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Abstract: A critical question relevant to the increasing importance of crowd-sourced-based finance
is how to optimize collective information processing and decision-making. Here, we investigate an
often under-studied aspect of the performance of online traders: beyond focusing on just accuracy,
what gives rise to the trade-off between risk and accuracy at the collective level? Answers to this
question will lead to designing and deploying more effective crowd-sourced financial platforms and
to minimizing issues stemming from risk such as implied volatility. To investigate this trade-off, we
conducted a large online Wisdom of the Crowd study where 2037 participants predicted the prices of
real financial assets (S&P 500, WTI Oil and Gold prices). Using the data collected, we modeled the
belief update process of participants using models inspired by Bayesian models of cognition. We
show that subsets of predictions chosen based on their belief update strategies lie on a Pareto frontier
between accuracy and risk, mediated by social learning. We also observe that social learning led to
superior accuracy during one of our rounds that occurred during the high market uncertainty of the
Brexit vote.

Keywords: crowd-sourcing; wisdom of the crowd; social learning; Bayesian models; risk

1. Introduction

Distributed financial platforms are on the rise, ranging from Decentralized Au-
tonomous Organizations [1], crowd-sourced prediction systems [2] to the very recent
events during which retail investors self-organized using social media and drove up asset
and derivative prices [3,4]. In this work, we investigate how financial agents process
information from one another and predict-individually and collectively—the future prices
of real assets. Specifically, we are interested in understanding the computational models
they use to update their beliefs after information exposure and how different social vs.
non-social belief update strategies lead to trade-offs in prediction performance.

Here, we expand the typical definition of performance for collective prediction to
include the concept of risk. Typically, the prediction performance of collectives and swarms
is measured mostly by the accuracy of the group over collections of tasks [5–7]. However,
it has been shown theoretically [8,9] and observed in a variety of applications [10,11] that
there is a fundamental trade-off between prediction accuracy (average error) and prediction
risk (variance of error).

This means that for any prediction system, risk will always be present, and that
maximizing accuracy will come at the expense of increased risk. Hence, the performance
of the system will always exist within a pre-defined Pareto frontier [12,13] which is the
curve containing all possible system performance parametrizations (here, pairs of possible
accuracy and risk values). Therefore, a platform designer will need to make trade-offs
between risk and accuracy and cannot achieve arbitrarily combinations of risk and ac-
curacy. Treating risk and accuracy as equally important for prediction is standard in
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statistical [8–10] and financial [14–16] forecasting applications and literature because it
allows for prediction systems to be calibrated and deployed with regard to specific accuracy
and risk profiles [17–21].

However, characterizing the performance of crowd-based prediction systems regard-
ing both accuracy and risk is not common and such a Pareto frontier has not been observed
in crowd-sourced financial asset price prediction. We are therefore interested in investi-
gating if a Pareto frontier exists and what the causes are behind this trade-off. From the
perspective of crowd-sourced financial platform designers, understanding the trade-off
between accuracy and risk and how to select subsets of predictions that achieve a certain
accuracy and risk is useful to fit a required risk profile. This, in turn, allows for more
sophisticated and versatile applications of crowd-sourced predictions such as hedging
risks over portfolios of prediction tasks.

To test our hypothesis that a Pareto frontier exists between risk and accuracy and
that it is mediated by social learning, we designed our collective prediction experiments
as a series of Wisdom of the Crowd (WoC) tasks. For background, the Wisdom of the
Crowd [22,23] is a popular domain within the collective intelligence literature where
participants (the ‘crowd’) are asked to make predictions of a certain quantity, such as the
future price of an asset on the stock market [24] or the caloric content of food items [25].
Prior work in the WoC literature [25–27] has focused on maximizing the average accuracy
of collectives with little regard to the risk of the predictions.

The structure of this paper is as follows: we do a short literature review of the
connections of this work to research on collective intelligence and the accuracy-risk trade-
off in Section 2. We discuss our materials and methods (experimental design, data collection,
and modeling and estimation) in Section 3. We present our results (belief update modeling,
accuracy-risk trade-off and prediction under high uncertainty during Brexit) in Section 4.
We discuss the implications and limitations of our work in Section 5.

Contributions

Our work makes the following novel contributions:

• We present an experimental procedure where we exposed 2037 participants to social
and non-social information during 7 independent rounds of predicting financial
asset prices (S&P 500, gold and WTI Oil). We collected 4634 prediction sets which
include participants’ predictions before and after information exposure, as well as the
information they were exposed to. We are releasing this data here.

• Using computational models inspired by Bayesian models of cognition [28,29] to
investigate the belief update strategy of participants, we observe that a simple model
that approximates the likelihood (evidence) to be a unimodal Gaussian beats a more
complex Monte Carlo approach. This suggests that our participants exhibit the at-
tribute substitution heuristic of human decision-making [30], whereby a complicated
problem is solved by approximating it with a simpler, less accurate model.

• We observe that participants prefer to learn from social information rather than from
non-social information, another interesting information processing heuristic.

• Our main contribution: we observe a Pareto frontier between accuracy and risk. As
the average accuracy of the crowd over the different prediction rounds increases, so
does the risk in the crowd’s predictive accuracy. We further observe that this trade-off
is mediated by the amount of social learning i.e., the extent to which participants pay
attention to each other’s judgments.

• We deployed one of our prediction tasks just before the Brexit vote during which
there was a great deal of market uncertainty [31], and we observe that during such
uncertain times social learning leads to higher accuracy.

These results are not only important for the practical deployment of distributed
financial prediction platforms but also expand our understanding of how financial agents
process information and make distributed predictions.

https://github.com/d-val/WoC
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2. Related Work
2.1. Collective Intelligence and Social Learning

There is a rich literature on how decentralized information processing, learning and
decision-making affects the performance of collectives and swarms [32–36]. Here, we focus
on how platforms can be designed for people to make predictions with high performance,
which is a central question for the Wisdom of the Crowd [22,23,37].

It has been shown that the temporal influence and mutual information dynamics
between individuals can have a strong effect on crowd collective performance. On the
one hand, prior work has shown that exposure to social information can lead to degraded
performance in aggregate guesses [26,37,38]. For example, increasing the strength of
social influence has been shown to increase inequality [39]. Selecting the predictions of
people who are resistant to social influence has been shown to have improved collective
accuracy [27]. The influence of influential peers has been theoretically shown to prevent
the group from converging on the true estimate [26], and exposure to the confidence levels
of others has been shown to influence people to change their predictions for the worse [40].

On the other hand, social learning has also been shown to lead to groups outperform-
ing their best individuals when they work separately [41] and a collective intelligence factor
has been shown to predict team performance better than the maximum intelligence of
members of the team [35]. Similarly, human-inspired social communication between agents
has been shown to improve collective performance in optimization algorithms [5,42].

Therefore, the role of social learning in collective performance is still being under-
stood. Our contribution to this line of research is that a more complete characterization
of performance in terms of not just accuracy but also risk provides avenues for future
work towards reconciling the disagreements as to the role of social influence on perfor-
mance. This is especially important due to the already existing strong social components in
many crowd-sourcing platforms and applications [43–48] that could be harnessed more
effectively for performance improvement.

2.2. Accuracy-Risk Trade-Off

Previous work has investigated several avenues to optimize the accuracy of the crowd
such as by recalibrating predictions against systematic biases of individuals [26] and
selecting participants who are resistant to social influence [27]. Additionally, rewiring the
network topology of information-sharing between subjects [25,41], and optimally allocating
tasks to individuals [49] has improved collective accuracy. However, these studies focused
on accuracy with little regard to risk. There is a rising movement to go beyond accuracy
and to fully characterize performance—at the individual and the collective level—in terms
of both accuracy and risk. Some call this emerging line of work going beyond the ‘bias bias
(In the statistics literature, bias is another name for accuracy. This movement suggests that
research should go beyond its current focus on just bias and study risk).

At the individual level, there is increasing evidence that people preferentially opti-
mize for risk instead of accuracy in a variety of domains [50]. Cognitively, people have
been observed to manifest decision heuristics [51] to be conservative in the face of un-
certainty [52,53]. For example, rice farmers have been observed not to adopt significant
harvest improvement technology because of the risk of it failing once and causing signifi-
cant family ruin [54]. Evolutionarily, risk aversion has been shown to emerge when rare
events have a large impact on individual fitness [52]. Furthermore, in a meta-study of
105 forecasting papers, 102 of them support prioritizing for lower risk to achieve higher
overall performance [55]. At the collective level, there is limited work regarding the charac-
terization of the performance of collectives and swarms in terms of both accuracy and risk
although there is a large literature on other related trade-offs such as between speed and
accuracy [56–60].

From a system design perspective, crowd-sourcing platform designers should charac-
terize their performance in terms of both accuracy and risk due to theoretical results [8,9]
and observations in applications [10,11] that the performance of any prediction system is
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subject to a fundamental trade-off between accuracy and risk. This is especially impor-
tant in our domain of predicting financial asset prices as risk is already known to have
negative effects on the efficiency of markets such as through the phenomenon of implied
volatility [61].

3. Materials and Methods
3.1. Experimental Design

To test our hypothesis that a Pareto frontier exists between risk and accuracy—i.e.,
that there is a trade-off between risk and accuracy of prediction across several predic-
tion rounds—and that it is mediated by social learning, we need a dataset with the
following requirements:

• Predictions are made of complex and difficult-to-predict phenomena so that our results
are applicable to the real-world platform applications.

• Predictions are made over many independent prediction rounds so that the risk of the
crowd over these different tasks can be estimated.

• A ground-truth is needed against which we can compare our dataset to judge the
external validity of individual and collective performance metric.

• The social and non-social information each participant was exposed to after their initial
pre-exposure prediction is recorded so that we can later model how different types of in-
formation influenced them in updating their belief into their post-exposure prediction.

Given the above requirements, we designed the experimental procedure as detailed
below: we recruited a total of 2037 participants over seven prediction rounds to predict
the future prices of financial assets (the S&P 500, WTI Oil, and gold prices) during seven
separate consecutive 3-week rounds over the span of 6 months, resulting in 9268 predictions
(i.e., 4634 prediction pairs or sets). We focused on predicting financial prices as doing so is
a hard prediction problem [62,63]. Our participants were mid-career financial professionals
with years of financial experience. Our participants consented to their data being used in
this study and we obtained prior IRB approval. One of our rounds of prediction happened
to end the day of the Brexit vote, which means that we have prediction data during a
particularly volatile market period [31] as described in Supplementary Section A.5 .

During each round, participants made a prediction of the same asset’s closing price
for the same final day of the round. We use the round’s last day’s closing market price
as our measure of ground-truth. We carefully instrumented the social and non-social
information that our participants were exposed to, and collected their predictions before
and after exposure to this information. We also deployed one of our rounds during a high
uncertainty period to understand if variance reduction strategies allow the crowd to be
resistant to risk.

We did not opt for an A/B testing experimental design [64]—where we would have
split participants and shown each group either the social information or the historical
price time series—because we wanted participants to naturally choose whichever source of
information to use to update their belief. This was an important experimental design choice
as we wanted to understand, as close as possible to in-situ how people update their beliefs
in the real-world where they are already exposed to both their peers’ beliefs and to price
history information, such as through financial news. Our design is in contrast to previous
work where the experiments were deployed within a carefully controlled laboratory set-up
as in prior work [25,37,40].

3.2. Data Collection

As shown in the screenshot of the user interface in Figure 1, we designed the data
collection process as follows: every time a participant makes a prediction of an asset’s
future price through our platform, the following prediction set comprising Bpre, BH , BT and
Bpost is collected:
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• A “pre-exposure” belief prediction Bpre, which is independent of both social informa-
tion and price history. For example, a participant might show-up on the platform and
predict that the closing price of the S&P 500 to be 2001 on 24 June 2016.

• The predictions BH within the social information histogram shown to each participant
after each initial prediction. Additionally, we display a 6-month time series of the
asset’s price BT up to this point.

• The revised “post-exposure” prediction Bpost. For example, after seeing the social
histogram and asset price history, a participant might update their belief to 2201. Since
the real price (the ground-truth V) ended up being 2037.41, this participant became
more accurate after information exposure (they went from 2001 to 2201).

Social 
Histogram

Updated
Prediction

(post-
exposure)

Initial 
Prediction 

(pre-
exposure)

Price
History

Figure 1. An annotated screenshot of how data were collected: the pre-exposure prediction Bpre is shown first, followed by
the social histogram BH and the price history BT . Finally, the updated prediction Bpost is collected. The ground-truth of the
asset’s final closing price will be V (not shown here, realized at the end of the round).

Overall, we ensure that the “pre-exposure” prediction is made before any social
information and price history is shown. We present a unique histogram for every new
prediction (as it is built using past predictions up to this point), as well as a unique price
history time series (as it shows the 6-month price data up to the time of prediction). We
require all participants to make a post-exposure prediction even if they decide to keep it at
the pre-exposure level.

3.3. Modeling and Estimation

Using the data collected in the live experiments, we want to test our hypothesis that a
Pareto frontier exists between risk and accuracy and that it is mediated by social learning.
In this section, we describe all the modeling and estimation steps required to investigate
our hypothesis:

• In Section 3.3.1, we describe how we model individual belief update: how a partici-
pant updates their prediction from a pre-exposure belief to a post-exposure prediction
using a variety of models that are either Monte Carlo methods or simpler approxi-
mate methods inspired by Bayesian models of cognition [28,29]. This allows us to
understand how participants update their belief after information exposure.

• In Section 3.3.2, using the models described earlier, we detail how to estimate the
relative amount of social vs. non-social learning for each prediction to understand how
much social vs. non-social data were factored into a prediction’s belief update. We then
introduce our methodology for selecting predictions based on the estimated amount
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of social vs. non-social learning. This allows us to make aggregate predictions—at the
platform level—based on a pre-specified amount of social learning.

• In Section 3.3.3, we detail how the accuracy and risk—at the platform level—of
selected subsets are measured, and how they are used to investigate whether a Pareto
trade-off exists between accuracy and risk and whether it is mediated by the relative
amount of social vs. non-social learning.

3.3.1. Modeling Belief Updates

Using formalism inspired by Bayesian models of cognition [29], we can model the
4634 prediction sets collected over many rounds, at a high level, as a Bayesian update.
To use this formalism, we need to select a prior distribution for each individual’s belief
before exposure to any information and a likelihood (evidence) distribution to model
the data participants are exposed to. Additionally, a sampling or approximate method
is required to use the prior and evidence to compute the posterior (updated belief after
information exposure) distribution. Here, we describe the modeling assumptions and
procedure at a high level, and detail more thoroughly our modeling assumptions and
present our derivations in Supplementary Section A.3.

Fundamentally, we are interested in how participants predict an asset’s future price
(ground-truth) V based on the information we expose them to. The choice of the prior
distribution is straightforward: Pprior(V) ≈ P(Bpre), the distribution of belief of an indi-
vidual before they are exposed to any information. We discuss in our model derivation
(Supplementary Section A.3) how, when needed, we approximate the full distribution
P(Bpre) since we obtain only one sample, Bpre, for each participant and cannot observe the
full distribution P(Bpre).

After participants input their pre-exposure belief Bpre, there are two main likelihood
(evidence) distributions participants employ: they are exposed to the assets’ price history
BT , giving us Plikelihood(V) ≈ P(BT), or analogously, the social histogram BH , giving us
Plikelihood(V) ≈ P(BH). In the modeling stage here, we assume that participants used
these two likelihood distributions separately to update their beliefs, but we relax this
assumption in the estimation stage next where we estimate the relative amount of social
vs. non-social learning for each prediction. We detail in Supplementary Section A.3 how
likelihood distributions are built from the information that participants are exposed to. In
Supplementary Section A.2, we formally detail how we transform the price history into a
cognitively accurate ‘rates histogram’ using price momentum. As a summary, because it
has been shown that people process time series as a distribution of changes as opposed to
a distribution of the quantity itself [65–67], we convert the price history time series into a
histogram of daily changes (slopes) in prices which is used for both the simple Gaussian
models and the numerical models for price prediction.

Given the prior and likelihood, the modeled posterior prediction Pposterior(V), can,
therefore, be approximated as Pposterior(V) ∝ P(BH) · P(Bpre) in the case of exposure to
social information, and Pposterior(V) ∝ P(BT) · P(Bpre) when participants are exposed to
the past price history. We do not make any other assumptions in terms of what data to
use to approximate the likelihood and prior distributions. Given these distributions, the
question is then how to compute the posterior (updated) belief of an individual.

Although we focus on Bayesian models in this work, we include one popular model
commonly used as a benchmark in the literature, the DeGroot model [68]. In this model,
an individual updates their belief as the weighted average belief of their peers where
weights can be, for example, trust values of the individual for their peers. Here we set the
weights (trust values) equal for all peers, as we have no data to estimate these weights, and
therefore assume a uniform prior.

Although the space of possible distributions and posterior computation approaches is
very large, we focus here on using two simple, interpretable, and theoretically motivated
approaches from prior work [28]. We either use Gaussian (normal) conjugate distributions
to approximate priors and likelihoods due to strong evidence of their ubiquity as Bayesian
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models of cognition [29], or use a full Monte Carlo numerical sampling approach to
calculate the posterior from the actual distributions of prices that participants were exposed
to. We leave to future work the exploration of richer distributions and approaches to
modeling belief update as it is beyond the scope of this study.

3.3.2. Subsetting Predictions Based on Social Learning

Based on how participants update their belief, we would like to select subsets of
predictions based on whether they were more likely updated using social or non-social
information. This approach of using characteristics of how predictions are updated is
standard in the Wisdom of the Crowd literature. For example, prior work has estimated
resistance to social influence [27] and influenceability in revising judgments after seeing
the opinion of others [69,70], and used them to improve collective performance. No prior
work has investigated investigating if the modeling of belief update strategies could be
leveraged for improved collective performance.

Using the previously modeled posteriors, we can estimate how much of each infor-
mation source—social information and price history—each participant used to update
their belief by comparing the residual errors of models using either only social information
or only price history as likelihood. As will be introduced in the Section 4, although we
explored many models of belief update, the simple conjugate Gaussian models model
best how participants update their belief. This is in line with previous research showing
that although simple, they are highly accurate models of mental estimation in a variety of
domains [28].

Therefore, for the purposes of selecting subsets of prediction based on their relative
amount of social vs. non-social learning, we choose to focus on the GaussianSocial and
GaussianPrice. These models assume the likelihood (evidence) data distribution to be
built, respectively, from the social information and price history participants are exposed to.

Our approach is illustrated in Figure 2: using the prediction of the models Gaussian
Social and GaussianPrice, we calculate a residual εH for when updating belief us-
ing social information BH and a residual εT when updating from the price history BT ,

as εH =
|GaussianSocial−Bpost |

Bpost
and εT =

|GaussianPrice−Bpost |
Bpost

respectively. We define
α = εT − εH , and we use it to measure how likely a participant used each source of
information to update their prediction. For example, for a prediction set [Bpre, BH , BT , Bpost]
if α > 0 (i.e., εT > εH), this means that this prediction set is better modeled using the social
histogram of peer’s belief BH instead of the price history BT .

Using α, which we re-scale to be in the interval [−1, 1] for each round, we can select
a subset Sαs of the prediction sets such that the α of these prediction sets lie in the range
0 ≤ α < αs (or αs < α ≤ 0 when αs < 0). αs is the one-sided boundary we will vary to
measure how much more likely a participant updated their belief from the social information
instead of the price history. For example, the higher αs is, the more likely a prediction set is
better modeled using the social histogram of peer’s belief BH instead of the price history BT.

It is important to note that the residuals we use to select subsets are belief update
model residuals (between the observed updated belief and the predicted modeled updated
belief) which are uncorrelated with the crowd residual (between the crowd’s aggregate
prediction and the ground-truth).
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difference in 
model residual, here $3 

GaussianSocial
 modeled updated 
belief using social 

histogram e.g. $160

GaussianPrice
 modeled updated 
belief using price 
history e.g. $171

initial user prediction
e.g. $152 updated user 

prediction
e.g. $164

social model 
residual, here $4

price model 
resdidual, here $7

}

social histogram 
showing distribution of 
peer beliefs a user is 

exposed to

price histogram 
showing distribution of 
price history a user is 

exposed to

Figure 2. An example belief update: for each prediction set, a participant updates their belief
from the pre-exposure prediction Bpre to the updated prediction Bpost by either learning from the
social histogram BH and/or the price history BT . εH is the residual between the modeled updated
prediction GaussianSocial and the participant’s updated prediction Bpost; εT is the residual between
GaussianPrice and Bpost. α is the difference between εT and εH .

3.3.3. Evaluating Improvement of Subsets

Our hypothesis is that a Pareto frontier exists between risk and accuracy and that this
trade-off is mediated by the relative amount of social vs. non-social learning.

To test this hypothesis, we investigate how the accuracy and variance of subsets Sαs

of predictions selected using αs (a measure of the relative amount of social vs non-social
learning) compares to the current standard Wisdom of the Crowd approach whereby all
predictions are used.

From the perspective of platform designers who want to be able to select predictions
based on required levels of accuracy or risk (e.g., to fit a certain portfolio of risk), it is
important to measure improvement of subsets relative to the full collection of predictions.
This is because, currently, platform designers only have access to one global measure of
risk and accuracy—that of the whole set of predictions (when there is no subset filtering).
To demonstrate that selecting subsets of predictions can lead to significant improvements in
accuracy and risk, we therefore need to calculate these improvements.

We therefore define improvement ISαs as the absolute difference between the error eSαs
when using a subset Sαs compared to the error eSall when using the full set of predictions
Sall , the Wisdom of the Crowd, where Sall is defined as the full subset over all predictions
using −1 ≤ α ≤ 1.

The error ei,Sαs
over all predictions j ∈ Sαs for an estimated amount αs of relative

social vs. non-social information during experiment round i is defined as
|∑j∈Sαs [Bpost,j ]−Vi |

Vi
.

To allow for estimation uncertainty over the improvement in accuracy and risk of sub-
sets, we use 100 bootstraps with replacement. This procedure is formally described in
Supplementary Section A.3.4.

We use an analogous approach to estimate the risk of the platform by calculating the
standard deviation instead of the mean of the improvements over experiment rounds. This
measures the risk for platform designers to estimate, over a basket of prediction rounds, what
is the variance of improvements over this basket. This is the same as understanding the
variance of error of a statistical prediction model (e.g., machine learning model) such that we
can calibrate both the accuracy and variance of the model over a portfolio of predictions.
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4. Results

Here we present our results. In Section 4.1, we detail our supporting result related
to how different belief update models perform. Next, in Section 4.2, we present our main
result about the trade-off between accuracy and risk in the Wisdom of the Crowd. Lastly,
we present the supporting result regarding the effect of social learning during the high
uncertainty period before the Brexit vote in Section 4.3.

4.1. Belief Update Models

Although the space of possible prior and likelihood distributions and posterior com-
putation approaches is very large, we focus on using simple, interpretable, and theoretically
motivated approaches from prior work [28]. We leave to future work the exploration of
richer distributions and approaches to modeling belief update as it is beyond the scope of
this study. We detail how model error and confidence intervals are evaluated in Supple-
mentary Section A.3.3.

As can be seen in Figure 3, models that use social information as likelihood for mod-
eling the belief update of participants (GaussianSocial,GaussianSocialModes, Numerical
Social) outperform better than models that use the price history (GaussianPrice, Numerical
Price). This suggests that our participants more likely use social information instead of the
price history to update their belief, in line with previous work showing that participants
often prefer using social information [71,72].

0

3

6

9

Model
DeGroot
GaussianSocial
GaussianSocialModes
NumericalSocial
GaussianPrice
NumericalPrice

1
(SP500)

2
(WTI Oil)
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7
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(SP500)
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%
)

Figure 3. The y-axis shows the relative residual between modeled belief update and actual updated
belief. Simple approximated models do better at modeling belief update than numerical models,
and models using social histograms as likelihood perform better than models using the price history.
Error bars represent 95% CI.

Specifically, GaussianSocial, our simple Gaussian model that assumes the data fol-
lows a single-mode Gaussian distribution, outperforms GaussianSocialModes, a model
that identifies when the social histogram is non-unimodal (using the Hartigan’s dip test
of unimodality [73]) and uses the largest mode as the mean of the distribution. This sug-
gests that participants assume the data they learn from to be unimodal even when it is
non-unimodal, in line with prior work [74,75] showing that this might be due to the fact
that using multi-modal data is cognitively costly.

Additionally, GaussianSocial outperforms the more precise numerical model
NumericalSocial which makes no parametric assumption on the data distributions and
uses a Monte Carlo procedure to estimate the posterior distribution. This suggests that
participants employ simple heuristics when learning from their peers, in line with the at-
tribute substitution heuristic of human decision-making [30]. However, when participants
are learning from the price history, the dominance of simpler models is not as clear because
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the performance of the simple GaussianPrice model is indistinguishable from that of the
numerical model (NumericalPrice).

GaussianSocial also outperforms the popular DeGroot model commonly used as a
benchmark in the literature [68], where an individual updates their belief as the weighted
average belief of their peers. Here we set the weights (trust values) equal for all peers,
as we have no data to estimate these weights, and therefore assume a uniform prior.
It is interesting to note that GaussianSocial is equivalent to the DeGroot model when
a participant’s weight on their own prior belief is equal to the total of the weights of
all other participants. This agrees with previous work showing that participants put a
disproportionately larger weight on their own prior belief [76,77].

Overall, the superiority of GaussianSocial in predicting belief update suggests that
participants use a heuristic, unimodal, and simple belief update procedure when updating
their beliefs, and that they predominantly update their predictions using social information
instead of price history. It is important to note that approximate (non-Monte Carlo) models
such as GaussianSocial and GaussianPrice are parameter-less models and did not require
any parameter fitting, making their success in modeling belief update quite interesting.

4.2. Accuracy-Risk Trade-Off

Here, we present our main result about the trade-off between accuracy and risk in the
Wisdom of the Crowd. Using a Pareto curve, we compare the improvement in prediction
accuracy and risk (variance) of each subset Sαs as defined by αs, a measure of the relative
amount of social vs non-social learning.

As shown in Figure 4, we observe that with improvements in accuracy of subsets
comes increased risk, mediated by the relative amount of social vs. non-social learning
αs, suggesting a trade-off between accuracy and risk. As formally described earlier in
Section 3.3.3, improvement is a measure of the additional accuracy gained from a subset of
predictions compared to when using all predictions by the crowd (the de-facto Wisdom of
the Crowd) over all prediction rounds. Similarly, risk is a measure of the risk of this subset
compared to when using all predictions over all rounds. From a system design perspective,
we choose these measures of improvement and risk as they allow us to understand how
choices over subsets of participants might affect performance, allowing us to calibrate the
crowd as per the platform designer’s risk preferences.
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Figure 4. (A): In this Pareto curve, we plot the improvement of each subset vs. the risk (standard deviation) in improvement
within this subset. We see a risk-return trade-off: predictions made with price history are more accurate, but with higher
risk (standard deviation). Fitted line has R2 of 0.49, and p-value < 0.001. Horizontal and vertical error bars represent
95% CI from 100 bootstraps. (B,C): Instead of plotting risk vs. improvement (as in (A), here we plot the same values of
improvement ((B), R2 = 0.82, p-value < 0.001) or risk ((C), R2 = 0.50, p-value < 0.001) against the relative amount of social
vs. non-social learning, αs, that generated these values of improvements or risk.
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Additionally, since we observe that variance of improvement (risk) decreases with
increased social leaning, our result replicates prior findings that exposure to social infor-
mation decreases the variance of the crowd [37]). Please note that the decrease in risk
from social learning is not because participants are simply converging towards the crowd’s
mean: as detailed in the previous Section 4.1, the social histogram participants are shown is
quite often non-unimodal (tested using the Hartigan’s dip test of unimodality [73]), which
means that participants are intentionally collapsing multiple distribution modes in the
observed data.

Such a Pareto trade-off between risk and accuracy is common in financial forecast-
ing [15,16] and statistical prediction [8–11], but has not been typically observed in the
literature on the Wisdom of Crowds. This has strong implications for the design of crowd-
sourced prediction platforms as described in the Discussion Section 5.1.

4.3. Performance under High Uncertainty

A supporting result of our work is from the investigation of the crowd’s performance
during a period of high uncertainty using the data from the prediction round that happened
during the Brexit vote (see supplementary Section A.5 for details about this round).

Following the same procedure described in the Methods Section 3.3.3, we bin all
α’s from the prediction sets and investigate the improvements of subsets of predictions
compared to the whole crowd. The main difference here is that unlike in all previous
results where we took care not to use the last week of data to calculate collective accuracy
so that prediction was not too easy, we do so here as the high uncertainty only happened
in the last week (as shown in supplementary Figure S1). This last week of data that we use
is a disjoint subset from the data we previously used.

As can be seen in Figure 5, as αs decreases (i.e., we select predictions that were
more likely updated using the price history instead of the social information, αs < 0),
improvement in accuracy of subsets compared to the Wisdom of the Crowd (all predictions)
decays to a great extent.
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Figure 5. Improvement when selecting predictions based on how much more they were likely made
using social information (αs > 0) vs. price history (αs < 0). 95% Confidence intervals obtained
through 100 bootstraps.

Conversely, as subsets of predictions updated using the social histogram (αs > 0) are
selected, the improvement in their accuracy is stable.

Given that such high market uncertainty only occurred during one round, we do not
have enough data to produce a Pareto curve over multiple rounds. Additionally, note that
although a smaller number of predictions were made during the last week before Brexit
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(52 prediction sets compared to 284 during the open period of prediction used earlier), we
have sufficient data to afford statistically significant results as shown by the 95% confidence
intervals of our findings.

This supporting result suggests that during periods of high uncertainty, social learning
leads to higher accuracy in contrast to the result in the previous section where the asset
prices were more predictable. This result has implications for platform designers such as
the potential of leveraging social learning as a valuable tool that minimizes catastrophic
performance during high uncertainty prediction regimes.

5. Discussion

Our main result (the trade-off seen in Figure 4) supports our hypothesis that a Pareto
frontier exists between risk and accuracy—similarly to what has been observed in statistical
modeling [8–10] and financial [14–16] forecasting systems. This trade-off is mediated by
the relative amount of social vs. non-social learning. Additionally, as supporting results,
we observe that simple approximate models outperform more complicated Monte Carlo
approaches in modeling the belief update process of participants. This suggests that
participants use several heuristics, and that during periods of high uncertainty, social
learning leads to higher accuracy.

Here, we discuss the implications of our results for platform designers in Section 5.1,
describe the contributions of our work to the literature on heuristics in information pro-
cessing and decision-making in Section 5.2. We end with a description the limitations of
this work in Section 5.3.

5.1. Collective Intelligence System Design Implications

If we are to deploy crowd-sourced financial prediction and speculation systems at
scale, it will be important to fully characterize the performance of these systems. This is
especially given the growing importance of decentralized financial prediction and specula-
tion including very recent events during which retail investors self-organized using social
media and drove up asset and derivative prices [3,4]. However, crowd-sourced prediction
systems and literature so far focus on measuring and optimizing for the accuracy of the
predictions with little regard to the risk of these predictions even though measuring both
accuracy and risk is standard in machine learning [8–10] and financial [14–16] forecasting
applications. More generally, proper modeling and estimation of risk will support more
sophisticated and versatile applications of crowd-sourced predictions such as hedging
risks over portfolios of prediction tasks.

Additionally, beyond the passive monitoring and reporting of risk, a practical question
for designers is how to tune the platform to reach a desired value of risk and accuracy.
Our result that social learning can mediate the accuracy-risk trade-off provides a practical
means to attain performance along this frontier. Specifically, our results suggest that social
learning within a crowd-sourcing platform could be more purposefully leveraged to fit the
task at hand. For example, platform designers could incentivize social learning between
participants to have lower risk. This might be especially needed during highly uncertain
times, as our results from the Brexit prediction (Figure 5) prediction showed. Past work has
already showed that crowd-sourcing platforms can be incentivized to be more social [43,44].

Beyond platform design considerations, our results also add to the rich study of
social learning and its impact on collective intelligence within the Wisdom of the Crowd
domain [25,27,37,40,41] by adding the novel perspective that risk is an important dimension
of the behavior of crowds to be measured.

More generally, our work brings together two disjoint studies by showing that it is
possible to improve collective intelligence by modeling individual belief update. Our
results therefore suggest a connection between the field of collective intelligence [78] (of
which the Wisdom of the Crowd is one domain) and the field of computational cognitive
science [79] (of which Bayesian models of cognition is an area). Until now, the latter
literature has mostly focused on individual models of belief update such as through
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computational models of how people perform sampling [80], what their priors are [81], and
how they perform inference [82], sometimes in social situations [83]. Yet, there is little work
that looks at the impact of individual belief update on collective performance. On the other
hand, there is limited collective intelligence literature regarding leveraging the modeling
of individual belief update to improve group performance and past work has instead been
focused on using personal characteristics such as resistance to social learning [27].

5.2. Information Processing and Decision-Making Heuristics

Our results also have implications for the literature on decision heuristics and bi-
ases [75,84]. Through the modeling of belief update, we observe that our subjects exhibit
the attribute substitution heuristic of human decision-making [30]. This information pro-
cessing heuristic describes when people attempt to solve a complicated problem by approx-
imating it with a simpler, less accurate model. We observe this heuristic as our participants’
updated beliefs are better modeled by the GaussianSocial model (which assumes the
data to be unimodal) than by the multi-modal belief update model GaussianSocialModes.
This indicates that our participants assume the data to be unimodal even when it is not,
in line with previous studies that have shown that people wrongly assume data to be
unimodal [74,85,86]. This is hypothesized to be because updating belief using multi-modal
data is cognitively costly [87]. Additional evidence of this substitution heuristic is from
the fact that simpler, approximate models better predict the updated beliefs of participants
than the more complicated Monte Carlo numerical models.

Another decision heuristic that we observe is that participants prefer to use so-
cial information rather than the underlying price history of an asset to update their
belief as models which use social information (GaussianSocial,GaussianSocialModes,
and NumericalSocial) outperform models that use price history (GaussianPrice and
NumericalPrice) as shown in Figure 3. This is surprising given that our participants were
mid-career finance professionals with strong financial experience who should know that
price information is generally better to predict future prices [88,89]). However, such behav-
ior was observed in prior work where even experts performing a familiar task demonstrate
sub-optimal decision heuristics [90,91], and often over-rely on social information [71,72].

Generally, such information processing and decision-making heuristics have been
seen as irrational and sub-optimal. Our results suggest that within the full specification of
both accuracy and risk, perhaps participants are preferentially aiming for lower risk instead
of higher accuracy. This preference for social information especially pays off during the
high uncertainty period before the Brexit vote. Our results support growing evidence that
heuristics and biases are not merely defects of human decision-making, but that perhaps
they optimize for richer objectives or are optimized for more time- or data-constrained
decision-making [92–98]. For example, when individual decision-making is viewed within
the lens of more realistic requirements such as limited time [99,100] or attention [101],
heuristics and biases have been shown to act as helpful priors that facilitate fast and
risk-averse decision-making [102,103].

5.3. Limitations and Future Work

We made several simplifying assumptions in this work that open up rich avenues
for future work. First, we used simple, interpretable, and theoretically motivated belief
update modeling approaches from prior work [28] and leave to future work the exploration
of richer models, distributions and posterior computations to investigate belief update.
One important set of models to investigate is the use of log-normal distributions for the
likelihood instead of the normal distributions used in this work due to the established
tendency of people to guess quantities log-normally [37,104,105]. Similarly, people have
been shown to incorporate information asymmetrically based on where their predictions
lie in relation to the information they are exposed to [106]. Overall, although we used
Gaussian models here, an interesting direction of future work would be to build on the rich
existing literature on how people incorporate information [84,107,108]. We also restricted
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each round to have a static population of participants whose predictions were shared
using a specific visualization. An interesting direction for future work would be to embed
participants in social networks given the importance and popularity of recent work on
the effect of communication topologies [25,41,42,109] on group performance. Similarly, it
would be interesting to investigate if different avenues for communication (e.g., discussions
on forums [110]) exhibit a similar accuracy-risk trade-off.

Although this work demonstrates that our simple estimation technique can be used to
tune crowd-predictions for desired levels of accuracy and risk, there are potential causal
issues that could be improved in our experimental design and data analysis. One such
issue is that there are two experimental and two analysis factors being investigated simul-
taneously here. These are the two different treatments in the form of sources of information
(peer beliefs for the social histogram and price trajectory from the past price history) and
the two different approaches through which each of these sources of information are being
processed (simple binning of peer beliefs into a histogram, and transformation of the price
history into a ‘rates histogram’). It can be argued that these two experimental treatments
and two approaches constitute four possible approaches of how to deploy and analyze an
experiment, and we have only compared two of these four approaches. From a scholarly
perspective, we believe that our paper still makes a contribution because the goal of this
work was to show that a trade-off exists and is mediated by social learning. We achieve this
goal even though we only compare two approaches. Another causal concern is that the two
experimental treatments might interact in non-trivial ways. For example, when visualized
as a causal graph, there might be causally confounding paths between the treatments.

Several research designs and estimations techniques exist to remedy these causal
limitations. One approach would be to use an A/B test [64] framework although it would
require exposing people to different information separately. Doing so would be against our
goal to investigate how people update their belief in real-life situations where users are
exposed to both social information and price history. However, experiments where different
types of information are shown separately could still be used to understand the effect of
different information exposures on accuracy and risk, and used in deployment. Similarly
different amounts of information exposure could be attempted using a multi-factorial
A/B test [111,112]. We leave the exploration of these more sophisticated designs to future
work. Other de-confounding approaches could involve assuming a causal graph [113]
that is believed to capture how people update information and to use causal tools such as
d-separation to estimate the effect of different information exposure. Another approach
would be to use a potential outcomes framework [114] to estimate these treatments. These
are promising directions of research which could be investigated using our data that we
leave to future work. From a platform design perspective, even though these confounding
issues remain, our estimation technique could be readily applied to crowd-sourced systems
where price histories and peer beliefs are being shown.
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