios and Sortino ratios are annualized. Panel A reports results for
Sharpe ratio, and Panel B provides those for Sortino ratio. The table also reports the difference between
the Sharpe ratio (Sortino ratio) of the total (downside) volatility-managed factor and that of the original
factor, as well as the difference between total volatility-managed strategy and downside volatility-managed
strategy. The numbers in brackets are p-values for the Sharpe ratio (Sortino ratio) differences and are
computed following the approach in Kirby and Ostdiek (2012).

MKT SMB HML MOM RMW CMA ROE IA BAB

Panel A: Sharpe ratio

[S1] Original strategy 0.42 0.22 0.37 0.49 0.41 0.49 0.75 0.70 0.81
[S2] Total strategy 0.54 0.15 0.42 0.96 0.52 0.45 1.04 0.74 1.05
[S3] Downside strategy ~ 0.59 0.27  0.57 0.82 0.68 0.53 1.05 0.85 1.14

S2] — [S1] 012 —0.07 005 047 011 =005 028 004 024
[0.05] [0.18] [0.40]  [0.00] [0.19] = [0.43] [0.00] [0.48] [0.00]
3] — [S1] 017  0.05 020 034 027 004 030 015 033
[0.01] [0.43] [0.00] [0.00] [0.00] =~ [0.62] [0.00] [0.02] [0.00]
3] — [S2] 005 012 015 —0.14  0.16 008 001 011  0.09

[0.09] [0.01] [0.00] [0.01] [0.00]  [0.15] [0.84] [0.01] [0.05]

Panel B: Sortino ratio

[S1] Original strategy 0.57 0.40  0.64 0.46  0.55 0.84 092 120 094
[S2] Total strategy 0.77 023  0.73 1.35  0.86 083 1.66 137 143
[S3] Downside strategy  0.88 044 117 1.13 145 094 206 1.70 213

[S2] — [S1] 020 —0.17 008 090 032 —001 074 017 048
(0.04]  [049] [0.01]  [0.00] [0.01]  [0.00] [0.00] [0.04] [0.00]
[S3] — [S1] 031 ~ 0.05 053 068 0.90 010 114 050 1.19
(0.14] ~ [0.01] [0.00] [0.11] [0.00]  [0.97] [0.01] [0.28] [0.00]
53] — [S2] 011 ~ 021 045 —022 058 011 040 033  0.70

0.41]  [0.05] [0.68] [0.00] [0.04]  [0.01] [0.43] [0.16] [0.27]
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Table XII: Direct comparisons for the 94 anomalies

Panel A (Panel B) summarizes results for the differences between the Sharpe ratio (Sortino ratio) of the
total (downside) volatility-managed strategy and that of the original strategy for the 94 anomalies. Panel
C summarizes results for the differences between the Sharpe ratio (Sortino ratio) of downside volatility-
managed strategy and that of total volatility-managed strategy. The table reports the number of differences
that are positive, positive and significant at the 5% level, negative, and negative and significant at the 5%
level. Statistical significance is based on the approach in Kirby and Ostdiek (2012).

Sharpe ratio difference

Sortino ratio difference

Positive [Signif.]

Negative [Signif.]

Positive [Signif.]

Negative [Signif.]

Panel A: Total volatility-managed strategy — Original strategy

All 04 56 [11] 38 [3] 57 [27] 37 [10]
Accruals 10 5 [0] 5 [0] 6 [1] 4 1]
Intangibles 10 3 [0] 7 [0] 3 1] 7 [3]
Investment 9 4 [0] 5 1] 4 [2] 5 [1]
Momentum 8 8 [8] 0 [0] 8 [7] 0 [0]
Profitability 20 16 [0] 4 [0] 16 [4] 41
Trading 19 12 [2] 7 [1] 12 [8] 73]
Value 18 8 1] 10 [1] 8 [4] 10 [1]
Panel B: Downside volatility-managed strategy — Original strategy
All 94 84 [18] 10 [0] 83 [15] 11 [2]
Accruals 10 8 [1] 2 10] 8 [1] 2 (0]
Intangibles 10 10 [2] 0[0] 10 [2] 0 [0]
Investment 9 7 (0] 2 [0] 7 12] 2 (0]
Momentum 8 8 [3] 0 [0] 8 [3] 0 [0]
Profitability 20 19 [5] 1[0] 19 [2] 1[0]
Trading 19 16 [5] 3 [0] 15 [5] 4 (1]
Value 18 1672 2 [0] 16 [0] 2 [1]
Panel C: Downside volatility-managed strategy — Total volatility-managed strategy
All 94 80.[33] 14 [3] 77 [25] 17 [10]
Accruals 10 10 [2] 0 [0] 9 [2] 1[1]
Intangibles 10 10 [5] 0 [0] 10 [2] 0 [0]
Investment 9 9 [2] 0 [0] 8 [3] 1[1]
Momentum 8 1 1[0] 7 (2] 111) 7 4]
Profitability 20 20 [10] 0 [0] 19 [6] 1[1]
Trading 19 13 [5] 6 1] 13 [5] 6 2]
Value 18 17 [9] 1 [0] 17 [6] 1[1]
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