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A B S T R A C T

The Industrial Internet of Things (IIoT) has revolutionized the industrial sector by providing
advanced and intelligent applications. The objects and nodes communicate with one another
to collect, exchange, and analyze a large amount of sensing data using techno-social sys-
tems, thereby challenging the security and trustworthiness of the data. To achieve effective
communication in IIoT, trustworthy relationships must be established among these objects.
This makes trust an important security parameter in an IoT-based environment to achieve
secure and reliable service communication at the edge nodes. In this paper, we propose an
adaptive Context-Based Trust Evaluation System (CTES), which calculates distributed trust at
the node level to achieve edge intelligence. Each edge node takes recommendations from its
context-similar nodes to calculate the trust of serving nodes. This collaborative trust calculation
mechanism helps in filtering out malicious nodes in the network. The weighing factor ‘‘μ’’ is
dynamically assigned based on the previously calculated trust score experienced by the edge
node. This research also focuses on formal verification of the proposed CTES model. We analyze
the efficiency of CTES in terms of accuracy, dynamic assignment of μ, and resiliency against
Ballot Stuffing and Bad Mouthing attacks to avoid malicious nodes. The results ensure the
significance of the proposed CTES model for dynamic assignment of μ and provide satisfactory
results against EigenTrust, ServiceTrust, and ServiceTrust++ in terms of detecting malicious
nodes and isolating them from providing recommendations.

1. Introduction

Industry 4.0 is the most significant industrial revolution, which is focused on creating smart factories by using smart machines [1].
Generally, Industry 4.0 is used for the automation and exchange of data between smart machines for manufacturing purposes, which
comprise the Internet of Things (IoT), Industrial Internet of Things (IIoT), and Cyber–Physical Systems (CPS). The IoT connects
physical objects through the Internet using sensors, RFID tags, and various smart devices. Sensing devices are used to get the stimulus
from the environment and respond to the system. IoT has become a fundamental part of the smart environments and provides
multiple services in safety, transport, healthcare, surveillance systems, education, and more importantly, in the industrial domain.

✩ This paper is for special section VSI-eiia. Reviews processed and recommended for publication by Guest Editor Dr. Jiafu Wan.
∗ Corresponding author.
E-mail address: dr.h.abbas@ieee.org (H. Abbas).
vailable online 5 April 2021
045-7906/© 2021 Elsevier Ltd. All rights reserved.

ttps://doi.org/10.1016/j.compeleceng.2021.107123
eceived 3 June 2020; Received in revised form 4 March 2021; Accepted 12 March 2021

http://www.elsevier.com/locate/compeleceng
http://www.elsevier.com/locate/compeleceng
mailto:dr.h.abbas@ieee.org
https://doi.org/10.1016/j.compeleceng.2021.107123
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compeleceng.2021.107123&domain=pdf
https://doi.org/10.1016/j.compeleceng.2021.107123


Computers and Electrical Engineering 92 (2021) 107123A. Altaf et al.

r
t
i
d
t
e
t

i
s
n
S
m
o
l

T
t
t
p
c
s

2

d
i
p
a
s
d
r
I
i
t

t
m
a
A

The communication in IIoT is based on IoT-enabled devices that can run numerous applications for collaborative communication
in smart manufacturing to generate large amounts of data. This data needs to be trustworthy and secure by isolating false data
generated by the malicious nodes. This can be achieved through edge intelligence, which refers to the process of data collection,
analysis, and related calculations at the node that captures or generates the data. IIoT is providing solutions to smart manufacturing
in combination with security mechanisms to ensure the reliability of data and to improve communication between smart machines.
Although this makes IoT helpful in everyday life, it also opens the doors of threats and vulnerabilities [2]. For the service exchange
plan, devices need to be in contact with each other to share the data to provide services in industrial applications. There should be
mutual trust between the service requester and the service provider. Therefore, it is imperative to measure the reliability of service
providers.

Trust formation is important and can have different definitions according to the requirement. Trust is defined as the only
equirement that is used to access the resources and information that need to be shared. The best definition of trust found in
he IoT literature is, ‘‘Trust is the edge that links the intelligent object with the technological ecosystem’’ [3]. The presence of trust
s helpful in making decisions in the network that comprises multiple systems, which makes it a significant part of the system for
evices to perform the requested services. In an IoT network, trust is established among different nodes to complete the requested
ask. The important factor is when they need to associate with the unknown devices. At that time, devices need to have some trust
stablishment procedure to communicate with unfamiliar ones. IoT is a blend of various types of devices in the same network; thus,
rustworthy communication between all associated entities is important [3].

This research proposes an intelligent trust model, which helps the edge nodes to request services from a reliable service provider
nstead of a malicious one. Since data is the most significant part of an IIoT architecture, we must consider the trust among entities to
hare the data for any given task. It is important to consider the context of a service provider in a network for trust calculation. The
odes that are used in the trust calculation process belong to various contextual environments; therefore, the Trust Management
ystem (TMS) must include the context-similar nodes only while formulating the trust. A context in our research is to consider
ultiple factors, as discussed in Section 3, while taking the recommendations from other nodes. Context represents the environment

f users and servers under which they interact to establish a service interaction. This represents the current user environment, server
ocation, and Quality of Service (QoS) parameters.

The main contributions of this research are as follows:

1. We propose a context-based adaptive IoT trust model for edge intelligence. The novelty is in using collaborative filtering to
collect trust feedback from nodes that get services under the same context.

2. We develop a direct trust calculation mechanism using actual user satisfaction experience, selected between the range (0–1),
based on the percentage of positive observations instead of binary representation, which was previously used in the literature.

3. We develop an adaptive calculation mechanism to allocate weights to direct trust and indirect observations based upon the
current user experience while considering the context.

4. The proposed Context-based Trust Evaluation System (CTES) model is designed and verified using High-Level Petri Nets
(HLPN).

5. We evaluate CTES to analyze its effectiveness in avoiding malicious nodes against ballot stuffing and bad-mouthing attacks.

he rest of the paper is organized as follows: The introduction section is followed by Section 2, which presents the related work in
he domain of IoT. Section 3 describes the proposed CTES model, which gives a clear explanation and working of the mentioned
echniques for trust calculation. Section 4 presents the formal modeling and verification of the proposed CTES model. Section 5
rovides the performance evaluation of CTES on IoT edge nodes in terms of their accuracy and dynamic assignment of weights to
alculate the trust score. It also demonstrates the effectiveness of malicious node avoidance using CTES in the presence of ballot
tuffing and bad-mouthing attacks. Finally, Section 6 concludes the paper with our findings and future directions.

. Related work

IIoT is currently playing a significant role in smart manufacturing for Industry 4.0. CPS, IoT, and IIoT are collectively working for
ata generation and to analyze the collected data. Cognitive capabilities for the collected data for smart manufacturing are proposed
n [4]. Multiple reference architectures that help for smart manufacturing by using CPS and IIoT are discussed in [5] along with their
ros and cons. An architectural classification for Industry 4.0 is proposed to divide it into layers. The policy is formed after having
detailed analysis of the manufacturing process [6]. Recently, many studies have analyzed the implementation of Industry 4.0 for

mart manufacturing [7]. Similarly, trust and privacy framework has been proposed by Mannhardt et al. [8]. Jeong et al. have
escribed trust issues in IIoT-based smart manufacturing process [9]. To start the communication across the network for sharing
esources and services, trust in IIoT is imperative. There exist several studies that have analyzed security, privacy, and trust issues in
IoT [10]. TMS is the mechanism to evaluate, update, and revoke the assurance based on trust score. To make the system upright, it
s imperative to gain an insight into the methods by which the trust is being measured by the devices. The requesting device needs
o predict the trust score by calculating direct observations from the service provider.

Malicious node involvement by having multiple service-oriented attacks is an important aspect to consider while designing
he trust management mechanism in an IoT network. A dynamic trust model is presented in [11] to mitigate the malicious and
isbehaving nodes by assigning weighted recommendations in the trust calculation process. Multiple reputation-based systems are

lso proposed to mitigate the impact of malicious nodes while calculating the trust score. Malicious nodes that are used for On–Off
2

ttacks (OOA) on IoT trust models are discussed in [12,13] along with their mitigation strategies. Many studies have identified the
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gaps in trust management models proposed for IoT; thus, the research work done in [14] and [2] are more focused on context-based
trust management systems in IoT. Malicious node detection or avoidance while calculating trust or taking recommendations from
malicious users need to be considered to avoid uncertainties in trustworthiness. A limited number of research articles considered
this important aspect in IoT trust calculation [15].

A study in [16] used context in terms of the social relationship of nodes for trust level calculation. Each node in the proposed
ystem is served by its owner and the owner is responsible for trust calculation in the system. The calculation of direct and indirect
rust scores is used to compute the trust level while giving weight to the importance of context, power usage, and computation
ower. Another centralized trust calculation procedure is introduced in [17] to work with the context of a node while considering
arious metrics of a node. There exist multiple research articles that proposed trust computation procedures for IoT; however, only
ew of them [16–18] have given importance to context while calculating trust scores. Furthermore, the literature reveals that binary
alues are being used to represent a direct trust score. If the node is trusted, then the value is 1, whereas 0 is assigned for complete

distrust. This research compares the results while taking the values for direct trust in the range between 0 and 1.
The literature highlights the limitation that most of the research has been done on binary values for trust calculation. Weights

assigned to direct and indirect trust must be dynamic based upon the context of the data. Literature also reveals that many available
trust management systems do not consider the context of data while calculating the trust level. CTES proves that if the context is
being considered, then the trust will converge more quickly towards the ground truth. These limitations are also highlighted in our
research presented in [2] for better understanding. These limitations motivate us to develop a trust-oriented computational model
based on direct user experience and recommendation of context-similar users. In this research, we have focused on context-oriented
trust formation. The total trust calculation process incorporates actual user satisfaction experience for the direct trust of client nodes
towards the service providers. An adaptive weight parameter is used for taking the recommendations from context-oriented nodes.
This process ensures the filtering of malicious nodes so that their recommendations do not make any major contribution to the total
trust value.

3. Context-based trust evaluation system model

The proposed Context-Based Trust Evaluation System (CTES) is a distributed trust management system. Each user calculates its
trust score, which depends upon the context of the requested service from the service provider. In order to achieve scalability, each
user calculates the trust score towards a limited set of requested services to which it interacted. Each user stores this information
in the form of lists. The information list of user 𝑈𝑋 includes the following:

1. A list of server IDs denoted by a set 𝑆𝑋 = {𝑠1, 𝑠2, 𝑠3,… ., 𝑠𝑛}, which represents server IDs with which user 𝑈𝑋 interacted and
obtained services.

2. A list of server locations represented by a set 𝐿𝑋𝑗 = {𝑙1, 𝑙2,… ., 𝑙𝑛}, which represents the location of server 𝑆𝑗 that provided
services to user 𝑈𝑋 .

3. A list of services represented by set 𝑃𝑖 = {𝑝1, 𝑝2, ..… , 𝑝𝑛}, which represents the type of service user 𝑈𝑋 requested from server
𝑆𝑗 .

4. A list of user experiences represented by 𝐸𝑋𝑖𝑗
= {(𝑎𝑋𝑖𝑗 , 𝑏𝑋𝑖𝑗 ), ..…… ., (𝑎𝑋𝑛𝑚, 𝑏𝑋𝑛𝑚)}, where 𝑎𝑋𝑖𝑗 and 𝑏𝑋𝑖𝑗 represent the positive

experiences of the user and negative experiences of user 𝑈𝑋 towards server 𝑆𝑗 requesting service 𝑃𝑖, where 𝑖 = {1, 2,…… , 𝑛}
and 𝑗 = {1, 2,…… , 𝑚}.

5. A list of trust scores user 𝑈𝑋 has towards server 𝑆𝑗 providing services 𝑃𝑖. It is represented by a set 𝑇𝑋 = {𝑡𝑋𝑖𝑗 , ..…… , 𝑡𝑋𝑛𝑚},
where 𝑖 = {1, 2, 3, 4,…… , 𝑛} and 𝑗 = {1, 2, 3, 4,…… , 𝑚}.

The network model that depicts the user profiles having these lists is displayed in Fig. 1, where 𝑈𝑋 = User, which requests the
ervice, and 𝑆𝑗 = Server, which is accessed by user 𝑈𝑋 for providing service. The profile list of User 𝑈𝑋 represents the information,
hich is stored by user 𝑈𝑋 related to server 𝑆𝑗 .

.1. Direct user interaction experiences

Direct trust is calculated by the Naive Bayesian method using direct user interaction experience values. The significance of Naive
ayesian in trust measurement and reputation calculation motivates us to use this well-established method. We calculate the user
xperience, which depends upon multiple available contexts of the service provider. These multiple contexts are further used to
alculate trust scores using the Bayesian framework [19]. The important contexts that we consider in this research include the
erver’s capability in terms of its service provided, the location from which the server is providing service, and the type of server
sed. Quality of service is taken as a context in terms of response time for any requested service in this research. In service computing,
user can provide a feedback rating of a service provider after direct interactions depending upon non-functional characteristics.
hese non-functional characteristics include response time, throughput, server availability, cost of service, etc.

Existing trust management solutions do not include these context based nonfunctional characteristics while computing trust
cores of service providers. In our proposed CTES trust model, the current user interaction experience of user 𝑈𝑋 towards service
rovider 𝑆𝑗 providing service 𝑃𝑖 at location 𝐿𝑋 is evaluated based upon existing context and is represented by 𝐸𝑋𝑖𝑗 . We have
xtended the simple case proposed by Chen et al. in [15], in which they have used a binary value to represent user satisfaction
xperience, where value 1 indicates the satisfied user and value 0 indicates that the user is not satisfied. On the scale of the trust
3

easures in [20], by giving more flexibility to trustor to variate between trust and distrust, our proposed approach takes the user
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Fig. 1. User Profile with Attached Profile Lists.

Table 1
Class label values with various scales of trust measurement.

Parameters Values Satisfaction Level

E0 0 Ignorance
E1 0.1 Complete Distrust
E2 0.2 Very High Distrust
E3 0.3 High Distrust
E4 0.4 High Medium Distrust
E5 0.5 Low Medium Distrust
E6 0.6 Low Medium Trust
E7 0.7 High Medium Trust
E8 0.8 High Trust
E9 0.9 Very High Trust
E10 1 Complete Trust

satisfaction experience 𝐸𝑋𝑖𝑗 ’s value between 0 and 1 such that 0 represents not satisfied and 0.5 represents partially satisfied, as
iscussed in Table 1.

Table 1 lists all values of user experience in which a user node 𝑈𝑋 can assign a value of 𝐸𝑋𝑖𝑗
. When it experiences trustworthy

communication with its peer nodes, then depending on the level of trust, a value from 0.6 − 1 is assigned, where 1 being a fully
trusted interaction. Similarly, while detecting the malicious activity of neighboring nodes, user node 𝑈𝑋 can assign a value between
−0.5, where 0 being a fully malicious interaction and 0.5 represents a lower-middle level of distrust. These values, assigned to 𝐸𝑋𝑖𝑗

,
are used to calculate direct and indirect user trust. Therefore, depending upon the respective interactions of each user, malicious
and non-malicious nodes are categorized based on total trust computation.

Eq. (1) shows that the parameters 𝑎𝑋𝑖𝑗 and 𝑏𝑋𝑖𝑗 are updated based upon trust decay considering current user satisfaction
xperience 𝐸𝑋𝑖𝑗

.

𝑎𝑋𝑖𝑗
= 𝑒−𝜙𝛥𝑡 × 𝑎𝑋𝑖𝑗

(𝑜𝑙𝑑) + 𝐸𝑋𝑖𝑗

𝑏𝑋𝑖𝑗
= 𝑒−𝜙𝛥𝑡 × 𝑏𝑋𝑖𝑗

(𝑜𝑙𝑑) + (1 − 𝐸𝑋𝑖𝑗
)

(1)

Eq. (1) describes that 𝐸𝑋𝑖𝑗
contributes to positive experiences and (1 −𝐸𝑋𝑖𝑗

) provides negative user experiences. To update 𝑎𝑋𝑖𝑗
nd 𝑏𝑋𝑖𝑗

, we consider an exponential decay 𝑒−𝜙𝛥𝑡 on old values of 𝑎𝑋𝑖𝑗
(old), where 𝜙 represents a decaying factor, which is a small

umber to formulate small trust decay over time and 𝛥𝑡 represents the trust update cycle.
The direct trust (𝑡𝑑𝑋𝑖𝑗

) of user 𝑈𝑋 towards server 𝑆𝑗 providing service 𝑃𝑖 is calculated, as represented in Eq. (2).

𝑡𝑑𝑋𝑖𝑗
=

𝑎𝑋𝑖𝑗

𝑎𝑋𝑖𝑗
+ 𝑏𝑋𝑖𝑗

(2)

The value of 𝑎𝑋𝑖𝑗
and 𝑏𝑋𝑖𝑗

are initially set to 1 as no prior information is available about these values.

3.1.1. Algorithm for direct user trust calculation
Algorithm 1 presents the step-by-step procedure for direct trust calculation for user 𝑈 towards server 𝑆 .
4
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Algorithm 1 Calculation of Direct Trust
Input : 𝐸𝑋𝑖𝑗
Output : 𝑡𝑑𝑋𝑖𝑗

1: Set 𝑎𝑋𝑖𝑗
← 1 and

2: 𝑏𝑋𝑖𝑗
← 1 and

3: 𝑡 ← 1
4: for 𝑖 ← 1 to 𝑛 do
5: Update Interval
6: 𝛥𝑡 ← (𝑡𝑖 − 𝑡(𝑖−1))
7: end for
8: for all 𝐸𝑋𝑖𝑗 do
9: 𝑎𝑋𝑖𝑗

← 𝑒−𝜙𝛥𝑡

10: 𝑏𝑋𝑖𝑗
← 𝑒−𝜙𝛥𝑡

11: 𝑡𝑑𝑋𝑖𝑗
=

𝑎𝑋𝑖𝑗
𝑎𝑋𝑖𝑗 +𝑏𝑋𝑖𝑗

12: end for
Return : 𝑡𝑑𝑋𝑖𝑗

3.2. Indirect user trust based on recommendations

Devices can exchange their interacted servers and a list of obtained services to provide trust recommendations. This is referred
o as indirect user trust. To select trust feedback from devices working under the same context, a requesting node will first measure
ts similarity with the recommender to connected servers, the respective location of the servers, and a list of requested services. The
eason to consider these metrics is that entities in any network can form a similarity network based upon some agreed similarity
easures [21]. We have considered cosine similarity to calculate the similarity of two context lists of recommending nodes and the

equesting node. The similarity measure is a value between 0 and 1, where 0.5− 1 is similar and 0− 0.499 represents dissimilar. The
reason to choose cosine similarity lists is the low complexity and computational efficiency for IoT devices.

Once a direct interaction of a user 𝑈𝑋 about server 𝑆𝑗 is done, the user will require recommendations of its neighboring user 𝑈𝑌
ho has interacted with the respective server in the same context. Here, we consider the similarity of a server, the location of the

erver, and the provided services working under the same context to be used as a measure of recommendation. Now, we describe
he context similarity calculation dynamically as follows:

.2.1. Server similarity (𝑆𝐼𝑆𝑋𝑌 )
The server similarity measure is necessary to recognize that the two users 𝑈𝑋 and 𝑈𝑌 are accessing the services of the same

erver. The recommendations given by 𝑈𝑌 to 𝑈𝑋 about server 𝑆𝑗 can only be considered if the two users are connected to the same
erver under the same circumstances. First, the two users 𝑈𝑋 and 𝑈𝑌 will exchange their servers list, 𝑆𝑋 and 𝑆𝑌 . Next, the binary
ector of the two lists ⃗𝑉 𝑆𝑋 and ⃗𝑉 𝑆𝑌 are produced having size |𝑆𝑋𝑈𝑆𝑌 |. Given the cosine angle between ⃗𝑉 𝑆𝑋 and ⃗𝑉 𝑆𝑌 , the cosine
imilarity measure representing the 𝑆𝐼𝑆𝑋𝑌 is as follows:

𝑆𝐼𝑆𝑋𝑌 =
⃗𝑉 𝑆𝑋 ⋅ ⃗𝑉 𝑆𝑌

‖

⃗𝑉 𝑆𝑋‖ ⋅ ‖ ⃗𝑉 𝑆𝑌 ‖
(3)

If the computed similarity index is between the range 0.5 − 1, then it will be added in the list 𝐿𝑠
𝑋𝑗 = [𝑈𝑌 1, 𝑈𝑌 2,… .]. Here,

the calculation process is represented with an example. Let 𝑆𝑋 (𝑆1, 𝑆2, 𝑆4) represents the list of servers accessed by user 𝑈𝑋 and
𝑆𝑌 (𝑆3, 𝑆1, 𝑆5) represents the list of servers accessed by user 𝑈𝑌 . The vector list ⃗𝑉 𝑆𝑋 with size |𝑆𝑋𝑈𝑆𝑌 | will contain values
[𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆5]. According to our example, the binary representation of the set ⃗𝑉 𝑆𝑋 = [1, 1, 0, 1, 0] shows the interactions with
servers from 𝑆𝑋 with the value 1. Similarly, the vector set ⃗𝑉 𝑆𝑌 will have same elements as those of ⃗𝑉 𝑆𝑋 and its binary set contains
the values [1, 0, 1, 0, 1]. Using cosine similarity, the computation of similarity of these two vectors mentioned in the above example
will result in 0.33. Thus, 𝑉𝑌 will not be added in the list 𝐿𝑆

𝑋𝑗 because its similarity is less than 0.5 and 𝑈𝑋 will not rely on the
recommendation from 𝑈𝑌 . On the other hand, considering the same example, if 𝑈𝑌 interacted with more than two same servers as
those of 𝑉𝑋 , the similarity computation will be 0.67, which shows that 𝑈𝑋 and 𝑈𝑌 are similar in the context of connected servers
and thus 𝑈𝑋 can rely on the recommendations of 𝑈𝑌 . The list 𝐿𝑆

𝑋𝑗 will contain users having the similarity index of 0.5− 1 with 𝑈𝑋 .
After the calculation of server similarity, this list will be further evaluated for similarity in terms of server location.

3.2.2. Server location similarity (𝑆𝐼𝐿𝑋𝑌 )
The server location similarity index is computed to identify the users/members of the list 𝐿𝑆

𝑋𝑗 computed in Eq. (3) to further
5

evaluate those users who have interacted with the server on a similar location as of 𝑈𝑋 . The user 𝑈𝑋 will exchange their server
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location list 𝐿𝑋𝑗 with all users 𝑈𝑌 𝑖 (a member of the list 𝐿𝑆
𝑋𝑗) one by one. The similarity index of the server’s location 𝑆𝐼𝐿𝑋𝑌 is

calculated using cosine similarity as follows:

𝑆𝐼𝐿𝑋𝑌 =
⃗𝑉 𝐿𝑋 ⋅ ⃗𝑉 𝐿𝑌

‖

⃗𝑉 𝐿𝑋‖ ⋅ ‖ ⃗𝑉 𝐿𝑌 ‖
(4)

If the computed similarity index is between the range 0.5 − 1, then it will be added in the list 𝐿𝐿
𝑋𝑗 = [𝑈𝑌 1, 𝑈𝑌 2,… .]. Next, this

list will further be sent for evaluations in the context of the type of services obtained by users from the same server having similar
locations.

3.2.3. Service similarity (𝑆𝐼𝑃𝑋𝑌 )
The type of service similarity is calculated to further evaluate the connected users in terms of similarity in the context of the

same service. The user 𝑈𝑋 will exchange the service list with the user 𝑈𝑌 𝑖(from list 𝐿𝐿
𝑋𝑗). The cosine similarity computation is

performed to calculate the similarity index 𝑆𝐼𝑃𝑋𝑌 as follows:

𝑆𝐼𝑃𝑋𝑌 =
⃗𝑉 𝑃𝑋 ⋅ ⃗𝑉 𝑃𝑌

‖

⃗𝑉 𝑃𝑋‖ ⋅ ‖ ⃗𝑉 𝑃𝑌 ‖
(5)

If the computed similarity index is between the range 0.5−1, then it will be added in the list 𝐿𝑃
𝑋𝑖𝑌 = [𝑈𝑌 1, 𝑈𝑌 2,… .]. Finally, this

list will represent all those users who interacted with 𝑆𝑗 at location 𝐿𝑗 accessing service 𝑃𝑖, similar to 𝑈𝑋 .
Now, 𝑈𝑋 can use the recommendations of the users listed in 𝐿𝑃

𝑋𝑖𝑌 . Each user can exchange their trust recommendations request
to its filtered list 𝐿𝑃

𝑋𝑖𝑌 periodically at 𝛥𝑡 interval. Once a user 𝑈𝑋 receives recommendations, it will select top 𝑛 recommendations
from 𝑛 users based upon the highest similarity value with 𝑈𝑋 and is represented in 𝐿𝑋𝑖𝑗 . Based on these values, the indirect trust
will be calculated as:

𝑡𝑟𝑋𝑖𝑗 =
∑

𝐿𝑋𝑖𝑗

𝑆𝐼𝑋𝑌
∑

𝐿𝑋𝑖𝑗
𝑆𝐼𝑋𝑌

⋅ 𝑡𝑑𝑌 𝑖𝑗 (6)

Here, 𝐿𝑋𝑖𝑗 represents the set of up to 𝑘 users whose similarity values are the highest, and 𝑡𝑑𝑋𝑖𝑗 represents direct trust of user 𝑈𝑌
owards server 𝑆𝑗 at location 𝐿𝑗 providing service 𝑃𝑖, and 𝑆𝐼𝑋𝑌 represents a value calculated in Eq. (4). The weight is assigned to
very recommendation that is considered after taking the filtered list against the proportion of the calculated similarity score of the
ecommender to the total similarity of all the recommenders.

.3. Total trust

The total trust value of user 𝑈𝑋 towards server 𝑆𝑗 providing service 𝑃𝑖 is represented as 𝑡𝑋𝑖𝑗 and is calculated by combining
irect and indirect trust scores obtained from Eq. (2) and Eq. (6) respectively.

𝑡𝑋𝑖𝑗 = 𝜇 𝑡𝑑𝑋𝑖𝑗 + (1 − 𝜇)𝑡𝑟𝑋𝑖𝑗 (7)

3.4. Function for assigning weight to weighing parameter 𝜇

Algorithm 2 represents the procedure for dynamically calculating the value of 𝜇 based on direct trust and indirect recommen-
dations. The design concept of the proposed trust management protocol CTES is to provide the highest trust to those devices that
give positive user satisfaction experiences 𝐸𝑋𝑖𝑗 . This leads to the calculation of 𝜇 depending upon the difference of current user
satisfaction experience 𝐸𝑋𝑖𝑗 with the direct trust 𝑡𝑑𝑋𝑖𝑗 , indirect recommendations 𝑡𝑟𝑋𝑖𝑗 and the current total trust evaluation 𝑡𝑋𝑖𝑗 . The
𝜇 when assigned 𝛾 has the value ranging between (0.81 − 1.0). Similarly, 𝜇 has a range between (0 − 0.20) when it is assigned 𝛤 . 𝜅
shows the value ranges between (0.41−0.60) and 𝜒 and 𝜙 have value ranges in (0.61−0.80) and (0.21−0.40) respectively. The value
of 𝜇 is divided into five categories, as shown in Algorithm 2.

Line 2 in Algorithm 2 estimates the difference of current user satisfaction experiences 𝐸𝑋𝑖𝑗 with the most recent direct user
experience 𝑡𝑑𝑋𝑖𝑗 observed by user 𝑈𝑋 within the previous trust interval 𝛥𝑡. If this difference is nearer to 0 and the value of direct
trust 𝑡𝑑𝑋𝑖𝑗 observed by user 𝑈𝑋 is not equal to the recommended trust value 𝑡𝑟𝑋𝑖𝑗 received by user 𝑈𝑋 from its recommenders, then
𝜇 will be assigned a value between a range of 0.81−1.0. It shows that the trust will mostly depend upon the direct user experiences
because the current user experience can be a good indicator compared with the average direct user satisfaction experiences obtained
over a while and so is true for the rest of the conditions.

The value of 𝜇 is dynamically adjusted considering the recommendations. If the recommender is context similar to the trustor
node, then the value of 𝜇 is high, while in the latter case, it is low. The complexity analysis for CTES algorithm is presented in our
6

research in [22].
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Algorithm 2 Calculation of 𝜇 (Weighing Parameter)
Input : 𝐸𝑋𝑖𝑗 , 𝑡𝑑𝑋𝑖𝑗 , 𝑡

𝑟
𝑋𝑖𝑗

Output : 𝜇
1: procedure Weigh Parameter(𝐸𝑋𝑖𝑗 , 𝑡𝑑𝑋𝑖𝑗 , 𝑡

𝑟
𝑋𝑖𝑗)

2: for all 𝑆𝑖 do
3: if (𝑡𝑑𝑋𝑖𝑗 − 𝐸𝑋𝑖𝑗 ) ≈ 0 ∧ (𝑡𝑑𝑋𝑖𝑗 ≠ (𝑡𝑟𝑋𝑖𝑗 ) then
4: 𝜇 = 𝛾
5: else if (𝑡𝑟𝑋𝑖𝑗 − 𝐸𝑋𝑖𝑗 ) ≈ 0 ∧ (𝑡𝑑𝑋𝑖𝑗 ≠ (𝑡𝑟𝑋𝑖𝑗 ) then
6: 𝜇 = 𝛤
7: else if (𝑡𝑑𝑋𝑖𝑗 − 𝐸𝑋𝑖𝑗 ) ≈ 0 ∧ (𝑡𝑟𝑋𝑖𝑗 − 𝐸𝑋𝑖𝑗 ) ≈ 0 ∧ (𝑡𝑑𝑋𝑖𝑗 ≈ (𝑡𝑟𝑋𝑖𝑗 ) then
8: 𝜇 = 𝜅
9: else if (𝑡𝑋𝑖𝑗 − 𝐸𝑋𝑖𝑗 ) ≈ 0 ∧ (𝑡𝑑𝑋𝑖𝑗 − 𝐸𝑋𝑖𝑗 ) has minimum difference ∧(𝑡𝑟𝑋𝑖𝑗 − 𝐸𝑋𝑖𝑗 ) has maximum difference then

10: 𝜇 = 𝜒
11: else if (𝑡𝑋𝑖𝑗 − 𝐸𝑋𝑖𝑗 ) ≈ 0 ∧ (𝑡𝑟𝑋𝑖𝑗 − 𝐸𝑋𝑖𝑗 ) has minimum difference ∧(𝑡𝑑𝑋𝑖𝑗 − 𝐸𝑋𝑖𝑗 ) has maximum difference then
12: 𝜇 = 𝛷
13: else
14: Re-Calculate 𝜇
15: end if
16: end for
17: end procedure

Return : 𝜇

Algorithm 3 Calculation of Total Trust
Input : 𝐸𝑋𝑖𝑗 , 𝑡𝑑𝑋𝑖𝑗 , 𝑡

𝑟
𝑋𝑖𝑗

Output : 𝑡𝑋𝑖𝑗

1: After every 𝛥𝑡
2: for all do 𝐸𝑋𝑖𝑗
3: 𝜇 = Weigh Parameter(𝐸𝑋𝑖𝑗 , 𝑡𝑑𝑋𝑖𝑗 , 𝑡

𝑟
𝑋𝑖𝑗 )

4: Calculate Total Trust
5: 𝑡𝑋𝑖𝑗 = 𝜇𝑡𝑑𝑋𝑖𝑗 + (1 − 𝜇)𝑡𝑟𝑋𝑖𝑗
6: end for
Return : 𝑡𝑋𝑖𝑗

4. Formal modeling and verification of context-based trust evaluation system (CTES)

This section presents the verification and formal modeling of the proposed CTES model for an IoT environment. The main purpose
f using formal modeling and verification is to verify the working process of the CTES based algorithms through mathematical rules.
he High-level Petri Nets (HLPN) are used to display the formal modeling and verification of CTES calculations. HLPN is defined
s a 7-tuple in the form of 𝑁 = (𝑃 , 𝑇 , 𝐹 , 𝜑,𝑅𝑛, 𝐿,𝑀0), where 𝑃 is the set of places, 𝑇 is the set of transitions, and 𝑅𝑛 denotes the

defined rules for the transitions. 𝐿 defines a label on 𝐹 , and 𝑀0 describes the initial marking. In HLPN, transitions are displayed as
rectangular boxes. Also, circles and arrowheads describe the places and data flow respectively. The complete system is represented
by defining the set of 𝑃 (𝑃 𝑙𝑎𝑐𝑒𝑠) and data types that are linked with the set. The sets are rules that need to be defined and are
involved in HLPN.

The proposed algorithms are described in Section 3. In HLPN model, we present the CTES algorithms in the form of mathematical
properties (i.e., Rules). The variables and places used in this model are defined in Table 2 and Table 3 respectively. Fig. 2 depicts
he HLPN of the proposed CTES.

The HLPN model of the CTES system takes as input the user satisfaction experiences 𝐸𝑋 𝑖𝑗 to update the trust update cycle 𝛥𝑡
alue in the update cycle in transition U-Interval.

𝐑(𝐔 − 𝐈𝐧𝐭𝐞𝐫𝐯𝐚𝐥) = ∀ 𝑖2 ∈ 𝑥2 ∧ ∀ 𝑖3 ∈ 𝑥3|

(𝑖3[1]𝑛∀ 𝑖3[1]𝑛∈𝑥3
) ∶= 𝑈𝑝𝑑 − 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙(𝑖2[3] − 𝑖2[4])∧

𝑥3′ ∶= 𝑥3 ∪ {𝑖3[1]} 𝐑𝐮𝐥𝐞𝟏

𝐑(𝐃 − 𝐓 − 𝐂𝐚𝐥𝐜𝐮𝐥𝐚𝐭𝐢𝐨𝐧) = ∀ 𝑖4 ∈ 𝑥4 ∧ ∀ 𝑖5 ∈ 𝑥5 ∧ 𝑖6 ∈ 𝑥6|
7

𝑖4[1] ∶= 𝑖5[1] ∧ 𝑖4[2] ∶= 𝑖5[1]∧
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Table 2
Types used in HLPN for CTES.

Types Description

𝐸𝑋 𝑖𝑗 User satisfaction experience

𝛥𝑡 Trust update cycle

Exp Decay Exponential decay

D-Trust Direct trust

𝑆𝑣 Similarity Server similarity

𝑆𝐼𝑃
𝑋𝑌 Server service similarity

𝑆𝐼𝑆
𝑋𝑌 Service similarity

𝐿𝑆
𝑥 List of users based on server similarity

𝑆𝐼𝐿
𝑋𝑌 Server location similarity

𝑆𝐼 Similarity Location similarity

𝑆𝑆 Similarity Service similarity

𝐿𝑙
𝑥 List of users based on location similarity

F-List Final list of users or members

R-Trust Recommended trust

C- 𝜇 Calculated value of weighting parameter

Total-Trust Total trust

Table 3
Mapping of data types on places.

Places Description

𝜑(𝐸𝑋 𝑖𝑗) P(𝑎𝑥𝑖𝑗 × 𝑏𝑥𝑖𝑗 × 𝑡𝑖 × 𝑡𝑖−1 × 𝐸′
𝑥𝑖𝑗 )

𝜑(𝛥𝑡) P(T-U-C)

𝜑(Exp Decay) P(𝑒−𝜙𝛥𝑡)

𝜑(D-Trust) P(𝑡𝑑𝑋𝑖𝑗 )

𝜑(𝑆𝑣) Similarity P(𝑉 𝑆𝑥 × 𝑉 𝑆𝑌 × 𝑈 )

𝜑(𝑆𝐼𝑆
𝑋𝑌 ) P(𝑆𝐼𝑆 )

𝜑(𝑆𝐼𝑃
𝑋𝑌 ) P(𝑆𝐼𝑃 )

𝜑(𝐿𝑆
𝑥 ) P(L-u-srvs)

𝜑(𝑆𝐼𝐿
𝑋𝑌 ) P(𝑆𝐼𝐿)

𝜑(𝑆𝐼 Similarity) P(𝑉 𝐿𝑥 × 𝑉 𝐿𝑌 × 𝑆𝐼𝑃 × 𝑈 )

𝜑(𝑆𝑃 Similarity) P(𝑉 𝑃𝑥 × 𝑉 𝑃𝑌 × 𝑆𝐼𝑃 × 𝑈 )

𝜑(𝐿𝑙
𝑥) P(L-u-loc)

𝜑(F-List) P(𝐿𝑥𝑖𝑗 )

𝜑(R-Trust) P(𝑡𝑟𝑋𝑖𝑗 )

𝜑(C-𝜇) P(𝜇)

Total-Trust 𝑃 (𝑡𝑋𝑖𝑗 )

(𝑖6[1]𝑚∀ 𝑖6[1]𝑚∈𝑥6
) ∶= [(𝑖4[1]) ∕ ((𝑖4[1]) + (𝑖4[2]))]𝑚∀ (𝑖4[1],𝑖4[2])𝑗∈𝑥4

∧

𝑥6′ ∶= 𝑥6 ∪ {𝑖6[1]} 𝐑𝐮𝐥𝐞𝟐

Eq. (6) performs a calculation of recommended trust 𝑡𝑟𝑋𝑖𝑗 as follows: First, the server similarity is calculated by invoking the
similarity procedure, which is calculated using Eq. (3). If the similarity value is ≥ 0.5, then the user 𝑈𝑌 will be added to the list of
trustworthy users and this list will be further checked for server location similarity. The server similarity is calculated by invoking
the similarity procedure again and if the similarity value is ≥ 0.5, then user 𝑈𝑌 will be added to the list of trustworthy users, and
this list will be further checked for service similarity. The final filtered list is generated after checking all the similarities. Finally,
the recommended trust 𝑡𝑟𝑋𝑖𝑗 based on similarity values is calculated. Rule 3 to Rule 7 represent the above-mentioned process.

(𝐂 − 𝐒𝐯 − 𝐒𝐢𝐦𝐢𝐥𝐚𝐫𝐢𝐭𝐲) = ∀ 𝑖7 ∈ 𝑥7 ∧ ∀

𝑖8 ∈ 𝑥8 ∧ ∀ 𝑖9 ∈ 𝑥9 ∧ 𝑖10 ∈ 𝑥10|
8

𝑖8[1] ∶= 𝐶 − 𝑆𝐼𝑀(𝑖7[1], 𝑖7[2]) ∧ (𝑖8[1] ≥ 0.5)
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Fig. 2. HLPN of Context-Based Trust Evaluation System (CTES).

→ (𝑖10[1] ∶= 𝑖10[1] + 𝑖7[3])

𝑥10′ ∶= 𝑥10 ∪ {𝑖10[1]} 𝐑𝐮𝐥𝐞𝟑

(𝐂 − 𝐒𝐋 − 𝐒𝐢𝐦𝐢𝐥𝐚𝐫𝐢𝐭𝐲) = ∀ 𝑖11 ∈ 𝑥11 ∧ ∀

𝑖12 ∈ 𝑥12 ∧ 𝑖13 ∈ 𝑥13∧

𝑖14 ∈ 𝑥14 ∧ 𝑖15 ∈ 𝑥15|

𝑖12[1] ∶= 𝐶 − 𝑆𝐼𝑀(𝑖11[1], 𝑖11[2]) ∧ ((𝑖12[1] ≥ 0.5)

→ (𝑖14[1] ∶= 𝑖14[1] + 𝑖12[3])∨

(𝑖12[1] ≱ 0.5) → 𝑅𝑒𝑚𝑣(𝑖13[1]) ∧ 𝑥12′ ∶= 𝑥13 ∪ {𝑖13[1]})
∧ 𝑥12′ ∶= 𝑥12 ∪ {𝑖12[1]} 𝐑𝐮𝐥𝐞𝟒
9
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𝐑(𝐂 − 𝐒 − 𝐒𝐢𝐦𝐢𝐥𝐚𝐫𝐢𝐭𝐲) = ∀ 𝑖16 ∈ 𝑥16 ∧ ∀

𝑖17 ∈ 𝑥17 ∧ ∀ 𝑖18 ∈ 𝑥18∧

𝑖14 ∈ 𝑥14 ∧ 𝑖15 ∈ 𝑥15|

𝑖12[1] ∶= 𝐶 − 𝑆𝐼𝑀(𝑖11[1], 𝑖11[2])∧

((𝑖12[1] ≥ 0.5) → (𝑖14[1] ∶= 𝑖14[1] + 𝑖12[3])∨

(𝑖12[1] ≱ 0.5) → 𝑅𝑒𝑚𝑣(𝑖13[1]) ∧ 𝑥12′ ∶= 𝑥13 ∪ {𝑖13[1]})
∧ 𝑥12′ ∶= 𝑥12 ∪ {𝑖12[1]} 𝐑𝐮𝐥𝐞𝟓

𝐅𝐢𝐧𝐚𝐥 − 𝐋𝐢𝐬𝐭) = ∀ 𝑖18 ∈ 𝑥18 ∧ ∀ 𝑖19 ∈ 𝑥19 ∧ ∀ 𝑖20 ∈ 𝑥20|

𝑖20[1] ∶= 𝐹 − 𝑙𝑖𝑠𝑡(𝑖18[1] ∪ 𝑖19[1])∧

𝑥20′ ∶= 𝑥20 ∪ {𝑖20[1]} 𝐑𝐮𝐥𝐞𝟔

𝐅𝐢𝐧𝐚𝐥 − 𝐋𝐢𝐬𝐭) = ∀ 𝑖21 ∈ 𝑥21 ∧ ∀ 𝑖22 ∈ 𝑥22∧

∀ 𝑖23 ∈ 𝑥23 ∧ ∀ 𝑖24 ∈ 𝑥24|

𝑖24[1] ∶= 𝐹 − 𝑙𝑖𝑠𝑡(𝑖21[1], 𝑖22[1], 𝑖23[1])∧

𝑥24′ ∶= 𝑥24 ∪ {𝑖24[1]} 𝐑𝐮𝐥𝐞𝟕

Algorithm 2 shows the calculation of weighing parameter 𝜇 in transition Weighing-Parameter. It calculates the difference
between current user satisfaction experiences 𝐸𝑋 𝑖𝑗 and the most recent direct user experience 𝑡𝑑𝑋𝑖𝑗 observed by user 𝑈𝑋 within
the previous trust interval 𝛥𝑡. If this difference is close to 0 and the value of direct trust 𝑡𝑑𝑋𝑖𝑗 observed by user 𝑈𝑋 is not equal
o the recommended trust value 𝑡𝑟𝑋𝑖𝑗 received by user 𝑈𝑋 from its recommenders, then 𝜇 will be assigned a value in the range of
0.81 − 1.0]. It shows that the trust will mostly depend upon the direct user experiences 𝑡𝑑𝑋𝑖𝑗 because the current user experience
an be a good indicator compared to the previous average 𝑡𝑑𝑋𝑖𝑗 satisfaction experiences. Similarly, other conditions are evaluated,
s shown in Algorithm 2. The calculation of weighing parameter 𝜇 is given in Rule 8.

𝐑(𝐖𝐞𝐢𝐠𝐡𝐢𝐧𝐠 − 𝐏𝐚𝐫𝐚𝐦𝐞𝐭𝐞𝐫) = ∀ 𝑖25 ∈ 𝑥25 ∧ ∀ 𝑖26 ∈ 𝑥26∧

∀ 𝑖27 ∈ 𝑥27 ∧ ∀ 𝑖28 ∈ 𝑥28

∧∀𝑖29 ∈ 𝑥29|((𝑖26[1] − 𝑖25[5]) ≈ 0)∧

(𝑖26[1] ≠ 𝑖27[1]) → 𝑖29[1]

∶= (0.8 − 1.0) ∨ ((𝑖27[1] − 𝑖25[5]) ≈ 0)∧

(𝑖26[1] ≠ 𝑖27[1]) → 𝑖29[1]

∶= (0 − 0.2) ∨ ((𝑖26[1] − 𝑖25[5]) ≈ 0)∧

((𝑖27[1] − 𝑖25[5]) ≈ 0) ∧ (𝑖26[1] ≈ 𝑖27[1]) ∶= (0.41 − 0.6)

→ 𝑖29[1] ∨ ((𝑖27[1] − 𝑖25[5]) ≈ 0) ∧ 𝑚𝑖𝑛(𝑖26[1], 𝑖25[5])

∧𝑚𝑎𝑥(𝑖27[1], 𝑖25[5]) → 𝑖29[1](0.61 − 0.8)

∨((𝑖27[1] − 𝑖25[5]) ≈ 0)∧

𝑚𝑎𝑥(𝑖26[1], 𝑖25[5]) ∧ 𝑚𝑖𝑛(𝑖27[1], 𝑖25[5])

→ 𝑖29[1] ∶= (0.21 − 0.4) ∨ 𝑅𝑒 − 𝑐𝑎𝑙(𝑖29[1]) 𝐑𝐮𝐥𝐞𝟖

Algorithm 3 calculates the total trust 𝑡𝑋𝑖𝑗 using the value of weighing parameter 𝜇. The calculation is done by assigning the
eights to direct trust 𝑡𝑟𝑋𝑖𝑗 and indirect trust 𝑡𝑑𝑋𝑖𝑗 . The transition C-Total-Trust represents the total trust calculation process, as
iven in Rule 9.

𝐑(𝐂 − 𝐓𝐨𝐭𝐚𝐥 − 𝐓𝐫𝐮𝐬𝐭) = ∀𝑖30 ∈ 𝑥30 ∧ ∀𝑖31 ∈ 𝑥31∧

∀𝑖32 ∈ 𝑥32 ∧ ∀𝑖33 ∈ 𝑥33|

𝑖33[1] ∶= [(𝑖30[1] × 𝑖32[1]) + {((1 − 𝑖32[1]) × 𝑖31[1])}]

∧𝑥33′ ∶= 𝑥33 ∪ {𝑖33[1]} 𝐑𝐮𝐥𝐞𝟗

In this section, we have presented formal modeling, analysis, and verification of our proposed CTES, which is written in the
orm of HLPN and mathematical Rules in 𝑍3𝑆𝑜𝑙𝑣𝑒𝑟, and thus we verified that the proposed system satisfies the claimed properties
10

n CTES.
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Fig. 3. An IIoT architecture in a Smart Factory for Data Generation.

. Performance analysis of CTES

To evaluate and validate our CTES model, we use IoT Sentinel dataset, which represents the traffic of 31 IoT-based smart nodes
f different types. It considers a network of 31 smart devices of 27 different types. The setup of IoT-based smart node is repeated 20
imes for each device type to get better accuracy. The dataset directories contain several pcap files, and each pcap file represents
he setup of the given scenario. We have used the parameters of existing servers, in addition to their location, services type, and
orresponding response time values.

Fig. 3 shows the IIoT basic architecture, which is taken as the case study for data generation for a smart factory. The figure
hows the availability of multiple servers, clients, and sensors that are cooperatively working in a smart factory to complete the task
hile communicating and collecting the data from various nodes. In this architecture, the servers provide information to machines

or assigned tasks, and the machines are interacting with each other to share the services so that after the completion of a task by
ne machine, another machine starts execution. The calculation of trust using CTES is performed as follows:

1. When sensors send data to machines.
2. When a machine sends that data to servers.
3. When machines interact with each other for data exchange.
4. When servers share data with each other for task completion.

We analyze the performance of CTES in terms of accuracy and resiliency against malicious attacks using the data obtained from
he real-time setup for IoT devices. In this section, we analyze the trust accuracy (Section 5.1), and demonstrate the effect of dynamic
eight assignment on total trust calculation (Section 5.2). We also show the CTES malicious node avoidance in an IoT environment

Section 5.3). The accuracy of the protocol represents the correctness of the calculated trust score compared to the real scenario.
e evaluate the accuracy of our protocol by considering the user satisfaction level generated by the dataset values as ground truth.

inally, we compare CTES with other existing work (Section 5.4).

.1. CTES accuracy analysis

In this section, we observe the accuracy of trust convergence of our proposed CTES protocol to the ground-truth value. The direct
ser satisfaction experience of user 𝑈𝑋 towards server 𝑆𝑖 is calculated by Eq. (2). The input value of the user satisfaction experience

is taken from the real data of the IoT environment, which may exhibit variations in terms of actual interactions. These deviations are
not considered as noise but as actual observed values. Initially, user 𝑈𝑋 sets the value of 𝑡𝑑𝑋𝑖𝑗 (direct trust) to 0.5, which represents
the initial trust of user 𝑈𝑋 on server 𝑆𝑖. The trust is then dynamically updated using CTES protocol based on the interaction between
users and servers, and hence the requested services are delivered. It depends upon the trust feedback acquired after every interaction.
We first compare the variation of direct trust with recommended trust and its impact on total trust considering static control of 𝜇.
Fig. 4 represents the trust score of user 𝑈𝑋 trusting a server 𝑆𝑖 during service interactions. Direct trust is then mapped by comparing
it with the recommended trust. It is observed that the direct and recommended trust calculations vary depending upon the response
time-based user satisfaction experiences of respective users with server 𝑆𝑖. As the total trust (calculated using Eq. (7)) depends upon
direct and recommended trust, the value varies depending upon two trust values. An important observation to note is that the static
value of 𝜇, which varies between 0.2, 0.5, and 0.9, affects the total trust. When the value of 𝜇 is lower, the total trust diverges
towards recommendations, while the higher value of 𝜇 reflects more contributions of direct trust in total trust calculations.

Fig. 5 presents a case in which the accuracy of CTES has been measured. It shows the interactions that are based on the
information of different contexts. The total trust is calculated based on different contexts and the results are observed. User 𝑈
11
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Fig. 4. Effects of using Static Values of 𝜇 for Services in Same Context.

Fig. 5. Effects of using Static Values of 𝜇 for Services in Different Context.

accesses the service 𝑃𝑖 from server 𝑆𝑖 at location 𝐿𝑖. The direct trust score of user 𝑈𝑌 is represented as a green circle marked line

and it accesses the same service 𝑃𝑖 from another server 𝑆𝑗 residing at location 𝐿𝑗 . Thus, the two users are not operating in the

same context. Considering the different contexts, the result shows the variations of the trust calculation process for user 𝑈𝑋 and

user 𝑈𝑌 . The blue triangle marked lines display the case when 𝑈𝑋 uses the recommendations of user 𝑈𝑌 (which is working in a

different context from 𝑈𝑋). The value of the total trust is decreased, and this can be verified through the difference in the average

values of direct trust, recommended trust, and total trust. We also consider the variation in the value of the 𝜇, which depends upon

the recommended and direct trust. Therefore, the static value of 𝜇 cannot justify the calculation of trust based on contextual trust

calculation. 𝜇 must be dynamically adjusted and it should consider similar contextual recommendations. CTES provides a mechanism

to dynamically adjust 𝜇, as explained in Algorithm 2 and shown in Fig. 6.
12
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Fig. 6. Effects of using Adaptive Values of 𝜇 for Services in Same Context.

5.2. Adaptive control of 𝜇

Fig. 6 presents the trust score calculation based on the dynamic adjustments of 𝜇. It is calculated based on the following three
factors:

1. The incoming user experiences 𝐸𝑋𝑖𝑗 of 𝑈𝑋 with server 𝑆𝑖 during the next trust update cycle 𝛥𝑇 .
2. Previous direct trust score 𝑡𝑑𝑋𝑖𝑗 .
3. Previous recommended trust 𝑡𝑟𝑋𝑖𝑗 .

his dynamic adjustment of 𝜇 based on the above parameters provides a mechanism to find the total trust score, which depends upon
he recommendations of contextually similar nodes of 𝑈𝑋 . In Fig. 6, direct trust of 𝑈𝑋 is represented by the green circle marked lines
nd 𝑈𝑌 is represented by the blue triangle marked lines. The recommended trust scores of contextually similar nodes are mapped
sing purple triangle marked lines. It can be seen that the total trust score varies between direct trust and recommended trust
ynamically based upon the next user interaction experience in previous trust scores. In comparison, Fig. 7 presents the dynamically
djusted trust score of contextually different nodes. As the nodes are contextually different, the recommended trust score is reported
ower than that of Fig. 6. Moreover, these contextual differences are dynamically adjusted, and the total trust scores highly fluctuate
etween direct and recommended trust scores.

.3. Malicious node avoidance with CTES

We consider a scenario of malicious node avoidance by assuming that user 𝑈𝑋 is interacting with server 𝑆𝑗 and receives current
ser satisfaction experience 𝐸𝑋𝑖𝑗 of 0.6, which represents low medium trust, as presented in Table 1. User 𝑈𝑋 has stored a list of
istorical data related to direct trust 𝑡𝑑𝑋𝑖𝑗 , recommended trust 𝑡𝑟𝑋𝑖𝑗 and total trust 𝑡𝑋𝑖𝑗 . In this scenario, we assume that the average
alue of 𝑡𝑑𝑋𝑖𝑗 is 0.37 and the average value of 𝑡𝑟𝑋𝑖𝑗 is 0.52 to calculate the average total trust 𝑡𝑋𝑖𝑗 .

.3.1. Ballot Stuffing attack scenario
This attack is executed when any malicious node is providing good recommendations of a service provider to boost its reputation,

hus making more chances for that service provider to be selected for providing a service. In the case of IIoT architecture, any
alicious smart machine provides a good recommendation for a malicious service provider so that it can be selected for providing

he service. This communication will take place along with the trust calculation process, which includes the direct trust score and
ndirect trust calculation. Indirect trust calculation takes the recommendations from neighboring nodes. The recommendation can
e taken from any malicious node, which is part of any ballot stuffing attack. In this case, the malicious recommender will provide
good recommendation of a server irrespective of the fact that how the service was provided by the service provider. We conduct

n experiment of this scenario by using 70 nodes, and out of which 20 act maliciously for the execution of the attack. The malicious
13

odes provide good recommendations on all servers that offer service in all interactions.
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Fig. 7. Effects of using Adaptive Values of 𝜇 for Services in Different Context.

Fig. 8. Effects of Ballot stuffing with CTES.

We assume that 𝑈𝑦2 is performing ballot stuffing attacks against 𝑈𝑋 by providing good recommendations on server 𝑆𝑖. We also
ssume that 𝑈𝑋 receives the value of 0.3 as current 𝐸𝑋𝑖𝑗 from server 𝑆𝑖 while 𝑈𝑦2 provides recommendations 𝑡𝑟𝑋𝑖𝑗 in the range
.9 − 1. This recommended value is used in Eq. (6) of CTES to calculate the similarity of the recommenders for 𝑈𝑋 . This will filter

out those recommenders that are providing dissimilar services (out of the context of 𝑈𝑋). Secondly, using the adaptive calculation
process of calculating 𝜇, the value of current 𝐸𝑋𝑖𝑗 will be compared with the average value of direct trust 𝑡𝑑𝑋𝑖𝑗 (which in this case
s 0.37) and the average recommended value of trust 𝑡𝑟𝑋𝑖𝑗 (which is 0.52 in this case). Thus, it will filter out the recommenders that
re involved in ballot stuffing attacks (see Fig. 8).

.3.2. Bad Mouthing attack scenario
The bad-mouthing attack provides bad recommendations on any service provider which is not malicious and offers good services.

et us consider the IIoT architecture presented in Fig. 3, where the smart machines request services from any available smart server.
he direct trust calculation is based on the actual interaction between the client machine and the server. The recommendations are
14
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Fig. 9. Effects of Bad Mouthing with CTES.

eeded for the indirect calculation process. The malicious nodes in bad-mouthing attacks provide bad recommendations to the client
achines.

Now, consider that 𝑈𝑌 executes a bad-mouthing attack against server 𝑆𝑖 and provides recommendations in a range of 0 − 0.2
o 𝑈𝑋 . The value of the current user experience 𝐸𝑋𝑖𝑗 of 𝑈𝑋 is 0.6. The adaptive 𝜇 calculation algorithm of CTES will compare the

value of 𝐸𝑋𝑖𝑗 with direct trust, recommended trust, and total trust, as the value of 𝐸𝑋𝑖𝑗 is closer to the average recommended value.
In this case, as the recommended trust value is taken as an average value from the historical data stored in 𝑈𝑋 , 𝑈𝑌 2 will not be
able to execute the bad-mouthing attack when the CTES algorithm is used by 𝑈𝑋 (see Fig. 9).

.4. Performance comparison with existing work

We compare the performance of our proposed CTES with existing schemes: EigenTrust [23], ServiceTrust [24], and ServiceTrust++
25] in terms of achieved trust score of the network in an IIoT-based scenario. EigenTrust formulates the global trust of the network
ased on the transitive local trust score of the client nodes. On the other hand, the calculation mechanism of ServiceTrust and its
xtended version ServiceTrust++ is based on uniform trust propagation of the network coupled with trust decay to deal with related
alicious nodes.

Fig. 10 presents the performance comparison of CTES with EigenTrust, ServiceTrust, and ServiceTrust++ in terms of trust score.
The network consists of 70 nodes, and there exist 20 random nodes that are acting as malicious nodes. In the network, 4 nodes are
considered as pre-trusted nodes. The graph shows that initially all protocols try to converge at the same rate but with increased
trust update cycles and incremented malicious nodes. CTES converges with more resilience. The comparison of CTES with EigenTrust
shows that initially both schemes converge equally, but after around 10 trust update cycles, the trust bias gap of EigenTrust from
the ground-truth value (which is the trust score of 0.81) widens. The improved resiliency and accuracy of CTES in comparison to
EigenTrust is the result of dynamic adjustment of 𝜇, which results in adjusting the trust value of malicious nodes possessing self-
promoting and bad-mouthing attacks. Similarly, the comparison of CTES with ServiceTrust and ServiceTrust++ shows improved
performance of CTES in breaking the chains of malicious nodes to achieve convergence, resilience, and accuracy against malicious
nodes.

6. Conclusion and future work

In this paper, we have proposed and analyzed a distributed CTES model for trust calculation in smart objects, which allows the
requesting object to trust the service provider in an IIoT environment. The direct observations of edge nodes (trustor) are represented
between a range of 0 − 1, which creates the flexibility between trustor and trustee to highlight actual observations. Since CTES is
a context-based model, we have calculated the similarity index of existing context among neighboring nodes before taking indirect
recommendations. This process filters out the dissimilar recommendations. The trustor only considers the recommendations from
neighboring nodes if and only if they have been served by the same server under the same context. Furthermore, the dynamic weight
is assigned to direct interactions and indirect recommendations to calculate the trust score. The verification of CTES is performed
using formal methods, which shows that the system performs correctly. Finally, we have demonstrated the effectiveness of CTES in
15
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Fig. 10. Comparing CTES with EigenTrust, ServiceTrust, and ServiceTrust++ in terms of Accuracy and Resiliency.

erms of accuracy, dynamic assignment of weights, and prevention from malicious attacks, e.g., ballot stuffing and bad-mouthing. The
esults show that CTES performed well under a malicious environment and filtered out bad recommenders by providing maximum
chievable performance. In the future, CTES will be further evaluated considering different applications for service compositions to
ilter out the service-oriented attacks.

Some of the limitations of the proposed study are as follows: Currently, we are formalizing the trust of serving nodes based on
heir type of service and location. We have not considered other contextual parameters of servers, which can be included in the future
ork. These include battery life, server’s status as static or mobile, network’s capability in terms of delay, response time and/or

hroughput, etc. Besides, the formulated trust of the server node is based on the interaction of client nodes and the recommendations
f neighboring nodes. This study does not consider trust calculation of client nodes, which can be an interesting future direction.
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