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A B S T R A C T   

There are numerous risks associated with the interconnection of healthcare provision and the Internet of Things 
(IoT), with its sensory capabilities shown to reduce confidence in novel technology due to fears of a loss of 
privacy. There exists a clear omission in the extant literature—consideration of gender differences in Frontline 
Healthcare Providers’ (FHP) behavioural intentions—which this work aims to address through the analysis of 
IoT-enabled healthcare applications’ (HAs) behavioural intentions in multicultural and bi-generational (Gen X, 
Y) context. Essentially, analysing gender and generational differences in relation to the variables (privacy, se
curity and trust that influence risk perception; the latter alongside attitude and perceived behavioural control 
potentially affect the intention) affecting FHPs’ BI towards IoT enabled HAs. A novel model is presented herein, 
which combines Planned Behaviour (TPB), Privacy Calculus (PCT), and the trust-risk framework. Questionnaire 
methodology (n = 401) was applied to both generations under consideration, data was assessed using Partial 
Least Squares Multi-Group Analysis (PLS-MGA), which showed gender differences in Gen Y, but there was little 
evidence to suggest that risk perception affects any of the cohort’s behavioural intention towards the use of IoT- 
enabled HA, which in turn should help guide both future institutional policy and application development .   

1. Introduction 

Advances in network technologies, combined with mass production 
of smart devices equipped with sensors with continuous, bidirectional 
transmission, and the advent of cloud computing have been the primary 
drivers behind IoT development and implementation in big data driven 
infrastructural control (Hassan et al., 2018; Li et al., 2020; Rafique et al., 
2020; Razzak et al., 2020). However, the security problems inherent in 
the wider internet itself remain prevalent in IoT. In truth, each element 
in IoT’s tri-layer structure—perception, transport, and applica
tion—requires individual consideration in that respect (Tewari and 
Gupta, 2020). IoT is now commonplace in modern society, often 
appearing in the food supply chain, logistics, mining, computing, and 
healthcare sectors (Pang et al., 2015; Yildirim and Ali-Eldin, 2019). 
Particularly in the case of the latter, the drive for service improvement 
has resulted in a broad body of literature considering this advance 
(Asif-Ur-Rahman et al., 2019; Syed et al., 2019). 

The interconnected nature of the IoT enabled healthcare model 
(Tewari and Gupta, 2020) contains a multitude of risks relating to 

privacy, security and loss of trust. Limitations on the computational 
ability of this model means that conventional measures used to tackle 
security and privacy concerns often cannot be applied (Li et al., 2020), 
leading to the development of a concept known as the Internet of 
Medical Things, wherein patient data confidentiality without loss of 
functionality is held paramount (Li et al., 2020). 

The majority of past research has focused on technological issues 
surrounding IoT, with little attention paid to actual take-up. Notwith
standing this, previous authors have considered this take-up, across a 
variety of sectors, using the technology acceptance model (Gao and Bai, 
2014); behavioural reasoning theory (Pillai and Sivathanu, 2020); 
external pressure and cost-benefit perception (Tu, 2018); employee 
intention analysis (albeit with limited usefulness due to poor experi
mental design and a small, non-representative sample) (Yildirim and 
Ali-Eldin, 2019); a combination of unified theory of acceptance and use 
of technology, financial costing, and risk perception (although they 
concluded that cost and age are critical factors, its validity is again 
limited by choice of sample, and lack of consideration of other factors 
such as trust, privacy, or security) (Ben Arfi et al., 2020); synthesis of 
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parts of both technology acceptance model (with cost, privacy, 
self-efficacy) and of innovation diffusion theory (trial ability, image, and 
compatibility) in the medical sector (generalisation of the results pre
sented is unwise due to a combination of a small (n = 124), localised 
sample and the single factor considered—privacy) (Alhasan et al., 
2020). Although some conclusions can be drawn from these works, and 
may assist in managerial design in their respective sectors, the primary 
revelation is that their limitations provide the foundation for this work 
to address. 

Whilst IoT-healthcare synthesis allows for contemporary, continuous 
monitoring and tracking of system components such as medicines, de
vices, doctors, and patients, and the ability to rapidly share data be
tween them using smart software (Plaza et al., 2011), some privacy and 
security issues remain (Tewari and Gupta, 2020). 

The review above shows that the primary focus has been on tech
nological aspects, with comparatively little attention paid to end user 
readiness, intention, or sector specific application. However, due to the 
relative immaturity of the sector as a whole, it is vital to consider a 
broader, multiscale, multisector perspective if maturity is ever to be 
attained. 

There are clear gender divides governing acceptance and use of 
technology (Alraja et al., 2019; Ameen et al., 2020; Nami and Vaezi, 
2018; Tarhini et al., 2017), and thus it seems apt to consider these di
vides during this study of employees’ behavioural intention (BI) toward 
using IoT-enabled HAs. 

Approximately half of the global workforce are female, and thus 
women are considered vital contributors to the global economy (Ameen 
et al., 2020; Madichie and Gallant, 2012). This paper will focus on fe
males’ contributions in Omani context, and thus it is necessary to pro
vide a population overview. Wage equality in Oman sits at 5.68 out of 7, 
yet women hold only a quarter of total professional jobs. A majority 
(55.6%) attended tertiary education (compared with only 26.4% of 
men). At 6.98%, women are over three times as likely to possess health 
and welfare skills, while the percentage with ICT skills (17.0%) also 
surpasses the male population (9.24%) (World Economic Forum, 2020). 
There is little published work considering the intersectional nature of 
gender differences and multiculturalism and how they affect employee’s 
BI toward IoT-enabled HAs. The international outlook of modern com
panies means it is imperative that they consider these interrelations in 
the development of training and recruitment policies. Oman provides 
the ideal case study for these considerations due to the high proportion 
(42.5%. 1.43m) of expatriates working in the country NCSI (2020). 

This study provides a valuable contribution to literature by consid
ering how gender differences affect employees’ BI toward IoT-enabled 
HAs in healthcare organisations by proposing a novel model for IoT 
adoption—comprising a synthesis of TPB Ajzen (1991) PCT (Culnan and 
Armstrong, 1999) and the trust risk framework (Mayer et al., 1995a)— 
which aims to reveal both gender (male/female) and generational dis
similarities (Gen X, born 1965–80; Gen Y, born 1981–96). As a means of 
increasing the level of generalisability, consideration is also given to the 
effects of multiculturalism on FHPs’ behavioural intentions. The real 
world value of this study lies in its applicability to improving the efficacy 
of managerial strategies in global corporations by understanding the 
benefits and drawbacks of possessing a multicultural, multi-gendered, 
cross generational workforce and increasing awareness of how their 
reaction to novel IoT technologies affects overall perceptions of security, 
trust, and privacy risks. 

The upcoming sections provides a focused literature review, a dis
cussion of relevant theory, and presents hypotheses. This is followed by 
methodology and results sections, after which a contextualised discus
sion of their implications in relation to the literature is given, with 
special consideration made for both limitations and future work 
proposals. 

2. Theoretical background 

2.1. Gender and IoT 

The extant body of information systems literature has pondered the 
existence of a gender divide in novel technology adoption, with several 
authors concluding that sex-role stereotyping, technological positivity 
and self-efficacy are more prevalent in the male population (Cai et al., 
2017; Compeau and Higgins, 1995). The literature provides numerous 
examples of gender split with respect to IoT security, wherein women 
are typically more compliant with protocols (Anwar et al., 2017; Ifi
nedo, 2014), whereas men categorise e-shopping and, in general, 
cybersecurity as comparatively low risk activities (Ameen et al., 2021; 
Garbarino and Strahilevitz, 2004; Mamonov and Benbunan-Fich, 2018). 
As Gen Y are considered to be digital natives, they tend not to see these 
novel technologies as anything but ordinary tools in their everyday ex
istence, with little consideration given to security concerns associated 
with them, with women instead choosing to worry more about product 
reliability and a lack of familiarity (Yang et al., 2018). This contrasts 
well with Gen X, who typically have a larger gender divide around these 
attributes (Albert et al., 2019). 

The theory of planned behaviour has been extended (Cassioli et al., 
2020) to include the moderating effects of gender, for example on 
workplace technological uptake (Morris et al., 2005), green restaurant 
attendance Moon (2021), and entrepreneurial intention (Maes et al., 
2014), with the latter showing that while men prioritise achievement, 
women favour balance. 

The foundation for this study lies in that fact that comparatively few 
studies have considered IoT adoption intention in general, with no 
previous investigations exploring how this acceptance is mediated by 
cross-generational female specific attitudes, the intersection of gender 
difference and multiculturalism, or the gender-generation divide. 

2.2. IoT Security, privacy, risk, and trust in healthcare 

Alongside numerous other innovative technologies, the Internet of 
Things (IoTs) is a foremost contemporary technological innovation 
(Wang et al., 2014). It is deemed to be a hot research topic that has 
attracted academics’ focus and investigation of it, being implemented 
across various contexts and fields (Rochwerger et al., 2009). The IoT, 
similar to other smart technologies, has been adopted and involved in 
the main processes of numerous industries, including the healthcare 
industry. This industry deals with a tremendous amount of complex 
records that must be stored without duplication, retrieved swiftly 
without delay or any mistakes, while also being shared with patients via 
a secure medium so as to prevent any criminal risks, thus safeguarding 
patients’ privacy (Rubinstein, 2013). Within the health industry, general 
Technology, as well as Industry 4.0 technologies specifically (for 
example, IoT), have transformed the means of providing traditional 
health services (Chen et al., 2014). This potentially justifies the exten
sive applied research that uses IoT as a means of interconnecting med
ical resources, in addition to providing patients with effective and 
reliable e-healthcare services (Sun et al., 2016). Regardless, IoT in the 
healthcare industry may provide a solution for integrating the electronic 
medical records of all hospitals’ information systems, thus helping to 
mitigate the challenges associated with sharing patients’ healthcare data 
across different hospitals and medical centres. Accordingly, medical 
professionals (for instance doctors) will have the ability to view each 
patient’s medical history, thus aiding their provision of improved 
treatment (Lv et al., 2017). More specifically, the healthcare industry is 
in urgent need of adopting and implementing smart technologies (for 
example, the IoT) during crises, such as the current situation with the 
COVID-19 pandemic. This is because they can be expected to help with 
providing substantial remote assistance to a tremendous number of 
affected people, who the health system have been unable to accommo
date during this pandemic (Fosso Wamba et al., 2015). 
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Medical subjects are often worried about the security and confi
dentiality of their data, and the risk associated with leaks thereof 
(Ancker et al., 2013; Perera et al., 2011; Win, 2005). This is of interest to 
IoT development, in that while the preparation phase can be assuredly 
secure, online data transfer is open to many forms of misuse (Table 1-a) 
(Yao et al., 2020). 

Multiple data storage problems have been associated with the in
crease in IoT implementation, and as few tools have been developed 
specifically for this purpose, insufficient semantic annotations are 
available, and thus specific concepts and models must be created soon 
(Barnaghi et al., 2012; Jin et al., 2014; Li et al., 2011; Tewari and Gupta, 
2020). While cloud computing is the ideal site for IoT development, 
there are serious concerns with its data handling strategies, which must 
be standardised and appropriately constrained if security is to be assured 
(Chang et al., 2014; Rochwerger et al., 2009; Wang et al., 2014). The 
number of interconnected sensors operating in the IoT environment is 
anticipated to pass the trillion mark within the decade, yet it remains 
apparent that the vast majority of the data accumulated will be of little 
value due to a lack of standardisation (Chen et al., 2014; Fosso Wamba 
et al., 2015; Lv et al., 2017; Rubinstein, 2013; Sun et al., 2016). How
ever, much of the current academic focus has been on issues surrounding 
trust—how best to ensure data security and legislative compliance while 
still reliably providing all users with an appropriate level of detail (Bao 
and Chen, 2012; Nitti et al., 2012; Yan et al., 2014). 

3. Conceptual model and hypothesis development 

The Theory of Planned Behaviour (TPB), trust-risk framework, and 
Privacy Calculus Theory (PCT) have all previously been applied to 
assessment of technological take-up (Bao and Chen, 2012; Culnan and 
Armstrong, 1999; Hassan et al., 2018; Mayer et al., 1995b; Rafique et al., 
2020; Tewari and Gupta, 2020; Yan et al., 2014). 

The literature has an abundance of models adopted to investigate the 
area of intention to adopt new technology. These models employed 
various antecedents to estimate users’ adoption intention. More specif
ically, numerous studies have incorporated two or more variables (se
curity, privacy, trust and risk perception), with one or two technology 
acceptance models/theories used for estimating users’ intention to 
adopt. For example, in the context of using social media for transactions, 
the trust risk-taking propensity constructs were incorporated into TAM 
and TPB (Hansen et al., 2018). Regarding the adoption of IoT in eHealth, 
the constructs of trust and perceived risk were incorporated into UTAUT 
(Arfi et al., 2021); to investigate intention towards mobile app instal
lation, the security, privacy, trust and risk were all combined (Chin 
et al., 2018). In all of the reviewed literature, academics adopted the 
same approach by incorporating the constructs of security, privacy, 
trust, and risk perception as individual constructs rather than a model. 
Nevertheless, in the current study grouping, the adopted variables were 
linked together as follows. Firstly, the connection between the adopted 
variables (namely security, privacy, trust, and risk perception) and 
behavioural intention has been ensured in the information technology 
adoption literature (for more details see Table 1-b). Secondly, we 
grouped variables according to the previously developed theories or 
models. In this regard, we followed the trust-risk framework developed 
by Mayer, Davis and Schoorman (1995) as theoretical foundation for 
connecting trust and risk perception, while the privacy calculus theory 
(PCT) devised by Culnan and Armstrong (1999) was applied as the 
theoretical basis of linking privacy and security. Thirdly, TPB is 
acknowledged to be a flexible technique for permitting analysts to 
incorporate all harmonising variables, while maintaining the approach’s 
fundamental theoretical reliability (Ajzen, 1991; Alarabiat et al., 2021; 
Alzubaidi et al., 2021; Holdsworth et al., 2019; Liao et al., 2007; Moon, 
2021; Wu et al., 2021). 

Specifically, it has evidenced reliable predictive capability in relation 
to BI within various research environments (Al-Debei et al., 2013). 
Consequently, this research has extended Ajzen’s (1991) TPB by incor
porating two harmonised theories/models, namely the trust-risk 
framework (trust, risk perception) and privacy calculus theory (secu
rity and privacy), as a foundation for forecasting frontline healthcare 
providers’ adoption intentions in relation to IoT-based healthcare ap
plications. To the best of the author’s knowledge, no studies have ana
lysed the causal effect of both the PCT and trust-risk framework on the BI 
of IoT-based healthcare applications, considering the key personal var
iables of attitude and PBC, particularly concerning the potential gender 
and generational distinctions. Additionally, TPB proposes that a per
son’s intention may be discerned based on three key variables, namely 
PBC, ATT and subjective norms. Although BI refers to an individual’s 
willingness to engage in a given behaviour, ATT defines the individual’s 
preferred or unpreferred appraisal of the behaviour under investigation. 
Subjective norms concern the perceived social gravity required to attain 
or not to attain certain behaviour. Finally, PBC defines the extent to 
which an individual is able to control their engaged behaviour (Ajzen, 
1991, 2001). Nevertheless, based on the nature of the provided service 
(healthcare services) relating to human beings’ lives, we believe that the 
adoption decision relating to innovative methods or technologies (in our 
case IoT-enabled healthcare applications) should not be affected by its 
social gravity—which is to say, the extent to which others surrounding 
the users (frontline healthcare providers) will accept the mentioned 
behaviour—rather it should rest on expert judgement and knowledge. 
This accords with the research of (Hansen et al., 2018), who dropped the 
subjective norms from their combined model (TPB and TAM), wherein 

Table 1 
-a examples of online attacks in healthcare sector (1989-2019)  

Organization/ field Type of attack Number of affected 
users 

Date 

Becker’s Hospital Ransomeware attack 
(AIDS Trojan) 

20,000 floppy disks 1989 

HealthNet Identity Theft/ 
Hacked 

531,400 patients 
records 

2009 

Lincoln Medical and 
Mental Health Center 

AVIMEdInc attack. 180,111patients 2010 

Memorial Healthcare 
System 

TRICARE 4.9 million medical 
records had lost 

2010 

South Carolina’s US 
Medicaid 

Hacking 780,000 medical data 
of users 

2012 

Advocate Medical 
Group 

Data stolen medical data of about 
4 million users 

2013 

Crescent Health Inc Data stolen medical data of 
100,000 users 

2013 

Community Health 
Systems 

Hacking and identity 
theft 

4.5 users 2014 

Anthem Inc Identity Theft/ 
Hacked 

80 million users 2015 

CareFirst BlueCross 
Blue Shield-Maryland 

Hacked/Identity 
Theft 

100,000 users 2015 

Medical Informatics 
Engineering 

Hacked/Identity 
Theft 

3.9 million records 2015 

Premera Hacked/Identity 
Theft 

11 million records 2015 

UCLA Medical Center, 
Santa Monica 

Hacked/Identity 
Theft 

4.5 million records 2015 

21st Century Oncology Hacked/breached 2.2 million records 2016 
Apple Health Medicaid Hacked/breached Records of 91,000 

users 
2016 

Inuvik hospital Inside-job attack 6,700 users 2016 
Banner health Hacked many users 2016 
Grozio Chirurgija Hacked healthcare data of 

25,000 users 
2017 

multi places WannaCry Worm 
Ransomware 

200,000 users 2017 

Centers for Medicare 
and Medicaid 
Services 

Hacked/Identity 
Theft 

75,000 users 2018 

Health Sciences 
Authority 
(Singapore) 

Security/Hacked 808,000 users 2019  
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Table 1 
-b Summary Reviewed Literature on the relation between trust, risk, and intention  

Path Field Related 
Constructs 

Source Underpinning Theory Journal 

Trust – Risk 
–Intention 

Electronic commerce  • Trust  
• Perceived risk 

(Kim et al., 2008) valence framework Decision Support 
Systems 

Organizational trust  • Trust  
• Risk taking 

(Mayer et al., 1995a) Developed Trust-risk framework The Academy of 
Management Review 

IoT in eHealth  • Trust  
• Perceived risk 

(Arfi et al., 2021) UTAUT Technological 
Forecasting and Social 
Change. 

adaptation behaviors  • Trust  
• Risk 

perception 

(Azadi et al., 2019) Integrated model based on 
“values–beliefs–norms” framework 

Journal of 
Environmental 
Management 

Buying behavior  • Trust  
• Risk 

perception 

(Hakim et al., 2020) relevant constructs from previous studies. Food Research 
International 

Mobile app installation  • Security  
• Privacy  
• Trust  
• Risk 

(Chin et al., 2018) Combination and extension of two previous 
models 

International Journal of 
Information 
Management 

Use of social media for 
transactions  

• Trust  
• Risk-taking 

propensity 

(Hansen et al., 2018) TAM and TPB Computers in Human 
Behavior 

Behavior toward social 
media platforms  

• Trust  
• Risk 

(Wang et al., 2016) meta-analysis Computers in Human 
Behavior 

Online marketplace  • Trust  
• Perceived risk 

(Kim and Koo, 2016) Trust-risk framework Computers in Human 
Behavior 

Mobile banking apps  • Institution- 
based trust  

• Perceived risk 

(Thusi and Maduku, 
2020) 

UTAUT2 Computers in Human 
Behavior 

Online-to-Offline (O2O) 
as an e-commerce model  

• Trust  
• Perceived risk 

(Chen et al., 2019) Information systems success model Computers in Human 
Behavior 

Trust-risk relationship  • Trust  
• Risk 

(van Riper et al., 2016) social exchange framework Journal of Outdoor 
Recreation and Tourism 

information privacy  • Perceived 
privacy  

• Trust  
• Privacy risk 

concerns 

(Miltgen and Smith, 
2015) 

Relevant constructs from previous studies. Information & 
Management 

Mobile shopping  • Trust  
• Risk 

(Marriott and Williams, 
2018) 

An integrated model Journal of Retailing and 
Consumer Services 

Decision-making model 
in electronic commerce  

• Trust  
• Perceived risk 

(Kim et al., 2008) Valence framework Decision Support 
Systems 

Mobile banking services  • Trust  
• Perceived risk 

(Luo et al., 2010) An integrated model Decision Support 
Systems 

Cloud archiving  • Trust  
• Risk 

(Burda and Teuteberg, 
2014) 

TAM Journal of High 
Technology 
Management Research 

E-government adoption  • Trust  
• Perceived risk 

(Bélanger and Carter, 
2008) 

Theory of reasoned action (TRA) Journal of Strategic 
Information Systems 

Mobile devices Adoption 
in a high risk context  

• Trust  
• Perceived risk 

(Marett et al., 2015) An integrated model based on adoption theories Technology in Society 

Trust, risk perception, 
and COVID-19 infections  

• Trust  
• Risk 

perception 

(Ye and Lyu, 2020) Multilevel analyses of combined original dataset Social Science & 
Medicine 

Power grid expansion 
projects  

• Trust  
• Risk 

expectation 

(Mueller, 2020) Combined constructs Energy Policy 

Trust –intention 
And/Or Risk 
–intention 

Cloud computing  • risk analysis  
• perceived IT 

security risk  
• Trust 

(Raut et al., 2018)  
And (Priyadarshinee 
et al., 2017) 

Added risk analysis and perceived IT security risk 
as an extension of the Technology Organization 
Environment (TOE) model 

Technological 
Forecasting and Social 
Change. 
Computers in Human 
Behavior 

NFC mobile payment 
systems  

• Perceived Risk (Liébana-Cabanillas 
et al., 2019) 

TAM, DOI, and UTAUT Technological 
Forecasting and Social 
Change 

digital personal data 
stores  

• Ease of use  
• Usefulness  
• Trust  
• Perceived Risk 

(moderator) 

(Mariani et al., 2021) TAM Technological 
Forecasting and Social 
Change 

Artificial intelligence  • Perceived Risk  
• Trust 

(Hasan et al., 2020) UTAUT2 Journal of Business 
Research 

electronic data exchanges  • Perceived Risk  
• Trust 

(Nicolaou et al., 2013) Economic exchange perspective Decision Support 
Systems  

• Perceived trust Combined constructs 

(continued on next page) 
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they incorporated risk and trust as a means of estimating consumers’ use 
of social media for transactions. Furthermore, empirical studies in the 
information technology field evidence that only PBC and attitude (as 
opposed to subjective norms) affect behavioural intentions, for example 
cyber-slacking intention (Rana et al., 2019), information security policy 
compliance attitude (Sommestad et al., 2015), or the use of Facebook 
(Raza et al., 2020). Resultantly, the decision was made to drop subjec
tive norms in the current study. 

3.1. Theory of planned behaviour 

According to TPB, intentions are governed by three ele
ment—attitudes, perceived behavioural control, and subjective norms. 
The first considers a user’s feelings surround a given behaviour, the 
second represents the difficulty of undertaking said behaviour, and the 
third considers how those around them will react if said behaviour is 
embarked upon (Ajzen, 1991). As TPB has been previously shown 
(Montano and Kasprzyk, 2015; Shiau and Chau, 2016) to inherently 

bridge the gap between literature and real life action, it is considered an 
ideal part of the model proposed herein (see Fig. 1). 

Previous authors have found that BI is significantly influenced by 
both attitude and perceived behavioural control (Ajzen, 1991; Alzu
baidi et al., 2021; Holdsworth et al., 2019; Knauder and Koschmieder, 
2019; Moon, 2021; Olya et al., 2019; Rana et al., 2019). In this study, 
attitude is defined as an FHP’s BI towards an IoT-enabled HA, and 
perceived behavioural control by their perception of its difficulty. While 
security compliance has previously been linked to overall intention 
(Raza et al., 2020; Sommestad et al., 2015), more specific details of the 
gender difference-HA-perceived behavioural control interplay are 
generally lacking in the literature, with only a few studies commenting 
that males show higher levels of confidence, planning, and risk taking 
behaviours (Hou and Elliott, 2016; Lai et al., 2008; McLaughlin et al., 
2020) whereas studies of attitude have tended to report that women 
have greater levels of positivity towards e-commerce at large (Hou and 
Elliott, 2016; Riedl et al., 2010). With the exception of these studies, it is 
clear that a gap exists in the literature, in that little focus has been given 

Table 1 (continued ) 

Path Field Related 
Constructs 

Source Underpinning Theory Journal 

Risk– Trust 
–intention 

customer acceptance of 
internet banking  

• Perceived risk  
• Security  
• Privacy 

(Aboobucker and Bao, 
2018) 

Journal of High 
Technology 
Management Research 

Online payments  • Total risk  
• Trust  
• TAM 

(Yang et al., 2015) TAM Computers in Human 
Behavior 

electronic health care 
records (EHCR systems)  

• Perceived risk  
• Information 

integrity  
• Trust 

(Ortega Egea and Román 
González, 2011) 

TAM Computers in Human 
Behavior 

near-field 
communication 
(NFC) based mobile 
payment  

• Risk  
• Security  
• Trust 

(Khalilzadeh et al., 2017) UTAUT Computers in Human 
Behavior 

recommendation 
intention  

• General risk  
• Trust 

(Al-Ansi et al., 2019) Prospect theory International Journal of 
Hospitality Managemen 

intentions to use online 
payment systems  

• Trust  
• Perceived risk 

(Rouibah et al., 2016) trust model of Kim et al. (2008) Electronic Commerce 
Research and 
Applications  

Fig. 1. research framework.  
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to gender divisions in FHPs’ BI with respect to the implementation of IoT 
HAs, and thus the following hypotheses are proposed: 

H1: perceived behavioural control has more significant effect on BI 
toward IoT-enabled HAs among female FHPs than males. 
H2: Attitude has a more significant effect on BI toward IoT-enabled 
HAs among female FHPs than males. 

3.2. Privacy calculus theory 

Modern digital privacy describes user awareness of personal data 
collection, control, and security (Hann et al., 2007; Shah et al., 2014). It 
affects the BI surrounding disclosure, and can be measured using PCT 
(Barth and de Jong, 2017; Jozani et al., 2020; Li et al., 2011; Sun et al., 
2015). Data collection, secondary usage, error, improper access, control 
and awareness are considered key factors governing control an aware
ness in the realm of digital privacy (Hong and Thong, 2013). PCT is 
founded on the principal that the personal data has value, and thus can 
be exchanged in lieu of currency for services rendered, with each indi
vidual forced to consider the benefits and consequences of relinquishing 
their privacy in each transaction. It has been previously shown that there 
is positive correlation between a desire for privacy, and perception of 
risks associated with online services (Baruh et al., 2017; Keith et al., 
2013; Liu et al., 2005; Pentina et al., 2016). 

3.2.1. Privacy 
Digital privacy is a multidimensional (collection, location, accuracy, 

unauthorised access, unauthorised secondary use) entity that governs 
the collection and use of personal data (Alraja et al., 2019; Ozturk et al., 
2017; Zhang et al., 2013). It has become the primary concern in both IoT 
and e-commerce due to the sheer volume of inter service data trans
mission (Baek et al., 2016), with the resultant extreme risk of inter
ception and associated consequences such as forgery and social 
engineering, identity theft, hacking, unauthorized access, alteration or 
destruction of information, and eaves dropping (Liaw and Huang, 2013; 
Osho and Onoja, 2015). The legislative requirements placed upon the 
healthcare sector provide an additional burden in this regard, in that 
perceptions of risk associated with HAs are likely to be higher than 
average due to the need for patient confidentiality. The following hy
pothesis will explore this in detail: 

H3: Privacy has a more significant effect on risk perception toward 
IoT-enabled HAs among female FHPs than males. 

3.2.2. Security 
Security is traditionally seen as a means of resource protection, but 

contemporary definitions must be extended to include software risks 
such as intrusion, denial of service, forgery, and heterogeneous network 
attacks (Farash et al., 2016; Jing et al., 2014; Riazul Islam et al., 2015; 
Sametinger et al., 2015; Weber, 2015). Smith’s four dimensional scale 
(collection, improper access, unauthorised secondary use, error) allows 
security’s effect on BI and risk perception to be considered indepen
dently, rather than in tandem with privacy (Bansal and Zahedi, 2014; 
Gurung and Raja, 2016; Miyazaki and Fernandez, 2000). As the litera
ture has shown that the link between security and e-commerce in
tentions is stronger in males, the following hypothesis is put forward: 

H4: Security has a more significant effect on risk perception toward 
IoT-enabled HAs among female FHPs than males. 

3.3. Trust-risk framework 

To predict individuals’ intentions towards behaving, adopting, or 
using any technology, relevant research has indicated that there is am
biguity concerning trust and risk perception’s causal relationship. 
Which is to say, academics have argued about whether trust affects risk 

perception, or vice versa. Indeed, the following relationships have been 
found in the reviewed literature: (1) Trust – Risk – Intention (21 studies); 
(2) Trust – Intention or Risk – Intention (5 studies); (3) Risk – Trust – 
Intention (6 studies), with more details about these studies being rep
resented in Table (1-b). 

A principal reason underpinning this confusion regarding the pro
posed relationship between trust and risk perception differs according to 
the type of examined uncertainty (Kim and Koo, 2016). According to 
Pavlou (2003), this uncertainty may be distinguished into environ
mental uncertainty (EU) and behavioural uncertainty (BU). The Inter
net’s unpredictable nature is represented by EU. Although providing and 
ensuring secure transactions is the vendor’s responsibility, adopting 
various tools such as firewalls, authentication, and/or encryption. the 
online transaction process may still be disturbed via third parties. This 
refers to how patients’ health and personal information may be stolen by 
hacking attacks, which leads to monetary losses for healthcare in
stitutions (economic risk) in addition to illegal disclosure or misuse of 
patients’ information (privacy risk). 

Pavlou (2003) mentioned that web vendors’ opportunistic behav
iours are associated with behavioural uncertainty, for example the 
failure to honour warranties, misleading advertising, private informa
tion leaks, false identities, as well as product misrepresentation. In the 
context of IoT-enabled healthcare applications, one must ask whether 
they are reliable, able to provide good support, as well as enable 
frontline healthcare providers to care for patients? Healthcare providers 
may exploit IoT-enabled healthcare services’ distant and impersonal 
characteristics, as well as patients’ incapacity to adequately monitor 
every transaction. This type of uncertainty increases the prospect of 
unsafe healthcare services (safety risk), in addition to imperfect moni
toring by healthcare providers (performance risk) alongside economic 
and privacy risks. 

Despite both environmental and behavioural uncertainty being 
representative of the risk perception, the majority of the reviewed 
literature has concentrated on behavioural uncertainty (Kim and Koo, 
2016). Dinev and Hart (2006) proposed that trust functions contribute 
crucially to the diminishing of risk associated with behavioural ambi
guity in circumstances where the delivered aid might fail to strongly 
accord with the personal image or self-conceptualisation of frontline 
healthcare providers. The delivered aid may fail to fit well with frontline 
healthcare providers’ expectations; healthcare institutions may tolerate 
the received message, alongside the potential of losing connection 
during the emergency case, while the devices may fail to transmit the 
emergency response from the frontline healthcare providers to patients 
(Dinev and Hart, 2006). Consequently, according to Kim et al.’s (2008) 
recommendation, formulating trust during the adoption of IoT-based 
healthcare applications offers a crucial strategy for managing such un
certainty (Kim et al., 2008). 

Essentially, the greater trust there is in adopting IoT-based health
care applications, the lesser the perceptions of risk will be among front 
healthcare providers. This will subsequently affect their adoption in
tentions for IoT-based healthcare applications. Furthermore, the ma
jority of the reviewed literature from reputable journals (see Table 1-b) 
presented the relationship of ‘Trust – Risk – Intention’, comprising 
approximately 21 reviewed studies (for example, Arfi et al.’s (2021) 
study supported this path for IoT in eHealth). On this basis, the current 
research adopted the trust-risk framework (Mayer et al., 1995a). In this 
regard, Mayer et al.’s framework is constructed on the assumption that 
trust governs risk perception, a relationship which is subsequently 
expressed as attitudes toward a given situation. 

Mayer et al.’s framework is built on the assumption that trust gov
erns risk perception, which are then expressed as attitudes toward a 
given situation. To contextualise this, it is the firm belief that FHPs will 
both make good use, and take good care of, patient data, that drives 
users to accept the implementation of IoT-enabled technology. 
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3.3.1. Trust 
By definition, trust is a bipartisan approach, whereby one exposes 

themselves to the other with a strong conviction that their response will 
be mutually beneficial (Mayer et al., 1995a). Trust has always been 
critical to evaluating risks, and nowhere is this more apparent than in 
e-commerce (Gurung and Raja, 2016; Trivedi and Yadav, 2020). Since 
increasing trust is known to reduce risk, IoT developers must consider 
how to gain it from users with whom they have no direct interactions if 
they wish to increase take up and ensure that their product gains 
widespread acceptance (AlHogail and AlShahrani, 2019; Alraja et al., 
2019; Gao and Bai, 2014). As research has shown that women are more 
conservative in their ability to trust online retailers (Farndale et al., 
2011; Kim et al., 2007; McLaughlin et al., 2020), the following hy
pothesis is proposed: 

H5: Trust has a more significant effect on risk perception toward IoT- 
enabled HAs among female FHPs than males. 

3.3.2. Risk perception 
A major impediment to IoT adoption is that risk perception is a 

subjective, and hence personal judgement (Alraja et al., 2019; Chaud
huri, 1997; Jalali et al., 2017; Jayashankar et al., 2018). Notwith
standing this, it can be successfully mediated through knowledge 
transfer from provider to users as a means of increasing comprehension 
and reducing anxiety in clients (Hsu and Lin, 2018; Li, 2017), which 
typically reduces negativity towards novel technology (Park et al., 
2018). Due to evidence that males are happier to engage in financially 
risky behaviour (Charness and Gneezy, 2012; Croson and Gneezy, 2009; 
Garbarino and Strahilevitz, 2004), the following hypotheses are 
proposed: 

H6: Risk perception has a more significant effect on attitude toward 
Internet of Things (IoT)-enabled healthcare among female FHPs than 
males. 
H7: Risk perception has a more significant effect on BI toward IoT- 
enabled HAs among female FHPs than males. 

4. Methodology 

4.1. Sampling and data collection 

Due to the transient nature of age, it better to categorise by gener
ation than by age group if the wish for ease of generalisation. This im
plies classification based on year of birth, of which there are four 
commonly held classes. The oldest, born 1946–1964, are excluded from 
this study as comparatively few remain within the active workforce. The 
next two, generations X and Y, form the study population, with the 
former born 1965-80, and the latter 1981-96. Generation Y are typically 
considered to be ‘digital natives’ who are technologically reliant and are 
thus more open to using novel technology such as IoT-enabled HAs 
(Bolton et al., 2013). The final generation comprises those born 
1997–2015, and are not considered herein as the majority are too young 
to work as FHPs. The end result is a sample that is evenly split between 
those raised prior to, and those raised with, technology, thus providing 
ample opportunity to explore gender differences in their BI towards 
IoT-enabled HAs. In accordance with the research context and the 
investigated behavioural intention to adopt specific technology 
(IoT-enabled healthcare applications), this requires respondents to be 
experts in providing medical treatment to patients in hospitals and 
medical centres. Consequently, purposive sampling has been adopted as 
the sampling method, which is reliant upon judgement and intentional 
identification of typical groups from among the sample (Kerlinger, 
1986). This technique permits the inclusion of individuals in the sample 
based on their specialisation as it relates to the research issue, as well as 
their ability to provide appropriate data that is relevant and detailed 
(Jupp, 2006). In this research, the sample was intentionally skewed to 

include only frontline healthcare services providers (for example doc
tors), which reflects the research problem (Flyvbjerg, 2006). Further
more, studies that adopt this technique typically devise specific criteria 
to determine the respondents’ inclusion, thus ensuring robust external 
validity and information quality (Apostolopoulos and Liargovas, 2016; 
Ominde et al., 2021). Therefore, having considered the study purpose, a 
group of potential respondents were determined in advance based on the 
following attributes, enabling the selection of targeted respondents. 
Firstly, respondents should be experts delivering frontline medical 
treatment, because their knowledge is vital and a prerequisite for 
responding to the research issue and answering the questionnaire items 
which are specialised and targeted. Secondly, they should be working in 
hospitals or medical centres. Thirdly, they should have been born from 
1965–80 (generation X), or 1981–96 (generation Y). As a means of 
collecting the research data, the formulated questionnaire was distrib
uted in hospitals and medical centres across various geographical areas 
of Oman, thus ensuring a sufficiently representative sample of the target 
population, which provides a sound justification for the adopted pur
posive method (Mason, 2002). Regarding sample size, this study adop
ted the Partial Least Squares (PLS) method, which is a component-based 
approach and nonparametric technique that does not require 
normal-distributed input data (Henseler et al., 2009). PLS has been 
comprehensively approved of and widely adopted among analysts 
working in the information systems field (Urbach and Ahlemann, 2010), 
particularly when there is a limited sample size (Goodhue et al., 2006). 

In this regard and in accordance with their surveyed literature, 
Urbach and Ahlemann (2010) determined that the minimum recom
mended sample size when using PLS ranges between 30 and 100 cases. 
Furthermore, Apostolopoulos and Liargovas (2016) reviewed the liter
ature regarding purposive sampling, determining that sample size varies 
according to the research aim. Across all of their reviewed studies, the 
samples were categorised in different groups, with each group 
comprising of 2–6 individuals (for more details refer to Apostolopoulos 
and Liargovas, 2016). Additionally, a purposive sample of 300 re
spondents was distributed as follows: Male (126); Female (174); age 
groups 18–30 (118), 31–40 (86), 41–50 (66) and 51+ (30) (Hussain 
et al., 2017). Another study collected a total of 311 responses using 
purposive sampling, with the sample distributed as follows: Male (193); 
Female (118); age groups 18–25 (59), 26–30 (136), as well as 30 and 
over (120) (Verma et al., 2019). On this basis and as reflected in the 
reviewed literature, this study’s sample is acceptable for investigating 
the research hypothesis, given that it comprises of 401 cases distributed 
as follows: Male (157); Female (244); 117 Gen X and 284 Gen Y in
dividuals. The research model was tested using data collected between 
April and June of 2020. 

4.2. Measures 

In line with previous publications, the model contained herein 
adopts the five-point Likert Scale for factor measurement. To measure all 
the variables in the current study, the constructs were adapted from the 
existing literature (see Table 2; Appendix (A)). 

4.3. Common method bias (CMB) 

As the data in our study collected from a single respondent, the po
tential for Common Method Bias (CMB) may be a concern (Podsakoff 
et al., 2003). To reduce CMB a set of precautions were used both 
throughout the design and administration of the questionnaire and after 
the data were gathered. 

To judge the validity, reliability and consistency of our first instru
ment draft, we followed Ping (2004) guidance in our questionnaire 
design; first a set of experts including (five academicians and five FH 
experts) were consulted in terms of structure and content. Accordingly, 
the draft was modified, second a pilot study was conducted using pur
posive sampling method of 30 FHPs to ensure the validity and reliability 
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of the questionnaire before disturbing it at big scale (van Teijlingen and 
Hundley, 2002). The third version then was revised considering the 
collected feedback resulting a final instrument. All participants as well 
were briefed on the research aim, with confirmation on the anony
mously and confidentiality of their data while encouraging all re
spondents to answer questions independently and truthfully. Moreover, 
the adopted constructs were separated randomly in the final distributed 
questionnaire. After data collection, the Harman’s single-factor test was 
conducted to verify the presence of CMB. The test showed that there 
were 7 factors with highest variance accounted for the first rotated 
factor was 30.663% (which is less than 50%) (Podsakoff et al., 2012), 
indicating that the CMB is not a major concern in our study (Pinzone 
et al., 2019). 

4.4. Analysis process 

Once all questionnaires were received we filtered and screened all 
carefully. The initial phase of screening analysis done using SPSS 23 
software. The total number of received cases were 479. However, more 
investigations of the returned questionnaires resulted in excluding 
invalid 78 questionnaires as most items were almost the same answers or 
incomplete replies. Consequently, the valid questionnaires for analysis 
were 401, which counts for 83.7% of those completed questionnaires in 
all data collections phases. This number is considered appropriate for 
analyzing the data using partial least squares (PLS) (Hair et al., 2016). 
The assessment of the structural model conducted using partial least 
squares-structural equation modeling (PLS-SEM) using SmartPLS 3.3.2 
software. Two main stages were performed to analyse the valid data as: 
assessing the measurement (validation), and testing the structure model. 
To test the measurement model, Skewness and Kurtosis statistics test 
was done to ensure all adopted items were normally distributed. While, 
the research model reliability was assessed using the Internal consis
tency reliability (Cronbach’s alpha (α) and composite reliability (CR)). 
Next, the validity of the structure model was assessed using convergent 
validity (i.e. the average variance extracted AVE), and discriminant 
validity based on the correlations among latent variables with square 
root of AVE, cross-loadings, and heterotrait-monotrait ratio (HTMT). 
Also, a multicollinearity test was conducted prior to the path analysis 
using the variance inflation factor (VIF) method to check any possible 
errors arising from the high correlations among the latent variables. 

5. Data analysis 

Normal distribution of the data was confirmed in SPSS by the kur
tosis and skew values (see Table 4), both of which lie between ±2, which 
represent the limits of normality (Cain et al., 2017). The Partial Least 
Squares-Structural Equation Model (PLS-SEM) was utilised for the 
assessment of both the measurement and structural models applied 
herein (Hair et al., 2019), after which the significance of any difference 
in gender based path coefficients could be analysed using PLS-Multi 
Group Analysis (PLS-MGA) (Henseler et al., 2009), with SmartPLS 
(V.3.3.2) applied to both models using a 5% significance threshold for 
each group’s paths (Henseler et al., 2009). 

5.1. Descriptive statistics 

The entire sample hold healthcare related basic tertiary qualifica
tions, with 39% holding higher degrees. Sample distributions (see 
Table 3) are 157:244 for gender (male: female), and 117:284 for gen
eration (X:Y). 

5.2. Measurement model 

Table 4 provides a summary of the statistics used to determine the 
reliability, convergent validity, and discriminant validity of the pre
sented model. No factor loading problems were encountered, as is clear 
from the fact that AVE, Cronbach’s alpha, and the composite reliability 
scores are all above their respective thresholds (0.5, 0.7, and 0.7) (Hair 
et al., 2014). 

Application of the Fornell-Larcker criterion confirmed each con
struct’s discriminant validity, as all showed greater variance within their 
own indicators than between each other. Meanwhile, cross-loading 
confirmed that each construct acts primarily on its own indicators. 
Factors loadings ranked below the 0.5 threshold (Sec4–6, RP4–5) were 
excluded from further analysis (See appendix A). HTMT analyses 
(Table 5) showed that the majority of items lay below the threshold 
(0.85), which allows us to negate the sensitivity shortcomings present in 
the previous two techniques, and as such to have confidence in the 
validity of the discriminants used (Henseler et al., 2015). 

The level of collinearity (Table 6) was assessed against the Variance 
Inflation Factor (VIF) threshold (5) (Hair et al., 2014). The results 
indicate no errors are arising from the high correlations among the 
latent variables 

5.3. Multi-group analysis 

It is imperative to confirm the invariance of the model to be applied, 
since without this it becomes impossible to determine if differences 
identified are real, or artifices of an inappropriate technique (Sarstedt 
et al., 2011). Emulating Chin et al.’s approach, item invariance testing 
was conducted using the MICOM procedure on the gender/generation 
sample splits (see Table 7). This procedure calls for 2 of 3 conditions to 
be met—in this case the use of identical PLS models, data treatment and 
algorithm settings confirmed configural invariance, while the permu
tation analysis procedure ensured compositional invariance—if a partial 
measurement invariance condition is to be established for later 

Table 2 
Summary of assessed factors.    

Constructs Number of items Reference 

Security (Sec) 6 (Cheung and Lee, 2000; Connolly 
and Bannister, 2008; Corbitt 
et al., 2003; Furnell et al., 2007) 

Privacy (Pri) 3 (Cheung and Lee, 2000; Connolly 
and Bannister, 2008; Corbitt 
et al., 2003) 

Trust (Tru) 4 (Gefen et al., 2003; Wu and 
Chen, 2005) 

Risk Perception 
(RP) 

5 (Cheung and Lee, 2002, 2000) 

Attitude (Att) 4 (Ajzen, 1991; Bhattacherjee, 
2000; Galluch and Thatcher, 
2011; Gerow et al., 2010; Rana 
et al., 2019; Taneja et al., 2015;  
Wu and Chen, 2005) 

Perceived 
Behavioural 
Control (PBC) 

4 (Bhattacherjee, 2000; Maes et al., 
2014; Rana et al., 2019; Taneja 
et al., 2015; Taylor and Todd, 
1995; Wu and Chen, 2005) 

Behavioural 
Intention (BI) 

3 (Galluch and Thatcher, 2011;  
Gerow et al., 2010; Rana et al., 
2019; Taneja et al., 2015;  
Venkatesh and Davis, 2000, 
1996; Wu and Chen, 2005)  

Table 3 
Demographic profile of study sample.  

Gender Male Female 
157 244 

Age Gen X 56 61 
Gen Y 101 183 

Education BA Gen X 27 22 
Postgraduate (or specialist) Gen X 29 39 
BA Gen Y 71 125 
Postgraduate (or specialist) Gen Y 30 58  

M. Alraja                                                                                                                                                                                                                                         



Technological Forecasting & Social Change 174 (2022) 121256

9

multi-group analysis. 
Pairwise assessment of inter and intra generational gender differ

ences was undertaken using Henseler et al.’s nonparametric PLS-MGA 
technique to distinguish between each groups’ path coefficients via a 
direct comparison of bootstrap estimates for each, assuming a 5% sig
nificance threshold in each direction (see Table 8, 9) (Henseler et al., 
2009; Sarstedt et al., 2011). 

For the moderation role of gender, the results showed all the pro
posed hypotheses in Gex X not supported as there were no significant 

differences between the groups (males and females). 
For the moderation role of gender in Gex Y, the results showed that 

H2 (Att-> BI, P = 0.95), H5 (Tru -> RP, P = 0.96), and H6 (RP -> Att, P 
= 0.04) are supported. All the remained hypotheses were not supported 
as there were no significant differences between the groups (males and 
females). 

6. Discussion 

Aiming to address a distinct gap in the literature, this work assessed 
gender and generational differences in the factors influencing FHPs BI 
towards IoT enabled HAs, finding that Gen Y participants exhibited 
distinct gender based differences in the effect of attitude on BI, risk 
perception on attitude, and trust on risk perception. 

The results in the preceding section allow hypothesis H1 to be 
rejected, as perceived behavioural control was seen to be significant for 
all FHPs, regardless of generation or gender—which itself is in direct 
opposition to previous work (Alzubaidi et al., 2021; Holdsworth et al., 
2019; Moon, 2021; Olya et al., 2019). The explanation is offered that the 
higher than average level of education participants have received, has 
combined with their extensive decision making experience is likely to 
improved their ability to assess the usefulness of IoT tools, which in turn 
is likely to influence their BI. 

Acceptance of H2 is dependent on the generation under consider
ation, with it being supported by Gen Y (in line with previous studies) 
(Moon, 2021; Olya et al., 2019; Rana et al., 2019; Sommestad et al., 
2015), but rejected during analysis of the Gen X cohort. Thus it is sug
gested that Gen X either holds traditional treatment methods in higher 
regard, or lacks the confidence to consider implementing new ap
proaches, whereas Gen Y participants are more open to novelty, and 
consider themselves sufficiently digitally aware to be able to implement 
it. 

The analysis contained herein contradicts work by both Wu et al 
(2012) and Kim (2015) studies, and rejects the notion set forth in H3 that 
privacy significantly affects risk perception in a manner that can be 
differentiated on the basis of gender. This can be explained by consid
ering the differences in privacy and security requirements between 
medical and commercial settings, and relating this to FHPs’ primary 
concerns being of a technical nature, rather than risk oriented as in the 
latter. Although H3 is rejected, it is of interest to note that a significant 
difference in the effect of privacy in risk perception was reported here 
for Gen X males, who it is suggested are concerned that the increased 

Table 4 
Normality, reliability, and convergent validity.  

Constructs Items Skewness Kurtosis Cronbach’s alpha α ≥ 0.70 Loadings CR ≥ 0.70 AVE ≥0.50 

Attitude (Att) Att 1 -0.253 -0.457 0.798 0.752 0.869 0.624 
Att 2 -0.175 -0.443 0.828 
Att 3 -0.224 -0.231 0.827 
Att 4 -0.334 -0.206 0.75 

Behavioural Intention (BI) BI 1 -0.59 0.111 0.81 0.846 0.886 0.723 
BI 2 -0.737 0.296 0.909 
BI 3 -0.843 0.349 0.792 

Perceived Behavioural Control (PBC) PBC 1 -0.144 -0.303 0.78 0.724 0.87 0.692 
PBC 2 -0.229 -0.249 0.848 
PBC 3 -0.298 -0.345 0.912 

Privacy (Pri) Pri 1 -0.463 -0.423 0.748 0.81 0.833 0.555 
Pri 2 -0.408 -0.341 0.731 
Pri 3 -0.428 -0.27 0.708 
Pri 4 -0.653 0.029 0.727 

Risk Perception (RP) RP 1 -0.542 0.31 0.797 0.782 0.879 0.708 
RP 2 -0.385 -0.046 0.872 
RP 3 -0.26 -0.201 0.867 

Security (Sec) Sec 1 -0.046 -0.76 0.706 0.70 0.832 0.625 
Sec 2 -0.36 -0.243 0.844 
Sec 3 -0.309 -0.211 0.821 

Trust (Tru) Tru 1 -0.196 -0.696 0.765 0.726 0.861 0.675 
Tru 2 -0.528 -0.363 0.866 
Tru 3 -0.574 -0.473 0.865  

Table 5 
discriminant validity tests.  

Fornell-Larcker criterion  
Att BI PBC Pri RP Sec Tru 

Att 0.79       
BI 0.57 0.85      
PBC 0.64 0.76 0.83     
Pri 0.39 0.36 0.37 0.75    
RP 0.38 0.33 0.31 0.27 0.84   
Sec 0.38 0.31 0.35 0.55 0.33 0.79  
Tru 0.25 0.23 0.20 0.19 0.34 0.18 0.82 
HTMT  

Att BI PBC Pri RP Sec Tru 
Att        
BI 0.71       
PBC 0.75 0.84      
Pri 0.49 0.45 0.48     
RP 0.47 0.39 0.37 0.30    
Sec 0.49 0.40 0.45 0.70 0.42   
Tru 0.31 0.26 0.27 0.23 0.42 0.22   

Table 6 
VIFs.  

Construct Multicollinearity test 
Att BI RP 

Att  1.82  
BI    
PBC  1.72  
Pri   1.45 
RP 1 1.18  
Sec   1.44 
Tru   1.05  
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volume of patient data recorded could be associated with them, along 
with any mistakes made, which in turn could affect their opportunities 
for advancement. 

Consideration of H4 forced its rejection after data analysis, though 
again it provided results that oppose previous work (McLaughlin et al., 
2020), it was found that for Gen X participants, although security was 
found to significantly affect overall risk perception, there was no 
discernible difference on the basis of gender. The contrasts slightly with 
the results for Gen Y, where although the entire cohort were affected by 
security concerns, H4 was only supported by the fact that females of this 
generation were more readily influenced than their male counterparts, 
which goes against McLaughlin et al (2020), who placed the gender 
divide in the opposite direction. It is suggested that this is the result of 
women both being more likely to both question judgement calls, and 
adhere to existing security policies in their personal risk assessment as a 
result of their chosen career path. In turn, this further highlights the 
necessity of ensuring awareness of, comprehension of, and compliance 
with institutional security protocols regardless of gender or generation. 

As Gen Y assign significance to trust as a whole, rather than dividing 
by gender, it is necessary to reject H5 in favour of supporting the existing 
literature (AlHogail and AlShahrani, 2019). In comparison, the Gen X 
gender divide first reported by Alraja et al. (2019) is confirmed herein, 
with only male risk perception significantly affected by trust. The most 
salient observations herein suggest that while trust remains generally 
problematic for Gen X, the integration of IoT and healthcare poses a 
specific barrier to them. The absence of a gender divide suggests that this 
approach is driven by a desire for traditional interventions, and will 
require considerable additional training to increase openness in this 
portion of any given FHP staff. Effectively, this underscores the 

importance of synthesising trust with the TPB model is intergenerational 
risk perception is to be properly modelled. This compares well with Gen 
Y, who are more technologically minded, and hence show greater levels 
of trust in an HA’s ability to support their work. In summary, it is 
imperative that FHPs have trust, since trust improves risk perception, 
which in turn improves their behavioural intentions. 

The analysis provided in the preceding section shows that, for Gen X 
at least, H6 must be rejected, since risk perception was found to not 
significantly affect attitudes toward IoT-enabled HAs. Although previ
ous work has suggested that more perceptive individuals tend to have a 
correspondingly more positive attitude (Chaudhuri, 1997; Jayashankar 
et al., 2018), this does not appear to be the case in this instan
ce—perhaps counterintuitively, this is considered to be a by-product of 
Gen X’s aforementioned lack of trust in HAs, which means they fail to 
give fair assessments of the associated risks as they are written off before 
this stage. This can be meaningfully compared with Gen Y, who have 
already been reported as both more trusting, and as having positive BI, 
and thus it comes as no surprise that, as with previous work (Croson and 
Gneezy, 2009; Garbarino and Strahilevitz, 2004), while Gen Y’s risk 
perception significantly affects its attitude, this is considerably more 
apparent in females than in males (Hsu and Lin, 2018). 

In contrast with Hsu and Lin (2018), Hypothesis 7 (H7) is also 
rejected as the data cannot fully support it, instead highlighting the fact 
that risk perception is insignificant across both generational and gender 
divides, meaning that there was no discernible difference in BI. It is 
suggested that this is a result of the ethics within the field of study, 
where immediate patient care is the primary concern, and thus risks are 
assessed based on the result of technological failure, rather than a lack of 
data privacy or security. It appears that while for Gen X, there is no 

Table 7 
MICOM Step 2 results for sample groups.  

. Gender Age 
Correlation Permutation Mean 5.00% Permutation p-Values Correlation Permutation Mean 5.00% Permutation p-Values 

Att 0.998 0.995 0.355 0.998 0.995 0.855 
BI 0.999 0.998 0.338 0.999 0.998 0.949 
PBC 0.999 0.998 0.523 0.999 0.998 0.605 
Pri 0.976 0.91 0.12 0.973 0.916 0.473 
RP 0.998 0.994 0.926 0.998 0.994 0.219 
Sec 0.991 0.973 0.713 0.995 0.981 0.844 
Tru 0.994 0.98 0.719 0.993 0.979 0.817  

Table 8 
Results of PLS-MGA Gen X.  

Hypothesis P-Value (Group-diff) Male Female Support 
Path Coefficients Mean St.div T-Value P-Value Path Coefficients Mean St.div T-Value P-Value 

Att-> BI 0.65 0.02 0.11 0.07 0.94 0.11 0.16 0.60 0.55 Not supported 
PBC-> BI 0.61 0.75 0.08 9.98 0.00 0.67 0.14 4.74 0.00 Not supported 
Pri -> RP 0.08 0.32 0.10 2.81 0.01 -0.11 0.29 0.86 0.39 Not supported 
RP -> Att 0.72 0.30 0.14 1.92 0.06 0.20 0.15 1.32 0.19 Not supported 
RP -> BI 0.46 0.07 0.08 0.98 0.33 0.16 0.13 1.45 0.15 Not supported 
Sec-> RP 0.79 0.31 0.12 2.51 0.01 0.27 0.12 2.09 0.04 Not supported 
Tru -> RP 0.92 0.26 0.12 2.17 0.03 0.21 0.17 1.30 0.19 Not supported  

Table 9 
Results of PLS-MGA in Gen Y  

Hypothesis P-Value (Group-diff) Male Female Support 
Path Coefficients Mean St.div T-Value P-Value Path Coefficients Mean St.div T-Value P-Value 

Att-> BI 0.95 0.21 0.11 1.98 0.05 0.23 0.07 3.08 0.00 supported 
PBC-> BI 0.79 0.64 0.09 7.23 0.00 0.60 0.07 8.68 0.00 Not supported 
Pri -> RP 0.13 0.25 0.12 1.99 0.05 0.05 0.08 0.27 0.78 Not supported 
RP -> Att 0.04 0.36 0.09 3.94 0.00 0.56 0.06 10.22 0.00 supported 
RP -> BI 0.86 0.01 0.07 0.19 0.85 0.03 0.06 0.45 0.66 Not supported 
Sec-> RP 0.37 0.18 0.09 1.79 0.07 0.27 0.08 3.28 0.00 Not supported 
Tru -> RP 0.96 0.30 0.10 2.90 0.00 0.31 0.06 5.28 0.00 supported  
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gender divide in their overall perception of risk, they assign different 
weight to factors—male regard security, privacy and trust equally, 
whereas females prioritise security. A corresponding assessment of Gen 
Y shows a clear gender divide, with females rating trust and security as 
more significant than their male counterparts, who in turn are driven by 
first trust, and then privacy. This suggests that attitude is perhaps highly 
influential on the risk perception-behavioural intention relationship. 

6.1. Theoretical contributions 

Majority of research in IoT field focused on technological aspects. 
Thus, the foundation for this study lies in that fact that comparatively 
few studies have considered IoT adoption intention in general, with no 
previous investigations exploring how this acceptance is mediated by 
cross-generational female specific attitudes, the intersection of gender 
difference and multiculturalism, or the gender-generation divide. 
Moreover, no previous investigations exploring FHPs intention toward 
IoT-enabled HAs. 

There are three key contributions to the literature here
in—consideration of gender differences in the behaviour intentions of 
multicultural FHPs, the design of a novel model to explain these in
teractions, built from the partial synthesis of TPB, PCT and the trust-risk 
framework, and finally the application of this model to analyse the effect 
of generation on novel technology acceptance. 

6.2. Practical implications 

The presented results show that FHPs in Oman are generally unaware 
of the risks surrounding IoT-enabled HA implementation, and more 
pressingly, have little knowledge of their employer’s security and pri
vacy protocols. This difficulty is further compounded by the belief that 
their behaviour is not moderated by their perception of the risks asso
ciated with such a take up of new technologies, and thus institutions 
must ensure that policy is promoted, visible, and comprehensible for 
both employees and users, with support staff induced to regularly up
date colleagues on changes to relevant protocols and the consequences 
of a lack of adherence. 

Improved comprehension of privacy, security and trust, and aware
ness of gender and generational differences is vital for managerial staff 
wishing to better interpret the BI of their employees. Risk perception in 
Gen X males is moderated by privacy, trust, and security, whereas fe
male risk perception is governed solely by the latter. This contrasts with 
Gen Y, wherein privacy and trust are key male predictors, versus trust 
and security for females, who are also significantly more susceptible to 
issues surrounding trust than their male counterparts. The upshot of this 
is that employers must take this into account, and ensure that staff 
received regular training and access to novel technology if uptake is to 
be successful 

Priority should be given to raising IoT trust in Gen X employers, who 
are statistically speaking, more suspicious of their usefulness, a fact 
which has an adverse effect on their overall attitude towards IoT- 
enabled HAs. As it is attitude, rather than risk perception, which af
fects BI, behaviour modification training schemes should be used to 
improve openness to new ideas in their staff. From the perspective of IoT 
HA development, it is vital that developers liaise with FHPs directly to 
ensure that the concerns of both parties are adequately addressed before 
implementation. Institutions are recommended to undergo a period of 
policy modernisation to ensure that all parties involved with IoT HAs are 
adequately protected. Key measures of success in this regard are reduced 
FHP concern and guaranteed patient rights with no reduction in the 
quality of service provision. 

6.3. Limitations and future research directions 

The time period in which this study was conducted made it inap
propriate to consider Gen Z FHPs, but in the near future this will provide 

a good topic for further exploration with the aim of direct comparison 
with the results presented herein. The key conclusion from this work is 
that trust is paramount, given its effect on risk perception and hence 
indirectly on attitudes and BI toward IoT-enabled HA implementation in 
FHPs. The use of a sector specific approach was necessary to provide 
focus to the study, but it would be of interest to consider other sectors 
with fewer barriers to entry if more general conclusions are to be drawn. 

7. Conclusion 

As the majority of the extant literature, has opted to focus on the 
technological aspects of IoT take up in healthcare, with effectively zero 
attention paid to the female view, a consideration of the multicultural, 
bi-generational and gender differences in IoT-enabled HAs’ behavioural 
intentions within FHPs is provided herein, in the hope that it provides 
support to those in, or managing, the increasing proportion of the 
workforce who are female. 

No differences in BI towards IoT-enabled HAs were observed in Gen 
X, whereas Gen Y females showed greater levels of significance in the 
interrelation between BI, attitudes to risk perception and trust. In terms 
of attitude on BI, risk perception on attitude, and risk perception, no 
significance was reported for Gen X, whereas the perception of both 
behavioural control on BI and security on risk showed significance. In 
this cohort, privacy and trust were shown to only have significance on 
male BI risk perception. Analysis of the Gen Y cohort showed that atti
tude on BI, perceived behavioural control on BI, risk perception on 
attitude, and trust on risk perception all have a significant effect on IoT 
use, but that risk perception did not significantly affect BI in this group. 
A distinct gender divide is present in this generation, with males placing 
greater significance on privacy, whereas females valued security more 
highly. 
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Appendix A: Study measurement  

Security 
Sec1 An individual cannot reasonably claim not to have taken an action on-line while they actually have. For example, once an emergency call is placed, the healthcare provider/ 

patient cannot deny placing such a call. 
Sec 2 Our hospital/medical centre implement security measures to protect the users. 
Sec 3 Our hospital/medical centre usually ensure that treatment information is protected from accidentally altered or destroyed during transmission on the internet. 
Sec 4 No one can get access to the data without permission 
Sec 5 The used technology in our hospital/medical centre are effective in checking out whether a particular user is authorized to take a certain action 
Sec 6 Original content of messages will remain unchanged during or after the on-line treatment. 
Privacy 
Pri1 As people should use a true name to receive emergency aid through IoT, hospital/medical centre can ensure the users’ personal record will not be misused. 
Pri2 Technology mechanism which used in our hospital/medical centre can effectively prevent a third party from stealing on-line people’s information. 
Pri3 Our hospital/medical centre is concerned about users’ privacy. 
Pri4 Our hospital/medical centre will not divulge users’ personal data to other parties. 
Trust 
Tru1 Based on my perception with IoT-enabled healthcare applications, it is reliable 
Tru2 Based on my perception with IoT-enabled healthcare applications, it will provide good support. 
Tru3 Based on my perception with IoT-enabled healthcare applications, I believe it will help frontline healthcare providers look after patients. 
Risk Perception 
RP1 I believe that IoT-enabled healthcare applications are risky because our institution may tolerate the received message. 
RP2 I believe that IoT-enabled healthcare applications are risky because of the possibility of losing connection during the emergency case. 
RP3 I believe that IoT-enabled healthcare applications are risky because the devices may fail to transmit my emergency response. 
RP3 I believe that IoT-enabled healthcare applications are risky because the aid provided may fail to fit well with my personal image or self-concept 
RP5 I believe that IoT-enabled healthcare applications are risky because the aid provided may fail to fit well with my expectations. 
Attitude 
Att1 I like the idea of using IoT-enabled healthcare applications. 
Att2 Using the IoT-enabled healthcare applications for providing healthcare services would be a good idea. 
Att3 Using the IoT-enabled healthcare applications for providing healthcare services would be a wise idea. 
Att4 Using the IoT-enabled healthcare applications would be a pleasant experience 
Perceived Behavioural Control 
PBC1 Using IoT-enabled healthcare applications is entirely up to me. 
PBC2 I believe to possess sufficient capacities to use IoT-enabled healthcare applications. 
PBC3 I believe I can overcome most obstacles in using IoT-enabled healthcare applications. 
Behavioural Intention: 
BI1 Assuming I have access to the IoT-enabled healthcare applications, I intent to use it. 
BI2 Given that I have access to the IoT-enabled healthcare applications, I predict that I would use it. 
BI3 If I have access to the IoT-enabled healthcare applications, I want to use it as much as possible.  
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