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a b s t r a c t 

Internet of Things (IoT) has emerged as a key component of all advanced critical infrastructures. However, 

with the challenging nature of IoT, new security breaches have been introduced, especially against the 

Routing Protocol for Low-power and Lossy Networks (RPL). Artificial-Intelligence-based technologies can 

be used to provide insights to deal with IoT’s security issues. In this paper, we describe the initial stages 

of developing, a new Intrusion Detection System using Machine Learning (ML) to detect routing attacks 

against RPL. We first simulate the routing attacks and capture the traffic for different topologies. We 

then process the traffic and generate large 2-class and multi-class datasets. We select a set of significant 

features for each attack, and we use this set to train different classifiers to make the IDS. The experiments 

with 5-fold cross-validation demonstrated that decision tree (DT), random forests (RF), and K-Nearest 

Neighbours (KNN) achieved good results of more than 99% value for accuracy, precision, recall, and F 1- 

score metrics, and RF has achieved the lowest fitting time. On the other hand, Deep Learning (DL) model, 

MLP, Naïve Bayes (NB), and Logistic Regression (LR) have shown significantly lower performance. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Critical infrastructures (CIs) cover various socio-economic sec- 

ors such as healthcare, agriculture, industry, gas and water distri- 

ution, transportation, energy, communications, information tech- 

ology, etc. CIs are continuously changing and adapting to changes 

n technology. Indeed, Cyber-Physical Systems (CPS) and the Inter- 

et of Things (IoT) have emerged as core components in all ad- 

anced Cis, such as Industry 4.0 [1,2] . Since CIs are vital to daily

uman lives, their protection from cyber-attacks by malicious en- 

ities that cause significant impacts on the targeted CIs and their 

ervices is a serious concern. Consequently, to secure CIs, it is nec- 

ssary to secure IoT networks [3] . 

IoT [4] consists of physical objects, usually known as things (de- 

ices) that sense, collect, and might process CIs related informa- 

ion. On one side, these objects are resource-constrained as they 

re powered by batteries and have limited computation and stor- 

ge capability. On the other side, billions of these devices are 

nterconnected and connected to the Internet under lossy and 

oisy communication environments such as Wi-Fi, ZigBee, Blue- 

ooth, LoRa, GSM, WiMAX or GPRS. IoT applications have emerged 
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n several aspects. Nevertheless, the IoT’s networks rise challenges 

n designing efficient and secure routing protocols [5,6] . Several ef- 

orts have been made by standardisation entities to specify effi- 

ient routing protocols for the IoT. Finally, the IPv6 Routing Pro- 

ocol for Low Power and Lossy Networks (RPL) [7] was designed 

nd standardised by the IETF ROLL working group to overcome 

he routing challenges underpinning IoT networks. RPL specifica- 

ion considers limitations in both the energy power and the com- 

utational capabilities of such networks. 

Besides the different characteristics of IoT components, the 

apid growth of IoT applications and the increasing number of 

mart objects in IoT networks result in producing a massive 

mount of data and traffic leading to increase the IoT’s vulnera- 

ilities, and consequently, the RPL’s threats [5,6] . Although the RPL 

pecification introduces mechanisms aiming to achieve confiden- 

iality, integrity and replay protection through control messages 

ncryption, local and global repairs and loops detection, RPL is still 

usceptible to internal attacks [6] . Indeed, there are vulnerabilities 

rom inside the RPL network that go beyond the encryption and 

uthentication defence for the RPL communications [8,9] . In such 

ases, Intrusion Detection Systems (IDSs) are required as a second 

ine of defence, where IDSs analyse activities and nodes’ behaviour 

o detect intruders that are trying to disrupt the network. 

https://doi.org/10.1016/j.ijcip.2021.100436
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijcip
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijcip.2021.100436&domain=pdf
mailto:medjek-f@dtri.cerist.dz
https://doi.org/10.1016/j.ijcip.2021.100436
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Even though there are several methods to implement an IDS, 

rtificial intelligence-based technologies, such as Machine Learn- 

ng (ML) techniques are highly recommended as IDS since they 

re ideal for classification problems. Indeed, ML can predict the 

xpected behaviour of a system by learning from previous expe- 

iences without explicit programming. Therefore, ML can be ap- 

lied at RPL nodes, fog/edge nodes and (or) cloud nodes to extract 

nd analyse from large-scale data, and hence detect malicious be- 

aviour. Consequently, the AI-assisted security analysis approaches 

ight transform the end-to-end IoT security into an intelligence- 

ased security system. 

In this paper, different ML algorithms and a Deep Learning (DL) 

odel are explored to develop an efficient IDS for RPL to detect 

nd classify unseen routing attacks. A comprehensive evaluation of 

everal experiments of these ML and DL classifiers are shown on 

he developed datasets. In this paper, our contributions are as fol- 

ows. 

• We implement common attacks against RPL under different 

topologies. 

• We generate new 2-class (i.e., NoAttack-Attack) and multi-class 

(i.e., NoAttak-6 attacks) datasets. 

• We demonstrate with empirical results that specific ML algo- 

rithms perform better on the developed datasets then the se- 

quential Deep Learning (DL) model presented in the literature 

[10] . 

• We introduce a new IDS scheme for securing the RPL-based 

networks in the context of Industry 4.0. 

The paper is organised as follows. Section 2 presents basic un- 

erstanding of Industry 4.0 and RPL. In Section 3 , we overview the 

aterials and methodology used in this work. First, we present the 

L and DL models and the metrics used for the models’ evalu- 

tion. Second, we detail the simulation settings and the features’ 

election process. In Section 4 , we present and discuss the results. 

ection 5 introduces our ML-based IDS. Section 6 sketches the ML 

nd DL IDSs’ related work to secure RPL and IoT networks. Finally, 

ection 7 rises conclusions and gives future works. 

. Background 

.1. Industry 4.0 

Industry 4.0 is a critical infrastructure sector. It is a new indus- 

rial revolution that has widely attracted researchers, manufactur- 

rs, and smart application developers. According to the literature, 

yber-Physical Systems (CPS), Internet of Things (IoT), big data, ar- 

ificial intelligence, cloud computing, and other paradigms are re- 

uirements and parts of the visionary concept of Industry 4.0 [1,2] . 

ig. 1 depicts the key technologies used to support Industry4.0’s 

latform in the form of four linked layers. 

• Objects layer: This layer is composed of machines, robots, de- 

vices, actuators, and sensors. Sensors are integrated into all 

physical aspects such as machines and robots to connect the 

physical things with virtual models. Machines in the Industry 

4.0 factory are autonomous systems that can make their own 

decisions based on tools from the other layers, such as ML al- 

gorithms. 

• Network layer: One of the underpinning features of Industry 4.0 

is the complete connectivity between everything (i.e., people, 

process, data, and things). The data handling systems connect 

to the wireless sensors network and aggregate outputs, while 

Internet getaways use Wi-Fi and wired networks to perform 

further processing. IoT provides advanced connectivity of sys- 

tems, services, and physical objects to one another and to the 

Internet via wired and wireless technologies, which permits to 

create customised services for the end user’s needs. 
2 
• Cloud layer: One crucial aspect of Industry 4.0 is han- 

dling a considerable amount of data collected from ma- 

chines, processes, and products. This data revolution demands 

new techniques and technologies for efficient collection, stor- 

age, retrieval, communication, and real-time analysis. Indus- 

try 4.0 uses cloud technologies (e.g., servers, repositories, and 

databases) to store and process data. Besides, Big data analyt- 

ics and artificial intelligence techniques (ML, DL, etc.) are used 

in various areas of the Industry 4.0, such as quality manage- 

ment, preventive maintenance, fault diagnosis and prognosis, 

decision-making, etc. 

• Application layer: The application layer relies on all the previ- 

ous layers. It represents the management and enterprise plan- 

ning level where reside the different applications that allow the 

decision-makers and managers to monitor all levels of the busi- 

ness from manufacturing, to sales, to purchasing, to finance and 

payroll, and of course intelligent security management. 

.2. The routing protocol for low-power and lossy networks 

RPL [7] is a distance vector routing protocol that organises the 

hysical network into a logical representation as a Directed Acyclic 

raph (DAG) to route traffic/packets. The DAG is composed of one 

r multiple DODAGs (Destination Oriented DAGs) with one root 

er DODAG. Each root, called border router (BR), is connected to 

he Internet, and other potential roots (BRs) via a backbone. Each 

evice/node in the DODAG has many attributes such as an IPv6 

ddress (ID), a list of parents with one preferred-parent, a list of 

iscovered neighbours, and a Rank. The Rank of a node identifies 

he node’s position relative to the BR, respecting the rule that the 

arent has a lower Rank than the node itself. Specifically, the Rank 

alues should increase from the BR towards the leaf nodes, and 

ecrease from the leaf nodes toward the BR. 

RPL supports point-to-point (P2P between nodes), multipoint- 

o-point (MP2P from nodes to the BR) and point-to-multipoint 

P2MP from the BR to nodes) traffics. Packets should be transmit- 

ed either upward (MP2P) towards the BR or downward (P2MP) 

owards leaf nodes, respecting the Rank rule as defined in [7] . 

hen a node receives a packet upward, the sender must have a 

ank higher than that node and vice versa, when a node receives 

 packet downward, the sender must have a Rank lower than that 

ode. Fig. 2 a shows a sample of an RPL topology with three 

ODAGs, where Ranks increase from the BR towards leaf nodes. 

RPL uses specific control messages and a trickle mechanism to 

onstruct and maintain the DODAG. The trickle algorithm regulates 

he transmission rate of control messages. It enables data traffic to 

iscover and fix routing inconsistencies quickly. The DODAG Infor- 

ation Object (DIO) messages are used to carry the relevant infor- 

ation and configuration parameters that enable a node to con- 

truct and maintain the DODAG. DIO messages convey node/link 

etrics and constraints (e.g., node energy, hop count, through- 

ut, latency, link colour, and ETX -Expected Transmission Count) 

nd the Objective Function (OF) to use to optimise the path con- 

truction and to calculate node Rank. The DODAG Information 

olicitation (DIS) messages are used to discover neighbourhood 

nd network topology. Finally, the DODAG Destination Advertise- 

ent Object (DAO) messages allow nodes to propagate their des- 

ination information upward along the DODAG to the BR so that 

he downward routes from the BR to its associated nodes can 

e constructed and updated (i.e., routing tables construction and 

pdate). 

A low-power and lossy network may run multiple logically in- 

ependent instances of RPL concurrently. Each such instance may 

erve different and potentially antagonistic constraints and OFs. An 

PL node may belong to multiple RPL Instances, and it may act as 

 router in some and as a leaf in others. An RPL Instance is a set of
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Fig. 1. Industry 4.0 components. 

Fig. 2. The routing protocol for low power and lossy networks. 
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ne or more DODAGs that share the same RPL Instance Identifier 

RPLInstanceID). DODAGs with the same RPLInstanceID share the 

ame OF. 

Fig. 2 b portrays an example of the steps to follow to construct 

he RPL network. (a) the BR broadcasts an initial DIO message con- 

aining configurations such as its Rank (default equal to 0), the 

PLInstanceID, the DODAG ID, the DODAG Version, the OF, Trickle 

imer variables, and the metrics/constraints to use. (b) When a 

ode receives a DIO message from the BR, it selects the BR as its 

arent, calculates its Rank ( R = 1), sends a DAO to its parent, and

roadcasts an updated DIO to its neighbours. (c) On receiving DIOs 

rom nodes of Rank 1, each neighbour selects a set of parents, se- 

ects a preferred parent of Rank 1, calculates its Rank ( R = 2), sends
3 
 DAO to its parent, and broadcasts a DIO to its neighbours. (d) All 

eighbouring nodes repeat the process until each node joins the 

PL network. Once the construction is completed, the maintenance 

egins respecting the Trickle timer. Thus, in the steady-case, the 

nterval of the trickle timer increases, and the transmission rate 

ill be slowed (i.e., fewer control messages). Otherwise, if there 

re inconsistencies (e.g., altered DIO messages, a node joining the 

ODAG, etc.), which involve changes in the topology, the Trickle 

imer will be reset to a lower value, and the transmission rate will 

e fastened. 

The characteristics of RPL and its functioning makes it vulner- 

ble to existing and newly designed threats. Section 3.1 presents 

ulnerabilities of RPL that adversaries used to trigger attacks. 
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. Materials and methods 

.1. RPL security issues 

Various RPL attacks have been analysed in the literature, pre- 

isely, Rank attacks, Neighbour attack, DAO attacks, DIS attack, Ver- 

ion number attack, Local repair attack, HelloFlooding attacks, Se- 

ective forwarding attack, Sinkhole and Blackhole attacks, Worm- 

ole attack, and Sybil and CloneID attacks [9,11] . Most of the ef- 

orts to secure RPL focused on detecting and/or countering Rank, 

elloFlooding, Selective forwarding, Sinkhole, Blackhole, Version 

umber, and Wormhole attacks as they represent the most harm- 

ul attacks [12] . In this paper, we investigated the detection of the 

ollowing six attacks. 

.1.1. Decreased Rank (DR) attack 

In the DR attack, an adversary node illegitimately advertises a 

etter Rank equal to a lower value throw DIO messages. As a con- 

equence, the neighbour nodes may update their routing table us- 

ng DAO messages and select the attacker as their new preferred 

arent. As a result, the malicious node may manage and manip- 

late more network traffic, and thus trigger other attacks such as 

avesdropping, deleting and modifying data. 

.1.2. Sinkhole (SH) attack 

In the SH attack, the malicious node advertises itself as the 

R (best path) in order to be chosen as a preferred parent by its 

eighbours, and thus to route traffic through it similarly to DR. 

.1.3. Blackhole (BH) attack 

In the BH attack, the intruder drops all control and data packets 

outed through it. This attack can be considered as a DoS attack. 

he BH attack is even more dangerous if combined with the DR or 

H attacks since the attacker is in a position where huge traffic is 

outed through it. This attack increases the number of exchanged 

IO messages leading to instability of the network and data pack- 

ts delay. 

.1.4. Selective forwarding (SF) attack 

In the SF attack, a misbehaving node aggressively drops data 

ackets and forwards only the control messages traffic leading to a 

oS attack. The SF attack is a particular case of the BH attack. 

.1.5. Helloflooding (HF) attack 

According to the RPL functioning, when a new node aims to 

oin the DODAG, it sends DIS messages. In the HF attack also 

nown as DIS attack, the malicious node multicasts periodically 

IS messages to its neighbours that have to reset their trickle 

imers and send DIO messages. As a result, the network is over- 

oaded with fake control messages. 

.1.6. Version number (VN) attack 

Each time a rebuilding (i.e., a global repair) of the DODAG is 

ecessary, the DODAG version number field (in the DIO message) is 

ncremented by the root (BR) and propagated unchanged down the 

ODAG graph. Because there is no mechanism in RPL to protect the 

ersion number field from modification, the malicious node trig- 

ers VN attack by illegitimately increasing the version number of 

he DOGAG, which triggers the global repair mechanism, forcing 

ther nodes to update their routing tables, and thus reconstructing 

he RPL topology from scratch. 

.2. Methods for anomaly detection 

Since the aim of an IDS is to decide whether a packet either 

elongs to normal or attack traffic, intrusion detection is consid- 

red as a classification problem. Thus, IDS implementation can be 
4 
ased on different Machine Learning (ML) classifiers. Indeed, ML- 

ased IDS can change its execution strategy as it acquires new in- 

ormation. This property makes ML desirable to use for any situ- 

tion. There exist four groups of ML algorithms: supervised, un- 

upervised, semi-supervised, and reinforcement learnings. In this 

aper, we focus on the supervised algorithms, which consist of a 

raining phase and a testing phase. At the training phase, the algo- 

ithms learn the relationship between the input values (i.e., train- 

ng data) and the labels (e.g., the label 0 for normal behaviour, and 

he label 1 four malicious behaviour). At the testing phase, the al- 

orithms try to predict the output values (i.e., classes, labels) of the 

esting data. In the following, we present the ML classifiers and the 

L model investigated in this study. The ML classifiers represent 

he frequently applied algorithm for intrusion detection. 

.2.1. Decision tree (DT) 

DT classifier represents the standard for partition-based models. 

T main idea is to “break up a complex decision to into a union of

everal simpler decisions, hoping the final solution obtained would re- 

emble the intended desired solution ” [13] . Hence, DT splits data into 

any branch-like segments such as in the tree structure, leaves 

epresent classifications also known as labels, intermediate nodes 

epresent features, and branches are conjunctions of features that 

ead to classifications. 

.2.2. Random forests (RF) 

RF classifier [14] constructs a figured large number of uncor- 

elated DTs. Each DT predicts a classification for a sampled input 

ata from the original dataset. Furthermore, each DT selects a sub- 

et of features from the original set for the fullest growing at each 

ode randomly. Finally, RF collects the predictions and selects the 

ost voted one as the final classification. RF is extensively used in 

ata science since it has high accuracy level, speed, and stability, it 

s easy to parametrise, robust against overfitting, it can be applied 

o large-scale datasets, and is not sensitive to noise in datasets. RF 

s also handy for feature selection as it determines the importance 

f different features during the classification process. 

.2.3. K-Nearest Neighbour (KNN) 

KNN classifier [15] is a non-parametric supervised ML technique 

hat relies on similarity or distance in feature space to classify 

amples. In KNN, testing sample (i.e., unlabelled data) is assigned 

o the class that is most frequently occurred amongst the K nearest 

eighbours in the training set. The number K , as the square root of 

he total number of samples in the training dataset. KNN is widely 

sed because it is simple, very scalable, and very fast to converge. 

.2.4. Naïve Bayes (NB) 

NB or Bayesian learning [16] is a probabilistic classifier based 

n probabilities of hypotheses. NB applies Bayes’ theorem to cal- 

ulate probabilities, with the strong assumption that features are 

ndependent given class variable, which means that the probability 

f one feature does not affect the probability of the other one. A 

rior probability is assigned to each candidate hypothesis based on 

rior knowledge. NB uses training samples to increase or decrease 

he probability of a hypothesis to be correct. It classifies a testing 

ample by assigning the most probable target class. 

.2.5. Multi-layer perceptron (MLP) 

MLP Classifier [17] is a feed-forward Artificial Neural Network 

ANN) model connecting multiple hidden layers in a directed 

raph, where each layer is fully connected to the next one. An MLP 

onsists of at least three layers of nodes: an input layer, a hidden 

ayer and an output layer. Except for the input nodes, each node is 

 neuron that uses a non-linear activation function. MLP employs 

he backpropagation supervised learning technique for training the 
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Table 1 

Confusion matrix. 

Predicted 0 Predicted 1 

Actual 0 True Positive (TP) False Negative (FN) 

Actual 1 False Positive (FP) True Negative (TN) 
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etwork. It maps the set of input data to a suitable output set in-

pired by the way biological nervous systems of the brain process 

nformation. 

.2.6. Logistic regression (LR) 

LR classifier [18] is a mathematical modelling approach used to 

escribe the relationship of a dependent variable (i.e., outcome) 

nd one or more independent variables (i.e., predictors). LR is ap- 

licable when the outcome is a binary variable that contains data 

oded as 1 (yes, success) or 0 (no, failure). Thus, the LR model pre-

icts P ( Y = 1) as a function of X . 

.2.7. Deep learning classifier (DL) 

DL is a particular ML technique that implements the learning 

rocess elaborating the data through Artificial Neural Networks 

ANNs) [19,20] . ANNs have self-learning capabilities that enable 

hem to produce better results as more data becomes available. An 

NN has artificial neurons interconnected through at least three 

ayers: the input layer, one or many hidden layers, and the output 

ayer. Each neuron has inputs (e.g., features from a dataset or out- 

uts from other nodes) and produces a single output which can 

e sent to multiple other neurons. The outputs of the neurons in 

he output layer return the final result, such as the classification 

f a sample as an attack or not. Each connection in the network 

s assigned a weight that represents its relative importance. The 

eights are adjusted during training to find patterns and make 

etter predictions. Several hyperparameter need to be set before 

he learning process begins, such as the number of hidden layers 

nd the number of neurons per layer, the activation function, the 

earning rate, batch size, and the number of epochs. ANNs are cate- 

orised into supervised (e.g., MLP) and unsupervised learning (e.g., 

L) [20] . The adjective “deep” in DL comes from the fact that the 

lassification is conducted by training data, with many layers in hi- 

rarchical networks with unsupervised learning. 

There are several DL models based on the used architectures 

nd techniques [21] . The Deep Recurrent Neural Network (RNN), 

he Deep Auto-Encoder, the Deep Boltzmann Machine (DBM), and 

he Deep Believe networks (DBN) belong to the Generative Archi- 

ecture (GA) class. The Deep Convolutional Neural Network and the 

eep Recurrent Neural Network (when the output is taken to be 

he predicted input data in the future) belong to the Discrimina- 

ive Architecture (GA) class. GA models are graphical models that 

are intended to characterise the high-order correlation properties of 

he observed or visible data for pattern analysis or synthesis purposes, 

nd/or characterise the joint statistical distributions of the visible data 

nd their associated classes. ” [21] . DA models “are intended to di- 

ectly provide discriminative power for pattern classification, often by 

haracterising the posterior distributions of classes conditioned on the 

isible data. ” [21] . 

.3. Performance evaluation metrics 

A clean and unambiguous way to present the prediction results 

f a classifier is to use a Confusion Matrix (CM). For a binary clas- 

ification problem such as intrusion detection, the matrix has two 

ows and two columns as depicted in Table 1 , where 0 and 1 are

abels for normal and attack, respectively. Across the top are the 

redicted class labels and down the side are the observed class 

abels. Each cell contains the number of predictions made by the 
5 
lassifier that fall into that cell. TP (normal samples correctly clas- 

ified), TN (attack samples correctly classified), FN (attack samples 

ncorrectly classified) and FP (normal samples incorrectly classi- 

ed) are used to determine the different metrics to assess the per- 

ormance of a classifier [22] . In this paper, we use accuracy, pre- 

ision, recall and F 1-score metrics to compare the classifiers pre- 

ented in Section 3.2 . 

Accuracy Accuracy is defined as the ratio of correct predictions 

o the total number of all predictions, as in Eq. (1) . 

ccuracy = 

TP + TN 

TP + TN + FP + FN 

(1) 

recision Precision is also called the Positive Predictive Value (PPV). 

t is the number of positive predictions divided by the total num- 

er of positive class values predictions, as in Eq. (2) . 

recision = 

TP 

TP + FP 

(2) 

ecall The recall metric is also called sensitivity, True Positive Rate 

TPR), or Detection Rate (DR). It is defined as the ratio of positive 

redictions to the number of positive class values in the test data, 

s in Eq. (3) . 

ecall = DR = 

TP 

TP + FN 

(3) 

1-score F 1-score is also called the F score or the F measure. It is

efined as the harmonic mean of precision and recall. It, thus, con- 

eys the balance between the precision and the recall as in Eq. (4) .

1 − score = 

2 ∗ Precision ∗ Recall 

Precision + Recall 
(4) 

.4. Dataset generation 

There exist datasets available publicly that are commonly used 

or intrusion detection research such as KDDCUP 99, ISCX and NSL- 

DD. Nevertheless, one gap in the field of IoT networks is the un- 

vailability (privacy) of developed RPL related datasets such as the 

RAD dataset [10] . Indeed, building an RPL ML-based IDS requires 

ne or multiple RPL-related datasets, where the model can learn 

rom. The datasets shall represent normal and malicious RPL-based 

raffic. In our experiments, we elaborated two types of datasets: 

ne dataset for each attack and one multi-class dataset for all the 

ttacks defined in Section 3.1 . 

To generate the datasets, we developed the necessary scripts 

ollowing the methodology in [10] . Indeed, to obtain results that 

an be compared to those presented in [10] , the same features ex- 

raction and selection procedure have been used. Nevertheless, the 

uthors in [10] did not provide a detailed description of the simu- 

ation settings used to generate the datasets. 

.4.1. Simulations setting 

We used the simulator Cooja-Contiki for our experiments. Con- 

iki is a powerful tool for building 6LoWPAN-IoT networks and has 

ealistic results. Because the simulation of large topologies requires 

igh memory and computing power, we deployed the simulator on 

 virtual machine with 48 GB RAM and 8 VCPUs on a server. We 

imulated three topologies of 25, 50 and 100 TelosB nodes (Sky 

otes) with one root. Firstly without any attack, and then with 2, 

, and 10 malicious nodes, respectively. We implemented each at- 

ack separately. We used UDGM with distance loss as link failure 

odel as it provides a real-world emulation of the lossy links and 

hared media collision among RPL’s nodes. The simulations dura- 

ion is one hour with one packet of 46 bytes sent each 10 s. We

sed RPL-collect package for packets generation. 

Furthermore, we used the cooja-radio-logger-headless plug-in 

o capture traffic and generate PCAP files. We exploited the PCAP 
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Table 2 

Simulation parameters. 

Parameter Value 

Simulator Cooja-Contiki 3.0 

Simulation time 3600 s (1 h) 

MAC ContikiMAC 

Number of nodes 25, 50, 100 

Number of malicious nodes 2, 4, 10 

Transmission range 50 m 

Interference range 60 m 

TX, RX 100%, 90% 

Network area 300 ×300 m 

2 

Link failure model UDGM with distance loss 

Traffic rate One packet sent every 10 s 

Packet size 46 bytes 

fi

m

3

u

n

f

b

les to generate the datasets and extract features. Table 2 sum- 

arises the parameters of the simulations. 

.4.2. Feature engineering and selection 

We implemented Python scripts for datasets’ generation. We 

sed Pandas, Numpy, and Scikit-learn libraries for features engi- 

eering, extraction and selection, Matplotlib and Seaborn libraries 

or data visualisation and plotting, and Scikit-learn and Keras li- 

raries for data analysis. 

Features extraction and transformation. We used Wireshark tool 

to transform the generated PCAP files to CVS files. The lat- 

ter were pre-processed using Python scripts. Initially, each 

CVS dataset includes six features: the packet sequence num- 

ber ( N 

o ), simulation time (Time), source IPv6 address of the 

node (Source), destination IPv6 address of the node (Desti- 

nation), the packet length (Length), and the packet informa- 

tion (Info). Firstly, we simplified data in the CVS files such 

that nominal attributes are converted into discrete ones. For 

instance, source and destination IPv6 addresses were re- 

duced to nodes’ ID, and the broadcast address to the value 

9999. In addition, the packet information DIS, DAO, DIO, Ack, 

and UDP was encoded 1, 2, 3, 4, and 5, respectively. To calcu- 

late datasets’ feature values correctly, we first sorted the CVS 

files by simulation time. Then, we divided all the simulation 
Table 3 

The generated datasets for the IDS use. 

Datasets Scenarios Nb nodes 

Decreased DR_25 25 

Rank DR_50 50 

(DR) DR_100 100 

Sinkhole SH_25 25 

(SH) SH_50 50 

SH_100 100 

Blackhole BH_25 25 

(BH) BH_50 50 

BH_50 50 

Selective SF_25 25 

Forwarding SF_50 50 

(SF) SF_100 100 

HelloFlooding HF_25 25 

(HF) HF_50 50 

HF_100 100 

Version VN_25 25 

Number VN_50 50 

(VN) VN_100 100 

Multi-Class MC 25/50/100 

6 
time into periods of one-second duration (i.e., 10 0 0 ms win- 

dows); to make better use of the extracted features for in- 

trusion detection. 

• When DR, SH, and VN attacks are triggered, normal 

nodes add the malicious node to their routing table and 

send their packets through it. Consequently, the number 

of received packets of the malicious node increases, as 

well as DIO and DAO counts. 

• When HF attack is performed, the malicious node sends 

illegitimacy DIS message pushing the neighbouring nodes 

to exchange control messages. As a result, the number 

of transmitted packets increases, as well as DIS packets 

count. 

• When BH and SF attacks are triggered, the number of 

DIO and DAO increases while the number of data pack- 

ets (i.e., transmitted and received packets) decreases. 

As a result of the analysis above, eleven extra features have 

been calculated per one-second window duration, and have 

been added to the datasets. These features are: Transmis- 

sion Rate (TR), Reception Rate (RR), TR/RR, Transmission To- 

tal Time (TTT), Reception Total Time (RTT), Transmission 

Average Time (ATT), Reception Average Time (ART), Source 

count (SrcCount), Destination count (DestCount), DAO pack- 

ets count (DAO), DIS packets count (DIS), and DIO packets 

counts (DIO). 

The normal traffic was labelled as 0 while the traffic with 

malicious behaviour (i.e., each attack related dataset) was la- 

belled as 1. Indeed, the datasets generated from networks 

where an attack was triggered were labelled 1 as the entire 

networks were affected by the malicious activities. 

Feature normalisation is used to make convergence quicker 

and limit the influence of small or large values in the train- 

ing set, thus increasing the performance of the learning al- 

gorithm. We implemented a Python script to mix the normal 

and malicious datasets for each topology. We firstly applied 

quantile transformation to the datasets to adjust feature val- 

ues distribution to normal distribution. We secondly used 

min-max scaling to scale all feature values to the range [0,1]. 

Afterwards, we concatenated all datasets resulting from dif- 
Attackers Packets counts 

2 503,232 

4 5,134,640 

10 7,466,588 Total = 1,3104,460 

Total = 1,3104,460 

2 513,653 

4 873,932 

10 2,735,976 

Total = 4,123,561 

2 499,951 

4 899,333 

4 6,727,132 

Total = 8,126,416 

2 506,444 

4 891,441 

10 3,409,921 

Total = 4,807,806 

2 842,548 

4 2,088,476 

10 10,263,539 

Total = 13,194,563 

2 2,718,314 

4 3,585,999 

10 15,205,283 

Total = 21,509,596 

2/4/10 Total = 51,326,396 
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Fig. 3. Feature selection process. 
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4

ferent topologies (three topologies) of each routing attack. 

As a result, we got six datasets, as detailed in Table 3 . 

• Features selection. After the features extraction stage, CVS files 

are processed to select relevant attributes, which is one of 

the core concepts in ML. This stage identifies and removes 

unneeded, irrelevant, weakly relevant, and redundant fea- 

tures from the dataset that do not contribute to the accuracy 

of the classifier or may decrease its accuracy. In other words, 

this step would permit to increase accuracy while reducing 

training time 1 and avoiding bias and model overfitting. 

There exist several feature selection methods in the litera- 

ture, the filter methods, the wrapper methods, and the em- 

bedded methods. We avoid using wrapper methods because 

they are computationally costly and are not the most ef- 

ficient in massive datasets. In this paper, we combined an 

embedded method using the Random Forests classifier, and 

a filter method applying Pearson correlation, where correla- 

tion states how the features are related to each other and to 

the output variable. Fig. 3 summarises the features selection 

process. 

Step 1. We first carried out RF-feature-importance function 

to highlight the ten most important features for each 

dataset. When RF classifier is trained, it evaluates each 

attribute to create splits and gives a score for each fea- 

ture of the dataset; the higher the score more relevant is 

the feature towards the output variable (i.e., Label 0 or 

1). In this approach, for the tree building process, only a 

subset of the data samples is chosen with replacement, 

which is known as bootstrap aggregating or bagging. Nev- 

ertheless, this is a biased approach, as it tends to inflate 

the importance of continuous features or high-cardinality 

categorical variables. To reduce selection bias, we used 

cross-validation 

2 for feature selection, as reported in [23] . 

In Fig. 4 , the red bars depict the features’ importance of 

the Forests, along-with their inter-trees variability for the 

Selective-Forwarding dataset, where the x -axis represents 

the features indexes, and the y -axis represents the impor- 

tance values. 

Step 2. Secondly, we applied the correlation matrix using the 

Pearson correlation method on the original features set. 

Fig. 5 portrays the correlation matrix for the Selective- 

Forwarding dataset. We checked the correlation of each 

feature with the output variable, and we selected a sub- 

set of features using a threshold of 0.3 for the correlation. 
1 Throughout this paper, we use the terms “training time” and “fitting time” in- 

erchangeably. 
2 In the cross-validation process, the data is splitting into k equal folds ( k = 5). The 

odel is trained on k −1 folds and evaluated on the remaining holdout fold. These 

wo steps are performed k times, each time holding out a different fold. Finally, the 

erformance are aggregated across all k folds. 

d

a

s

F

r

7 
Step 3. Afterwards, we selected a new subset of features that 

represents the intersection of both subsets from the pre- 

vious two steps. 

Step 4. According to [24] , redundant features should be elim- 

inated since they affect the speed and the accuracy of 

learning algorithms. Consequently, in the final step, we 

checked the correlation of selected features subset with 

each other using a threshold of 0.8 for the correlation. If 

these attributes are correlated with each other, we kept 

only one of them and dropped the rest. 

Initially, in each dataset, there are 17 features: Time, Source, 

estination, Length, Info, TR, RR, TR/RR, SrcCount, DestCount, TTT, 

TT, ATT, ART, DAO, DIS, DIO. After performing the steps mentioned 

bove, the total number of attributes is reduced for each dataset, 

s presented in Table 4 . 

.4.3. Multi-class dataset generation 

To generate a multi-class dataset, firstly, we performed the fea- 

ures extraction steps from Section 3.4.2 . Secondly, we labelled the 

ormal traffic as 0, and the traffic with malicious behaviour as 1, 

, 3, 4, 5, and 6 for BH, SH, HF, DR, VN, and SF, respectively. After-

ards, we performed the features transformation steps. We mixed 

he normal and malicious datasets of all attacks for each topology. 

e then applied quantile transformation to the datasets to adjust 

eature values distribution to normal distribution. We used min- 

ax scaling to scale all feature values to the range [0, 1]. Next, we 

oncatenated all datasets resulting from different topologies and 

ot one 7-class dataset for all attacks and topologies, as in Table 3 .

inally, we performed the features selection steps and got the ones 

n Table 4 . 

. Classifiers evaluation and discussion 

To determine the best performing algorithm to classify RPL 

outing attacks using our datasets, we evaluated the performance 

f the ML and DL algorithms for 2-class (i.e., normal and attack) 

nd 7-class (i.e., normal and six attacks) datasets. In this paper, we 

mplemented the following classifiers: 

• DecisionTreeClassifier, 

• RandomForestClassifier with number of estimators (i.e., the 

number of trees in the forest) equal to 10 and 100, 

• KNeighborsClassifier with k = 1 and k = 10, 

• Gaussian Naive Bayes classifier (GaussianNB), 

• MLPClassifier with one hidden layer, 100 neurons, and the ‘relu’ 

activation function, 

• and LogisticRegression (Logit) classifier with ‘sag’ solver. 

• sequential DL model using Keras 3 library. The model includes 1 

input layer, 5 hidden layers and 1 output layer. 50 neurons are 

used in the first and fifth layers, whereas 100 neurons are used 

in the second and fourth layers, and 300 neurons in the third 

layer. The DL model is the same as the one in [10] . Our choice

is made to be used as a benchmark to compare ML algorithms 

to the DL model proposed in [10] . 

.1. Two-class classification results 

For ML models, we applied 5-fold cross-validation on the 

atasets. For the DL model, we used 90% of the data for training 

nd 10% for model evaluation. We saved all trained models for pos- 

ible future use. We assessed the accuracy, precision, recall, and 

1_score performance metrics for each algorithm and obtained the 

esults on each dataset, as presented in Fig. 6 . 
3 Keras is an open-source neural-network library written in Python. 
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Fig. 4. Feature importance datagram for SF dataset. 

Fig. 5. Correlations between different features for the SF dataset. 

Table 4 

Features per dataset after data pre-possessing. 

Datasets Features Count Discard 

DR DAO, Length, TTT, RR, Dst, TR, Src 7 10 

SH Dst, Time, TAR, ATT, Src, RTT, TTT, TR/RR, RR, TR 10 7 

BH Dst, Length, RR, DIS, DIO, TR/RR, TTT 7 10 

SF Time, ART, ATT, Src, RTT, TTT, Dst, RR, TR, DAO 10 7 

HF RR, DIS, DAO, Length, Dst, TR 6 11 

VN ART, RR, TR/RR, Dst, RTT, TTT, DAO 7 10 

Multi-class Dst, Time, ART, ATT, Src, RTT, TTT, TR/RR, RR, TR, DAO, DIO, DIS 13 4 

8 
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Fig. 6. Classifiers performance per dataset for 60 min simulation time. 
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We observe that DT, RF and KNN showed better performance 

or all metrics as compared to NB, MLP, Logit, and DL. We also no- 

ice that the same three algorithms achieved a classification accu- 

acy rate of more than 99% for both 2-class and 7-class classifica- 

ions, as shown in Figs. 6 and 10 . 

Nevertheless, compared with DT and RF, KNN is very slow to 

onverge and gets significantly slower as the number of indepen- 

ent variables increases (i.e., the dataset size increases), as shown 

n Fig. 7 . Besides, the MLP classifier also required a longer fitting 

ime but gave better performance when the size of the dataset de- 

reases, as can be seen in Fig. 8 . On the other hand, the DL classi-

er takes the longest training time, and the training time increases 
ith the dataset size. 1

9 
When we compare the two ANN-based classifiers (i.e., the MLP 

lassifier with one hidden layer and 100 neurons, and the DL 

odel in Fig. 6 ), we find that for almost all datasets, the latter 

ives slightly better performance except for BH attack where the 

ormer gives relatively better results (88.56% Vs 87.6%). These re- 

ults are due to the fact that the DL model has more capacity than 

LP (i.e., the number of layers and neurons in the DL model is 

igher than in MLP classifier). 

From another side, a DL model with increased capacity tends 

o yield better accuracy up to a point at which the model stops 

mproving [25] . As an example, Fig. 9 a and b draw the DL 

odel’s loss and accuracy, respectively, of the VN dataset for 

0 min’ simulation time. We notice that the accuracy of the DL 
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Fig. 7. Fitting time for BH dataset Vs VN dataset for 10 min simulation time. 

Fig. 8. MLP performance for VN datasets: 10 min Vs 60 min simulation time. 
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Fig. 10. 7-class classification performance. 
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odel for a larger dataset (60 min’ simulation time in Fig. 6 f) 

s higher compared to a smaller dataset (10 min’ simulation 

ime in Fig. 9 b). Nevertheless, although DL methods are get- 

ing lots of attention lately because of their promising results 

n several areas, such as signal processing, natural language pro- 

essing, and image recognition, the biggest the DL model, the 

ore computational resources it requires and the longer it takes 

o train which is not suitable for intrusion detection in IoT net- 

orks. Furthermore, the present evaluation results confirm that 

he DL methods are not desirable for intrusion detection for IoT 

etworks. 
Fig. 9. DL-model fo

10 
.2. Multi-class classification results 

We used the multi-class dataset in Table 3 . Because the 7-class 

ataset is too large (51,326,396 packets), we shuffled it and used 

alf of the generated dataset to test the ML and DL classifiers. We 

ot the performance plotted in Fig. 10 . The results show that KNN 

as an accuracy of 99% with a detection rate of 98%. RF and DT 

ake the second position with an accuracy of 98% and a detection 

ate of 98%. On one other hand, compared with 2-class classifica- 

ion, MPL, Logit, and NB gave a mediocre performance with preci- 

ion, recall and F 1-score around 35%. Regarding DL, the model did 

ot converge after three weeks of execution, which makes it im- 

ractical as IDS for IoT networks, especially for real-time needs. 

From the obtained results, we conclude that in terms of perfor- 

ance and fitting time, RF is more suitable for intrusion detection 

or RPL-based networks. 

. RF-Based Intrusion Detection System for RPL (RF-IDSR) 

.1. System model and assumption 

As presented in Section 2.1 , IoT networks play an important role 

n the establishment of Industry 4.0 and thus need to be secure. 

ecause RPL is the de facto routing protocol for IoT networks, we 

ntroduce the RF-Based Intrusion Detection System for RPL, namely, 

F-IDSR. RF-IDSR is an anomaly-based IDS that uses RF model to 

etect attacks. Fig. 11 depicts a graphical representation of the IDS 

rchitecture. RF-IDSR is a hybrid-IDS (depending on the location 

f the IDS modules) relying on the collaboration of three actors: 
r VN dataset. 
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Fig. 11. RF-IDSR architecture. 
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he DODAG border router (BR) or edge node, the Monitoring Nodes 

MNs), and the sensor nodes. In this paper, we assume the follow- 

ng: 

• The edge node is a powerful node, which has not processing 

and energy consumption constraints. 

• The edge node is always trusted and cannot be compromised 

by an adversary. 

• The edge node shares a secret key with each node to encrypt 

and secure data packets. 

• Two RPL instances coexist: 

- The first instance, called sensor network (SN), is an RPL- 

based network composed of both resource-constrained sen- 

sor devices and more powerful devices. The SN is used to 

route the sensed data to the edge node. Independently of 

the RF-IDSR, to prevent attacks and failures, each sensor 

node implements lightweight appending for the RPL proto- 

col, as in Section 5.3 . 

- The second instance, called the monitoring network, is 

composed of a few more powerful nodes (i.e., monitoring 

nodes). The MNs are powerful machines and devices, which 

have not resource-constraints. Notably, the MNs do not have 

battery depletion issues. 

• We assume the MNs are synchronised with each other and with 

the edge node. The MNs are selected based on the geographical 

location of the nodes in the first RPL instance. Indeed, the ar- 

chitecture can be seen as a set of virtual clusters of nodes from 

both RPL instances, where MNs are cluster heads with enough 

resources (e.g., energy power) for intrusion detection purpose. 

.2. Attacks detection using RF model 

One objective of the paper is to create a predictive model to 

lassify the RPL-based network packets into two classes: Normal or 

ttack and identify the attack using the multi-class dataset. In this 
11 
aper, we select RF as the classifier to be used to detect RPL rout- 

ng attacks because of its high accuracy of prediction, computa- 

ional and time efficiency, and its ability to select features accord- 

ng to their importance [14] . Furthermore, referring to our study, 

e found that compared to KNN that gives better accuracy than 

F, the latter returns results in a shorter time, especially for large 

atasets such as DR, HF, and VN datasets. As presented in Fig. 11 ,

he RF-IDSR is composed of three modules defined as follows. 

• Distributed module: is a module placed at each MN of the sec- 

ond RPL instance. 

1. Traffic Sniffer Module (TSM): TSM implements Algorithm 1 . 

The MNs use TSM to sniff the traffic from the first RPL in- 

stance. MNs must timestamp packets as they are received 

by their radio, generate PCAP files each 1-min window (one 

PCAP file per MN), and send the PCAP files to the edge node 

through the second RPL instance paths. 

lgorithm 1 Monitoring Algorithm 

1. Sniff packets 

2. Timestamp packets 

3. Generate a PCAP file for the last 1-min window of the sniffed 

packets 

4. Send the PCAP file to the edge node 

return PCAP 

• Cenralised modules: are modules placed at the edge node. 

1. Feature Extraction Module (FEM): FEM implements 

Algorithm 2 . FEM allows the edge node to gather all 

received PCAP files from the MNs, concatenate them, and 

process them to extract features and generate new data 

(equivalent to the testing data in the dataset) as presented 

previously in Section 3.4.2 . The edge node may use the 

cloud to store and process the data. 
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Algorithm 2 Datasets Generation Algorithm 

Require: PCAP files received from MNs 

1. New-PCAP = Concatenate PCAP files 

2. New-PCAP = Delete duplicated packets from New-PCAP 

3. dataset.csv =Ttransform New-PCAP to CSV format 

4. New-Data = Execute steps in Section 3.4.2 

a. Sorting dataset.csv by Time attribute 

b. Feature Transformation (Source, Destination, Info, etc.) 

c. Feature Extraction within 1-second window size 

d. Feature Selection as summarised in Fig. 3 

5. Store New-Data in the cloud (optional) 

return New-Data 
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Algorithm 4 HelloFlooding and DIS Attacks Prevention 

Require: MRC 

Calculate Maximum Response Delay (MRD) using MRC as defined 

in the RFC 3810 [27] 

if a node receives a multicast DIS message then 

It delays the response (sending a DIO) by a random amount 

of time in the range [0, MRD] 

if the number of response from its neighbours reaches the 

threshold defined by the edge node [7] then 

It cancels the pre-programmed response 

else 

once the delay has expired, it reinitialises the trickle timer 

and sends back a DIO 

end if 

end if 
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2. Random Forests Module (RFM): RFM implements the trained 

RF model (from Section 4 ) and Algorithm 3 . The edge node 

lgorithm 3 Anomaly Detection Algorithm 

equire: New-Data from FEM 

1. Load trained RF model 

2. Scores = Predict outcomes on New-Data 

5. If Intrusion, raise an alarm and send notifications 

return Scores 

uses RFM to evaluate the new data generated from FEM 

using the trained RF model and gives predictions. Further- 

more, RFM implements an update process to update, peri- 

odically, the RF model using the new data from FEM. The 

last point permits to enrich the learning algorithm, and thus 

to detect new threats. RFM may use the cloud to update the 

RF model and execute Algorithm 3 (see Fig. 11 ). The alarm 

may be sent to the end-user (e.g., the network administra- 

tor) and notifications to the sensor nodes to discard the ma- 

licious nodes from participating in the network operations. 

.3. Attacks and failure prevention 

In addition to the presented RF-IDSR, we propose considering 

hree lightweight appending to RPL to prevent the HelloFlooding, 

ersion number, and global repair attacks, as well as network fail- 

re. 

.3.1. Helloflooding and DIS attacks prevention 

We propose to redefine the DIO message to prevent attacks 

ased on multicast messages such as the DIS (see Section 3.1.5 ) 

nd the SybM [26] attacks. We introduce a new mechanism in RPL 

ased on the RFC 3810 [27] . More specifically, we use the Max- 

mum Response Code (MRC) field to reduce responses to multi- 

ast messages. In the DIO Base Object, there are two unused bytes: 

lags and Reserved fields. In our approach, we use these two bytes 

s one MRC field, as depicted in Fig. 12 . The edge node sets the

RC field. The pseudocode in Algorithm 4 summarises the pro- 

osed mechanism. The presented solution allows for reducing sig- 

ificantly the overhead generated by such attacks. 

.3.2. Global repair and version number attacks prevention and 

etection 

We authenticate the DODAG version field of the DIO message to 

etect and prevent the version number and global repair attacks. 

n our approach, the edge node uses a one-way hash chain to gen- 

rate sequence numbers for the DODAG version field. A one-way 

ash chain is a sequence of numbers, V i (0 ≤ i ≤ n ) , generated by

 one-way hash function F as in Eq. (5) , where V i is a random num-

er generated by the edge node, and F function is the same for the 
12 
dge node and all nodes in the network. 

 i , 0 ≤ i < n : V i = F(V i+1 ) (5) 

We assume that the one-way hash chain is stocked in the edge 

ode. In addition, the first value of the one-way hash chain used 

o generate DODAG versions is uploaded securely into the nodes 

efore deployment. Besides, when a new node is deployed in the 

etwork, it is pre-loaded with the first unused value of the chain. 

Each global repair is identified with a DODAG version ( V i ) that 

s the last delivered value of the one-way hash chain. Conse- 

uently, the nodes of the network can verify the new DODAG ver- 

ion V i +1 through checking whether V i = F (V i +1 ) , where V i is the

revious DODAG version. On the other hand, the nodes cannot cal- 

ulate the following DODAG version since the security of the one- 

ay hash chain concept is based on the fact that knowing V i , it

s computationally infeasible to determine V i +1 . The pseudocode in 

lgorithm 5 summarises the proposed procedure. 

lgorithm 5 Global Repair and Version Number Attacks Preven- 

ion 

equire: V 0 (i.e., the first value of the hash chain uploaded in all 

nodes before deployment) V i (i.e., the DODAG version of the i th 

global repair and the last delivered value of the one-way hash 

chain); F (i.e., the one-way hash function implemented in both 

the edge node and the network’s nodes); V i (0 ≤ i ≤ n ) (i.e., the 

one-way hash chain stocked in the edge node); 

if a node receives a DIO with a new DODAG version value V i +1 

knowing that V i is the current DODAG version then 

it calculates F (V i +1 ) 

if V i = F (V i +1 ) then 

(the node is sure that the edge node updated the DODAG 

version) 

it reinitialises the trickle timer 

it updates the DODAG version field to V i +1 and broadcast a 

DIO message with the new value 

else 

it discards the received DIO and considers the node from 

which it receives the DIO as malicious 

end if 

end if 

.3.3. Fault and intrusion tolerance 

In RPL, a preferred parent (PP) is used by children nodes to 

orward traffic until detection of a better route, a path failure or 

n intrusion (i.e., the PP is detected as a malicious node). Thus, 

ther potential parents are rarely used. To enhance the resiliency 

nd security of RPL, our approach merges intrusion-tolerance with 
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Fig. 12. New DIO message format. 
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4 M.-O. Pahl, F.-X. Aubet, DS2OS traffic traces, 2018, ( https://www.kaggle.com/ 
ault-tolerance solutions by considering a multi-path strategy for 

PL. We propose to redefine the RPL’s objective function in a way 

o select two random parents through which the traffic is routed. 

hoosing only two paths reduces the network overhead while in- 

reasing the packet delivery ratio and preventing attacks, such as 

ormhole, blackhole, selective forwarding and sinkhole. Indeed, a 

acket at each hop is routed through two potential parents. On 

he one hand, the parents are selected randomly, and thus, can- 

ot be specifically targeted by an attacker; because, the attacker 

as no way to know the parents that will forward the traffic. On 

he other hand, our solution prevents path and node failure be- 

ause, at each hop, the traffic is forwarded through two random 

arents. 

In RPL, nodes ignore any DIO message from nodes of higher or 

qual ranks aiming to avoid loops [7] . However, in some cases, a 

ode could have only one or two potential parents. To expand the 

arents’ list and the selection choice, if the number of potential 

arents is less than or equal to two, our solution adds nodes with 

he same rank in the parents’ list as supplementary parents. 

. Related works 

There exist various anomaly-based intrusion detection tech- 

iques [28] . In this paper, we give particular attention to ML and 

L anomaly-based IDSs for IoT networks. Table 5 summarises re- 

ated works on ML and DL IDSs for RPL/IoT security. 

.1. ML-based IDSs 

Sheikhan and Bostani [29] proposed a hybrid distributed IDS 

or real-time detection of the sinkhole, selective forwarding and 

ormhole attacks. The model is based on the Map-Reduce ap- 

roach that uses the Optimum-Path Forest (OPF), the Modifica- 

ion of Supervised Optimum-Path Forest (MOPF), and the Optimum 

ath Forest Clustering (OPFC), to classify nodes. The authors used 

SL-KDD dataset. However, their approach rises high false positive 

nd false negative rates. 

McDermott and Petrovski [30] presented an experimental com- 

arison of a Multi-Layer Perceptron Backpropagation Neural Net- 

ork (BPN) and a Support Vector Machine (SVM) classifier to de- 

ect Denial of Service (DoS) attacks in Wireless Sensor Networks 

sing the NSL-KDD dataset. The authors concluded that both tech- 

iques offer a high true-positive rate and a low false-positive rate, 

aking both of them useful for intrusion detection. 

In [31] , the authors proposed a compression header analyser 

ased IDS (CHA-IDS) to detect HelloFlood, sinkhole, and Worm- 

ole attacks in an RPL network. The authors used Cooja-Contiki 

imulator [32] to generate a dataset of 77 features. They used 
f

13 
he Best First Search (BFS) and Greedy Stepwise (GS) to perform 

he features searching, then the Correlation-based Features Selec- 

ion (CFS) algorithm to evaluate the most significant features. The 

uthors compared MLP, SVM, J48 (i.e., DT), NB, Logistic, and RF 

lassifiers, and the results showed that J48 performs better than 

ther classifiers for that specific configuration. Even though this 

pproach presents a good background for IoT ML-based IDS, the 

uthors considered one topology and a small network of eight 

odes. 

Anthi et al. [33] proposed an IDS to detect network scanning 

robing and simple forms of DoS attacks in IoT networks. To gen- 

rate the dataset, the authors used the software Wireshark to sniff

etwork traffic. They tested several ML classifiers and used the 

aive Bayes classifier as it gave the best performance. Although 

his study is based on a testbed to generate datasets and detect 

ntrusions, the authors used a small network composed of nine de- 

ices. 

Hasan et al. [34] presented a study comparing several ML meth- 

ds to detect threats and attacks in IoT infrastructures. The authors 

oncluded that RF classifier performs better than the other one. 

n open-source dataset of 13 features from kaggle 4 was used. The 

ataset was gathered from a day of capture from the application 

ayer using four simulated IoT sites. Although this work demon- 

trated the effectiveness of RF classifier in the context of kaggle’s 

ataset, further studies need to take place to assess its perfor- 

ance for traffic from the network layer. 

Authors in [35] proposed an Artificial-Bee-Colony-based classi- 

er to detect flooding attacks in a cloud environment. They used 

he occurrence of Route Request packets to label nodes as normal 

r malicious. The proposed solution performed better than NB and 

T classifiers, with accuracy values of 92.53%, 95.52%, and 97%, re- 

pectively. 

.1.1. Random forests-based IDSs for IoT 

Primartha and Tama [36] used three datasets, namely, NSL-KDD, 

NSW-NB15, and GPRS, to evaluate the performance of RF for IDS 

se. The authors assessed 10 RF classifiers with different num- 

er of trees (10, 40, 50, 80,..., 800) and RF-800 gave better re- 

ults. Comparing RF-800 to Random tree+NB tree, DMND, MLP, and 

BTree, RF-800 outperforms the other classifiers with 99.57% for 

ccuracy and 0.34% for false alarm rate. 

In [37] , authors proposed a cloud-based IDS using RF and Neu- 

al Network. The IDS receives IoT traffic from the network device, 

erforms features extraction, and classification on the extracted 

eatures. RF is used to detect if the data point is classified as an in-
rancoisxa/ds2ostraffictraces) . [Online; accessed 29 December 2019]. 

https://www.kaggle.com/francoisxa/ds2ostraffictraces)
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Table 5 

IDS solutions for RPL/IoT networks 2017–2019... (Part 1). 

Works Algorithm Dataset Metrics Attacks 

[29] Optimum-Path Forest, 

Supervised 

Optimum-Path 

Forest, Optimum 

Path Forest 

Clustering, 

MapReduce 

NSL-KDD DR, FPR, FNR SH, SF, Wormhole 

[30] MLP-Backpropagation- 

NN, Support Vector 

Machine (SVM) 

NSL-KDD TPR, FPR DoS 

[36] RF, Random tree + NB 

tree, DMND, MLP, 

NBTree 

NSL-KDD, UNSW-NB15, GPRS Accuracy, FAR, Significance 

Tests 

DOS 

[31] Best First Search (BFS), 

Greedy Stepwise 

(GS), 

Correlation-based 

Features Selection 

(CFS), DT, MLP, SVM, 

NB, Logistic, RF 

Authors’ dataset Accuracy, TPR, FPR, Precision HF, SH, Wormhole 

[33] Rule-based algorithm, 

NB 

Authors’ dataset Precision, TPR, F 1-score Quick/Quick Plus scan, 

Regular/Intense scan, 

SYN/UDP Flood 

[37] RF, DNN UNSW-NB15 Precision, TPR, F 1-score –

[38] Word Embedding, 

Text-Convolutional 

NN, RF 

ISCX2012 Accuracy, DR, FAR Infiltration, BFSSH, HttpDoS, 

DDOS 

[39] Particle Swarm 

Optimisation (PSO), 

RF, rotation forest 

(RoF), DNN 

NSL-KDD Accuracy, Precision, TPR, 

Significance tests 

- 

[41] DNN with three 

hidden layers 

NSL-KDD Accuracy, Precision, TPR, FAR, 

F 1-score 

Prob, DoS, U2R, R2L 

[10] DNN with five hidden 

layers 

Authors’ RPL-based dataset 

(IRAD) 

Accuracy, precision, recall, 

F 1-score, FAR 

Rank, HF, VN 

[34] RF, LR, SVM, DT, ANN kaggle Accuracy, Precision, TPR, FPR, 

F 1-score 

DoS, Data Type Probing, 

Malicious Control, Malicious 

Operation, Scan, Spying, 

Wrong Setup 

[40] ExtraTreesClassifier, RF UNSW-NB15 Accuracy, precision, TPR, 

F 1-score, FAR 

Botnets 

[35] Defined algorithms, 

Artificial Bee Colony, 

NB, DT 

Authors’ dataset Accuracy Flooding 

[42] Random-NN-Gradient 

Descent Algorithm, 

SVM, NB, DT, MLP, 

RF, RF Tree, 

Recurent-NN, ANN 

NSL-KDD Accuracy, Precision, TRP, FPR DoS, U2R, R2L, Probe 

RF-IDSR RF, NB, DT, KNN, MLP, 

RL, DNN 

Authors’ RPL-based dataset Accuracy, Precision, TRP, 

F 1-score 

Rank, SH, BH, SF, HF, VN 
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rusion or not. Whereas, the Neural Network (i.e., one input layer, 

everal hidden layers and one output layer) is used to categorise 

he detected intrusion. The authors used UNSW-NB15 dataset. RF 

ives good results for Precision, Recall, and F 1-score (99%, 98%, and 

8%, respectively). 

Authors in [38] proposed TR-IDS, an IDS that uses word embed- 

ing and text-convolutional neural network (Text-CNN) techniques 

o extract features from the payloads in network traffic automat- 

cally, and RF for the classification. The authors used ISCX2012 

ataset, from which they extracted 27 features to classify infiltra- 

ion, BFSSH, HttpDoS, and DDOS attacks. They obtained the follow- 

ng performance: 99.13%, 99.26%, and 1.18% for accuracy, DR, and 

alse alarm rate, respectively. 

Tama and Rhee [39] proposed an IDS that uses particle swarm 

ptimisation (PSO) for feature selection and RF classifier for attack 

etection. They used NSL-KDD dataset. 37 features were selected 

o obtain an accuracy of 99.67%. The model outperformed rotation 

orest (RoF) and deep neural network (DNN) classifiers. 
14 
In [40] , authors proposed AD-IoT, an RF-based IDS that moni- 

ors IoT traffic in a distributed fog layer to detect IoT Botnets at 

og node, and alert the administrator. The authors used UNSW- 

B15 dataset. They used ExtraTreesClassifier to reduce the num- 

er of features to 12. RF classifier achieved good performance with 

alues of 99.34%, 98%, 98%, 98%, 0.2% for accuracy, precision, recall, 

 1-score, and false alarm rate, respectively. 

.2. DL-based IDSs 

One application of DL for intrusion detection in the IoT net- 

ork is the work in [41] . The authors discussed the detection of 

rob, DoS, U2R, and R2L attacks using fog-to-things architecture. 

hey used NSL-KDD dataset with 128 features for detecting four 

lasses of attacks. They also gave a comparison study of a deep 

eural network model with three hidden layers and a shallow neu- 

al network with as results 98.27% and 96.75% in term of accuracy, 

espectively. 
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Authors in [10] have also applied a DL approach with five hid- 

en layers to detect RPL routing attacks. The authors generated 

atasets for decreased rank, HelloFlooding, and version number at- 

acks relaying on several topologies. The obtained performance re- 

ults in terms of F 1-score for each dataset are 94.7%, 99%, and 95%,

espectively. 

Qureshi et al. [42] proposed a deep random neural network- 

ased heuristic Intrusion Detection System (RNN-IDS) for IoTs. 

hey trained RNN-IDS using the Gradient Descent Algorithm (GD). 

he authors used KDDTrain20 from NSL-KDD dataset to train the 

lassifier with variant learning rates, and with both reduced fea- 

ures (29) and all features (41). The RNN-IDS accuracy reached up 

o 95.2% and gave better performance than SVM, NB, DT, MLP, and 

thers. 

Besides the works in [10] and [31] , one major drawback of 

he works mentioned earlier is using datasets from open-sources 

hat are not designed explicitly for IoT networks. In addition, these 

tudies did not use features that are relevant for RPL-based IoT 

outing attacks detection. In this paper, we presented a compar- 

tive study of both classical ML techniques and the DL model in 

10] to propose an IDS for detecting attacks against RPL. Compared 

o other works, our paper provides much detailed description of 

he simulation settings used to generate large datasets specially 

roduced for IoT routing attacks. Furthermore, our work gives at- 

ention to the classification of multiple classes, which is more chal- 

enging than binary classification. 

. Conclusion 

In this paper, as a first step, we studied the applicability of ML 

nd DL techniques for intrusion detection in RPL-based IoT net- 

orks. We demonstrated that with the selection of the appropri- 

te features, high performance had been achieved. In the 2-class 

lassification, the decision tree (DT), random forests (RF), and K- 

earest Neighbours (KNN) classifiers recorded more than 99% for 

ach of the following metrics: accuracy, precision, recall, and F 1- 

core. The recorded detection rate (Recall), precision, and F 1-score 

or multi-class classification were more than 98% for the three clas- 

ifiers, while the KNN accuracy was 99%. Besides, RF recorded the 

owest fitting time. 

On the other hand, the DL model, MLP, Naïve Bayes (NB), and 

ogistic Regression (LR) classifiers recorded lower performance. We 

hanged the DL model to get better performance, but the overall 

lassification performance stayed almost the same. Different hid- 

en layers and parameters were used, however no positive impact 

n the accuracy, recall, precision, and F 1-score. 

The present evaluation results showed that RF is a good classi- 

er for RPL networks threats detection. As a second step, we in- 

roduced an RF-based IDS, named RF-IDSR, to provide both fault 

olerance and intrusion tolerance and detection for RPL-based In- 

ustry 4.0 networks. RF-IDSR uses RF classifier to categorise RPL- 

ased attacks using a multi-class dataset. Furthermore, we pre- 

ented lightweight appending to RPL to prevent the HelloFlooding, 

ersion number, global repair attacks, and network failure. 

We plan to implement RF-IDSR and evaluate its performance in 

oth a simulation environment and an experimental environment. 

e plan to generate new datasets after implementing the append- 

ng above and see how they influence the results in the present 

ork. Besides, one future work is to extend our datasets with other 

PL’s attacks. 
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