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ARTICLE INFO ABSTRACT

Keywords: The application of Machine Learning (ML) techniques to the well-known intrusion detection systems (IDS) is
Internet of Things key to cope with increasingly sophisticated cybersecurity attacks through an effective and efficient detection
Federated Learning process. In the context of the Internet of Things (IoT), most ML-enabled IDS approaches use centralized

Intrusion detection systems approaches where 10T devices share their data with data centers for further analysis. To mitigate privacy

concerns associated with centralized approaches, in recent years the use of Federated Learning (FL) has
attracted a significant interest in different sectors, including healthcare and transport systems. However, the
development of FL-enabled IDS for IoT is in its infancy, and still requires research efforts from various areas,
in order to identify the main challenges for the deployment in real-world scenarios. In this direction, our work
evaluates a FL-enabled IDS approach based on a multiclass classifier considering different data distributions
for the detection of different attacks in an IoT scenario. In particular, we use three different settings that are
obtained by partitioning the recent ToN_IoT dataset according to IoT devices’ IP address and types of attack.
Furthermore, we evaluate the impact of different aggregation functions according to such setting by using
the recent IBMFL framework as FL implementation. Additionally, we identify a set of challenges and future
directions based on the existing literature and the analysis of our evaluation results.

1. Introduction centralized, so that a single entity receives the network traffic data from
different devices to train a certain ML model. Therefore, this entity has

Nowadays, the constant development and deployment of Internet access to the whole network traffic derived from the communication

of Things (IoT) technologies is increasing the attack surface of physical of the different devices participating in the training process and also
devices that could be potentially exploited by malicious entities [1]. devices’ local data, which could lead to privacy issues. This problem
Well-known attacks, such as the Mirai botnet and recent variants [2], could be exacerbated in IoT scenarios due to the amount and sensitivity
demonstrate the need to strengthen IoT devices’ security in order of the information exchanged through certain devices, such as wearable
to protect large-scale IoT-enabled systems. Due to the development or eHealth systems [4]; therefore, decentralized data management

of such increasingly sophisticated attacks, in recent years the use of
machine learning (ML) techniques has been widely considered for the
detection and mitigation of these attacks in IoT scenarios. Indeed,
the application of ML techniques has been proposed in recent works
to improve the detection capabilities of the well-known intrusion de-
tection systems (IDS) through the application of diverse techniques
(e.g., neural networks) to infer potential attacks based on the analysis of
network traffic [3]. Despite the advantages provided by the application
of ML techniques to enhance IDS approaches (e.g., in terms of attack
detection accuracy), most of such ML-enabled IDS deployments are

solutions are of paramount importance [5].

To address the privacy issues of traditional centralized ML ap-
proaches, Federated Learning (FL) was proposed in 2016 [6] as a
collaborative learning approach in which end devices (a.k.a clients or
parties) do not share their data, but only partial updates of a global
model that are aggregated by a central entity (a.k.a aggregator or
coordinator). Therefore, the use of FL is intended to improve users’
privacy, since the data of their devices is never shared with other
entities. In general, an FL scenario is characterized by a large number of
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client devices with a variable amount and distribution of data. Indeed,
real-life scenarios are usually based on non-independent and identically
distributed (non-iid) data [7]. For example, in the case of an IDS
deployed on a certain network, some target devices could have traffic
associated with several kinds of attacks (e.g., DoS or port scanning),
while other devices could only have traffic related to their intended
operation. The development of FL-enabled IDS approaches in the con-
text of IoT scenarios has attracted an increasing interest in recent
years [8-10]. However, most of the proposed approaches are based on
unrealistic data distributions among the parties, inappropriate datasets
and settings (e.g., [11]), or they use binary classification approaches,
in which traffic data is only classified as attack or benign [12]. Other
recent works, such as [13], describe several challenges on the general
application of FL in IoT scenarios, but they do not provide insights on
the integration of FL techniques to enhance IDS approaches. Moreover,
while [14] is focused on the challenges and future directions of FL-
enabled IDS, they do not provide evaluation results to support their
contributions, and they do not define a set of criteria to compare
existing works in the context of IoT scenarios. Consequently, it is hard
for cybersecurity practitioners to come up with the most challenging
aspects derived from the application of FL to enhance IDS approaches
in IoT.

To fill these gaps, this paper provides a comprehensive evaluation
on the use of FL for IDS in IoT by considering the impact of non-iid
data. While the aspects of non-iid data distribution have been previ-
ously analyzed [15,16], their impact when using different aggregation
methods in the context of FL-enabled IDS has not been properly studied.
In particular, we evaluate the behavior of FL by considering different
data distributions, training rounds and aggregation methods. For this
purpose, we use the ToN_IoT dataset [17,18], which has recently
been proposed for IoT and Industrial IoT scenarios considering sensor
data manipulation attacks, in addition to several network attacks. We
propose three scenarios based on different partitions and processing
of the ToN_IoT dataset: in the first setting, network flows are split ac-
cording to their destination IP address; the second scenario is balanced
according to the types of attacks among the clients; then, a hybrid
approach is considered as third setting, in which we find a compromise
between the balance of attack types and the destination IP address by
means of the Shannon entropy [19]. These three configurations are
publicly available at [20]. Then, we evaluate such scenarios by using
FedAvg [16] and Fed+ [21] aggregation methods through the IBM
framework for Federated Learning IBMFL [22]. Based on our evaluation
results, and the analysis of the existing literature, we describe some of
the main challenges for the development of FL-based IDS approaches
to be deployed in IoT scenarios. Therefore, our work can be used as a
reference for future research activities on the use of FL in this context.
In summary, our contributions are:

Identification of the main aspects for the evaluation of FL-enabled
IDS for IoT, and analysis of existing proposals according to such
aspects.

Partitioning of the recent ToN_IoT dataset to create different data
distributions among clients to evaluate its impact on the overall
system accuracy.

Quantitative analysis of the impact of non-iid data considering
different aggregation methods and training rounds by using the
recent IBMFL implementation.

Usage of multi-class classification for differentiating specific types
of attacks in the output.

Definition of the main challenges and future trends to be consid-
ered in the future years for the development of FL-enabled IDS
for IoT scenarios.

The structure of the paper is organized as follows. Section 2 pro-
vides an overview of FL and the main advantages derived from its
application to IDS. In Section 3, we describe and classify the existing
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research proposals on FL-enabled IDSs for IoT. Section 4 describes
our methodology, including the aspects of the dataset partitioning,
classification techniques and aggregation methods. Then, evaluation
results are presented in Section 5. Based on such results and the analysis
of existing literature, Section 6 highlights the main challenges for the
development of FL-enabled IDS for IoT. Finally, Section 7 concludes the
paper with an outlook of potential future directions to be considered.

2. FL-enabled IDS for IoT scenarios

Intrusion detection systems (IDS) have traditionally been considered
as key components to protect ICT systems by identifying potential
security attacks/threats derived from traffic monitoring and analysis.
Although there are several classifications [3,23], IDS approaches are
usually categorized as signature and anomaly based systems. The for-
mer is based on pre-established network patterns and, consequently, it
cannot be used to detect a new attack; the latter uses specific features of
network traffic, so that a certain deviation on such network behavior
can be considered as a potential attack. In recent years, the applica-
tion of ML techniques to IDS has attracted a strong interest [24,25]
considering different approaches such as neural networks [26,27] or
clustering techniques [28]. In the context of IoT, recent efforts have
been proposed by considering specific IoT devices and technologies [3].
Indeed, the use of Deep Learning (DL) techniques has been recently
evaluated through different types of neural networks for the detection
of different attacks in such scenarios [29-31].

Despite these efforts, most of the proposed IDS approaches for IoT
are based on centralized approaches in which devices send their local
data to data centers in the cloud or servers with considerable computing
capabilities to be analyzed through ML/DL techniques [11]. Such sce-
nario raises significant issues that need to be considered [32]. First, the
disclosure of IoT devices’ local data could represent a privacy concern
for end users, since an attacker could even infer users’ daily habits
by analyzing the traffic of their devices (e.g., wearables). This aspect
could also pose an issue for a specific company where [oT devices share
their network traffic with third parties. Second, given the dynamism
of typical IoT environments, the time required to detect a potential
attack could become a key aspect (or a limitation if the computing
time is considerable) to prevent its spread in a certain network. In
particular, it may be crucial to provide an early detection of generic
malware used to hijack vulnerable IoT devices and spread rapidly to
build up botnets such as Mirai [33] or Torii [34]. In the case of using
typical cloud data centers, the latency derived from the communication
of a large quantity of data with data centers could be unaffordable or
it could decrease the effectiveness of the IDS deployment. Although
recent approaches propose the use of fog/edge computing [35] to bal-
ance the computing resources in the IDS implementation, this solution
still raises privacy concerns as devices’ data is shared with external
entities (i.e., fog/edge nodes). Third, many I[oT scenarios are com-
prised of resource-constrained devices communicating through wireless
technologies with limited bandwidth and throughput. Therefore, the
constant communication of devices’ network data could represent a
high overhead for IoT networks with a high number of connected
devices.

To address these issues, there is a need for decentralized approaches
with on-device learning in which devices themselves could perform lo-
cal processing on their own network traffic data. As described by [32],
a distributed or self-learning approach is a potential solution in which
devices perform local training without interacting with each other.
However, in this approach, devices are not able to improve their
learning capacity based on the learning process of the other devices in
the network. As an alternative, Federated Learning (FL) was proposed
in 2016 [6] as a collaborative learning approach in which devices
still interact each other through a centralized entity without the need
for sharing their data. Fig. 1 shows an overview of the centralized,
distributed, and federated learning approaches.
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Fig. 1. Comparison between centralized, distributed and federated learning approaches.

In a typical FL scenario, end devices do not share their data. Instead,
they update the information onto the global model based on local
calculations on their own data. These nodes are typically called clients
or parties, and the entity responsible for aggregating such local updates
is called coordinator or aggregator. The training process is divided into
a set of rounds, in which clients interact with the coordinator to update
the global model until a certain number of rounds is performed or
a certain accuracy is achieved. In particular, the main steps of each
training round comprise [6,36]:

1. The coordinator selects a subset of clients. For this purpose,
different aspects can be considered; for example, in an IoT
scenario, devices’ computation/communication resources can be
used to select the most suitable clients to participate in the
training round [37].

2. The coordinator sends the parameters/weights of the global
model to the selected clients.

3. The different clients wupdate the global model’s
parameters/weights through a training process by using Stochas-
tic Gradient Descent (SGD) with their local data. In the case of an
IDS system, the training is intended to be performed by using the
local network traffic of each client. In this context, the number
of epochs represents the local training iterations performed by a
client with its dataset before updating the global model.

4. Then, the clients send their updated model’s parameters/weights
back to the coordinator. Depending on the aggregation algo-
rithm being used, the coordinator aggregates all the parame-
ters/weights to build a new global model, which will be used
in the next training round. This process in which clients train
their model, update the global model and send the results to
be aggregated by the server is called a round. Although FedAvg
is the most widely used aggregation algorithm [6], there is a
plethora of alternative algorithms that can be considered for this
process, such as FedProx [38] or the recent Fed+ [21], which is
used in our evaluation.

The application of FL in IoT scenarios has attracted a huge interest
in recent years due to its benefits compared to traditional centralized
learning approaches. However, there are still significant challenges to
be considered, such as communication and computing requirements or
potential security and privacy attacks [39,40]. In the context of IoT, the
FL application for IDS is still in its infancy, and existing proposals are
often based on unrealistic settings and data distributions. These efforts
are described in the next section.

3. Related work

As previously mentioned, the use of FL has attracted a significant
interest in recent years due to its characteristics and strengths, which

can be exploited in different IoT scenarios [41]. In this context, recent
works have proposed the application of FL to improve IDS. To classify
these works, we have considered various aspects, such as: analyzed
attacks, training datasets, ML/DL algorithms to detect such attacks,
aggregation methods, and implementation frameworks. An overview of
these proposals is shown in Table 1.

Based on our analysis, we note that some of the proposed works use
their own generated or simulated dataset, For example, [42] integrated
an FL approach with fog computing, where fog nodes collaborated for
detecting DDoS attacks. For this purpose, authors use Gated Recursive
Units (GRUs) [53] as ML technique, and FedAvg as the aggregation
algorithm. Also based on GRU, [8] proposes the creation of com-
munication profiles associated to IoT devices that are used to detect
potential attacks. In this case, the dataset is generated from real devices
and the use of traffic associated with the Mirai botnet [54]. As these
works are not based on publicly available datasets, it is difficult to
assess the suitability of their proposed approach. Furthermore, in the
case of [42], authors do not provide performance details, such as the
different numbers of participating clients and training rounds.

While other FL-enabled IDS approaches have been proposed for IoT
scenarios, they are not based on datasets with traffic associated with
such devices. In this direction, [11] evaluates different ML models,
such as decision trees, Support Vector Machines (SVM), Random Forest
and MultiLayer Perceptron (MLP) in a federated environment in which
the aggregation process is enabled through the use of blockchain. The
proposed approach is based on intermediate nodes to perform local
training using IoT devices’ data, as well as the KDDCup99 dataset [55].
Moreover, [9] uses the NSL-KDD dataset [56] and MLP as the ML model
for a FL-enabled IDS system. The approach is based on the concept
of mimic learning in which a student model is trained with a public
dataset, which is labeled with a master model trained with sensitive
data. Also based on the NSL-KDD dataset, [32] uses neural networks
to propose a FL-enabled IDS considering three scenarios according to
different data distributions regarding attack types. The use of neural
networks is also proposed by [43], which integrates a differential pri-
vacy approach [57]. For this purpose, authors consider a scenario with
non-iid data using the CSE-CIC-IDS2018 dataset [58]. Moreover, [44]
employs Binarized Neural Networks (BNNs) [59] in edge devices to
reduce the overhead of traditional neural networks. The proposal is
based on the datasets CICIDS2017 [58] and ISCX Botnet 2014 [60],
as well as the aggregation algorithm signSGD [61] in order to reduce
the overhead during the communication of model updates.

Besides previous works, recent efforts consider IoT-specific datasets
to develop FL-enabled IDS in these scenarios. In particular, [45] pro-
poses the use of deep belief networks [62] to be deployed in IoT
gateways to detect potential attacks on a certain IoT subnet. Then, the
different models are aggregated through FL. The proposed approach
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Table 1
Classification of existing works on FL-enabled IDS for IoT.
Reference Attack Dataset ML model FL implementation Aggregation function Training parties Training rounds
studied
[42] 2 Simulated GRU - FedAvg - -
traffic
[81 3 Generated GRU - FedAvg 14 3
[11] 1, 4-6 KDDCup99 MLP, DT, - FedAvg - 50
SVM, RF
[9] 1, 4-6 NSL-KDD MLPs TensorFlow, Keras FedAvg 10 20
[32] 1, 4-6 NSL-KDD NN - FedAvg 4 1-5
[43] 1, 7-11 CSE-CIC- NN TensorFlow FedAvg 1-50 10000
IDS2018
[44] 1, 7-10, CICIDS2017, Binarized NN TensorFlow signSGD - -
12 ISCX Botnet
2014
[45] 1, 4-6, KDD, Deep belief - FedAvg - -
13-20 NSL-KDD, network
UNSW-NB15,
N-BaloT
[10] 1, 2, 12, BoT-IoT NN - FedAvg 4 1000
21, 28, 29
[12] 3, 20 N-BaloT MLP, own library [46] FedAvg, Coordinate-wise 8 1-29
autoencoders median/trimmed mean
[471 1,17, 22 [48] Convolutional Flask [49], Keras [50] FedAvg 3-7 2-10
NN, GRU
[51] 23, 24 Modbus GRU Pytorch/PySyft FedAvg - 1-40
dataset
Our 1, 2, 15, CIC-ToN-IoT Logistic IBMFL FedAvg, Fed+ 4/10 1-300
approach 22, 24-27 regression

1: DoS, 2: DDoS, 3: Mirai, 4: U2R, 5: R2L, 6: Probe, 7: Web, 8: Bruteforce, 9: Infiltration, 10: Botnet, 11: DDOS+PortScan, 12: PortScan, 13: Fuzzers, 14: Analysis [52], 15:
Backdoor, 16: Generic [52], 17: Reconnaissance, 18: Shell code, 19: Worm, 20: BASHLITE, 21: Keylogging, 22: Injection, 23: Flooding, 24: MITM, 25: XSS, 26: Password, 27:

Scanning, 28: Data theft, 29: OS Fingerprinting.

uses several datasets, such as the N-BaloT [63] dataset, which includes
IoT devices’ traffic. However, authors do not provide information on
the implementation being used or evaluation details considering as-
pects such as data distribution, number of clients or training rounds.
This dataset is also used by [12], which proposes a binary classification
approach based on supervised learning (using MLP) and unsupervised
learning (using autoencoders). Additionally, the proposed approach
uses different aggregation methods based on [64], which are compared
considering different types of attack. In this case, it should be noted
that authors created a balanced dataset with the same number of
samples and proportion of classes for all devices. This distribution
could be compared with our balanced scenario described in Section 4.2.
Moreover, the Bot-IoT dataset [65] is used by [10], which proposes
multiclass classification based on neural networks together with Prin-
cipal Component Analysis (PCA) in an edge-based network architecture
with IoT gateways. The proposal distributes the dataset in four clients
according to attackers’ IP address; however, details on the implemen-
tation being used and data distribution in the different parties are
not described. Additionally, other works on the use of FL for IDS in
IoT are based on specific datasets for industrial environments. In this
direction, [47] integrates Convolutional Neural Networks (CNN) and
GRUs for the detection of different attacks using the dataset described
in [48]. Furthermore, [51] also uses GRU with a dataset based on the
well-known Modbus protocol [48].

Our literature analysis demonstrates that the development of FL-
enabled IDS approaches for IoT is still in its infancy. On the one hand,
while most of the previous works are intended to be considered in such
scenarios, they are not based on datasets with IoT devices’ network
traffic. On the other hand, we note that a significant amount of the
previous works do not provide information about the implementation
being used, or details related to the evaluation process, such as number
of clients or training rounds. Furthermore, most of the works do not
describe the data distribution among the different clients, or they
consider scenarios where clients’ data are associated to a portion of
the dataset that includes the same number of samples for each attack
being considered. However, as discussed in previous works [7], the

performance of FL can be reduced in the case of scenarios with non-iid
and highly skewed data. While these aspects have not been evaluated in
the context of FL-enabled IDS, our work provides an exhaustive eval-
uation under different data distributions using the recently proposed
ToN_IoT [66] dataset, which includes several IoT-related attacks. To
cope with the impact of non-iid data, we compare the performance of
the typical FedAvg algorithm with a recent approach called Fed+ [21].
To the best of our knowledge, this is the first approach evaluating the
impact of non-iid data on the development of FL-enabled IDS for IoT.

4. Methodology

Before describing our evaluation results for the proposed FL-enabled
IDS for IoT considering non-iid data, in this section we explain the main
processes and assets used for this purpose. They include the dataset
selection, data distribution among several FL clients, as well as the
classifier technique and aggregation functions being considered.

4.1. Dataset selection

For the development of our FL-enabled IDS proposal for 10T, a key
aspect is the selection of an appropriate dataset. As described in the
previous section, recent approaches are based on obsolete and generic
network traffic datasets, which do not consider IoT-specific protocols
and attacks. Furthermore, as described by [12], most of the datasets for
IDS were not conceived to be used in an FL environment, as they cannot
be properly distributed among different clients. Therefore, our analysis
is focused on IoT datasets for IDS that can be divided by IP address
or device [12], namely Bot-IoT [65], N-BaloT [63], MedBIoT [67],
I0TID20 [68] and ToN_IoT [66]. In the case of ToN_IoT, we consider the
CIC-ToN-IoT dataset [69], which is generated from the original pcap
files of ToN_IoT. An overview of these datasets is shown in Table 2,
in which they are compared according to several aspects, such as
number of features and samples, attacks, the use of labeled data, or
their testbed.
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Table 2
Comparison between relevant contemporary intrusion datasets for IoT (N=NO, Y=YES).
Dataset Training/ # features # samples Normal/malign Attacks Data Best-features Realistic
testing sets? flow ratio labeled? set testbed?
Bot-IoT [65] Y 46 73,370,443 0.00013:1 PortScan, OS Fingerprinting, Y Y Y
DoS/DDoS, Data Theft,
Keylogging
N-BaloT [63] N 115 7,062,606 0.07:1 Mirai Bot, BashLite Bot Y N Y
MedBIoT [67] N 100 17,845,567 2.36:1 Mirai Bot, BashLite Bot, Torii Y N Y
Bot
10TID20 [68] N 83 625,784 0.06:1 Mirai Bot, MITM, PortScan, Y Y Y
OS Fingerprinting
CIC-ToN-IoT [69] N 83 5,351,760 0.88:1 Backdoor, DoS, DDoS, Y N Y

Injection, MITM, Password,
Ransomware, Scanning, XSS

A common aspect of the different datasets is that they are based
on realistic testbeds, as well as labeled data considering different types
of attack. Bot-IoT is the only analyzed dataset that provides training
and testing sets. Furthermore, this dataset and IoTID20 identify a set
of best features to be considered. However, we note that most of the
datasets suffer from a significant imbalance between benign and attack
traffic that can negatively affect the ML/DL approach, so that oversam-
pling/undersampling could be required. In this direction, we note that
the ToN_IoT dataset provides the best ratio between benign and attack
traffic. This aspect could significantly impact on the evaluation results
if the effect of very unbalanced data distributions (e.g., with only a few
samples of a certain class) is not properly considered. Furthermore, this
dataset considers a broader diversity of attack types compared to the
other datasets being analyzed. For example, N-BaloT and MedBIoT fo-
cus on particular attacks that are launched by IoT devices composing a
botnet. However, they do not consider other attacks, such as DDoS/DoS
or MITM that should be considered in IoT environments.

Moreover, while the different datasets are based on realistic
testbeds, ToN_IoT is built using an I[oT/IIoT testbed composed by
edge/fog nodes and cloud components to simulate an IoT/IIoT pro-
duction environment. Furthermore, ToN_IoT is the only dataset that
considers data from sensor readings and telemetry data, which can
be used to detect additional attacks (beyond the network level) in
such environments. Although ToN_IoT has been used in recent works
(e.g., [29]), to the best of our knowledge, this is the first effort to
consider ToN_IoT in a FL setting. Therefore, the evaluation results
provided in Section 5 could be considered as a starting point for future
evaluations on this dataset on an FL setting.

4.2. ToN_IoT partitioning

To create the three proposed scenarios based on different data dis-
tributions, we use the CIC-ToN-IoT dataset [69], which was generated
through the CICFlowMeter tool [70] from the original pcap files of
the ToN-IoT dataset, as previously described. Such tool was used to
extract 83 features, which were reduced by removing those with a
non-numeric value (e.g., flow ID). Then, we separate the samples of
the whole dataset according to the destination IP address, and select
the 10 IP addresses with more samples. The reason for this division
is to associate the traffic of each IP address to a single FL client.
Furthermore, we selected a subset of the whole dataset considering
10 devices to show the evolution of each node during the federated
training process. Those observations constitute our dataset. Such result-
ing dataset contains 4.404.084 samples, which represent 82,29% of the
original CIC-ToN-IoT.

From this dataset, we create three scenarios to evaluate the impact
of different data distributions on the performance of our multiclass
classifier to detect attacks. The datasets of such scenarios are available
at [20]. Specifically, we use Shannon entropy [19] to measure the
imbalance of the different local datasets of each FL client. In particular,

given a dataset of length n, and k classes of size c;, the balance between
the classes is given by the formula:
_yk & G
2 log "

i=1n

Entropy = @

log k
where the function is equal to O if all classes are O except one, and is
equaltolifall¢; = % Furthermore, it should be noted that we consider
that each FL client is represented by a single IP address. In this context,
n is the number of network flows, k is the number of the attack classes

and ¢; is their size.

4.2.1. Basic scenario

In this scenario, each FL client’s dataset is based on the network
traffic of the corresponding IoT device. As described in Table 3, in this
case the distribution of classes and samples among the different nodes
is highly unbalanced. Indeed, party 7 only has benign traffic samples,
while parties 1 and 3 only have 2 samples of XSS attack. Consequently,
these parties have the lowest Shannon entropy value. This scenario
represents a typical situation in a certain IoT network in which specific
devices can be victims of several attacks while other devices perform
their intended operation and they are not subject to attacks. However,
as described in Section 5, the straightforward application of FL in this
scenario could result in poor performance and convergence issues.

4.2.2. Balanced scenario

In this case, we select a portion of our dataset, which is distributed
among the 10 parties, so that each party has the same number of
samples of each class. Therefore, as shown in Table 3, all the parties
have the same Shannon entropy value. As will be described in Section 5,
such balanced scenario presents better performance; however, in this
case, each FL client could have samples of other nodes, so that it can
result in privacy issues depending on the scenario being considered.
It should be noted that such scenario can be compared with similar
settings in previous works, such as [12], which uses a version of the N-
BaloT dataset where the number of samples and the class proportions
are the same for all devices.

4.2.3. Mixed scenario

The mixed scenario is generated to achieve a tradeoff between the
two previous settings in which each party maintains its own samples,
but they are locally balanced. In particular, we select the parties with
a Shannon entropy value, calculated by (1), higher than a certain
threshold (0.2), that is, parties 0, 2, 4 and 5. After this initial filtering
step (due to the fact that the parties’ classes are not well balanced)
we use a simple instance selection mechanism that removes some of
the samples from the predominant classes until we reach the Shannon
entropy within a range of values. Having this set in between 0.66 and
0.71, we obtain a dataset that represents a compromise between the
basic scenario where no balancing was used, and the balanced scenario
where we artificially distributed the dataset among the 10 parties.
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Table 3
Description of the basic, balanced and mixed scenarios.
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Scenario Party Total samples Benign XSS Injection Password Scanning MITM DDoS Dos Backdoor Entropy
0 811504 42527 474520 140519 140519 13419 - - - - 0.52041
1 763518 763516 2 - - - - - - - 0
2 740117 116540 594627 16271 1138 10923 253 202 145 18 0.28669
3 519806 519804 2 - - - - - - - 0

Basic 4 424531 2794 307962 66812 38009 8954 - - - - 0.38890
5 330956 10537 206036 44043 67431 2909 - - - - 0.47291
6 223092 3587 209637 9868 - - - - - - 0.11976
7 217737 217737 - - - - - - - - 0.0002
8 186891 8981 177910 - - - - - - - 0.08794
9 185932 8551 177381 - - - - - - - 0.08511

Balanced 0-9 43549 10000 10000 10000 10000 3500 20 18 10 1 0.7611
0 205946 42527 50000 50000 50000 13419 - - - - 0.69858

Mixed 2 42679 10000 10000 10000 1138 10923 253 202 145 18 0.70266
4 71748 2794 20000 20000 20000 8954 - - - - 0.66218
5 73446 10537 20000 20000 20000 2909 - - - - 0.66888

4.3. Multiclass classification

Considering the already described scenarios, we use a multiclass
probabilistic classification model to classify the instances into benign
or a specific type of attack. For this purpose, we apply the multinomial
logistic regression [71], also called soft-max regression, due to its easy
implementation and training efficiency. It can also interpret model
coefficients as indicators of feature importance. The reason to choose
this well-known model is because we focus on the impact of different
data distributions and aggregation functions on the effectiveness of a
FL model by considering the same ML technique. Indeed, the use of
logistic regression is intended to provide a baseline scenario, avoiding
additional complexity for the interpretation of the evaluation results
provided in Section 5.

Multinomial logistic regression is a simple extension of binary lo-
gistic regression [72] that allows for more than two categories of the
dependent or outcome variable which do not present an order. As with
most classifiers, the input variables need to be independent for the
correct use of the algorithm. Given the input x, the objective is to know
the probability of y (the label) in each potential class p(y = ¢|x). The
softmax function takes a vector z of k arbitrary values and maps them
to a probability distribution as follows

exp(z;)

k
j=1

(2)

softmax(z;) = .
exp(z j)
In our case, the input of (2) will be the dot product between a weight
vector w and the input vector x plus a bias for each of the k classes:

exp(w, x + b,)

Sk @)
21 exp(w;X + b))

py=clx) =
The loss function for multinomial logistic regression generalizes the loss
function for binary logistic regression and is known as the cross-entropy
loss or log loss.

It should be noted that unlike previous works based on binary
classifiers (e.g., [12]), we consider the detection of a specific attack as
a key factor to dynamically deploy the most effective countermeasures
to mitigate such threat. Furthermore, while other classifiers could be
employed (and it represents part of our future work), our evaluation
results are focused on the impact of different data distributions and
non-iid data in the classifier performance.

4.4. Aggregation functions

As described in Section 2, the local updates generated by each
client in FL are combined through an aggregation function in each
training round. The most basic aggregation function is represented by
FedAvg [6], which generates the global model based on the average of
the weights generated by the FL clients. In particular, let W = (w;) be

the weights of the general model and W* = (w¥) the weights of the
party k, then:

w =Y Suk,
where D and d; are the total data size and data size of each party
respectively.

However, as described in recent works [7,16,73], the performance
of FedAvg may be degraded in scenarios with non-iid and highly
skewed data. While recent works propose alternative aggregation func-
tions considering convergence and privacy aspects [39], in this work
we consider a recent approach called Fed+ [21], which unifies several
functions to cope with scenarios composed by heterogeneous data
distributions. For this purpose, Fed+ relaxes the requirement of forcing
all parties to converge on a single model (as in the case of FedAvg). In
particular, let be the main objective in FedAvg:

4

min F() = + 3 /00, ®)

where f; is the local loss function of the party i. In the case of Fed+,
the main objective is:

min F(x) = % Y £ix) + @ B(x, C(X)), 6)

where ¢; is a penalty constant, B(:,-) is a distance function, and C is an
aggregate function that computes a central point of x.

It should be noted that this work represents the first effort to use
Fed+ to evaluate its impact in the context of FL-enabled IDS for IoT.
As will be described in Section 5, the use of such approach mitigates
the convergence issues of FedAvg specially in settings with non-iid and
skewed data.

5. Evaluation results

Based on the different aspects of the proposed methodology, in
this section we describe our evaluation results. For this purpose, we
consider the following metrics:

. . TP+TN
Accuracy: TP+FP+FN+TN

Precision: TPLFP

. TP
Recall: TPIFN

« Fl-score; 2 s RecallxPrecision
Recall+Precision

« False Positive Rate (FPR): F:)f%

where TP: true positives, TN: true negatives, FP: false positives, and FN:
false negatives.

Precision, recall, F1-score, and FPR metrics are calculated for each
scenario described in Section 4.2. In the case of multiclass classification,
such metrics can be calculated by using micro, macro, and weighted
averaging. The micro-averaging calculates the metrics using the total
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amount of TP, TN, FP, and FN, independently of the number of classes.
The macro-averaging calculates each metric for each class indepen-
dently, and then it uses the average of all the classes’ values. Then, the
weighted-averaging follows a similar approach to the macro-averaging,
but instead of using the normal averaging, the average is weighted
depending on the class size. As some of our scenarios are based on
imbalanced datasets (see Section 4.2), we use the weighted-averaging
for our evaluation.

Moreover, we train the model across 300 rounds for each scenario
by considering one epoch for each training round. The reason to choose
300 rounds is because in the basic scenario (when FedAvg is used),
the accuracy starts to decrease around the round 200, so for every
case we have set the same number of rounds, 300, despite the rest of
cases converge at round 50 approximately. The number of epochs is
a hyperparameter that defines the number of times that the learning
algorithm will work through the entire training dataset in each specific
client. One epoch means that each sample in the training dataset
has updated the internal model parameters only once. Furthermore,
the logistic regression algorithm is implemented by using scikit-learn
SGDClassifier (Stochastic Gradient Descent). In particular, we choose a
logarithmic loss function to use the logistic regression, and the norm
L, in order to shrink model parameters toward the zero vector. Before
the application of the ML/DL, the data is normalized. Furthermore, a
ratio of 80-20 was defined between training and testing sets.

For our evaluation, we consider FedAvg and Fed+ as aggregation
functions in our FL-enabled IDS approach. Furthermore, we also mea-
sure the accuracy of each client in a distributed scenario, where each
party trains the model using their own data independently from the
other parties (see Section 2). It should be noted that we do not consider
a centralized setting (in which devices send their data for training a
model) because in that case all the classes would be represented in the
dataset. Therefore, it would be unfair to compare such setting with a
distributed/federated scenario in which clients only have traffic asso-
ciated to their IP address, and only some of the classes are represented
in their partial datasets. Nevertheless, for the sake of completeness,
we measure the accuracy of the centralized setting and obtain a value
of 0.724 using multinomial logistic regression. This value is close to
0.77, which represents the highest accuracy value obtained in the work
describing the ToN_IoT dataset [66].

Our experiments have been carried out in a simulated and dis-
tributed testbed using IBMFL, that employs a federated architecture for
learning. It has been set-up with 10 IoT devices or parties (each IoT
device runs a different FL process) plus a central server. Although in
the simulation the federated learning processes are executed all in one
physical machine, the simulation splits the learning in different isolated
processes or threads, each one running the federated learning task in
parallel. The federated environment, parties and server, were simulated
in a Lenovo laptop with an AMD Ryzen 7 4800H with Radeon Graphics,
and 16 GB of RAM.

5.1. Basic scenario

As described in Section 4.2, in this scenario, each party has the
data corresponding to the traffic associated to a single IP address.
Such scenario is characterized by a non-iid and highly skewed data
distribution. This aspect is reflected in Fig. 2 and Fig. 3, which show the
accuracy evolution of each client by using FedAvg and Fed+ methods,
respectively. As shown, the accuracy value of each party remains stable
throughout the training rounds. While the accuracy value seems high
for parties 0, 2, 3, 4, 5, 6, and 8, this circumstance may be related to the
heavily imbalanced dataset where accuracy may not be an exhaustive
indicator because of the predominance of the data of the larger class
(e.g., the legitimate traffic in this case). Then, accuracy is not fully
representative since if a class represents the vast majority of the dataset,
the classification process will provide a high accuracy even if only a
single class is actually learned. However, the application of such model
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Table 4
Comparison between distributed method and federated method.

Accuracy distributed Accuracy federated

Party 0 0.5526 1.0

Party 1 1 0.7293
Party 2 0.9435 1.0

Party 3 1 0.9402
Party 4 0.7283 0.9434
Party 5 0.6525 0.9525
Party 6 0.9412 0.9513
Party 7 1 0.5566
Party 8 0.9493 1.0

Party 9 0.9508 0.6527

in a more balanced dataset may result in lower accuracy. It should
be noted that, according to Fig. 2, the accuracy of parties 3, 4, 7,
9 is decreased after around 200 training rounds. This aspect could
be related to the use of FedAvg as aggregation function that could
represent convergence issues, as described by recent works [16].

Table 4 shows the accuracy of each party by considering the dis-
tributed and the federated scenario (using Fed+). It should be noted
that parties with a low entropy (see Section 4.2) provide a higher
accuracy in the distributed setting than in the federated scenario. This
can be justified since parties with fewer classes and lower balance will
classify better the samples of such predominant classes. Then, in the
case of a federated environment, the weights of those parties with a
few classes will be negatively influenced by the weights of other parties
with more classes, because these parties detect different and additional
types of attacks.

As shown in Fig. 4, the other metrics (beyond accuracy), calculated
with Fed+, remain stable through the rounds, following a similar trend
as the accuracy. The parties with a high FPR have poor results in
terms of the others metrics. The values in recall, F1-score and precision
of these parties are similar to the ones in the accuracy, except for
party 2 and party 8, which provide 0O for precision and recall (and
consequently in Fl-score), and 1 for FPR. This situation can arise in
scenarios with unbalanced datasets (like in this case), where a high
accuracy is obtained (due to a high TN ratio) but recall and precision
remain low (because of a low value for TP ratio)

Previous results demonstrate that the direct application of FL to sce-
narios with non-iid and highly skewed data could lead to undesirable
results. Therefore, there is a need to consider a suitable client/instance
selection process to make the dataset more balanced among the differ-
ent clients in terms of number of classes and samples. The evaluation re-
sults for the balanced and mixed scenarios demonstrate the importance
of such process, and are described below.

5.2. Balanced scenario

In this scenario, the data is equally distributed among parties ac-
cording to the description provided in Section 4.2.2. Figs. 5 and 6
show the evolution of the parties’ accuracy by using FedAvg and Fed+
algorithms respectively. In the case of FedAvg, parties with a high
accuracy obtain a decrease of such value throughout the rounds. For
parties with a low accuracy, the evolution is similar to the Fed+ case.
Furthermore, as shown in Fig. 6, there is a clear increment in the
accuracy for all parties that remain stable (between around 0.8 and
1) after about 50 rounds.

Furthermore, the evolution of FPR, Fl-score, recall and precision
metrics in the case of Fed+ are shown in Fig. 7. In particular, the value
of recall, Fl-score and precision increase throughout the rounds with
a similar trend as the accuracy. Moreover, the FPR value decreases
throughout the rounds until it converges to a lower value. Compared
with the results for the basic scenario, these metrics have values akin
to the accuracy following a similar trend.
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Fig. 4. Basic scenario’s FPR, Fl-score, recall and precision with Fed+.
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According to the obtained results, this scenario shows a better

evolution in the parties for the different metrics being considered
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Better balanced scenario’s precision, recall, F-1 score and FPR with Fed+.

compared to the basic scenario. In particular, in the case of Fed+,

all the parties improve such metrics throughout the initial 50 rounds,
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Fig. 9. Mixed scenario’s accuracy with Fed+.

when their values remain stable. However, in the case of FedAvg, these
value drop for some of the parties. Therefore, spite this scenario was
artificially balanced, so that the parties have samples all the different
attacks, the use of FedAvg still could lead to convergence issues. This
could be due to the fact that even with a more balanced dataset among
the different parties, the number of samples of each attach in every
party still remains unbalanced.

5.3. Mixed scenario

The data distribution for this scenario is described in Section 4.2.3.
Fig. 8 shows the accuracy evolution for each party when FedAvg is
used. According to it, there is a clear decrease in the accuracy of party
2 until about round 200, and such trend is also observed for party O
after a significant increase in the very initial rounds. In the case of
party 4 and party 5, the accuracy value remains stable. The decrease
of accuracy is due to the unbalance of the scenario in which parties
0, 4 and 5 only have a subset of attack types. Then, Fig. 9 shows
the accuracy evolution of the different parties with Fed+, in which
accuracy values grow until a certain number of rounds (about 50) when
they remain stable. In the case of party 2, accuracy is more oscillating
due to the fact that such party has samples of all the different classes
in its local dataset.

Fig. 10 shows the evolution for the other metrics when using Fed+
with a similar trend as for the accuracy. Parties 2 and 4 have the best

10

results for each metric: FPR=0.28, F1-score=0.91, recall=0.925 and
precision=0.9. Parties 0 and 5 have similar results, except that party
0’s precision is similar to parties 2 and 4. It should be noted that these
results are similar to the balanced scenario. As in the previous case, it
means that accuracy results are consistent with the values obtained for
the other metrics.

Based on the obtained results, this scenario represents a trade-off
between the previous two scenarios obtaining similar results to the
balanced setting, where samples are shared among the different parties.
Furthermore, previous results demonstrate the need for considering
additional aggregation functions (beyond FedAvg) in order to deal with
scenarios characterized by non-iid and skewed data among the parties
that are common in real-world scenarios.

5.4. Comparison between basic, balanced, mixed, and distributed scenarios

After analyzing the different evaluation metrics, Fig. 11 shows a
comparison of the average accuracy of the parties for each federated
scenario and a distributed setting, considering FedAvg and Fed+. It
should be noted that each federated subcase represents the average of
10 executions where the dataset is shuffled before splitting it into train-
test and the random state was changed for each execution. According
to these results, Fed+ provides higher accuracy for all the federated
scenarios being considered. This demonstrates that it is able to handle
better scenarios where parties do not have balanced datasets.
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Fig. 10. Mixed scenario’s precision, recall, F-1 score and FPR with Fed+.

For the basic scenario, graphs are similar for FedAvg and Fed+.
However, it should be noted that, in the case of Fed+, accuracy remains
constant about 0.8725, which is close to the 0.8718 of the distributed
method, whereas it drops slowly from 0.8725 when using FedAvg. In
the balanced scenario, the initial accuracy starts at 0.8569 and rapidly
grows to 0.9039 (where it remains stable throughout the rounds) for
Fed+. When FedAvg is used, accuracy grows from 0.8349, until 0.88
after 50 rounds, but it gradually drops to 0.87. Compared with the
distributed setting, Fed+ has a similar accuracy to the 0.9065 of such
scenario, since all parties have the same amount of data and number of
classes. However, FedAvg does not reach the accuracy of the distributed
case. The main reason is that, while parties’ datasets are balanced
among each other, each local dataset is unbalanced in relation to the
number of samples for each class.

In the case of the mixed scenario, accuracy (when Fed+ is used) goes
from 0.8498 until 0.8876 after 50 rounds, and it remains stable until
it finishes with 0.8869. Indeed, after about 40 rounds, Fed+ overtakes
the accuracy for the distributed case (0.877). However, the behavior of
FedAvg is worse than the distributed case. In particular, accuracy goes
from 0.8157 to 0.8698 after 10 rounds, but then, it decreases slowly
until 0.8423. Therefore, in this scenario, Fed+ clearly improves the
behavior of FedAvg.

Based on the previous evaluation, Fed+ provides better results than
FedAvg, which could introduce convergence issues in certain situations.
Indeed, Fed+ provides better results for the mixed scenario compared
to the results of the balanced setting when FedAvg is used. Based
on the results for the different scenarios, it should be noted that the
impact of different data distributions is more clear in the case of Fed+
and the distributed setting, where the best results are obtained for the
balanced scenarios, while the basic scenario provides the lowest value
for accuracy. However, in the case of FedAvg the basic and balanced
scenarios provide similar accuracy results, while the mixed scenario
presents lower accuracy values. In any case, as already mentioned, the
use of Fed+ has a clear impact in the results obtained for the different
scenarios by improving the evaluation metrics’ values when FedAvg is
employed.

6. Challenges and research directions

Based on the evaluation results provided in the previous section
and the analysis of the literature on the use of FL [39,74], below we
describe some of the main challenges and future research directions
to be considered for the development of FL-enabled IDS in the scope
of IoT scenarios. In particular, some of these challenges are directly
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related to our analysis and evaluation results provided in previous
sections (e.g., 6.2 and 6.5), while others are based on existing literature
and described in the context of IDS approaches for IoT. Moreover,
as described by [74], it should be noted that many of the challenges
associated with the use of FL in such context will require multidis-
ciplinary approaches, including the application of privacy techniques,
cryptography, distributed optimization, or information theory. Fig. 12
provides a summary of the following subsections.

6.1. Deploying FL on IoT devices

While our work focuses on the impact of different data distributions
on FL by using a simulated testbed, a significant set of challenges is
derived from the deployment of a FL framework on real IoT devices.
Indeed, as described by [75], the computational requirements of well-
known ML approaches might not be satisfied by constrained IoT devices
in terms of memory, computing power and energy consumption. This
aspect can be aggravated in the case of applying DL techniques, which
require in general more computing resources than ML. To address
such limitations, a current trend is the use of intermediate nodes at
the network edge, so that the end devices send their data to these
nodes acting as FL clients [76,77]. For example, [78] use intermediate
entities (called RSPs) in charge of performing the local training in an
FL setting. A similar approach is also proposed by [79], which used an
edge computing architecture to determine the aggregation frequency
of the global model. However, it should be noted that sharing network
traffic with these intermediate nodes to identity potential attacks can
still pose privacy concerns. Other approaches consist of the reduction of
the data that needs to be sent by segmenting and representing it [80], as
well as by exploring feature selection [81,82]. Therefore, more efforts
are needed to analyze the practical limitations of FL approaches in IoT
scenarios, as well as the security and privacy implications derived from
the use of edge computing architectures. In this context, a potential
research direction is associated with the application of TinyML frame-
works (e.g., TensorFlow Lite [83]) in FL scenarios, as recently described
by [84].

6.2. Limitations of existing IDS-IoT datasets for FL

As described in Section 3, some of the existing FL-enabled IDS
proposals for IoT are based on general network datasets, which do
not consider [oT technologies and devices. Even though some datasets
have recently been proposed for IoT scenarios, as described by [12],
some of them cannot be applied in an FL environment, since they do
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Fig. 12. Challenges and future directions in Federated Learning for IDS.

not provide data associated with different IP addresses or devices, in
particular the IP destinations that can be identified as the parties of the
FL environment in IDS. Furthermore, as described in Section 4, most
IDS datasets for IoT present a significant imbalance between benign
and attack traffic, as well as a limited set of attacks being considered.
Moreover, we note that ToN_[oT is the only dataset that considers
possible security threats related to telemetry data and sensor readings,
unlike other datasets only dealing with network attacks. However, as
described by [85], the development of IDS datasets for IoT still needs
to consider a broader scope of IoT technologies (including well-known
protocols like CoAP [86]), as well as additional aspects (e.g., energy
consumption) that can serve to identify potential attacks. Therefore,
more effort is needed in the development of IDS datasets for IoT
considering its divisibility to be deployed in a FL setting.

12

6.3. Aggregator as bottleneck

Even though FL is based on a collaborative training approach, the
coordinator entity may become a bottleneck from a performance and
privacy perspective, as well as a single point of failure. To address such
issue, a current trend is the application of blockchain technology [87],
which represents a distributed and immutable ledger shared by several
nodes. The use of blockchain can increase the level of trust in an FL
environment, where the centralized coordinator is replaced by a set
of nodes with distributed functionality, which is carried out through
smart contracts [41,88]. Indeed, blockchain has been proposed in
recent works to make model updates accountable and avoid potentially
malicious updates [89]. Furthermore, the use of blockchain is also
proposed by [90] with a similar purpose in the scope of FL-enabled
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vehicular networks. In the context of an IDS approach for IoT, [78]
uses intermediate nodes acting as blockchain clients to store the model
parameters updated by the end devices to avoid potential manipulation.
Despite these efforts, we note that most of current approaches do not
provide comprehensive evaluations considering training frequency and
scenarios with a large number of devices, which may be required for
IDS approaches. Furthermore, as described by [74], the use of permis-
sionless blockchains (e.g., Ethereum [91]) can raise privacy concerns,
which must be addressed by proper encryption or differential privacy
techniques, as described in Section 6.8.

6.4. Communication requirements

The need for a significant communication bandwidth to exchange
global model updates represents a well-known issue associated with
the use of FL [75]. This problem can be exacerbated in IoT scenarios
where end devices acting as FL clients need to communicate their model
updates through constrained networks and devices, which can degrade
the network or IoT performance [92]. In general, there are two main
factors that impose strong communication requirements between FL
clients and coordinator. The first aspect is related to the amount of data
associated with the gradient exchange [93], which is required between
clients and the coordinator for the learning process. This is generally
addressed by gradient compression techniques, such as quantization
and sparsification, as described by [94]. The second aspect is related
to the number of training rounds required to converge the model
that can vary depending on the scenario, dataset, data distribution,
or the ML algorithm being considered. For example, based on our
evaluation results, the different metrics remain stable after 50 rounds
in the balanced and mixed scenarios, although this may be different
with other evaluation conditions. While a common trend to reduce the
training rounds is to perform several local training iterations before
updating the global model [95], the execution of such local training
iterations may have a significant impact on FL clients, specially in
case of resource-constrained devices (see Section 6.1). Indeed, while an
excessive number of epochs could overload the IoT device, an increase
in the number of training rounds could impact in the bandwidth
requirements, as previously mentioned. Hence, the use of compression
techniques, as well as to reach a tradeoff between number of epochs
and rounds in a certain FL setting are crucial aspects to be considered
in future FL deployments.

6.5. Client selection

As described in Section 2, in each training round, the coordinator
can select a subset of devices to participate as FL clients in the training
process. For this purpose, different aspects such as device status, battery
level, computing/communication capacity, or ML technique’s accuracy
could be considered [96,97]. Indeed, the client selection process can
have an impact on the obtained accuracy and, therefore, on the de-
tection of potential security attacks in the scope of an IDS approach.
In our case, according to the results described in Section 5, we found
that even a static client selection process can help to obtaining a
better performance of the ML algorithm. However, more sophisticated
client selection strategies must consider the dynamic aspects of an IoT
environment in each training round. For example, some devices may
not be available in a certain round due to mobility issues or loss of con-
nectivity [76]. Furthermore, due to devices heterogeneity, while some
of them could perform the local training in a few milliseconds, other
devices could require a longer period to update the model (e.g., due
to resource constraints), which could slow down the overall federated
training [37]. In the context of IDS, this could lead to a longer delay
in detecting a certain attack, which could have severe consequences on
the overall cybersecurity of the network. An additional aspect is related
to the need to provide incentives to devices, in order to foster their
participation in the training process [36]. Otherwise, some devices may
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not want to use their limited resources for this purpose. While some
recent works address this issue in IoT scenarios [98], more efforts are
required in real IoT environments to evaluate its impact on the learning
process. Therefore, future strategies to come up with an effective client
selection in IoT systems must consider the changing conditions of
devices in each training round.

6.6. Dynamic IoT devices’ behavior throughout their lifecycle

Related with the previous aspects, there is a need to consider the
changing behavior of IoT devices throughout their lifecycle that could
impact the effectiveness of a FL-enabled IDS approach. This aspect is
not considered in the existing literature, and it is based on our own
experience on IoT security [99,100]. For example, a software update
process for a certain device can change its behavior [101], so that a
new learning process is required in order to reflect the new behavior
as benign traffic in the context of an IDS. However, such change could be
also related to a potential attack affecting this device. Therefore, there
is a need to integrate network management approaches to detect if be-
havioral changes in a certain device are produced intentionally, or they
are due to a malicious action. Furthermore, the behavioral changes of a
single device, known as data-drifts [80], could affect to the behavior of
other interacting devices. In the case of a FL scenario, it could require
new training rounds that might have a significant impact specially
in settings with constrained devices and networks. More specifically,
a Federated Reinforcement Learning scheme is proposed in [76] to
control multiple real IoT devices of the same type but with slightly
different dynamics. However, this aspect is not addressed in existing
FL-enabled IDS approaches, which are based on existing datasets that
do not reflect potential behavioral changes on IoT devices throughout
their lifecycle, so this is a novel field to research in.

6.7. Security attacks

Like in the case of centralized approaches, FL is also susceptible to
several attacks that can affect the learning process. Indeed, as described
in recent works [36], some of the major security threats in FL are repre-
sented by data poisoning and model update poisoning attacks. The former
is related to the attacker ability to add false training data or modify
the existing dataset of a certain client, for example, by modifying the
labels (label-flipping). The latter focuses on changing the global model
instead of the local training dataset. The realization of such attacks
could cause false alarms in an IDS approach due to misclassification
of benign/malicious traffic [102]. To address such concerns, a recent
work evaluates the behavior of different aggregation functions against
several security attacks in an FL-enabled IDS approach [12]. Indeed,
the application of certain aggregation approaches could help to make
an FL setting more robust against potential attacks. In this direction,
as part of our future work, we will evaluate how Fed+ behaves in the
context of different data poisoning and model update poisoning attacks
with different data distributions. Other complementary approaches to
be considered are based on network management approaches to ensure
that only devices behaving as intended can participate in the training
process [40]. These proposals still require lightweight cryptographic
mechanisms to be considered in real IoT environments so that devices
do not provide fake or forged data during the training process. Addi-
tionally, trust and reputation mechanisms can also be used in order
to prevent malicious nodes from injecting false data into the training
phase, even when using suitable cryptographic approaches [103].

6.8. Privacy concerns

While FL. was mainly proposed to mitigate the privacy concerns
associated with centralized learning approaches, it can still leak in-
formation from clients’ training data. Indeed, as described by [36],
a malicious server could infer information from model updates, as
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well as alter them in order to fool the global model. This can be
exacerbated in the context of IDS approaches to IoT, where device
network traffic data can reveal everyday user habits. Therefore, the
application of privacy-preserving techniques for FL has attracted a sig-
nificant interest recently [39], including the use of differential privacy
(DP) approaches [57], secure-multiparty computation (SMC) [104] and
homomorphic encryption [105]. However, these techniques often come
at a cost in terms of accuracy and efficiency [39,106], which can
negatively affect the attack detection capabilities of IDS approaches.
Indeed, a recent work evaluates the application of DP for an FL-enabled
IDS considering non-iid data [43]. Although other recent efforts have
been proposed for IoT scenarios [92], more studies are required to
come up with a tradeoff between privacy requirements, as well as
performance and accuracy requirements for effective IDS approaches.

7. Conclusions

The application of FL techniques has attracted a significant interest
in recent years due to their advantages over traditional centralized
learning approaches. In this work, we provided an overview about the
current research efforts for the application of FL toward the devel-
opment of IDS approaches for IoT scenarios. Unlike previous works,
we considered several settings with different data distributions. Our
evaluation demonstrates the impact of non-iid and highly skewed data
distributions on the FL performance, which directly affects the ef-
fectiveness of the security attack detection. We demonstrate that an
instance selection process based on the Shannon entropy of each local
dataset can improve the overall accuracy obtaining similar results
compared with a scenario where the dataset is balanced among the
parties. Toward this end, we evaluated the use of the FedAvg and Fed+
aggregation functions using the recently proposed ToN_IoT dataset.
Furthermore, based on our evaluation and the analysis of existing
literature, we described the main challenges to be considered in the
coming years for the deployment of FL-enabled IDS in IoT. As future
work, we will address some of such challenges by deploying a FL-
enabled IDS approach in real IoT scenarios to assess its feasibility in
environments with constrained devices and networks. Furthermore, we
will analyze the potential application of personalized FL, where each
node uses the most appropriate learning model, in order to improve
the overall accuracy for attack detection in IoT scenarios.
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