This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3080329, IEEE Access

IEEE Access

Multidisciplinary * Rapid Review * Open Access Joumal

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

VAIM: Verifiable Anonymous Identity
Management for Human-centric Security
and Privacy in the Internet of Things

GYEONGUJIN RA', TAEHOON KIM2, AND IMYEONG LEE?®

' Department of Software Convergence, Soonchunhyang University, Asan, 31538, South Korea (e-mail: rababi @sch.ac kr)
2Deparlmem of Software Convergence, Soonchunhyang University, Asan, 31538, South Korea (e-mail: 20134101 @sch.ac.kr)

3DE:parlmE:nt of Software Convergence, Soonchunhyang University, Asan, 31538, South Korea

Corresponding author: Imyeong Lee (e-mail: Imylee @sch.ac.kr).

This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the High-Potential Individuals Global Training
Program(2020-0-01596) supervised by the IITP(Institute for Information communications Technology Planning Evaluation) and the

BK21 FOUR (Fostering Outstanding Universities for Research)(No. :5199990914048) and the Soonchunhyang University Research Fund.

ABSTRACT The human internet of things (HIoT) is a promising trend that adopts a user-centered
vision to improve life quality by interacting with heterogeneous physical and virtual entities and the
internet. However, It refers to exchanging contextual data between collaborative entities that raise privacy
concerns. Emerging blockchain technology allows a digital identity management system (IDM) to be
deployed in it, which largely alleviates the problems caused by the centralized third party. Still, its
inherent transparency and lack of privacy pose a considerable challenge to IDM. We propose verifiable
anonymous identity management (VAIM) connecting privacy channels between users by constructing
identity verification and access control provisioning via user-centric decisions and an anonymous identity
management system. This work has the following contributions: (1) We establish a novel IDM system by
analyzing the existing scheme. In this regard, we improve the traditional claim identity model in blockchain
by implementing zero-knowledge proof (ZKP) algorithms to achieve identity unlinkability, essentially
preventing the disclosure of attribute ownership. (2) We implement a system that includes blind ordered
multi-signature (BOMS) protocol, which allows users to processes efficiently and trusts the verification of
anonymous transactions. (3) Finally, specific ZKP-based algorithm (commonly used practical ZKP such
as Camenisch and Lysyanskaya signature (CL-Signature) and zero-knowledge succinct non-interactive
argument of knowledge (ZK-SANRKS)) implementation and various environment performance evaluation
and security analysis show that our scheme achieves efficient privacy protection and a broader application
scope compared with the prior model. To the best of our knowledge, existing zero-knowledge proof-based
IDM has not developed or compared each scheme before.

INDEX TERMS Anonymous identity management, Human-centric internet of things, membership service

provider, privacy, verifiable credential.

l. INTRODUCTION

The internet of things (IoT) is dominated by massive amounts
of content-oriented traffic, intensive interactions between nu-
merous people, and heterogeneous communication between
hosts and smart entities [1]. It requires millions of services
with stringent real-time requirements and flexibility to con-
nect everyone and everything. Nevertheless, consumption
of IoT products and services remains above expectations
[2]. Users are the essential entities in IoT systems because
they are both data sources and consumers. Therefore, the

VOLUME 4, 2016

human-centric internet of things (HIoT) is a promising trend
that adopts a user-centered vision to improve life quality by
interacting with heterogeneous physical and virtual entities
and the internet. Miranda et al. [3] defined the internet of
people (IoP) as easily integrated into the IoT and bringing
the IoT closer to people to utilize its benefits fully. People as a
service (PeaaS; hereafter, PS) is a mobile-centric computing
model that can generate, maintain, and securely provide
users’ social-logical profiles as a service to third parties. PS
relies on smartphones to emphasize smartphone functionality

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

IEEE Access

10.1109/ACCESS.2021.3080329, IEEE Access

Gyeongjin Ra et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

and infer and share sociological profiles.

The advantage of this is that the continuous supply of
data from the community provides the big data team[not
understood; please clarify] [4] and increases the amount
and diversity of contextual data, improving service intel-
ligence and adaptability to the contextual needs of users
[4]. However, according to a previous survey [5], 43% of
users said they were afraid to use their data. In addition,
18% found that the connected entities did not work, and
8% felt unreliable. A second survey [6] indicated that 33%
of users have concerns regarding what is being done with
the data collected by IoT entities, 19% believe that these
entities quickly become outdated, and 17% think that they
are not very efficient or reliable. However, the medical
ecosystem is becoming global, and demand is increasing
rapidly. Therefore, the two main issues of trust and privacy
are significant. Privacy concerns are related to the protection
of users’ data. The vast amounts of data collected by sensors
and connected entities are typically stored and exposed in the
cloud. It refers to the exchange of contextual data between
collaborative things that raise privacy concerns. Users should
be able to control and choose whether to grant access to
their information. The security solution manages through an
intelligent identity access management (IAM) mechanism
that includes user identification and data attribute elements.
These systems aim to achieve privacy through user-centered
decisions, control access to information generated from user
devices, and provide awareness of the use of data provided
to third parties. At the same time, data that can be identified
through anonymization technology are hidden. We can con-
sider the following IAM implementation from the perspective
of the awareness of HIoT discussed previously [3].

Considerations:

o The need for a human-centric perspective on digital con-
senting: Many people who engage in online activities
are aware that their personal data are being collected
and shared, but there is no evidence that this will lead
to people’s willingness to provide their personal data
[3]. Users need to improve their privacy awareness by
controlling their data and recognizing the flow of data
usage.

« Fairness matters-human-centric perspective and marginal-
ized people: End-user authorization from a human-
centered perspective should be considered a universal
approach in the design, implementation, evaluation, and
release of consent acquisition mechanisms for everyone.
Data need to provide and process through the interac-
tion between the device and an external cloud server,
convenient and with minimal user intervention. Mutual
authentication and anonymity should be enforced using
cryptographic tools.

« Enacting consent-consenting as a sociocognitive action:
A human-centered approach is needed to obtain con-
sent. To develop a basic human-centered framework for
evaluating existing consent acquisition mechanisms, we
apply blockchain’s decentralization, autonomous con-

sensus, and self-sovereignty.

We enable to find out various challenge works for men-
tioned issues and considerations. A computing device recog-
nition (CDR) algorithm for an automated and secure user
and device identification was proposed [7]-[9]. It allows
the identification of users and access to various services
offered by heterogeneous devices. At its core, the concept of
privacy technology is that various user-centric decisions are
made based on inputs received from the various sensing and
monitoring devices that make up the human-centric sensor
network (HCS-N). After that, due to single centralized errors
of monitoring devices, collusion attacks in the network, and
the absence of self-sovereignty, blockchain-based decentral-
ized identity (DID) is in the spotlight as a distributed Identity
Management (IDM). However, there are still cryptographic
factors to consider when constructing a blockchain-based
privacy system.

o Identity privacy: Privacy concerns can arise if the
blockchain contains personally identifiable information.
A single administrator of the private blockchain can
identify users and track or verify transactions. Besides,
sharing the blockchain between different business orga-
nizations can generate serious identity privacy concerns.
In the blockchain, identity behavior can inadvertently
disclose or leak information to other organizations that
perform transactions on the same blockchain [10].

o Self-sovereignty through access control: Access con-
trol in a blockchain with shared permissions (read
access and write access) is critical to the value of
the blockchain. We prioritize infrastructure and service
security over the privacy of entities using the infras-
tructure. A new approach needs beyond the traditional
enterprise access control system, which establishes that
individuals control access to their information and man-
age proactive data to improve privacy. [11].

o Selective disclosure and transaction privacy: The
blockchain’s ledger poses a potential threat concerning
inferring or re-identifying its identity [12]. However,
it is inefficient to provide confidentiality throughout
the message. Also, users need to disclose the identities
associated with the transaction in question (e.g., for anti-
money laundering (AML) compliance) while protect-
ing the transaction’s privacy in a non-connected form.
Therefore, personal information is stored separately.
Sub-certificates are issued through selective encryption,
such that individuals transact through multiple real iden-
tities and non-connectable transaction certificates on
the blockchain. Individuals give identities and uncon-
nectable transactions on the blockchain but claim to be
the correct user and can later disclose their identities
on the blockchain, which are granted the same sharing
rights (e.g., in the case of legal issues) [13].

This paper is the ordered multi-signature [14] and the
Identity Mixer system based on the blockchain DID and
hyperledger indy system [15]-[17]. Also, It is based on the

VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3080329, IEEE Access

IEEE Access

Gyeongjin Ra et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

zero-knowledge succinct non-interactive argument of knowl-
edge (ZK-SNARK(Ss) and circuit and quadratic arithmetic pro-
gram (QAP) polynomial scheme [18]. These were discussed
previously in-depth [19]. This paper proposes the verifiable
anonymous identity access management (VAIM) system that
considering accuracy and privacy trade-off. Here, we apply
and extend previous work [15] dealing with identity and
privacy in the blockchain. The paper is structured as follows.
In Section 2, we research related work state-of-arts identity
and privacy in the blockchain. In Section 3, we describe the
system security requirements and the underlying technology
for VAIM. In Section 4, we explain the VAIM architecture
and protocol. The design of VAIM makes it possible to con-
struct a permissioned blockchain with identity and user man-
agement through IAM on various blockchains to protect user
privacy independently of the underlying blockchain system.
In Section 5, we develop the VAIM execution environment
through hyperledger fabric (HLF). In Section 6, We analyze
our system for security and efficiency through comparisons
of this work with traditional schemes based on Sections 2 and
3 requirements. Finally, we present a summary of our results
and future goals in section 7.

Il. RELATED WORK

We look at the related works of IDM, which is the essential
secure gateway to manage data in HIoT. We find out ZK-
SNAKRs and Camenisch, and Lysyanskaya signature (CL-
Signature), which are commonly used in zero-knowledge
proof (ZKP) based IDM. It supports our insights into human-
centric IDM security and system design goals.

A. IDENTITY MANAGEMENT

Generally, IDM is applied anonymous technology to protect
user attributes because of identifies and manages users. We
look through various techniques Table 1 classified according
to the anonymity level to ensure privacy in IDM.

1) Anonymity Level 0 3-based IDM

The existing public key infrastructure (PKI) system binds the
public key and the user’s identification information to use the
public key [20]. Therefore, it does not provide anonymity.
Bitcoin [21] is a pseudonym system that uses the hashed
value of the public key as an address and provides anonymity.
However, if the same address is used repeatedly, the user’s
behavior can be tracked. Therefore, the identifier’s connec-
tion is terminated using multiple certificates or various same
addresses. However, the user needs to use various keys for
authentication. Group signature [22] cancels a single attribute
by using a single group key generated by the manager. Still,
there is a problem with critical group updates and the group
manager’s overhead.

2) Anonymity Level 4 5 based IDM

The anonymous credential system (ACS) [23] securely stores
registration and private keys through a trusted third party
(TTP) or trusted platform module (TPM) and terminates the

VOLUME 4, 2016

user’s connectivity by deriving sub-attributes. Specifically,
direct anonymous attestation (DAA) [24] is a remote anony-
mous attestation protocol based on group signing and zero-
knowledge attestation. It is based on three entities and two
different steps. In DAA and ACS, TTP must provide high
availability while securing all transactions. Also, collusion
between the certification authority (CA) and the verifier
may violate privacy. Shin et al. proposed a modified re-
mote anonymous authentication protocol for use in mobile
environments [25]. Anonymous authentication was proposed
using the CL-Signature. Unlike the group signature scheme,
DAA does not provide a signature open operation for pri-
vacy protection [26]. Thomas et al. proposed a DAA-based
enhanced privacy identity (EPID) scheme [15]. Therefore,
using CL-Signature ZKP and group signature is the same, but
Thomas et al. used the value of CL-Signature as group public
key to issue private keys to group members. It efficiently
executes multiple issuance and verification of user’s private
keys through a group public key. ChainAnchor provides the
ability to disconnect transactions belonging to entities in the
blockchain. In the public blockchain, it is possible to provide
the same functions as the permissioned blockchain in a hy-
brid form. However, in CL-Signature-based DA A, the verifier
must calculate the proof’s verification through the pairing op-
eration. It has computational overhead when the user verifies
the proof after receiving the property from the upper TTP in
the form of proof. To this end, Z-Cash [27], Hawk [28], [29]
use ZKPs based on blockchain and arithmetic circuits so that
verifiers can perform verification very efficiently. ING Bank
described how to implement zero-knowledge range proof
(ZKRP) protocol in Ethereum [30]. Therefore, ZKRP can
be applied to many types of decentralized applications with
numeric intervals, and other requirements, such as e-voting
systems and e-auction systems [19], [31].

TABLE 1. Comparison of anonymity level for privacy in authentication

Anonymity level Anonymous authentication techniques
PKI-digital signature based authentication
Pseudonym based anonymous authentication
Multilevel authentication

Group signature based authentication

DAA, ACS

Zero knowledge certificate, certificate based ring

signature

N AW = O

B. ZK-SNARKS & CL-SIGNATURE

ZK-SNARKSs and CL-Signature are a representative scheme
that provides strong anonymity in IDM. ZK-SNARKSs
generate concise proofs that verifiers can efficiently ver-
ify proofs. Unlike standard non-interactive zero-knowledge
proof (NIZK), SNARK guarantees knowledge soundness,
a powerful concept compared to standard soundness. The
knowledge soundness of ZK-SNARKSs is not a black box and
is achieved under the assumption of knowledge. The most
efficient ZK-SNARKSs to date have been proposed by Groth
[32] at Eurocrypt 2016.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

IEEE Access

10.1109/ACCESS.2021.3080329, IEEE Access

Gyeongjin Ra et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 2. ZK-SNARKs and CL-Signature performance comparison

Proof/sig

Proof/sig

. . Verification | Verification
scheme gerneration gerneration .
. cost time (s)
cost time (s)

Groth 16 41E 0.05468 3P+ E 0.14
Camenish,

Lysyan- 2F 0.02734 4P+ E 0.18211

skay

E : exponentiations (0.01367 s), P : Pairing (0.04211 s)

On the other hand, CL-Signature can prove that the prover
integrity provides the calculated value required by the verifier
without revealing a message. CL-Signature was proposed in
2002 by Camenisch, and Lysyanskaya [33]. This product also
works in bilinear groups. The proof of CL-Signature consists
of 1 element of G; and one element of G5, and the verifier
must confirm one equation where three pairs dominate.

The following Table 2 shows the estimated time required
to execute the theoretical calculation of ZK-SNARKSs and
CL-Signature [34]. Unlike the isomorphic calculation of CL-
Signature, ZK-SNAKRs has the advantage of concise verifi-
cation by performing simple arithmetic circuit operations. It
provides efficiency in a peer-to-peer environment such as a
blockchain where multiple verification nodes exist.

In this paper, we research, implement, and analyze ZK-
SNARKSs and CL-Signature-based IDM frameworks [32],
[33].

lll. PRELIMINARY
A. BLIND ORDERED MULTI SIGNATURE

Sequential signatures provide a multi-party digital signature
scheme that allows multiple signers to sequentially gener-
ates compact fixed-length signatures, which allows signers
to prove a standard message and the order in which they
were signed [14]. Sequential signatures provide a multi-party
digital signature scheme that allows multiple signers to se-
quentially generates compact fixed-length signatures, which
allows signers to prove a standard message and the order in
which they were signed [14]. We introduce blind ordered
multi-signature (BOMS) among sequential signatures. The
user inputs the signature signed by the previous user and
outputs an ordered signature. BOMS sets with six tuples as
follows [14]:

e OPg: A parameter generation algorithm that returns
global information ¢, which can be run by a TTP or
standards body.

e OKg: A key pair generation algorithm that generates
a public key-private key pair (pk, sk) through global
parameters entered.

e BM: The user selects random integers w and r and
calculates the secret key by exponentially multiplying
1t.

e OSign: This is the signature algorithm that the user ex-
ecutes when entering the message m € {0,1}*, OM S
through the secret key sk. Verification is performed

through the public key list L = (pky,...,pk;—1) and
returns OM S 0, or L if the input is invalid.

o UBM: The user calculates the OM S value of unblind
BM using pk.

e OV f: Verification algorithm for entering public key list
(pki,...,Pky). OV f list, message m and OMS o’
returns significant bits.

B. NON-INTERACTIVE ZERO-KNOWLEDGE PROOF

ZK-SNARKSs can implement ZKP in a blockchain environ-
ment. In the case of a blockchain transaction using ZK-
SANRKS, the transaction’s validity can be notified to other
nodes other than the sending/receiving node without expos-
ing the recipient, sender, and transmission amount [25]. The
verifier learns nothing except the validity of the computation.
The proof is tiny compared to the calculation. The proofs
are generated without interaction with the verifier and are
publicly verifiable strings. Soundness is guaranteed only
against a computationally bounded prover. The proof cannot
be constructed without access to a witness [18].

o Homomorphic hidings (HH): A HH E(z) of a number
x is a function satisfying the following properties.

1) For most values of x, given that it is hard to find x.
2) Different inputs lead to different outputs, so if = # vy,
then E(x) # E(y).

3) If someone knows E(z) and FE(y), they can generate
the HH of arithmetic expressions in x and y. e.g., they
can compute E(x + y) from E(x) and E(y).

o Blind evaluation of polynomials: Blind evaluation can
be performed using HH as follows.

1) The prover sends hidings to Alice. E(1), E(s), ...,
E(s%)

2) E(P(s)) is calculated using the values transmitted in
the first step and sent to the prover. As E supports linear
combinations, the verifier can do this easily. By sending
values only hidings, the verifier cannot know about s,
and Bob cannot know about P.

o Arithmetic circuits and reduction QAP: ZK-SNARKSs
cannot be directly applied to any computational prob-
lem. Instead, it must be transformed into the correct
form so that this problem can be used. This form is
called the QAP, and it is essential to change the function
code into this form. It is another process that can be
executed along with converting the code of a function
to QAP.

For ZK-SNARKSs, we adopt the definitions from [18].

Definition 1. A relation generator RG returns a polyno-
mial time decidable relation R <+ RG(1*) given a security
parameter A\. We claim w is a witness to the statement (I/O)
¢ being in the connection for (¢,w) € R. The statement
¢ in SAVER is made up of ¢ = M U qAb for message
statements, {my, ..., m,} by M = (m4||...||my) and ¢ =
{b(+1)s - - -, &1} for arbitrary statements, with [representing
the number of statements.

VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3080329, IEEE Access

IEEE Access

Gyeongjin Ra et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

A ZK-SNARKSs is made up of four tuple [35]: Setup,
Prove, Vefify, and SimProve.

— (crs,7) < Setup(RL): returns a common reference
string crs and a simulation trapdoor 7 from a connection
R <+ RG(1*).

— 7 < Prove(ers,¢,w): returns a proof pi using a
standard reference string crs, a relation RL, a statement and
witness in the relation(¢,w) € R as inputs.

- 0/1 + Veify(crs, ¢, n): takes three inputs: a standard
reference string crs a proposition ¢ and a proof 7 and returns
0 (reject) or 1 (accept)

— 7 + SimProve(crs, T, $): returns a proof pi using a
standard reference string crs, a simulation trapdoor 7, and a
statement ¢ as inputs.

It meets the following properties: completeness, computa-
tion knowledge soundness, statistical zero-Knowledge, and
succinctness [35]:

Properties 1. Completeness: A prover with a witness will
persuade the verifier given a valid statement. For all A\ € N,
for all RL and for all (¢,w) € R,

Pri(crs,r) < Setup(RL), m +
Prove(crs, ¢,w) : Verify(ers,¢,m) =1] =1

Properties 2. Computation knowledge soundness: The
prover can not make the verifier accept a wrong statement
(¢,w) ¢ R except with some small probability. The above
definition requires the soundness error to be negligible in the
security parameter, A\. By increasing k, the soundness error
can be made arbitrarily small. If the soundness error is O
for all A\, we speak of perfect soundness. The prover must
know a witness and that this knowledge can be extracted
from the prover effectively by a knowledge extractor. Proof
of knowledge implies that for every malicious prover .4 that
generates an approving proof, there must be an extractor x 4
that outputs a legitimate witness given the same input as A.
Formally, the argument scheme IIsnark is called computa-
tionally knowledge sound if there exists a probabilistic poly-
nomial time (PPT) extractor y 4 for any PPT adversary .4, so
that IIsnark, A, x4()) is negligible function v, Advsound
Isnark, A, xa, (A),

Pr{(crs,7) + Setup(RL), (¢*,7*) + A(crs),
w <+ xa(transA) : Verify(ers,¢*,n*) =1
A(gpx,w) € R] = v(N)

Properties 3. Statistical zero-knowledge: A non-interactive
proof system (Setup, Prove, Verify) is zero-knowledge, if
there exist a simulator Sim = (Simy, Sims), such that for
all non-uniform polynomial time adversary A,

Pr{(crsSetup(RL) : APTOUe(CTS"")(CTS) =1]

. ASimPTove(crs,T,.,.) (

= Pr(ers,T)Simy crs) = 1]

Properties 4. Succinct: There exists a fixed polynomial
p(...) independent of R such that for every large enough
security parameter A € N, every time bound 7" € N and
every instance y = (M, z,t) such that t <=T.

VOLUME 4, 2016

IV. VIAM FRAMEWORK

We propose human-centric IDM frameworks based on
blockchain and ZKP. First of all, blockchain such as ledger
provides verifiable public trust. Also, BOMS provides or-
dered verification, for which each participant has account-
ability. Second of all, data access is controlled by the pri-
vate key, ensuring self-sovereign privacy. Finally, It provides
strong anonymity through ZKP-based certificates. Users can
use this system to ensure their anonymity and use the web’s
services.

A. SYSTEM REQUIREMENTS
The system requires the following characteristics:

o Privacy: Users legitimately request the issuance of qual-
ifications through the blockchain, present them and se-
lectively disclose their information through ZKP.

« Valid public verification possibility: Users and verifiers
can repeatedly verify the validity of information at any
time through the blockchain.

e Zero-knowledge: The verifier cannot know the user’s
information other than the validity of the arguments of
ZKP.

o Anonymity: Through the anonymous entitlement sys-
tem, a user generates a subset of attributes to revoke user
attributes connected offline.

o Conditional disclosure and traceability: When a prob-
lem occurs, the user reveals their own identity to prove
their integrity, or the certificate issuer and verifier track
malicious users to improve the internal reliability of the
system.

o Based on the non-polynomial problem: Strong Rivest,
Shamir, and Adleman (RSA) assumption [11] and de-
cisional Diffie-Hellman assumption, so it is secure in
random oracle model.

B. SYSTEM MODEL
1) Entities

o User: As an information provider, this is a subject that
requests the issuance of credentials.

o Verification server: Determines the network execution
qualification by checking the validity of the information
of the entities participating in the blockchain.

o System management: As the system administrator in-
side the blockchain, all subjects generate a key pair and
issue certificates for use in the blockchain network.

o Entry server: Performs an interactive network of internal
operations of the subject’s anonymous credential verifi-
cation protocol and external result values.

« root CA: Stores user attributes and distributes public key
pairs and user attribute certificates. Tokens are generated
and distributed to the issuing server and users.

o Intermediate CA (I-CA): Distributes a public key pair
and anonymous transaction certificate. It generates the
verification key and the verification key of the verifier
through which the user’s zero-knowledge verification
and anonymous certification are generated.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

IEEE Access

10.1109/ACCESS.2021.3080329, IEEE Access

Gyeongjin Ra et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 3. System parameters

Symbol Quantity
PK, Public key of *
SK« Private key of *
PRK, Key for generation proof of *
VK, Key for verification proof of *
ws Credentials of *, secret input data to generate

proof
Common reference string, common attributes of
keys shared by the prover and verifier
0,1 All sets of binary strings of length [
’ Random generator for QR, of n groups of

Ccrs

g quadratic redundant modular
g,h,s,Z,Ro, R1 | 6random integers to be chosen
A prime number that satisfies the security param-
el eters
T Proof generated by *
T Trap door
Inputs shared with the prover and verifier, defini-
¢ tion of the statement to be proved
R Relation

e Verifier: Verifies the user’s anonymous certificate and
proof.

2) System Parameters

The system parameters used in this system are shown in
Table 3.

3) Cryptography Algorithm
The algorithms (length) used in this system are as follows.

e lpsa(1024): RSA key pair (length) generated by the
registration server.

e Ipsa(1024): Digital signature algorithm (DSA) signa-
ture (length) generated by the registration server.

e lrcpsa(1024): Elliptic curve digital signature algo-
rithm (ECDSA) signature generated by the issuing
server (length).

e lpcc(160): Elliptic curve cryptography (ECC) key pair
(Iength) generated by the issuing server.

o [77(256): Hash function (secure hash algorithm-2 (SHA-
2)) result (length).

e [7(16): Random number token (length) generated by the
registration server.

e 1.(162): ZKP required in the preparation process ran-
dom prime number c (length).

o [,(1264),1,,(1185): Random prime number (length) for
private key generation.

e 1,(1185): ZK-SNARKSs generated by the issuing server.

4) System Architecture
The VAIM system architecture consists of five phases as
follows.

« Offline enrollment: Each entity registers their personal
information with the root CA to obtain a public key pair
and certificate.

« System setup: Each entity generates a public key pair
for communication and signing. At this time, it assumes
that the registration server generates a public key and

generates a parameter for ZK-SNARKSs, delivers it to
the object, and then destroys it.

o User registration: The prover requests and verifies the
credential value. The smart device then verifies proof
with the verification key.

« Issuing anonymous certificate: The entity requests the
issuing server to issue an anonymous certificate. The
issuing server then issues an anonymous certificate,
signs it, and sends it to the entity. Moreover, it stores
the fact that it was issued on the blockchain.

« Anonymous certificate verification: The verifier verifies
the validity of the proof values and anonymous certifi-
cate registered in the blockchain and accepts the final
prover’s qualification.

C. PROTOCOL
In this section, we describe the detailed protocol operation of
VAIM. It includes the following five phases.

1) Offline Enroliment

In the offline enrollment phase, the root CA receives an ID
and password (PW) from all entities. The root CA uses RSA
encryption to generate a key pair for each entity. After that, a
certificate is generated using the private key of root CA, the
public key of the entity, and the digest. The root CA sends
the key pair and certificate to all entities. All entities receive
a key pair and certificate from the blockchain root CA and are
prepared to access the blockchain network. (See algorithm 1)

Algorithm 1 Offline Enrollment
Input: id, password
Output: PK,,SK,,certificate,
1: if Verifyid(id) = False then
2: pky, sk. — KeyGen(KeyGenOpts)
3. certicate, < Sign(skproote 4, Pk«, digest)
4. return pk,, sk., certificate,
5
6
7

: else
break
. end if

2) System Setup

In the system setup phase, the system manager takes a
security parameter, k, integer n, as input. It chooses a bilinear
map system, PG. Each system entity makes a public key pair
through the publicparameter, PG, h. (See Algorithm 2)

3) User Registration

In the user registration phase, the registration server receives
the ID and PW from the user’s decentralized application
(DApp) and verifies that it is a registered user. If regis-
tered users, the enrollment server uses the ECC algorithm
to generates a key pair and certificate. The user receives
the generated key pair and certificate and is prepared to
access the blockchain network. After that, the registration
server generates the necessary user token to request the user’s

VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3080329, IEEE Access

IEEE Access

Gyeongjin Ra et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Algorithm 2 System Setup

Input: n,p,9,h, k

Output: OPg,0Kg, PK,SK

(p,G1,G2,€)

10,1} = Gy, he 1 {0, 1} — Z
: computei pp = {G1,Ga,e,p,g,h1, ha}

: Ugeu(de(l,n])

heG, a,x € Z,

: compute LA g%, h; = h®
cfori=1,....,ndo

ku = (ga,hl,hg,...,hn
a €r G1,a5 ER Z;
compute 3 = gla,)
PK, = (o, 8), SKs = as
: end for
:fori=1,....,ndo
1& opg
(PK,,SKy),...,
: end for

: return og,Lg

1: computeg PG =
. select —> h1

),SK, =a

e - VO PR

—_ = e
2N

(PK,,SK,) & OKg(I)

—_ =

Algorithm 3 User Registration

Input: d, password

Output: PK,, SK,, Epk, (token)
1. if Verifyid(id) = False then
2. pky, sk. + KeyGen(KeyGenOpts)
3 return pk,, sk,
4: else

5. break

6

7

8

9

: end if
: token < Rand(RandomNum)
: Epk,.., (token) < Encrypted(PKyser, token)
: Epk,....(token) <+ Encrypted(P K;ssye, token)
10: Transmit a token to the user and issuing server
11: return Epg, (token)

anonymous transaction certificate. The registration server
encrypts the token using the user’s public key and the issuing
server. The encrypted token is sent to the user and the issuing
server, respectively. (See algorithm 3)

4) Issuing Anonymous Certificate

In the certificate issuance phase, the user sends a token to
the issuing server and authenticates the user. Suppose the
registered user requests issuance of a certificate and receives
a zero-knowledge certificate and an anonymous certificate
generated by issuing server. The user sends a token to the
issuing server. Then user sends a public parameter to generate
the attestation. The issuing server generates a verification key
V K in the CRS of the registration server. The issuing server
generates a value containing the user’s witness w or message
m and sends it to the user. (See algorithm 4)

VOLUME 4, 2016

Algorithm 4 Anonymous Certificate Generation using ZK-
SNARKSs
Input: token, privateinput, OPg, OK g, BM
Output: anonymous certificate, OSign
1. if Verifytoken(token) then
2: circuit + GenerateTrustedSetup(circuit, alphas,
betas, gammas)
3 anonymous certificate —
GenerateACert(circuit, vk, proof)
4: Issue a transaction on the generation of an anonymous
certificate

5 fori=1,...,ndo

6 g; g OSigTL(Ski7m,Ji,1,Li,1)
7: Li%(pkl,...,pk‘»

8 Osign(sk,m,o,L) =L

9: end for

10: return anonymous certificate
11: else

12: break

13: end if

5) Anonymous Certificate Verification

The user presents zero-knowledge proof and an anonymous
certificate in the anonymous certificate verification phase,
which the verifier verifies through the verification key. After
that, the user transmits the proof value received from the
issuing server to the verifier. Also, the verifier verifies using
proof value proof. If verification is successful, the verifier
returns True; otherwise, it returns False. (See Algorithm 5)

Algorithm 5 Anonymous Certificate Verification using ZK-
SNARKSs

Input: anonymous certificate

Output: True/False

1. if Verifyproof(vk, proof, publicSignals) then
2: return True

3: else
4
5

return False
. end if

V. IMPLEMENTATION

This section describes and evaluates the implementation
developed in this paper. For this purpose, an anonymous
certificate-based authentication system suitable for the per-
missioned blockchain is applied, and data are separated and
stored, and processed to improve efficiency. In the method
proposed here, a blockchain with guaranteed privacy is pos-
sible. The permissioned blockchain protocol using the NIZK
is derived, and various scenarios (number of participants and
verifiers) are derived.

A. IMPLEMENTATION FLOWCHART
As shown in Figure 1, the entity configuration is divided into
user, registration server, issuing server, and service provider.

7

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

IEEE Access

10.1109/ACCESS.2021.3080329, IEEE Access

Gyeongjin Ra et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

User
Registration server
Issuing server

Service provider

B

User registration(ID/PW)

o you hav Yes
Anonymous S>=——2-D1

ertficate? optional information

Issue Transaction

Public parameters(User, Verifier)

Key pair generation(User, Verifier)

0 you havi
Anonymous
ertificate

Anonymous certificate

issuance phase register IDPW

and generate
. . . . Key pair
Public parameter validation(Signature)

Anonymous certificate issuance

No No

B generate token /<

- PK and VK generation
- CL-Signature generation

- Transaction distribution

Verify token

Credential generation phase

Proof generation(ZK-Snarks)

Yes generate / Issue Anonymous
Dy Certificate

Transaction

Certificate /

Proof generation(CL-Signature)

FIGURE 1. Implementation flowchart

The operation process is divided into three phases that are
registration and token issuance, anonymous certificate is-
suance, and credential generation.

The registration and token issuance phase determine
whether the user can access the blockchain network. If it is
not possible to connect to the blockchain network, it registers
an ID from the registration server. When ID and PW are
registered, a public key pair is generated and transmitted. The
user then requests the registration server to issue a token, and
the registration server generates a token and publishes it to
the user and issuing server.

In the anonymous certificate issuance phase, the user sends
a token to the issuing server to request an anonymous cer-
tificate. The issuing server then verifies the token, and if it is
confirmed that the registration server generates it, it generates
an anonymous certificate using the NIZK. It is then issued to
the user.

Finally, in the credential generation phase, the user partic-
ipates in the blockchain network using the issuing server’s
anonymous certificate. After joining the blockchain net-
work, the user sends an anonymous certificate to the service
provider. Through NIZK, the user requests a legitimate ser-
vice from the service provider. The service provider provides
the service upon completion of verification.

B. FUNCTIONS USED IN IMPLEMENTATION

The implementation process is detailed into a total of 12
phases. The function used in the step is defined as Table 4.

TABLE 4. Functions used in implementation

Phase Sender Receiver Function

1 User Register Request(ID string, PW string)

2 Register Register KeyGen(opts
beesp.KeyGenOpts)

3 Register User SendKeypair(pk string, sk
string)

4 Register Register Rand(RandomNum string)

5 Register User SendToken(Token string)

6 User Issuer SendToken(Token string)

7 Issuer Register VerifyToken(Token string)
GenerateTrustedSetup(circuit
circuitcompiler.Circuit, alphas
[1[]*big.Int, betas [][]*big.Int,
gammas [1[1*big.Int)
GenerateACert(circuit

8 Issuer Issuer circuitcompiler.Circuit,
vk VK, proof Proof)
GenerateCLsig(message
string, pkinfo PklInfo)
GenerateACertCLsig(pkinfo
PkInfo, clinfo CLInfo)

9 Issuer User SendACert(newACert json)

10 Issuer .A.H IssueACert(newACert json)

participants

11 User SCI'V.ICC GenerateProof(Credential string),

provider
VerifyProof(vk VK, proof
12 Service Service Proof, publicSignals []*big.Int)
provider provider VerifyCLsig(X BN254, Y
BN254, Z BN254, a BN254, A
BN254, b BN254, B BN254, ¢
BN254)

C. PROPOSED SCHEME IMPLEMENTATION
The system implementation proposed in this paper is de-
scribed step by step here. An applied anonymous certificate-

VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3080329, IEEE Access

IEEE Access

Gyeongjin Ra et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Root CA

-ID: string
-PW: string

+KeyGen(opts: bcosp.KeyGenOpts)
+SendKeypair(pk: string, sk string)
+Rand(RandomNum: string)
+SendToken(Token: string)
+Operation5()

ICA

-ID: string
-PVy: string

+\erifyTaken(Token: string)

User DApp

-ID: string +FileSystemwallet: const
-PW: string +has | =Gateway: const
+ccPath: const

+Requset(ID: string, PW: string)

+query(func: string, name: string)
+app.getipath: string, function: func)
+app.post(path: string, function: func)

+SendToken{Token: string)
+GenerateProof(Credential: string)

+GenerateTrustedSetup(circuit: circuitcompiler. Circuit, alphas, betas, gammas [J[I"big.Int)
+GenerateACert(circuit: circuitcompiler.Circuit, vic Vi, proof: Proof)
+GenerateACenCLsig(pkinto: Pkinfo, clinfo: CLInfo)

+SendACert{newACert: json)

+IssueACert(newACert: json)

Verifier

-ID: string

+has -PW: string

+Requset(ID: string, PW: string)

+SendToken(Token: string)

+GenerateProof(Credential: string)

+VerifyProof{vk: Vk, proof: Proof, publicSignals: [[*big. Int)

+VerifyCLsig(X: BN254, ¥: BN254, Z: BN254, a- BN254, A: BN254, b: BN254, B BN254, ¢ BN254)

Chaincode_1

Chaincode_2

+nit(t *SimpleChaincode)
+Invoke(t “SimpleChaincode)

+query(t *SimpleChaincode, args[]: sfring)
+verify(t “SimpleChaincode, args]: string)

+invoke(t *SimpleChaincode, args]]: string)

+Init{t *SimpleChaincode)

+Invoke(t “SimpleChaincode)

+invoke(t *SimpleChaincode, args[]: string)
+query(t *SimpleChaincode, args(]: string)
+verify(t “SimpleChaincode, args]: string)

+maing) ~main(

+uses

I +uses

Chaincode_1 with ZK-SNARKSs

'l
Chaincode_2 with CL_Signature

+ACertinfo: struct +PKInfo: struct
+TrimSpaceNewlinelnStrings(s: string) :%ﬁ‘?ég.‘grou__‘?wm
+Zkp(xvall: Interger, yval: Integer) - -
+FP12toByte(F: "BN254.FP12)
+randval()

+cl_sig{msgval: string)

FIGURE 2. Class diagram of implementation

based credential system suitable for permissioned blockchain
was developed and applied using development frameworks,
such as HLF and Node.js.

1) Algorithm

Figure 2 shows a class diagram of the chaincode used
for implementation. HLF implements ZK-SNARKSs and CL-
Signature chaincode. In the DApp class, various variables,
such as the user’s wallet, HLF connection, and chaincode
path, are declared. Besides, the function receives chaincode
function and parameters and executes chaincode from HLF.
The results of the executed chaincode are output to DApp.

The Chaincode_1 with ZK-SNARKSs class is a chaincode
made to use ZK-SNARKSs. For this, the components for
anonymous certificates are declared in the ACertInfo struc-
ture, and it is implemented to operate ZK-SNARKSs.

The Chaincode_1 class is a chaincode designed to run
chaincode in HLF. The Init function initializes the chaincode.
Also, the Invoke function determines and operates chaincode
function. Also, invoke function instantiates chaincode. The
query function allows the loading of data stored in CouchDB.
The verify function verifies ZK-SNARKSs.

The Chaincode_2 with CL-Signature class is a chain-
code made to use CL-Signature. For this, the components
for anonymous certificates are declared in the PKlnfo,
CL_sigInfo, and TxInfo structures. It is implemented such
that CL-Signature can be operated.

VOLUME 4, 2016

The Chaincode_2 class executes the same as Chaincode_1.
However, the verify function verifies CL-Signature.

2) root CA Administrator Registration

The highest root CA can manage I-CA by issuing [-CA
certificates to [-CA. By registering the root CA administrator,
the root CA administrator can manage the lower I-CA.

3) I-CA Administrator Registration

As an intermediate certification authority, I-CA is a CA that
shares and manages the root CA tasks. Also, an administrator
is registered who manages [-CA. The I-CA administrator

C |

TxID (Tracking Number) |PW |

channel ID (Channel Name)
Token

Hased_Proof

Publicinputs (Public Value)

Timestamp

FIGURE 3. Login in DApp

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

IEEE Access

10.1109/ACCESS.2021.3080329, IEEE Access

Gyeongjin Ra et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TxID (Tracking Number)

channel_ID (Channel Name)

Token channel_ID
Hased_Proof mychannel
Publiclnputs (Public Value) Token
Timestamp

vhdsdgndcdmi7gla

Hash_Proof

Publicnputs
35

TimeStamp

5d057a926ac8c51199ad7fcfd2387d052bdbb1010486206e9435402 1cecdbf1e

020d44932ed741fd0d97147eb002cac231dcf9577e0229e66a0b9fd942ed3774

2020-10-26 08:39:53.822367683 +0000 UTC

FIGURE 4. Component of an anonymous certificate using ZK-SNARKs

authenticates users who access the HLF network and issues
certificates. I-CA has a registration server and an issuing
server.

4) User’s Key Pair, Certificate Generation, and Registration

For a user authenticated by I-CA, the registration server
generates and transmits a public key pair and X.509. The
contents of the generated key pair are stored and managed
in the registration server database.

5) Token Generation and Transmission

The user requests the registration server to issue a token using
the key pair and certificate from the registration server. The
registration server verifies the user’s key pair and certification
and then issues and transmits a token. The user sends the
token received from the registration server to the issuing
server.

6) Zero-Knowledge Proof

Two ZKPs were implemented as chaincode to provide ZKPs
and perform comparative analyses. The go-snark library was
used to implement ZK-SNARKSs and provided trusted setup,
ZKP generation, and verification functions. In addition, the
miracle library was used to implement CL-Signature and
provided message signing, ZKP generation, and verification
functions.

It was implemented as a DApp to quickly show the chain-
code usage and data in the HLF network. After selecting an
identity from the wallet, it is determined whether it is a reg-
istered user. Next, it connects to the HLF network, requests
chaincode, and transmits the function and parameters to be

10

CEm—
TxID (Tracking Number) Cancel

channel_ID (Channel Name)
Token

Hased Proof

Publicinputs (Public Value)

Timestamp

FIGURE 5. ZK-SNARKs verification

used. The responded data are output to the DApp web page
to be used and checked easily by users.

7) Implementation Result

We present the implementation results and the DApp results
for ZK-SNARKSs and CL-Signature. As shown in Figure 3,
users can gain access by entering the registered user’s ID and
PW when accessing DApp.

Figure 4 shows a component of an anonymous certificate
using ZK-SNARKS and contains the hashed proof value to
provide the data and integrity required for later verification.

Figure 5 traces the transaction of the anonymous certificate
by entering the transaction ID. The elements of the anony-
mous certificate are then checked to provide integrity and
validation.

Figure 6 is a component of an anonymous certificate using
CL-Signature. It contains a unique value to provide the data

VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3080329, IEEE Access

IEEE Access

Gyeongjin Ra et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

CL-Signature TID
TxID (Tracking Number)

channel_ID (Channel Name)

channel_ID
q (Public Value)
X (Public Value) mychannel
Y (ic Value)
Y (Public Value) q
Z (Public value)
Timestamp

X

Y

z

TimeStamp

1010486206e94354021cecd6f1e5d057a926ac8c51199ad 7fcfd2387d052bdbb

2523648240000001ba344d8000000007{f9f800000000010a10000000000000d

(1018f0273900405b3e5b055f86fa34dda7b9e0174511fd1cc1b7c012da52a0ed,0ad7e78a0505a0d97c8bd7988b7e8bbch)

(0ada950b7e29ba2451b4e2c8f404b3e3c67 1bbc24daacdf3846c7315eebdf3846¢7315eebd1bbb,0c1c25900¢57cc390d8H

(089e36609a42e59aa43a107b4f5bcfac28c0c7907 aeabf2ad01c99384669df16,09953552d63ec6675f0a7fofocead043159

2020-10-26 09:58:23.421563241 +0000 UTC

FIGURE 6. Component of an anonymous certificate using CL-Signature

CL-Signature |q (Public Value) |
TxID (Tracking Number) Cancel

channel_ID (Channel Name)
q (Public Value)
X (Public Value)
Y (Public Value)

Z (Public value)

Timestamp

FIGURE 7. CL-Signature verification

and integrity required for later verification.

Figure 7 traces the anonymous certificate transaction by
entering the transaction ID as shown in Figure 5. The el-
ements of the anonymous certificate are then checked to
provide integrity and validation.

D. IMPLEMENTATION SYSTEM, ENVIRONMENT
CONFIGURATION

We describe the implementation system environment con-
figuration. As shown in Table 5, the root CA, I-CA, and
DApp used the cloud platform provided by Google. The
user configured the implementation system using the basic

VOLUME 4, 2016

specification by MacBook 2020. The verifier used a regular
desktop personal computer (PC).

To implement a performance evaluation scheme for com-
paring ZKPs, we referred to hyperledger blockchain perfor-
mance metrics, a hyperledger white paper, which defines
basic terms and key indicators used to evaluate hyperledger’s
performance communicate results. It also defines guidelines
for workload and evaluation.

This metric may be informative, but it is not the primary
measure of blockchain performance. Systems will typically
be deployed adjacent to the blockchain to facilitate signifi-
cant reading and queries.

« Read latency (RL): Read latency is the time between
when a read request is submitted (submit time, ST) and
when the reply is received (response time, RT).

RL=RT-ST
« Read throughput (RT): Read throughput is a measure of
how many read operations (total read operations, TRO)
are completed in a defined time (whole time in seconds,
TTS), expressed as reads per second (RPS).

RT =TRO/TTS

E. ANALYSIS OF COMPARING OF ZERO-KNOWLEDGE
PROOF

The following shows the generation time of ZK-SNARKSs
and CL-Signature when the number of users increases and

11

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

IEEE Access

10.1109/ACCESS.2021.3080329, IEEE Access

Gyeongjin Ra et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 5. Implementation system environment configuration

Spec %)Xt I-CA Verifier DApp User
Cascade Cascade Intel Cascade Intel Core
CPU Lake Lake Core i7 Lake i5 8th
vCPU x vCPU x 3770K vCPU x Generation
2 2 3.5GHz 2 1.4GHz
NVIDIA Intel Iris
GPU - - GeForce - Plus
GTX960 Graph-
ics645
RAM 4GB 4GB 12GB 4GB 16GB
Samsung
SSD
SSD 100GB 100GB 840 100GB SSD 256GB
series
500GB
Python Python Python Python Python
Python 2.7.16 2.7.16 2.7.16 2.7.16 2.7.16
Python Python Python Python Python
3.7.4 3.7.4 3.7.4 3.7.4 3.7.4
Go 1.15.1 1.15.1 1.15.1 1.15.1 1.15.1
Docker 19.03.12 | 19.03.12 | 19.03.12 | 19.03.12 19.03.12
Node.js 12.18.4 12.18.4 12.18.4 12.18.4 12.18.4
HLF- HLF- HLF- HLF- HLF-
HLF samples samples samples samples samples
1.4.8 1.4.8 1.4.8 1.4.8 1.4.8
Number 1 2 1 1 3

the verifier is fixed to 1. Also, the maximum delay time,
minimum delay time, average delay time, and throughput
results are shown.

1) ZK-SNARKs Generation and Verification Comparison

As a comparison table of ZK-SNARKSs generation and ver-
ification, it can be seen that the average latency is reduced,
and the throughput is also increased if the user increases, as
shown in Table 6.

2) CL-Signature Generation and Verification Comparison
As a comparison table of CL-Signature generation, if the
user increases, such as shown in Table 6, the average latency
decreases, and the throughput also increases. However, it can
be seen that the average latency is slightly higher than that of
ZK-SNARKSs.

The graph in Figure 8 compares ZK-SNARKSs and CL-
Signature. As the number of users increases, the average
delay time is less in ZK-SNARKSs than in CL-Signature.

F. NUMBER COMPARISON BY NODE PARTICIPANT AND
VERIFIER

When the numbers of users and verifiers increase by 1,
the generation times of ZK-SNARKSs and CL-Signature are
shown. In addition, the maximum delay time, minimum delay
time, average delay time, and throughput results are also
shown in Figure 9.

1) ZK-SNARKs Generation and Verification Comparison
As shown in Table 7, if the number of users increases, the
average delay time decreases, and the throughput increases.

12

However, it can be seen that average delay time and through-
put decrease as the number of verifiers increases.

2) CL-Signature Generation and Verification Comparison

As shown in Table 7, if the number of users increases, the
average delay time decreases, and the throughput increases.
However, average delay time and throughput decrease as the
number of verifiers increases.

When the numbers of users and verifiers increase by 1,
the average delay time of the CL-Signature is short, and
the throughput is high. However, it was confirmed that ZK-
SNARKSs are more efficient when the number of users in-
creases.

VI. ANALYSIS
A. SECURITY
o Anonymity: Our framework provides anonymity for a
user, from the service provider and registration server.
It means that the user can prove that authorize to use
the registration server’s services without revealing her
identity to the registration server. Proof RS is attempt-
ing to hide the values 7, ¢, x, and A from the user. The
equations are sent to the registration server.

a=Q.r (1)

b= (Pl)z.Q.r)
d=rA 3)

¢ =e(d, RC.R.(P2)t) “4)

The values of a,b,d, e, @, R, P1 and P2 are known to
the registration server [36]. The hardness of the elliptic
curve Diffie-Hellman problem would be violated if the
value of r was calculated from the first equation, (P1)x
from the second equation, A from the third equation, or
(P2)t from the fourth equation. As a result, determining
values of (r, (P1)z, A, (P2)x), let alone (r,t,x, A), is
computationally impossible for the registration server.
Due to the complexity of the inverse bilinear pairing
operation problem (IBPOP), it is computationally in-
feasible to compute the second argument provided the
fourth equation and values of ¢ and d.

o Completeness: Since the input ¢ of SimProve in the
Prove function is generated through the hash function
and always gets the same output for the same input,
always get the same ¢ for the correct data. According
to Properties 1, SimProve, which proves that the in-
put is ¢ and the output is 7 for the function Prove,
is generated from the ZK-SNARKSs algorithm Prove
that satisfies the completeness to ensure completeness.
Because the 7 above is used as the output of Prove, the
SimProver algorithm can also satisfy completeness.

o Computational Soundness: The inability to manipulate
the proof 7 is based on the integrity of ZK-SNARKSs
used in the proposed Algorithm. The failure to drive ¢
used as the input of 7 depends on the integrity of the

VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3080329, IEEE Access .
IEEE Access

Gyeongjin Ra et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 6. ZK-SNARKSs and CL-Signature comparison table

Scheme User | Verifier | Max Latency (s) | Min Latency (s) | Avg Latency (s) | Throughput (tps)

1 1 0.434 0.434 0.434 2.304

5 1 0.425 0.034 0.117 20.736

ZK-SNARKs | 1 0.45 0.33 0.0934 20.968
20 1 0.454 0.026 0.0387 26.078

1 1 0.459 0.459 0.459 2.178

CL-Signature 5 1 0.438 0.038 0.204 19.612
10 1 0.441 0.032 0.084 21.553

20 1 0.447 0.026 0.055 26.42

tps : transaction per second

TABLE 7. ZK-SNARKs and CL-Signature comparison table (If user increases and verifier increases by 1)

Scheme User | Verifier | Max Latency (s) | Min Latency (s) | Avg Latency (s) | Throughput (tps)
1 1 0.434 0.434 0.434 2.304
5 2 0.481 0.039 0.146 15.689
ZK-SNARKSs 10 2 0.467 0.3 0.087 22.852
5 3 0.476 0.034 0.141 9.882
10 3 0.506 0.032 0.103 20.503
1 1 0.459 0.459 0.459 2.178
5 2 0.47 0.038 0.142 16.25
CL-Signature 10 2 0.465 0.32 0.089 21.803
5 3 0.485 0.044 0.159 12.937
10 3 0.505 0.031 0.093 16.698

tps : transaction per second

30 C thr in and phase 05 Computational latency in generation and verification phase
-~ CL-Signature 0.45 - . S S S 4
. N B B Fe e
25 T 0.4
T 035 A Max latency (ZK-SNARKs)
20 Pt | | = Min latency (ZK-SNARKs)
- N —— Avg latency (ZK-SNARKs)
4 0.3) — & — Max latency (CL-Signature)
_ 4 . 3 Min latency (CL-Signature)
0 ; 0 3 —— Avg latency (CL-Signature)
v 15 A @ 0.25 \
£ i E
[= A [
i 0.2
4
10 7’ i
¥ 0.15
./.
¥
J 0.1
5 i
!
t 0.05
L]
0 . . L L " " . L " 0 : - - - : : : - :
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Numbers of user Numbers of user
FIGURE 8. Comparison graph of ZK-SNARKSs and CL-Signature
‘2'4 in g and v phase (Verifier 2 and 3) o 16“ latency in generation and verification phase (Verifier 2 and 3)
—6— ZK-SNARKs (Verifier 2) N —&— ZK-SNARKSs (Verifier 2)
2= CL-Signature (Verifier 2) S -~ CL-Signature (Verifier 2)
—8— ZK-SNARKs (Verifier 3) j 0.15 S |—8— ZK-SNARKs (Verifier 3)
—-#— CL-Signature (Verifier 3) s "~ -~ CL-Signature (Verifier 3)

Troughput (tps)
Time (s)

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
Numbers of user Numbers of user

FIGURE 9. Comparison graph of ZK-SNARKs and CL-Signature (If user increases and verifier increases by 1)

VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE Access

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3080329, IEEE Access

Gyeongjin Ra et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

B.

underlying blockchain. According to Properties 2, the
input to the function SimProve is ¢, and 7 is generated
from the ZK-SNARKSs algorithm Prove that satisfies
the calculation proof to ensure computational integrity.
Since pi is used as the output of prove, the SimProve
Algorithm also satisfies the computational soundness.
Integrity: Imagine the case in which an attacker, «,
attempts to distribute an updated upgrade to force the
HIoT device to execute malicious code. It is impossible
due to of several reasons. o should generate a ZK-
SNARKSs proof while posing as a trustworthy distrib-
utor. The proof must be generated by encrypting an
upgrade file that matches the manufacturer’s hash value
released on the blockchain for it to be valid. A hub
can consult the above at any time. As a result, whether
the BC or the ZK-SNARKSs system is not stable, and
honest hub will never allow an unauthenticated file.
Compromise of a hub gateway is the only other way
to offer a malicious update. The protocol, on the other
hand, is safe in this case. The HIoT system must check
a signature on the hash value of the latest update made
by the manufacturer before signing the identification
challenge. The HIoT system will verify whether the
update file matches the authenticated hash value in
the protocol’s final step after receiving it. As a result,
such devices cannot accept malicious updates unless
compromised.

Privacy: Since the confidentiality of the transaction
recorded in the blockchain is based on the selection
of the encryption method to generate the cryptographic
method, plaintext attack security (CPA-security), the
probability of distinguishing between datal and data2
containing other confidential information is meager (Be-
sides, deriving personal information from the hash value
recorded in the blockchain has a very low probability
due to the oneway-ness of the hash used. Also, the
probability of revealing the data value from the proof
7 generated by the user has a very low probability
based on the zero-knowledge of Properties 3 of the proof
algorithm used. Therefore, when considering the prop-
erties of ZK-SNARKS, there is a very low probability of
revealing additional personal information values from
cryptograms, identity attributes, and proofs. Therefore,
the attack probability of data privacy of the protocol
proposed in this paper has a negligible probability ac-
cording to Properties 2.

EFFICIENCY

o When compared to existing schemes: When comparing

the proposed system with the existing Shin et al. and
Paul et al., VAIM presented the result shown in the
following figure 10. Shin et al. use CL signature, in-
dicating that the verification time is fastest when five
users. However, we can see that VAIM is faster as the
number of users increases. Also, Paul et al. can see that
the verification time is similar to VAIM with five users,

however slower than VAIM with more users. In other
words, we can see that the more users there are, the
more efficient the verification time of VAIM using ZK-
SNARK.

o When the verifier is fixed to 1: As shown in Figure 8§,
if the number of users increases, the average latency
of ZK-SNARKSs and CL-Signature decreases, and the
throughput increases. Users access the blockchain net-
work using the application. As a result, the first user
is connected to the blockchain network through the ap-
plication, resulting in relatively high latency. However,
since the second user does not proceed with accessing
the blockchain network, it can be seen that latency is
reduced and throughput is fast. The CL-Signature has a
short average delay time and a high throughput.

o When the verifier increases by 1: As shown in Figure

9, if the number of users increases, the average latency
of ZK-SNARKSs and CL-Signature decreases, and the
throughput increases. Similarly, latency and throughput
are the same as ZK-SNARKSs, with the first user ac-
cessing the blockchain network through the application,
resulting in relatively high latency and low throughput.
Howeyver, it can be seen that the number of verifiers
increases, average delay time and throughput decrease.
Also, when the number of users is small, the average
delay time of CL-Signature is short, and the throughput
is high, but when the number of users increases, it can
be seen that ZK-SNARKSs are more efficient.
When there are many users, CL-Signature is slightly
faster than ZK-SNARKSs. However, as the number of
verifiers and users increases, it can be seen that ZK-
SNARKS are faster than CL-Signature.

§8mputational throughput in generation and verification phase
T T T T T T T T T Y

Our scheme(VAIM)
--=@--- Shin et al.

25 | [—Pauletal. s

0 \ \ \ \ \ \ \ \ .
0 2 4 6 8 10 12 14 16 18 20
Numbers of user

FIGURE 10. Comparison graph of existing schemes and VAIM

VIl. CONCLUSIONS

Through HIoT, users are provided with beneficial and
straightforward services through smart devices and remote
servers. HIoT is equipped with practical and specific services

VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3080329, IEEE Access

Gyeongjin Ra et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

IEEE Access

from a human-centric viewpoint but contains sensitive infor-
mation. Therefore, network security is essential. This paper
proposed an anonymous access control system for privacy
preservation in the HIoT environment. ZK-SNARKSs, BOMS,
and blockchain-based protocols were built and developed. A
blockchain network was built using HLF, and DApps were
developed and provided to use them efficiently. We derived
research results for various scenarios by researching and
analyzing the throughput and delay time of NIZKs (ZK-
SNARKSs, CL-Signature). Comparison and analyses of ZK-
SNARKS and CL-Signature confirmed that the average delay
time decreased and throughput increased as the number of
users increased. Also, it was confirmed that average delay
time increased and throughput decreased as the number of
verifiers increased. By contrast, according to differential
research analyses of ZK-SNARKSs and CL-Signature, when
the number of users increases and the verifier is fixed to
1, the average delay time of CL-Signature is short, and
throughput is high. Also, when the number of users increases
by one and the number of users increases by one, the average
delay time of CL-Signature is short, and throughput is high.
Still, ZK-SNARKSs are more efficient when the number of
users increases. When there are many users, CL-Signature
is generally slightly faster than ZK-SNARKSs. However, as
the numbers of verifiers and users increase, ZK-SNARKSs are
faster than CL-Signature.

If more than four verifiers exist, some peers (verifiers) will
be down. In other words, if more than four peers are operating
the HLF network, it cannot be processed and will be down.
It indicates that building an I-CA to manage participants was
more effective than the existing root CA managing all the
participant entities on its own.

In the future, a protocol with enhanced specific security
will be developed by applying it to a concrete environ-
ment. Continuous research to improve the speed of ZKP
and blockchain performance is required. The code for im-
plementing smart contracts has been made publicly available
on GitHub.

REFERENCES

[1] U. Congress, “Andean strategy—hearing before the house select committee
on narcotics abuse and control, 102nd congress, 1st session, june 11,
1991,” 1991.

[2] A. Rghioui and A. Oumnad, “Internet of things: Surveys for measuring
human activities from everywhere,” International Journal of Electrical and
Computer Engineering, vol. 7, no. 5, p. 2474, 2017.

[3] G.-A. B. M. C. Miranda, Mikitalo and Murillo, “From the internet of
things to the internet of people,” IEEE Internet Computing, vol. 19, no. 2,
pp. 4047, 2015.

[4] P.-B.H. Silva, Zhang and Liebau, “People-centric internet of things,” IEEE
Communications Magazine, vol. 55, no. 2, pp. 18-19, 2017.

[5] G. Nitti and Atzori, “Trustworthiness management in the social internet of
things,” vol. 25, no. 6, pp. 1253-1266, 2013.

[6] A. K. Tyagi, G. Rekha, and N. Sreenath, “Beyond the hype: Internet of
things concepts, security and privacy concerns,” pp. 393—407, 2019.

[7]1 D. Todorov, Mechanics of user identification and authentication: Funda-
mentals of identity management. CRC Press, 2007.

[8] G.-B. Qin, Denker and Venkatasubramanian, “A software defined net-
working architecture for the internet-of-things,” in In 2014 IEEE network
operations and management symposium (NOMS). IEEE, 2014, pp. 1-9.

VOLUME 4, 2016

(91

[10]

(11]

[17]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[32]

P. Mahalle and Prasad, “Identity management framework towards internet
of things,” Ph.D. dissertation, 2013.

Y. Yu, Y. Li, J. Tian, and J. Liu, “Blockchain-based solutions to security
and privacy issues in the internet of things,” IEEE Wireless Communica-
tions, vol. 25, no. 6, pp. 12-18, 2018.

J. B. Bernabe, J. L. Canovas, J. L. Hernandez-Ramos, R. T. Moreno, and
A. Skarmeta, “Privacy-preserving solutions for blockchain: Review and
challenges,” IEEE Access, vol. 7, pp. 164 908—164 940, 2019.

D. Baars, “Towards self-sovereign identity using blockchain technology,”
Master’s thesis, University of Twente, 2016.

P. Dunphy and F. A. Petitcolas, “A first look at identity management
schemes on the blockchain,” IEEE Security & Privacy, vol. 16, no. 4, pp.
20-29, 2018.

B. B. Patel, “Blockchain and digital signatures for digital self-sovereignty,”
Ph.D. dissertation, 2018.

X. Zhu and Y. Badr, “Identity management systems for the internet of
things: a survey towards blockchain solutions,” Sensors, vol. 18, no. 12,
p. 4215, 2018.

A. Boldyreva, C. Gentry, A. O’Neill, and D. H. Yum, “Ordered multisigna-
tures and identity-based sequential aggregate signatures, with applications
to secure routing,” in Proceedings of the 14th ACM conference on Com-
puter and communications security, 2007, pp. 276-285.

Z. A. Lux, D. Thatmann, S. Zickau, and F. Beierle, “Distributed-ledger-
based authentication with decentralized identifiers and verifiable creden-
tials,” in 2020 2nd Conference on Blockchain Research & Applications
for Innovative Networks and Services (BRAINS). IEEE, 2020, pp. 71—
78.

E. Androulaki, A. De Caro, M. Neugschwandtner, and A. Sorniotti, “En-
dorsement in hyperledger fabric,” in 2019 IEEE International Conference
on Blockchain (Blockchain). IEEE, 2019, pp. 510-519.

S. Atapoor and K. Baghery, “Simulation extractability in groth’s zk-
snark,” in Data Privacy Management, Cryptocurrencies and Blockchain
Technology. Springer, 2019, pp. 336-354.

E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, “Succinct non-
interactive zero knowledge for a von neumann architecture,” in 23rd
{USENIX} Security Symposium ({USENIX} Security 14), 2014, pp.
781-796.

W. Jiang, H. Li, G. Xu, M. Wen, G. Dong, and X. Lin, “Ptas: Privacy-
preserving thin-client authentication scheme in blockchain-based pki,”
Future Generation Computer Systems, vol. 96, pp. 185-195, 2019.

Y. Li, G. Yang, W. Susilo, Y. Yu, M. H. Au, and D. Liu, “Traceable
monero: Anonymous cryptocurrency with enhanced accountability,” IEEE
Transactions on Dependable and Secure Computing, 2019.

A. Ishida, Y. Sakai, K. Emura, G. Hanaoka, and K. Tanaka, “Fully
anonymous group signature with verifier-local revocation,” in International
Conference on Security and Cryptography for Networks. Springer, 2018,
pp. 23-42.

J. L. C. Sanchez, J. B. Bernabe, and A. F. Skarmeta, “Integration of
anonymous credential systems in iot constrained environments,” IEEE
Access, vol. 6, pp. 4767-4778, 2018.

S. M. Shin, K. Y. Lee, and K. J. Kim, “Modified anonymous attestation
protocol of the tpm-installed device for the mobile environment,” in CISC-
W’09. KIISC, 2009.

P. Mundhe, V. K. Yadav, A. Singh, S. Verma, and S. Venkatesan, “Ring
signature-based conditional privacy-preserving authentication in vanets,”
Wireless Personal Communications, vol. 114, no. 1, pp. 853-881, 2020.
D. Hopwood, S. Bowe, T. Hornby, and N. Wilcox, ‘“Zcash protocol
specification,” GitHub: San Francisco, CA, USA, 2016.

A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk: The
blockchain model of cryptography and privacy-preserving smart con-
tracts,” in 2016 IEEE symposium on security and privacy (SP). IEEE,
2016, pp. 839-858.

A. Garoffolo, D. Kaidalov, and R. Oliynykov, “Zendoo: a zk-snark veri-
fiable cross-chain transfer protocol enabling decoupled and decentralized
sidechains,” arXiv preprint arXiv:2002.01847, 2020.

T. Koens, C. Ramaekers, and C. Van Wijk, “Efficient zero-knowledge
range proofs in ethereum,” ING, blockchain@ ing. com, 2018.

Y. C. Tsai, R. Tso, Z.-Y. Liu, and K. Chen, “An improved non-interactive
zero-knowledge range proof for decentralized applications,” in 2019 IEEE
International Conference on Decentralized Applications and Infrastruc-
tures (DAPPCON). IEEE, 2019, pp. 129-134.

J. Groth, “On the size of pairing-based non-interactive arguments,” in
Annual international conference on the theory and applications of cryp-
tographic techniques. Springer, 2016, pp. 305-326.

15

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

. 10.1109/ACCESS.2021.3080329, IEEE Access
IEEE Access

Gyeongjin Ra et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

[33] J. Camenisch and A. Lysyanskaya, “A signature scheme with efficient
protocols,” in International Conference on Security in Communication
Networks. Springer, 2002, pp. 268-289.

[34] 1. Ali, M. Gervais, E. Ahene, and F. Li, “A blockchain-based certificateless
public key signature scheme for vehicle-to-infrastructure communication
in vanets,” Journal of Systems Architecture, vol. 99, p. 101636, 2019.

[35] J. K. Jiwon Lee, Jackyoung Choi and H. Oh, “Saver: Snark-friendly,
additively-homomorphic, and verifiable encryption and decryption with
rerandomization,” in IACR Cryptol. Cryptology ePrint Archive, 2019.

[36] X. P. Mehmood, Natgunanathan and Zhang, “Anonymous authentication
scheme for smart cloud based healthcare applications,” IEEE access,
vol. 6, pp. 33552-33 567, 2018.

GYEONGJIN RA is currently a Ph.D. student
with the Department of Software Convergence at
Soonchunhyang University (SCH), Asan, South
Korea. Her research interests security and privacy
protection, applied cryptography, blockchain. She
received the M.S. degree in Computer Science
and Engineering from Soonchunhyang University,
Asan, South Korea, in Feb. 2018 and the B.S.
degree in Computer Software and Engineering
from the Soonchunhyang University, Asan, South
Korea, in Feb. 2016. She has published papers on decentralized identity,
blockchain, privacy at international conferences.

TAEHOON KIM was born in Seoul Republic of
Korea, in 1995. He received the B.S. degree from
the University of Soonchunhyang, Asan, in 2018.
He is currently pursuing an M.S. degree with the
Department of Computer Science and Engineer-
ing. His research interests information security,
blockchain, key management, and privacy.

IMYEONG LEE is currently a Professor in the
Department of Computer software engineering at
Soonchunhyang University (SCH), Asan, South
Korea. His research interests information secu-
rity, cryptographic protocol, information theory,
data communication. He received a Ph.D. degree
in Information and Communication Engineering
from Osaka University, Osaka, Japan, in 1989.
He received an M.S. degree in Information and

- Communication Engineering from the Osaka Uni-
versity, Osaka, Japan, in 1986 and a B.S. degree in Electronic Engineering
from Hongik University, Seoul, in 1981.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 4, 2016

