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a b s t r a c t

Science is experiencing an ongoing reproducibility crisis. In light of this crisis, our objective is to
investigate whether machine learning platforms provide out-of-the-box reproducibility. Our method is
twofold: First, we survey machine learning platforms for whether they provide features that simplify
making experiments reproducible out-of-the-box. Second, we conduct the exact same experiment
on four different machine learning platforms, and by this varying the processing unit and ancillary
software only. The survey shows that no machine learning platform supports the feature set described
by the proposed framework while the experiment reveals statstically significant difference in results
when the exact same experiment is conducted on different machine learning platforms. The surveyed
machine learning platforms do not on their own enable users to achieve the full reproducibility
potential of their research. Also, the machine learning platforms with most users provide less
functionality for achieving it. Furthermore, results differ when executing the same experiment on
the different platforms. Wrong conclusions can be inferred at the at 95% confidence level. Hence,
we conclude that machine learning platforms do not provide reproducibility out-of-the-box and that
results generated from one machine learning platform alone cannot be fully trusted.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

A concern has grown in the scientific community related to the
eproducibility of scientific results. The concern is not unjustified.
ccording to a Nature survey, the scientific community is in
greement that there is an on-going reproducibility crisis [1].
ccording to the findings of the ICLR 2018 Reproducibility Chal-
enge, experts in machine learning have similar concerns about
eproducibility; more worryingly, their concern increased after
rying to reproduce research results [2]. In psychology, the repro-
ucibility project was only able to reproduce 36 out of 100 psy-
hology research articles with statistically significant results [3].
raun and Ong argue that computer science and machine learning
hould be in a better shape than other sciences, as many if
ot all experiments are completely conducted on computers [4].
owever, even though this is true, computer science and machine
earning research is not necessarily reproducible. Collberg and
roebsting report an experiment in which they tried to execute
he code published as part of 601 papers. Their efforts succeeded
n 32.1% of the experiments when not communicating with au-
hors and 48.3% when communicating with the authors [5]. In
heir experiment, they only tried to run the code; they did not
valuate whether the results were reproducible.
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Machine learning is still and to a very large degree an em-
pirical science, so the issues with reproducibility is a concern.
For example, to establish which algorithm is better for a task,
an experiment is designed where the algorithms are trained and
tested on the same datasets that represent the task. The one that
compares best according to one or more performance metrics is
deemed to be the best for a given task. Now, imagine that we
have two algorithms that we want to compare. Algorithm A is
our own and algorithm B is developed by third party. The results
depend on how much documentation that is made available to
us by the third party whom authored algorithm B. For example,
if we only have access to written material, we have to implement
the algorithm ourselves and test it on data that we collect our-
selves. There is practically no way we can verify that we have
implemented and configured the algorithm in the exact same
way as the original authors. So, the more documentation (textual
description, code and data) that is released by the original inves-
tigators, the easier for independent investigators to reproduce the
reported results.

While making more documentation available to independent
researchers increases the reproducibility potential, reproducibil-
ity is not guaranteed. By reproducibility potential we mean the
probability of being able to reproduce the results, given that the
effect documented by the original experiment is true. True effects
can be obfuscated in many ways. For example, the data does not

reflect the actual world and hence using a different dataset will
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produce different results [6]. Furthermore, baseline implemen-
tations produce different results, hyperparameter settings affect
the outcomes, and stochasticity in algorithms and environments
affect results [7]. Hong et al. showed that different hardware,
compilers and compiler settings resulted in similar variance of
the output as changing the initial conditions of weather simula-
tions [8]. Finally, Nagarajan et al. showed that it is possible to
achieve deterministic results when computations are done on a
graphics processing unit (GPU); the results will be completely
different, but still deterministic, if run on a different GPU [9]. One
of these effects alone can obfuscate the results so much that the
conclusions that can be inferred from the experiments are false.

Now, if the two algorithms we want to compare have the exact
ame performance, will we be able to establish this when the
xperiments involving each of these algorithms are conducted in
ifferent laboratories? This is a relevant question as algorithms
ften are compared without redoing the experiment with the
lgorithm developed by a third-party. Instead, results that are
eported in a scientific article is used for comparison. Also, inde-
endent investigators find that it is hard to get the same results
hen redoing complete experiments reported in scientific litera-
ure. This includes using the exact same code to conduct the exact
ame experiment using the exact same data. Computer science
s in the fortunate situation that the exact same experimental
rocedures can be followed using the exact same data. The only
ifference is the laboratory where the experiment is conducted,
here laboratory means different hardware and different an-
illary software. To evaluate whether it is possible to establish
hat two algorithms have the exact same performance, the exact
ame experiment (exact same code and data) can be conducted in
ifferent laboratory configurations to produce the same results.
n this paper, we follow the definition of reproducibility and of
ifferent laboratories (different ancillary software and hardware)
hat is provided by Gundersen [10].

Goal: Our goal is to find out whether current machine learning
platforms support reproducibility out-of-the-box. We do this by
investigating (1) how well machine learning platforms enable
users to achieve the full reproducibility potential and (2) whether
conducting a machine learning experiment in a different labora-
tory can obfuscate the results to such a degree that the wrong
conclusion will be inferred.

Contributions: Our main contributions are fourfold: (i) we
propose a framework for comparing the support for reproducibil-
ity of machine learning frameworks, (ii) we conduct a survey
of how well machine learning platforms support reproducibility,
(iii) we analyze which features that should be developed for the
different platforms in order to improve reproducibility support
and increase the reproducibility potential, (iv) and, finally, we
conduct the exact same experiment a total of 160 times only
changing the laboratory configuration to analyze how results
differ with the different laboratory configurations.

Results: Machine learning platforms do not provide out-of-
the-box reproducibility. The results of the survey show that no
machine learning platform supports the feature set described by
the proposed framework. Hence, the machine learning platforms
do not enable users to achieve the full reproducibility potential
without using additional third party software. Our experiment
shows that there can be significant differences in results depend-
ing on which machine learning platform is used when conducting
the experiment. As these results are significant at 95% confidence
level, the wrong conclusions can be drawn when effect size is
small and the experiment is conducted on one machine learning
platform only.

The rest of this paper is organized as follows: Reproducibility
is discussed in Section 2. In Section 3, a framework for quantifying

reproducibility support is presented. The survey and the results
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are presented in Section 4. Section 5 contains a reproducibility
experiment based on a simple classification task, its result and a
discussion. Finally in Section 6, we conclude and provide some
thoughts on future work.

2. Reproducibility

No ultimate definition of reproducibility is agreed upon. In-
stead, researchers have presented several competing definitions.
Despite, the literature mostly agrees that reproducibility is not
a boolean variable. An experiment is not reproducible or not re-
producible; reproducibility comes in different shades. Drummond
argues that replication means to exactly replicate the original
experiment and that reproducibility is obtaining the same results
from quite a different experiment [11]. Stodden states that repli-
cation is re-running the experiment with code and data provided
by the author, while reproduction is a broader term that implies
both replication and the regeneration of findings with at least
some independence from the original code and/or data [12]. Peng
suggests that reproducibility is a continuous variable ranging
from only a paper describing an experiment being shared to the
linked executable code and data being shared along with the
paper [13]. Goodman et al. present three different terms de-
scribing reproducibility: (1) Methods reproducibility means that
the exact same procedures could be exactly followed, (2) Results
reproducibility refers to obtaining the same results from con-
ducting an independent study whose procedures closely match
the original study and (3) Inferential reproducibility in which
qualitatively the same conclusions can be drawn from an inde-
pendent study or reanalysis of the original study [14]. Gundersen
and Kjensmo propose that for AI research three reproducibility
degrees can be defined based on which documentation the orig-
inal researchers share with independent researchers [15]. The
documentation could be divided into (i) the scientific report, (ii)
the data and (iii) the code from the original experiment. Tatman
et al. suggest three levels also based on what is shared: (1)
Low reproducibility: paper is shared, (2) Medium reproducibil-
ity: paper, code and data are shared, (3) High reproducibility:
paper, code, data and environment is shared [16]. In the re-
port by the National Academies of Sciences, Engineering and
Medicine [17], reproducibility is defined to mean computational
reproducibility and replicability to mean obtaining consistent
results across studies answering the same scientific questions.
While reproducibility does not necessarily mean discovery of
truth, as Devezer et al. [18] suggest, enabling reproducibility
makes the analyses and evaluations transparent. Plesser pro-
vides a historical overview [19] while Gundersen [10] provides
a systematic survey of reproducibility definitions.

Many solutions for solving the reproducibility issues in com-
puter science and machine learning have been proposed, and
some are mentioned here. As experiments are run on computers,
it is possible to share the complete experiment as proposed
by [20,21]. Gil et al. suggested that the experiment procedures
should be made explicit [22]. Sethi et al. even proposed auto-
generating code for deep neural network architectures by an-
alyzing research papers and in this way reproducing the re-
sults [23]. Executable notebooks, such as Jupyter Lab, have been
proposed as solutions for reproducibility [24], but everyone does
not agree that they are the silver bullet [25]. Alternatives to
Jupyter notebooks exist [26].

In addition to the suggested solutions, several recommenda-
tions for combating the reproducibility crisis have been made
by Wilkinson et al. [27], Stodden et al. [28], Nosek et al. [3], Gil
et al. [22], Starr et al. [29] and several others. Cockburn et al. [30]
provide an overview of the threats and potential solutions to
these. Remedies for combating the reproducibility crisis (i) open-
ness and transparency in form of open sharing of code and data,
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but also open publishing, (ii) good documentation where the
experiments, workflows and methods are described in detail, and
(iii) version control of code, data and results, (iv) proper citation
of code and data, (v) licenses so that it is clear how code and
data can be used and finally (vi) preregistering of study designs
to avoid p-hacking and HARKing.

3. Quantifying support for reproducibility

Our work build on the method for quantifying reproducibility
hat are suggested by Gundersen and Kjensmo [15]. They pro-
ose three factors, one for each documentation type, and specify
ariables that describe each of these three factors. The three fac-
ors are Method, describing the scientific report communicating
ethods and ideas to other researchers, Data, which is not only
bout sharing the data, but also indicating which parts were used
or training, validation and testing, and Experiment, which is the
code both for running the experiment and for any methods that
are developed. Inspired by Gundersen et al. [31] we expand the
set of variables from the 16 to 22. The idea is that the variables
and factors are relevant for reproducing the results of empirical
artificial intelligence research described in a scientific paper. The
documentation quality and reproducibility degree of empirical AI
research could be quantified by three metrics. We base our survey
on the same idea, but instead of scoring a research paper on how
reproducible it is, we assess how well machine learning platforms
support reproducible empirical research by scoring the platforms
on whether they have features that implement the variables. See
Table 1 for a description of the variables and the factors they
belong to.

The three reproducibility metrics are defined as follows:

R1F (p) =
δ1Method(p) + δ2Data(p) + δ3Exp(p)

δ1 + δ2 + δ3
(1)

R2F (p) =
δ1Method(p) + δ2Data(p)

δ1 + δ2
, (2)

3F (p) = Method(p), (3)

here Method(p), Data(p) and Exp(p) are weighted means of the
ariables describing the three factors Method, Data and Exper-
ment for a platform p. Hence, a platform p can be scored on
very variable based on whether it has features that covers the
unctionality of each variable. In this way, the metrics can be
omputed for each platform and the platforms can be compared.
The idea behind the different levels is described by Gundersen

nd Kjensmo [15]. In short, the more detail that is provided
y the original researchers, the better chance for independent
esearchers to get the exact same results independently. The
igher the R1F score, the more variables are covered. However,
f only the scientific report is released, independent researchers
ould still reproduce the results, but not exactly. The higher the
3F score is the easier it is to reproduce results without any code
nd data. For example, if independent researchers implement
n algorithm described in a scientific report and run it on a
ifferent set of data, the claims of the original researchers can
till be supported although the exact performance metrics will
ot produce the exact same values. An example could be inde-
endent researchers implementing an artificial neural network as
escribed by the original researchers and testing it on a different
ata set than what the original researchers used. This new im-
lementation could still perform significantly better than some
eference method, and hence the result would be reproduced,
lthough a performance measure, such as accuracy or F1 score,
ould not get the exact same score as the original experiment.
36
The weights of the factors are δ1, δ2 and δ3 respectively. It
s of course possible to give different weights to each variable
nd factor, but we use uniform weights, δi = 1, in our study.
ne could easily argue that uniform weights do not make sense,
s some variables clearly are more important than others for
nabling reproducibility. The proposed method illustrates how
latforms can be scored using the features suggested in related
ork without trying to give an answer to which factors and
ariables are most important. Choosing weights without a very
tructured or well-argued method for doing this could be dis-
uted. A good set of weights could be a question of policy or
ased on empirical evidence for which features actually are most
mportant for reproducing results. Our position is that finding the
ight set of weights could be a research project on its own, and
his is not the project we report here.

. A survey of the reproducibility support of machine learning
latforms

Given that reproducibility is quantifiable according to the de-
cribed framework, we could investigate how well different ma-
hine learning platforms support reproducibility by analyzing
hether the platforms support the factors. This can be done by
nalyzing whether the platforms have functionality that imple-
ents each of the variables. The survey is an observational study
here we go through the documentation of a set of machine

earning platform. The framework could also be used as a require-
ent specification when developing a machine learning platform

hat supports reproducibility.

.1. Research method: Survey

We have assessed 13 machine learning platforms based on
he quantitative method proposed above.1 The platforms have
een chosen based on reviewing literature on reproducibility. In
ddition, we have included the most commonly used machine
earning platforms provided by Amazon, Microsoft and Google.
he reason we added these machine learning services is that it
llows us to analyze whether the more reproducibility oriented
latforms provide value in this regard compared to the platforms
sed daily by the industry.
We use the term machine learning platform in a broad man-

er. We do not restrict it to be a cloud solution where machine
earning experiments can be executed, solutions that could be
nstalled and run on a local machine are included. The idea is that
he platform supports and simplifies developing machine learn-
ng programs and provides a rich set of functionality. Platforms
nclude more functionality than a library, such as SciKit-learn.2
ome of these solutions, such as Polyaxon and Azure ML identify
s platforms. StudioML identifies as a framework while OpenML
dentifies as an environment.

Each platform is scored based on whether a feature is Sup-
orted, Partially supported or Not supported. A supported feature
ets a score of 1, while a partially supported feature has been
cored as 0.5 and a not supported feature is scored 0. We could
ave used the whole range between 0 and 1 to describe whether
feature is supported, but this would result in a very subjective
core, which we wanted to avoid. Partially supported features
ould either be partially supported as part of the machine learn-
ng platform or it could be supported through integration with
hird party software. In order to get a score of partially supported
or integration with third party software the software platform
ust support such integrations actively.

1 See here for code and data: https://github.com/kireddo/escience2019
2 http://scikit-learn.org

https://github.com/kireddo/escience2019
http://scikit-learn.org


O.E. Gundersen, S. Shamsaliei and R.J. Isdahl Future Generation Computer Systems 126 (2022) 34–47

m
t
h
c
d
S
f
t

4

a
l
t
b
i
s
a
l
p
w

a
t
a
r
c
t
e
e
d
t
I
a
d
i
o

Table 1
Contains the definitions of what the different variables mean, and which factors they belong to.
Factor Variable Description

Experiment

Results Document the results and the analysis.
Analysis State how the analysis supports the claims.
Justification Justify datasets, method, and metrics.
Workflow Workflow representation summarizing experiment

execution and configurations.
Workflow execution Workflow execution traces with settings raw,

processed, and final data.
Hardware Hardware used to conduct the experiment.
Software Document the software dependencies.
Citation Export Automatically generate reference.
Code repository Shared code in repository.
Code metadata Include metadata for describing the code.
Code license Include a license.
Code citeable Generate a digital object identifier (DOI) or

persistent URL (PURL) for experiment.

Method

Hypothesis Document the hypotheses to be assessed.
Prediction Document the predicted outcome.
Setup Parameters and conditions to be tested and

desired statistical significance of results.
Problem description Description of problem to be solved.
Outline Describe method conceptually.
Pseudo code Support for pseudo code.

Data

Data repository Share data in a community repository.
Data metadata Include basic metadata describing the data.
Data license Give the data a license.
Data citeable Generate DOI or PURL.
The primary target for our data collection has been the docu-
entation that is available for each platform. Further investiga-

ions have proven necessary in some cases where documentation
as been unclear. This has not consisted in properly conducting
omplete experiments, but rather isolating features where the
ocumentation did not seem to provide sufficient information.
ome of the issues with this kind of data collection is discussed
urther in Section 4.4. The following subsections describe the
hree factors in more detail.

.1.1. Experiment
The factor Experiment covers the parts of the research that

re implemented in software. This includes any novel machine
earning methods, the workflow of the experiment, as well as
he environment the experiments are executed in. The results can
e presented in different ways, such performance metric scores
n tables or visualized as graphs. The setup of the experiment
hould specify and store hyperparameters and environment vari-
bles in a understandable representation that can be reviewed
ater. Workflows are typically represented as graphs where sub-
rocesses of the machine learning experiment are specified as
ell as the flow of inputs and outputs.
In cloud based computing systems, hardware specifications

re typically given as part of the cluster configuration. However,
his does not necessarily make it easier for the user to specify
nd document hardware, as the exact hardware is chosen upon
un-time by the cloud platform. None of the assessed cloud
omputing platforms have ways in place to automatically track
he actual hardware (the exact physical machine) used to run
xperiments. This is contrasted by the careful documentation of
quipment taught in undergraduate physics classes. Here, stu-
ents must document serial numbers of the tools used in order
o be able to distinguish between sloppiness and broken tools.
n computer science, running on GPUs from different vendors
nd even different production batches of the same GPU can yield
ifferent results [9], so being able to track the exact hardware
s clearly valuable. Software dependencies are usually available,

ften through the use of containers and systems like Docker.

37
4.1.2. Method
The factor Method specifies variables that are part of the

textual documentation, the scientific report that is written for
independent researchers, so that they are enabled to conduct the
experiments themselves. It is written by researchers to convey
the ideas and concepts behind the research to other researchers.
The documentation describes the machine learning method and
the experiment setup with hyperparameters and the environ-
ment, so that independent researchers understand the reasoning
behind performing an experiment in a given way. For example
in the context of a scientific paper, it makes sense to present
pseudo code as part of the textual description of the method,
rather than with the code, as the pseudo code is there to help
other researchers understand the algorithm that is presented. As
mentioned, notebooks are judged by many as a solution for run-
ning reproducible experiments and can reasonably be expected
to improve communicating experiments to other researchers to
some extent. However, notebook provide free form text, and
therefore they do not provide structure for what exactly to doc-
ument. Because of this, notebooks can only partially satisfy the
factor method at best.

4.1.3. Data
The factor Data specifies variables related to whether data

is publicly shared and whether the samples used for training,
validation and testing are specified. For experiments to be R1F
and R2F reproducible, data has to be shared. Hence, in order for
a platform to score well on this factor, it must offer a possibility to
openly host data and tracking which samples were used for what.
The most common practice is hosting data on network storage
such as S3, Google storage or Azure Blob storage, or on local
servers. However, these do not provide versioning, structured
meta data, possibility for citing the data or provide licenses.
An alternative is to rely on an external data repository. These
typically provide more features such as metadata and licenses, as
well as Persistent Uniform Resource Locators (PURLs) or Digital
Object Identifier (DOIs).
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4.2. Surveyed platforms

This section provides an overview of the software platforms
hat have been surveyed.

penML3: Open source experiment database for machine learn-
ing. The platform hosts open data, and defines algorithms in a
representation called flows. Datasets and tasks hold rich meta-
data, and results from tasks are aggregated and compared over
different flows. There is no alternative to open data and exper-
iments. Code has to be run locally and uploaded through one
of their APIs for sharing. At the time of the survey, the study
feature of OpenML was still not fully implemented. This feature
is meant to handle the most of the scientific method tied to the
experiments. Because this is not fully implemented, the platform
has insufficient support for most of the features relying on this.

MLflow4: Machine learning framework that is developed by
Databricks, at the time of writing this in beta. The MLflow project
is open source and is made to easily integrate with other sys-
tems. It is naturally compatible with other systems developed at
Databricks. This allows us to access features such as databricks
notebooks. The main features of MLflow itself are its experiment
tracking, packaging and deployment support.

Polyaxon,5 Platform made for building, training and monitoring
large scale deep learning applications, and at the time of writing
this in beta. It is made to support most popular deep learning
frameworks and machine learning libraries. Polyaxon requires a
Kubernetes cluster to be run. It offers its own tracking UI for
experiments.

StudioML6: Framework for managing sharing and reproducing
Python experiments. It is an attempt to simplify and speed up
the development of the machine learning pipeline. The system
attempts to avoid being invasive, and should run with little to
no alterations to any working python machine learning code.
Artifacts, data and logs are stored and organized in predefined
data storages.

Kubeflow7 Kubernetes is a native open source machine learning
latform, developed at Google. One of its aims is to have a low
ar for entry, but a high ceiling for advanced users. Extensive
nowledge about Kubernetes should not be necessary for most
sers. The platform is still in development, and new features are
xpected to be added in the future. At the moment, the system
eployment is built around Ksonnet and TF-serving. Several other
rojects are also supported.

ometML8 Python based machine learning platform for tracking
nd sharing experiments. One of the interesting features offered
y CometML is the ability to compare experiments side by side.
his allows easy comparisons for differences in code, convergence
nd hyperparameters among other things. Documentation can
e attached to experiments in form of notes, graphs and charts,
aking them easier to understand and reproduce.

mazon Sagemaker9 Machine learning platform developed by
mazon, made to run on the Amazon Web Services (AWS). It
s built from a few separate parts that can be used indepen-
ently from each other. The system is built on docker containers,

3 https://docs.openml.org/
4 https://www.mlflow.org/docs/latest/index.html
5 https://docs.polyaxon.com/ Version 0.2.9:
6 http://docs.studio.ml/en/latest/index.html
7 https://www.kubeflow.org/docs/about/kubeflow/, Version 0.3:
8 https://comet-ml.com/docs/, Version 1.0.31:
9 https://sagemaker.readthedocs.io/en/latest/, Version 1.11.2:
38
which are used to define the setup of the experiments. There are
many available containers supporting different machine learning
libraries, and one can also write containers that support custom
code.

Google Cloud ML10: Google cloud ML engine is a machine learn-
ing service built on the Google Cloud Platform (GCP). It supports
multiple machine learning frameworks and is integrated with
Google storage and Google cloud. It offers a series of custom
APIs which are specialized at anything from speech to image
recognition. The APIs are packaged separately, so users can pick
and choose the features that are desired for their specific systems.

Azure ML11: Machine learning platform, developed by Microsoft.
It has two different services: service and studio. Azure ML service
is a more typical platform for development and deployment that
requires users to be able to program, while Studio is a simplified
drag and drop tool that builds on the same system.

Floydhub12 Commercial machine learning platform for Python
experiments. It offers a web dashboard with a number of popular
features such as Jupyter and Tensorboard integrated. Floydhub
is integrated with Github and offers version control and sharing
for both code and data. The platform is built on offering cloud
services.

BEAT13: Open source machine learning platform, developed at
Idiap Research Institute in Switzerland. BEAT hosts both data and
source code openly on the platform, but there are also features
for hiding experiments, data and code. The platform is built on
a component called toolchains, which describes the workflow of
the experiments in block diagrams [32].

Codalab14: Open source machine learning platform for
researchers, built by Microsoft. The platform is split into two
parts, competitions and worksheets. The worksheets is the part
that primarily looks to support reproducible experiments. Co-
dalab hosts data and source code and offers an interface for easily
accessible executable papers.

Kaggle15: Data science platform built around sharing of data
and machine learning competitions. Kaggle hosts a large data
repository, as well as code in the form of notebooks and scripts.
The platform offers a free cloud computing service with options
to run on both CPU and GPU. The APIs also allow users to easily
download content to work on it locally.

4.3. Results of survey

Some of the variables could not be scored unambiguously.
One challenge in particular is when a platform integrates with
an external system like a source control management system or
notebooks. Does the integration with the external system fully
extends the functionality of the machine learning platform? Also,
should there be a difference in scoring when the integration is
actively supported compared with support being implemented in
the system but poorly? We ended up not distinguishing to avoid
subjective scoring and scored integrations as partially supporting
the functionality.

The results of the survey are illustrated in the heat map in
Fig. 1. The vertical black lines in the figure divide the vari-
ables into the three factors, which shows that different platforms
typically support use cases that align with the factors.

10 https://cloud.google.com/ml-engine/docs/
11 https://docs.microsoft.com/en-us/azure/machine-learning/service/
12 https://docs.floydhub.com/, Version 0.11.14:
13 https://www.beat-eu.org/platform/static/guide/
14 https://github.com/codalab/codalab-worksheets/wiki
15 https://www.kaggle.com/docs/kernels

https://docs.openml.org/
https://www.mlflow.org/docs/latest/index.html
https://docs.polyaxon.com/
http://docs.studio.ml/en/latest/index.html
https://www.kubeflow.org/docs/about/kubeflow/
https://comet-ml.com/docs/
https://sagemaker.readthedocs.io/en/latest/
https://cloud.google.com/ml-engine/docs/
https://docs.microsoft.com/en-us/azure/machine-learning/service/
https://docs.floydhub.com/
https://www.beat-eu.org/platform/static/guide/
https://github.com/codalab/codalab-worksheets/wiki
https://www.kaggle.com/docs/kernels
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Fig. 1. Heat map showing which software platforms (rows) have the specified features (columns). Light blue indicates that the feature is supported, sea green
indicates partially supported and orange that it is not supported.
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The heat map shows that all systems lack functionality for
he variables data and code citation as well as analysis. Most of
he systems also lack functionality for publicly sharing code and
ata. Publicly sharing code and data are features that typically
re related to publishing research, and hence they are not nec-
ssarily important features for the commercial machine learning
latforms developed for commercial businesses who typically do
ot want to share code and data. Floydhub, BEAT and Codalab
re developed to support reproducible research practices, and
hey support public data and code sharing natively. Kaggle is
ainly a platform for conducting and participating in machine

earning competitions, and is therefore build for sharing code
nd data. Generating permanent URLs and making data sets and
ode citeable can be done using external services like Zenodo,16
igshare,17 W3ID18 and Datacite.19
Table 2 displays the external systems that are supported by the

urveyed platforms. These external systems include notebooks
ex. Jupyter), source code management (SCM) systems (ex. git
nd Github), Docker and Tensorboard. The support of external
ystems extend the desired functionality of the machine learn-
ng platforms not only by providing new functionality, but also
upporting the same functionality in a new way. An example
s code sharing, which can be provided as part of the platform,
ut also through integrating with external repositories. Table 3
hows which variables are covered by the external systems we
dentified.

Notebooks: The integration with notebooks turned out to be
articularly noticeable. As discussed earlier, a lot of the variables
ied to the experiment and method are most easily satisfied
hrough textual descriptions. This means that interfaces that al-
ows the user to attach additional notes to the experiments will
ontribute a lot to the overall score of a platform. A number of
latforms have notebooks as their only option for supporting this
ind of documentation.
Among the platforms that integrate with notebooks (see Ta-

le 3), Floydhub is an exception. It allows for documentation

16 https://zenodo.org
17 https://figshare.com
18 https://w3id.org
19 https://datacite.org
39
be added in the experiment notes, but also offers the use of
Jupyter notebooks, which can serve the same purpose. The ability
of attaching notes to the experiments is also present in BEAT,
Codalab and CometML. Polyaxon, StudioML, Kubeflow, Amazon
SM, Google CML, Azure and Kaggle depend on notebook integra-
tions to support the Method variables. The specific variables that
are affected by these integrations are justification, hypothesis,
prediction, experiment design, problem description, outline and
pseudo code. To which degree these variables are supported could
be debated, as the integration makes it possible to document
the Method variables, but nothing more. As mentioned above, in
general, we chose to assign partially supported when this was the
case.

Source code management: Only MLflow, Kubeflow, CometML
and Floydhub rely on integration with external systems for shar-
ing code by integrating with Github. MLflow and Kubeflow (Argo
CD) do not support open sharing of code. The support for license
and code metadata are outsourced to Github, which only sup-
port this through allowing users to add files that contain this
information.

Sharing of code and data brings a set of challenges with
it. It is fair to assume that most developers will be versioning
their code through some repository already. This means that any
feature covering the same functionality will need to meet at
least the same standards as what is already being used. Hence,
integrating with common source control management systems is
an advantage as users know how these work.

Software dependencies: Docker documents software depen-
encies and is implemented to some degree by most of the
urveyed platforms as a way of dealing with software depen-
encies. There is however a difference between how much direct
nteraction the user has with docker. Some of the platforms allow
ore freedom in using custom docker images, while others offer
selection of already installed images. We could not find infor-
ation in the documentation for CometML about whether they
se Docker for software dependencies, but tracking of software
ependencies is supported.

Workflows: Workflows are most easily represented as graphs,
nd this is how Tensorboard support workflows. Graphs illustrat-
ng the workflows are automatically generated in Tensorboard,

https://zenodo.org
https://figshare.com
https://w3id.org
https://datacite.org
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Table 2
Check marks indicate whether a platform support one of the external systems and a dash indicates that it
does not. N/A indicates that we did not find any information about this.

Notebooks SCM Docker Tensorboard

OpenML – – ✓ –
MLflow ✓ ✓ ✓ –
Polyaxon ✓ – ✓ ✓
StudioML ✓ – ✓ ✓
Kubeflow ✓ ✓ ✓ ✓
CometML ✓ ✓ N/A ✓
ASM ✓ – ✓ ✓
GCML ✓ – ✓ ✓
Azure ML ✓ – ✓ –
Floydhub ✓ ✓ ✓ ✓
BEAT – – ✓ –
Codalab – – ✓ –
Kaggle ✓ – ✓ –
Table 3
Shows the variables that are covered through integrations with external systems.
System Variables supported

Notebooks Justification, Hypothesis, Prediction, Problem
Description, Outline and Pseudo code

SCM Code repository, Code metadata and Code license
Docker Software dependencies
Tensorboard Workflow, Results
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and this is a very good solution as it reduces manual work
and the possibilities for errors. Tensorboard is integrated with
several of the platforms, as illustrated in Table 2. Workflows
are represented in other ways as well, and there is a variety in
how this feature is implemented. Toolchains that is a part of
the BEAT-platform represent workflows as block diagrams that
have to be manually specified by the users. Text is also used
for specifying Workflows in OpenML and CometML, and it is
generated automatically. However, this requires deeper insight
into the how the framework operates, and often the text output
was massive and almost impossible to interpret. Execution traces
possible to preserve as default for the majority of the platforms.
Amazon Cloudwatch and Google Stackdriver are examples of
more advanced implementations of execution traces that allows
for monitoring and alerts.

Data repositories: None of the surveyed platforms integrate
ith dedicated data repositories. Data is typically stored on
ervers or on cloud storage that are not intended for sharing data.
nly Floydhub, BEAT, Codalab and Kaggle implement data sharing
eatures.

Hardware specifications: The support for hardware specifi-
cation is tied to the features provided by the cloud computing
platforms. Kaggle, Floydhub and Codalab offers their own already
configured machines. The hardware specification can be found
within the appropriate systems documentation. Among these,
Floydhub is the closest to a satisfactory solution, with multiple
hardware options, and documentation that makes it relatively
easy to pin down the specifications. We would still argue that
the support is partial, as the information should be more detailed.
Polyaxon, Kubeflow, Azure and Google CML all allow the configu-
ration of clusters with Kubernetes. This is information that could
and should be added automatically, but in some cases it is not.

Experiment citation: Experiment citation is one of the vari-
ables where we see the most variance between different plat-
forms. The degree of support is largely up for interpretation, as
all the platforms that share the experiments openly support this.
Even if the private experiment can be shared with specific users
on demand, the option to openly publish is primarily what we
have looked for. There are platforms that do offer open sharing,
but still have been assigned partially support. For example in the
40
case of OpenML, this stems from citation of the experiment as
a whole requires multiple links. This might be resolved in the
future with the addition of the studies feature, which did not
work as intended when we tested it.

Table 4 shows the mean of the variables defining the factors
for each of the systems. Only five of the thirteen surveyed plat-
forms score more than zero for all the factors. Table 5 lists the
scores for each system on the three metrics that were defined
above. The support for the data factor has a particularly large
impact on the total score of R1 and R2, as so many systems lack
this.

Fig. 2 shows a scatter plot where each point refers to a plat-
form with the R1F score plotted on the x-axis and the R2F score
on the y-axis. The size of the point is scaled according to the R3F
core. There are two main clusters, where the three platforms that
ave been developed explicitly for enabling reproducibility be-
ong to the cluster to the top right together with Kaggle. This clus-
er represent the leaders while the cluster down and left contains
he generalist platforms that have not been developed to support
eproducible experiments. They still lack lots of functionality to
ully support reproducible experiments. OpenML is located alone
etween the two clusters; it would have been among the leading
latforms to the upper right if it had integrated with a source
ontrol management system and a notebook.

.4. Discussion of survey results

The heat map shows that the machine learning platforms
learly support running experiments, as most of them support
r partially support most variables comprising the factor exper-
ment. Most of these systems also support the factor method
o some degree, but this is typically through integration with
otebooks. Hence, this factor is mostly partially supported. Only
penML, Floydhub, BEAT, CodaLab and Kaggle of the machine
earning systems support the factor Data.

What is striking is that the platforms that have the most
sers, such as the offerings by Amazon, Google and Microsoft,
ack support for reproducibility. However, making sure the results
f experiments are reproducible is something that should be
n important aspect of machine learning systems developed for
he industry and not only for academia. Code very often change



O.E. Gundersen, S. Shamsaliei and R.J. Isdahl Future Generation Computer Systems 126 (2022) 34–47
Table 4
Mean of the variables over every category for each system.
Platform Experiment Method Data

OpenML 0.25 0.17 0.75
MLflow 0.42 0.58 0.00
Polyaxon 0.38 0.58 0.00
StudioML 0.33 0.58 0.00
Kubeflow 0.50 0.58 0.00
CometML 0.67 0.58 0.00
Amazon SM 0.29 0.58 0.00
Google CML 0.33 0.50 0.00
Azure ML 0.42 0.58 0.00
Floydhub 0.71 0.50 0.75
BEAT 0.71 0.50 0.75
Codalab 0.67 0.50 0.75
Kaggle 0.63 0.50 0.75
Table 5
Reproducibility metric scores for the 13 platforms.
Platform R1F R2F R3F

OpenML 0.39 0.46 0.17
MLflow 0.33 0.29 0.58
Polyaxon 0.32 0.29 0.58
StudioML 0.31 0.29 0.58
Kubeflow 0.36 0.29 0.58
CometML 0.42 0.29 0.58
Amazon SM 0.29 0.29 0.58
Google CML 0.28 0.25 0.50
Azure ML 0.33 0.29 0.58
Floydhub 0.65 0.63 0.50
BEAT 0.65 0.63 0.50
Codalab 0.64 0.63 0.50
Kaggle 0.63 0.63 0.50
Fig. 2. Plot of platforms where R1 score is on the x-axis, R2 score is on the y-axis and R3 is represented by size.
41
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hands in the industry while this is not necessarily the case for
researchers. It is not necessarily the same person who creates a
machine learning model who will deploy it and later maintain
it. Companies do not work on static data sets, but their data
sets typically changes all the time. Also, performance of machine
learning models often have a direct correlation to the earnings of
a company. Good software development practices are important
for industry, also when it comes to machine learning systems, as
these are considered as the high interest credit cards of software
development [33].

There are many challenges tied to implementing integrated
ystems that support reproducibility. The field of AI utilizes many
ifferent software tools, which can be difficult to provide up
o date support for. There is a large diversity in programming
anguages and data sets, and results can vary from the smallest
hange in experimental setup as demonstrated by Hong et al. [8].

.5. Conclusion of survey

Based on the results of this survey, BEAT and Floydhub sup-
orts reproducible machine learning experiments the best as they
ave the highest R1F scores at 0.65. Codalab and Kaggle follow
losely with scores of 0.64 and 0.63 respectively. The commercial
achine learning platforms developed by Amazon, Google and
icrosoft that have the most users do not compare well with
cores 0.29, 0.28 and 0.33 respectively. This means that most
xperiments are not reproducible unless special care is taken.

. The reproducibility of digits classification

In this section, we investigate the reproducibility of a machine
earning experiment when it is executed on different machine
earning platforms. Here, our main goal is to find out whether
he results are the same when the exact same experiment is
xecuted on different machine learning platforms. The machine
earning platforms run as services in the cloud, so we do not
ontrol the hardware, compiler settings or the operating systems
f the environment in which the experiments are executed. This
s how most machine learning experiments are conducted for
ost researchers and practitioners. We will analyze the results

n four different settings where we vary between fixing and not
ixing the seeds for the pseudo-random number generator and
hen executing the experiment on either the CPU and GPU.
ur secondary goal is to find out whether a variation in results
ill affect any conclusions we can draw from the evaluations of
esults conducted on different machine learning platforms. The
ull hypothesis is that we will get the exact same results on all
xperiments. However, given what we know about how floating
oint calculations affect weather simulations [8], how running
xperiments on the GPU affects the determinism of results [9] and
ow the stochasticity of modern machine learning techniques,
uch as deep neural networks, affect the results [7], we do not
redict the results to be exactly the same. Thus, we predict the
ull hypothesis to be rejected. This means that we do not expect
he results to be outcome reproducible. We do however expect
he experiments to be analysis reproducible [10], meaning that
lthough each experiment produce different outcomes, perform-
ng the same analysis on the outcomes will still lead to the same
onclusions.

.1. Experiment methodology

The task is to classify images of handwritten digits from the
NIST dataset.20 The MNIST dataset consists of 60,000 28 × 28

20 http://yann.lecun.com/exdb/mnist/
42
grayscale images of handwritten digits along with a test set of
10,000 images. It is provided by many classification libraries, such
as Keras [34], as one of several standard datasets to evaluate
algorithms on. We train a simple and standard convolutional
neural network (CNN) as the classifier. It easily reaches a classifi-
cation error (misclassified instances divided by the total number
of instances multiplied by 100) on the test set as low as 1%.
Interpreted in this setting, the null hypothesis is that all images
are classified as the same class independent of which machine
learning platforms the experiment is conducted on.

We chose the machine learning platforms to compare based
on their ranking in the survey, and we chose to conduct this ex-
periment on the five highest scoring platforms (BEAT, Floydhub,
Kaggle, CodaLab and CometML). However, after quite some trial
and error, we decided to drop BEAT from the experiment, as we
were not able to run the experiment on the platform. We did not
add a new platform for the reproducibility experiment.

As we varied the configurations between fixing the random
seed and not fixing it and we conducting them both on the CPU
and the GPU, we had 16 different configurations in total (4 plat-
forms with 4 configurations each). For each of the configurations
we trained the deep convolutional network with the training set
to perform the classification task on the test set five times. In
total the classification task was performed 80 times using the
same training and test datasets. Every time we performed the
classification task, we classified each of the 10,000 images in the
test set. This means that we have classified each image in the test
set five times for each configuration. For each configuration, the
class that was given to an image was recorded every time the
experiment was executed.

The experiment was implemented using TensorFlow 1.9, but
after having conducted the whole experiment and analyzed the
results, we found that there had to be a bug in the software.
Therefore, we conducted the experiment on TensorFlow 2.4 as
well to see if the bug was fixed and how much it had affected
the results. All code implementing the experiments are shared on
Zenodo [35].

5.2. Empirical results

The results are presented in one table and three figures, and
the ANOVA is shared with the code in the supplementary mate-
rials [35]. Table 6 lists the mean error rate with 95% confidence
interval. Fig. 3 and 4 illustrate the number of models that mis-
classify the images and how many different classes the models
misclassify the images as for TensorFlow version 1.9 and 2.4 while
Fig. 5 shows how the different platforms rank on the different
configurations.

The following observations are made:

Mean classification error: As can be seen in Table 6, fixing the
random seed on TensorFLow 2.4 leads to the expected out-
come, that is no variation of the results when conducting
the experiment on CPU. The exception is Kaggle where one
of the experiments switches more or less half of the time
between 86 and 87 misclassifications. We tried several
times, but always with the same result. Comparing results
between platforms, processing units and TensorFlow ver-
sions not taking CPU fixed seed into account, examples can
be found where there is significant differences in results
between the configurations.

Analysis of variation: Even though the mean classification error
and standard deviation vary for all the experiments, they
could be drawn from populations with the same mean
values. To evaluate this, we conducted both a one-way and
a two-way analysis of variance (ANOVA) with platform and

http://yann.lecun.com/exdb/mnist/
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Fig. 3. illustration of the results of Tensorflow 1.9.
Fig. 4. illustration of the results of Tensorflow 2.4.
A

TensorFlow version as the independent variables (factors)
and the number of misclassifications as the dependent
variable. We found that the mean classification error is
significantly higher for TensorFlow version 1.9 when ex-
periments were conducted on GPU with fixed random seed
(p ≪ 0.001 by two-way ANOVA). Fixing the seed on
GPU does not have the same effect on TensorFlow version
2.4 though. Also, the classification error is dependent on
which platform the experiment is conducted on when not
43
fixing the seed on the CPU for both versions of TensorFlow
(p < 0.01 by a two-way ANOVA). A one-way ANOVA on
the separate versions of TensorFlow showed that it is the
1.9 version that contributes most to this as the classifica-
tion error varies most between (p < 0.01 by a one-way
ANOVA).

nalysis of the misclassification: Fig. 3(a) and 4(a) plot how
many different classes an image is classified as on the dif-
ferent platforms for TensorFlow 1.9 and 2.4, respectively.
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Table 6
Mean classification error and 95% confidence interval for the experiments conducted on the different machine learning platforms
and for the two TensorFlow versions.
TensorFlow Platform CPU GPU

version vendor Fixed Random Fixed Random

1.9

CometML 1.02 ± 0.05 0.93 ± 0.03 1.04 ± 0.03 0.99 ± 0.04
Floydhub 1.02 ± 0.02 0.96 ± 0.06 1.02 ± 0.04 0.95 ± 0.07
Codalab 1.10 ± 0.00 1.13 ± 0.08 1.01 ± 0.03 0.90 ± 0.04
Kaggle 1.01 ± 0.07 0.93 ± 0.02 1.06 ± 0.03 0.97 ± 0.04
ALL 1.04 ± 0.02 1.00 ± 0.05 1.04 ± 0.02 0.95 ± 0.03

2.4

CometML 0.93 ± 0.00 1.00 ± 0.03 0.92 ± 0.02 1.02 ± 0.08
Floydhub 0.93 ± 0.00 0.94 ± 0.07 0.94 ± 0.01 0.96 ± 0.03
Codalab 0.90 ± 0.00 0.96 ± 0.08 0.95 ± 0.03 0.95 ± 0.10
Kaggle 0.86 ± 0.01 0.92 ± 0.05 0.92 ± 0.03 0.94 ± 0.05
ALL 0.91 ± 0.01 0.95 ± 0.03 0.94 ± 0.01 0.97 ± 0.04
Fig. 5. Ranking of platforms based on the performance on classification task.

As each image is classified five times on each platform
with a specific configuration, at most, an image could be
classified as five different classes. The first observation is
that when models fail to classify correctly, they mostly
agree on which wrong class the images belong to. There
are only a few examples of four classes and no examples
of five. Two different classes is the most dominant outcome
when the models disagree. Fig. 3(b) and 4(b) plot how
many of the models misclassify a given image when it
is misclassified for TensorFlow 1.9 and 2.4, respectively.
The figures illustrate that when fixing seeds more models
misclassify than when not fixing the seed. Five models
being wrong is the most dominant outcome when seeds
are fixed. When seeds are fixed on CPU for TensorFlow 2.4,
all models are wrong and all models agree on the same
wrong class. This is the expected behavior when fixing
seeds. The exception is Kaggle, as mentioned above. Not
fixing seeds leads to a more even distribution of how many
images are misclassified, see Fig. 3(b) and 4(b) (right).

anking the platforms: Fig. 5 shows the ranking of the plat-
forms based on the classification error. The platform with
the lowest error is ranked as 1. In case of ties, lower range
in confidence interval wins. For TensorFlow 1.9, none of
the platforms are consistently best for both CPU and GPU.
Kaggle performs best and CodaLab performs worst on CPU,
while the ranking is almost turned on the head for the
GPU performance. This changes for TensorFlow 2.4, where
Kaggle has the best result for CPU and for GPU when
random seed is not fixed. When seeds are fixed on GPU,
Kaggle is second best. Taking both versions of TensorFlow
into account, the pattern is not very clear.

.3. Discussion of empirical results

We were surprised to see that the results varied when con-
ucting the experiment on CPU and fixing seed for the pseudoran-

om number generator, even though best practices were followed

44
and the seed was fixed for the python environment, the built-in
pseudo random generator in python, numpy, Keras and for the
layers in the CNN that were configured with randomness, such as
dropouts. Note that the training and test sets were kept the same
for of all experiments. However, after investigating this surprising
result, we found that the order that images were being fed to
the models during training differed between epochs even though
the random seeds were fixed. This was due to the fact that Keras
library shuffled the training set by default, and it was not possible
to configure it not to.21 This is a bug that was fixed in the later
version, as can be seen from the results produced by TensorFlow
2.4, although there still is a small variation in the results produced
by Kaggle. Strangely, the bug seemed to be nonexistent in Codalab
with TensorFlow 1.9. We were not surprised that the results vary
on the GPU as it performs parallel processing that leads to some
randomness [9].

Initializing the weights of a neural network can be viewed as
purchasing a ticket in a lottery where one ticket is winning [36].
The winning ticket in the neural network initialization lottery is
the initialization that leads to the best possible performance on
the testset by the fully trained neural network. It follows from this
that there are many non-winning tickets. However, in contrast to
an ordinary lottery, the initialization lottery has different degrees
of losers. There are tickets that lose the most, and these are
the biggest losers. They have the worst possible performance on
the testset. The rest of the tickets lie somewhere between the
winning ticket and the biggest loser. We used the same seed
for all experiments where seeds were fixed. For the TensorFlow
1.9 results, the fixed seed in our experiment might be closer to
the biggest loser than the winning ticket. The mean classification
error is higher when fixing the seed compared to not fixing it
(same platform and same processing unit). For TensorFlow 2.4, it
is the exact opposite. Frankle and Carbin [36] establish that it is
architecture and data in combination that decides whether a seed
has good or poor performance. Our results seem to suggest that
ancillary software has a role to play as well, as the results changes
between the two versions of TensorFlow (not processing unit as
the results keep the same for GPU and CPU on the same version of
TensorFlow). Our experiments are not able to decide whether the
change is caused by the Keras bug or something else that has been
changed between the two versions. For example, TensorFlow 2
changed from graph execution that was used in TensorFlow 1 to
eager execution. Others have noted changes in results as well.22

5.4. Conclusion of the reproducibility experiment

The following conclusions are suggested by the results:

21 https://keras.io/api/models/model_training_apis
22 https://stackoverflow.com/questions/58441514/why-is-tensorflow-2-
much-slower-than-tensorflow-1

https://keras.io/api/models/model_training_apis
https://stackoverflow.com/questions/58441514/why-is-tensorflow-2-much-slower-than-tensorflow-1
https://stackoverflow.com/questions/58441514/why-is-tensorflow-2-much-slower-than-tensorflow-1


O.E. Gundersen, S. Shamsaliei and R.J. Isdahl Future Generation Computer Systems 126 (2022) 34–47

a
F
s
s
r
E
i
c
T
t
c

5

i
o
l
i
t
i
a
r
p
n
a
n
o
m

a
h
b
i

6

c
f
l
l
l
s
t
e

t
p
d
t
d
t
a
T
f
o
f
o
p
h
e
t
e
m
H
i
p

o
t
c
T
f
i
T
o
h
t
s
m

a
a
t
e
r
s
i
c
r
I
s

o
i

1. Platform: Results can differ significantly between plat-
forms even though the experiments are configured exactly
the same in all other aspects. The results produced by
Codalab(1.9,CPU,r) and CometML(1.9,CPU,r) is an example
of this.

2. Processing unit: Results can differ significantly between
processing units even though the experiments are con-
figured exactly the same in all other aspects. The results
produced Codalab(1.9,CPU,r) and Codalab(1.9,GPU,r) is an
example of this.

3. Software versions: Results can differ significantly between
different software versions even though the experiments
are configured exactly the same in all other aspects. The re-
sults produced by CometML(1.9,CPU,r) and CometML
(2.4,CPU,r) is an example of this.

4. Software bugs: A seemingly minor software bug can sig-
nificantly change the results. This is exemplified by the
average error between TensorFlow versions both for CPU
and GPU when random seed is fixed (ALL in Table 6).

5. Software complexity: Fixing the random seeds to produce
outcome reproducible results is not easy, as the random
seed has to be set so many different places.

6. Drawing conclusions: When comparing the performance
of two or more algorithms, the experiment is required to be
reproduced in different laboratories for conclusive results.
Ranking of the results shows that there is no machine
learning platform that consistently performs best. How-
ever, as the different laboratories can produce seemingly
statistically significant results without there being any dif-
ference in the experiment except for hardware and ancil-
lary software, more laboratories are needed for conclusive
results.

Gundersen [10] distinguishes between three degrees of re-
producibility. We have shown that classifying images using a
CNN on the same computer does not lead to the same out-
comes and hence the results are not outcome reproducible for
ll experiments except CodaLab with fixed random seed on CPU.
urthermore, the results vary so much that false, but statistically
ignificant conclusions can be drawn when performing the exact
ame analysis on the outcomes. Hence, the results are not analysis
eproducible. We have not investigated inference reproducibility.
ven when results are statistically significant, small effect sizes
n machine learning experiments should lead to caution when
oncluding about which algorithms have the best performance.
he experiments reported here support Ioannidis [37] who states
hat small effect sizes in the order of 1–1.5% often lead to false
onclusions.

.5. Evaluation

Are these conclusions valid? The main threat to the validity
s that the experiment was only conducted five times for each
f the 16 configurations on the two version of TensorFlow. A
arger study with more runs per experiment configuration would
ncrease the trust in the results. While more runs could change
he mean and the range around the mean for the 95% confidence
nterval, it would not change the fact that changing hardware
nd ancillary software will result in different outcomes. Hence,
esults would still not be outcome reproducible. Also, the ex-
eriment is only conducted using a fairly simple convolutional
eural network architecture. The conclusions are based on the
ssumption that when results vary with a fairly simple neural
etwork architecture, they will also vary when the complexity
f the architecture grows. This research does not provide infor-
ation on whether increased complexity of the neural network
45
rchitecture would lead to more or less variation. Finally, as we
ad no insights into the actual hardware and ancillary software
eing used to conduct the experiment, we cannot provided any
nformation of how much one or the other affected the results.

. Conclusion

First, we defined a framework for assessing how well ma-
hine learning platforms support reproducibility and used this
ramework to survey thirteen commercial and academic machine
earning platforms. Then, we executed the exact same machine
earning experiment on a selection of four of these machine
earning platforms and compared the results. The results of our
urvey and reproducibility experiment illustrate at least some of
he many barriers that make reproducibility so hard to achieve
ven when experiments are fully conducted on computers.
Even though there exist good solutions for covering each of

he variables described by the framework for assessing the re-
roducibility of machine learning platforms, as described in Gun-
ersen et al. [31], these solutions are not provided to users of
he assessed machine learning platforms. Hence, the full repro-
ucibility potential is not enabled for experiments conducted on
he platforms we surveyed. Researchers have to take extra steps
nd put extra effort into making their research reproducible.
herefore, providing such features to the machine learning plat-
orms is an important step for increasing the reproducibility
f machine learning experiments. Although some of the plat-
orms are better at supporting reproducibility, these are not the
nes with the most users. Improving the reproducibility sup-
ort on the platforms provided by the technology giants will
ave the highest impact on reproducibility of machine learning
xperiments. Providing these features will ease the documenta-
ion process when conducting machine learning experiments and
nable provenance, transparency and sharing of the exact experi-
ent conducted including textual documentation, code and data.
owever, contrary to popular belief, this will not ensure that
ndependent investigators will be able to reproduce the results
roduced in the original experiment.
The reproducibility experiment conducted in the second part

f this research paper illustrates this exact issue. The issue is
hat the actual hardware and ancillary software that are used to
onduct the experiment affect the outcome of the experiment.
his issue has received much less attention. In some cases, the dif-
erence in outcomes is so large that the wrong conclusion can be
nferred based on the same analysis at the 95% confidence level.
his is especially a problem with low effect sizes in the range
f 1–1.5%, as the variation in outcomes caused by differences in
ardware and ancillary software is on the lower side — at least in
he experiment we conducted. Therefore, results with low effect
izes cannot be fully trusted unless the results are reproduced in
any hardware and software configurations.
Concluding which machine learning algorithm performs better

t a given task means selecting the best implementation of the
lgorithms and the best hyperparameter settings for each of
hem for the experiment. What our experiment shows is that the
xperiment is required to be reproduced in different laborato-
ies for conclusive results, as different laboratories can produce
eemingly statistically significant results without any difference
n the experiment except for hardware and ancillary software. All
omparative studies that are not reproduced in several laborato-
ies must be considered exploratory if the effect sizes are small.
n order to be considered confirmatory, studies with small effect
izes must be reproduced in several laboratories.
So, in conclusion, do machine learning platforms provide out-

f-the-box reproducibility? The answer is no. More development
s still needed, and in the end machine learning platforms can
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only ensure a high reproducibility potential. Outcome repro-
ducibility [10] is not necessarily guaranteed even when random
seeds are fixed, as the hardware and ancillary software will vary
over time. Hardware wears out and must be changed, and new
versions of ancillary software are released and deployed. For
some algorithms such changes will affect the outcomes produced
when executing them. However, as long as the effect size is large
enough, some variation in the outcomes will not change the
conclusion.
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