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stract 

s paper presents a new deep learning framework, QuantumPath, for long-term stock price prediction, which is

at significance in portfolio management and risk mitigation, especially when the market becomes volatile due 

redictable circumstances such as a pandemic. Our approach is based on stochastic equations, the Feynman–Dir

h integral, deep Bayesian networks, and temporal generative adversarial neural networks (tGAN). The expect

ncial trajectory is evaluated with a Feynman–Dirac path integral. The latter involves summing all possible financ

jectories that could have been taken by the financial instrument. These trajectories are generated with a t-GAN

bability is attributed to each point of each path. The probability is a function of the Lagrangian, which is deriv

m a stochastic equation describing the temporal evolution of the stock. The drift and the volatility at each poin

ich are required in order to evaluate the Lagrangian, are predicted with a deep Bayesian neural network. Giv

t the evolution of a stock’s price is isomorphic to a time series, our temporal GAN consists of long short-ter

mory (LSTM) neural networks, which introduce a memory mechanism, and temporal convolutional neur

works (TCN), which ensure causality. Stock prices are predicted over periods of twenty and thirty days for ni

cks, eight of which are included in the S&P 500 index. Our experimental results clearly demonstrate the efficien

ur approach. 

words: Temporal generative adversarial network, time series, financial predictions, long short-ter

mory, temporal convolutional network 

The stock market is known for its erratic behaviour (Ziemba et al., 2017) with a 2020 episode resulting from t

demic (Zhang et al., 2020; Ashraf, 2020). During the first quarter of 2020, while numerous companies experienc

arp decline in their value, others such as Amazon, Walmart, and Tesla were sharply rising. As a result, those wh

ested in these companies prior to the pandemic made substantial profits while others suffered heavy losses (Nico

l., 2020). In such contexts, stock price prediction may contribute to improving the return on investment while al

igating the risks associated with uncertainty (Zhou et al., 2018). Generative models have the ability to learn t

bability density function associated with a dataset (e.g., audio and images) (Lucic et al., 2018) while the posteri

tribution may be inferred from discriminative models (Ulusoy & Bishop, 2006). Generative adversarial networ

N) are generative models that were first introduced by (Goodfellow et al., 2014). They aim to generate synthe

a with the same probability distribution function as the training dataset. They consist of a generator that produc

thetic data and a discriminator, which evaluates the discrepancy between the synthetic data and the real data. 

These networks are notably difficult to train and tend to suffer from mode collapse (He et al., 2019; ThanhTung

n, 2020). High-frequency stock market prediction based on GAN was first proposed by (Zhou et al., 2018). The

work consisted of a long short-term memory (LSTM) network for the generator and a convolutional neur

work (CNN) for the discriminator. Mode collapsing was reduced in (Saatci & Wilson, 2017) by employing Bayesi
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rence. Bayesian neural networks were employed both for the generator and for the discriminator, and the lo

ction was defined in terms of maximum likelihood. However, this approach did not guarantee convergen

nonenko, 1989; Saatci & Wilson, 2017). Additionally, a stock market prediction framework based on GAN w

posed in (Zhang et al., 2019), where the discriminator and the generator were implemented with a multi-lay

ceptron (MLP) and a LSTM, respectively. The objective was to predict the daily closing prices of various stoc

m the S&P 500. 

In quantum mechanics, quantum state evolution has been tackled by renowned scientists such as Schröding

ac, and Feynman. Initially, Schrödinger derived a wave equation from the Hamiltonian of the system und

sideration(Andreev, 2006). Later on, Dirac and Feynman proposed an alternative, but completely equivalen

mulation, based on the Lagrangian. In Dirac and Feynman’s approach, time evolution is expressed in terms of a pa

gral which is evaluated as a weighted sum over all possible paths or trajectories between the initial and the fin

tes, the weight being determined by a functional of the Lagrangian associated with the system under considerati

repelitsa, 2018). The path integral is discrete in nature and may be evaluated with a truncated expansio

kushadze, 2015; Perepelitsa, 2018). Such path integrals have been employed in numerous applications, includi

tein folding, quantum mechanics, stochastic dynamics, quantum field theories, to mention just a few (Linetsk

7; Ingold, 2002). 

Temporal convolutional networks (TCNs) were originally introduced by (Lea et al., 2016) for video-based acti

mentation. They allow a hierarchical, bi-level analysis of time series (Lea et al., 2016). Low-level features a

ially extracted with a CNN, and high-level features are subsequently captured by a recurrent neural network (RN

a et al., 2016). TCNs tend to outperform standard recurrent networks when temporal series or data streams a

olved (Chung et al., 2014; Pascanu et al., 2013; Jozefowicz et al., 2015; Bai et al., 2018). In addition, TCNs tend

e a longer long-term memory than RNNs, making them more suitable when remote past events are required 

er to obtain accurate predictions (Oord et al., 2016; Bai et al., 2018; Wan et al., 2019). 

In this paper, a new framework for financial predictions, called QuantumPath, is proposed. The expected financ

jectory for a given stock is obtained from a Feynman–Dirac path integral derived from a generic stochastic equatio

 latter describing the temporal evolution of the financial instrument. The drifts and the volatilities, which are t

ameters required to evaluate the probability associated with a particular realisation of a given path, are predict

a deep Bayesian neural network. The various trajectories which result from sampling the data distribution an

ich are required in order to evaluate the path integral with Monte Carlo techniques are predicted using a tempor

N. Three architectures are proposed for the t-GAN: a dense network for both the generator and the discriminato

ense network for the generator and a LSTM network for the discriminator, and a TCN for both the generator a

 discriminator. 

The paper is organised as follows. Feynman–Dirac path integrals for financial predictions are introduced in Secti

he prediction of the path integral parameters, using deep Bayesian networks, is addressed in Section 2. Financ

h generations and data distribution sampling with a t-GAN are exposed in Section 3. The architecture of our t-GA

escribed in Section 4. Our experimental results are reported in Section 5, while Section 6 concludes the paper. 

Financial path prediction using stochastic equations and the Feynman–Dirac path integral 

Essentially, there are two formulations of quantum mechanics: the Schrödinger (Goldin, 2008) equation, and t

nman–Dirac equations (Truman, 1978) (The Heisenberg equation (Esteve, 2002) is an alternative formulation

 Schrödinger equation (Aizenman et al., 2006) in which the state vectors are stationary while the operators a

e-dependent.) The Schrödinger and the Feynman–Dirac formulations are entirely equivalent (Wu¨thrich, 201

 Schrödinger formulation is based on the time-dependent Schrödinger equation: 

𝑖ℏ
𝜕|𝑆(𝑡)⟩

𝜕𝑡
= ℋ̂      

(1) 

which |S(t)⟩  is the time-dependent state vector and ℋ̂  is the Hamiltonian operator; the latter expressing t

tem’s total energy. Whereas most quantum computing algorithms are based on the Schrödinger formulation, he

 formulate the quantum algorithm in terms of Feynman–Dirac path integrals. In contrast to most approaches, t

ntum formulation is not imposed ex cathedra but, rather, derived directly from the stochastic equations associat
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h the temporal evolution of the financial instruments. The temporal evolution of a security S may be characteris

a stochastic equation (Linetsky, 1997): 

( )
( ) ( ) ( ) ( ) ( )

dS t
t S t t S t t

dt
                                  (2) 

ere µ(t) and σ(t) are the drift and volatility, respectively. It is worth nothing that no hypothesis is made about t

ure of these functions. The stochastic noise is defined as 

[ ( )] 0,

[ ( ) ( )]

 

( ),

,i f

E t

E t t t t

T t t T



  



  

 

 (

here E[·] is the mathematical expectation (Strukov & Timan, 1977) while Ti and Tf  define the investment horizon

turally, the evolution of a security is a discrete process characterised by a ‘tick,’ ε, which is the smallest tempora

vement admissible: 

1

1

1

( ) ( )
( ) ( )

 

( ) ( ) ( ),

.

n n
n n n

n n

n n

S t S t
t S t t S t t

t t

t t n

  














  

 (

tead of considering the evolution of a state vector, the Feynman–Dirac equation considers all possible financ

jectories associated with a security: a probability, determined by the Lagrangian of the financial process, 

ociated with every realisation. This is to be contrasted with the Hamiltonian-based Schrödinger equation; t

rangian and the Hamiltonian are related by a Legendre transformation (Tulczyjew, 1977). As the vario

lisations of a security are determined by the stochastic noise, the Feynman–Dirac equation considers all possib

se realisations. A detailed description of path integrals may be found in (Masujima, 2008; Perepelitsa, 201

refore, the Feynman–Dirac integration metric is given by 

( ).
f

i

T

t T

d t 


 

   (

ere the integration is carried out over all possible noise values up to the investment horizon. According to t

nman–Dirac equation, the probability of a given noise realisation is 

1
[ ] exp[ [ ]]p

Z
      (

ere Z is a normalisation factor: 

exp[ [ ]]Z     (

 

[ ] [ ].

f

i

T

T

dt                                                                (8

he action associated with the stochastic noise, i.e. the time integral of the Lagrangian (Dirac, 2005). The Lagrangi

y be defined as a quadratic function: 
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1 2

1
[ ] ( ) ( , ) ( ),

2

1
( , )  ( [ ( ) ( )]) [ ] ( ) .

2

t M t t t

M t t E t t t

  

   





 

    

   (9) 

 us define 

z(t) ≡ ln S(t). (1

n, Eq. 2 becomes: 

( )
( ) ( ) ( ).

dz t
t t t

dt
      (1

 path integral of the Dirac delta function (Linetsky, 1997) of Eq. 11 is hence 

1 ( )
( ( )) ( ) 1.

( )

z t
z t t

t t
  



 
   

 
  (1

this path integral is equal to the identity, Eq. 12 may be inserted into Eq. 7 without changing its value: 

1 ( )
[ ] ( ( )) ( ) exp[ [ ]].

( )

z t
Z p z xi t t

t t
     



 
    

 
   (1

s expression may now be simplified by integrating over the stochastic noise: 

2

1
[ ] exp[ [ ]],

[ ] [ ],

( )
( )

1
[ ] ,

2 ( )

( ),

exp[ [ ]].

 

 

 

f

i

f

i

T

T

T

t T

z p z z z
Z

z dt z

z t
t

tz
t

z dz t

Z z z







 






 
    

 
 



 



 



 (1

h a path integral is illustrated in Fig. 1. It follows that the expectation value of a security, which is the predictio

omes 

1
[ ] [ ] exp[ [ ]]E z z p z z z z z

Z



    (1

ere all the terms are defined in Eq. 14. This path integral may be evaluated with Monte Carlo techniques (Hurta
arbat, 1998): 

( ) ( )

( ) 1

1

1
( ( )) ( ) ( ( )), 

( ( ))

K
i i

N
i i

i

E z t z t p z t

p z t 



 


     (16
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2
( )

( )

( )
( )

1 1
( ( )) exp

2 ( )( ) 2
 

i

i

z t
t

tp z t
tt



 

  
  

    
  

    

    (17

ere 
( ) ( )iz t  is a particular realisation of the financial instrument z(t). The expected value, which is also t

ervable, corresponds to a weighted sum over all possible financial trajectories; the weights have Gaussi

bability distribution functions. In order to apply this quantum model, one should be able to predict, at each tim

p, the drift and the volatility as well as generating the various financial paths. Instead of utilising an ad hoc mod

 propose to generate the financial paths with a temporal generative adversarial network, and to predict the dr

 the volatility with a deep Bayesian network. Applying Monte Carlo techniques entails sampling the probabili

tribution associated with the data; the better the sampling, the faster the convergence, and the higher the accura

t may be achieved. Unfortunately, these distributions are notoriously difficult to sample because of their hi

ensionality (Hurtado & Barbat, 1998). By employing generative models, which learn the data distribution, w

ect that both fast convergence and accuracy may be achieved with a relatively small number of paths. Experimen

ults shall indeed demonstrate that it is the case. Deep Bayesian neural networks are introduced in the next sectio

 

Figure 1: Some of the paths, or trajectories, involved in evaluating a Feynman–Dirac path integral 

The parameters of the path integral are predicted using deep Bayesian neural networks. 

Deep Bayesian neural network for predicting drift and the volatility 

Bayesian neural networks were introduced by (David, 1992). They are essentially stochastic networks in which
 parameter estimation is done by Bayesian inference (Jospin et al., 2020). A Bayesian neural network may be 
ined as Z 

( , , ) ( , ) ( , )p p p d   y x X Y y x X Y  (1

ere x is the input, y the corresponding output, ω represents the parameters of the neural network, and  iX x

  
1

N

i i
Y y are the input and output training sets, respectively. Here, ( , , )p y x X Y is the condition

bability of the output given the input and the training set, ( , )p y x  is the conditional probability of the outp

en the input and the parameters, and ( , )p  X Y  is the posterior distribution over the training set. As opposed

redictive standard neural network, the output of a predictive Bayesian neural network is a density probabili

S(t) 

S 1 ) ( t 

T i T f 

S 2 ( t ) S 3 ( t ) S 4 ( t ) 
S 5 ( t ) 

t 
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ction rather than just a single value. It thus allows for the prediction of drift and volatility. Our Bayesian neur

work is a dense deep neural network, which means that 

 
1

L

i i



 W  (1

ere  are the weights associated with the various layers.  The weights priors are all assumed to be 

ssian: 

0( ) ( ; , ).i ip W W 0 I  (2

 weights posterior is are not tractable, in general, but may be approximated by variational inference (Zhang et a

8; Blei et al., 2017). As a result, the real posterior weights posterior p(ω |X,Y) is approximated with a variation

tribution qθ(ω). The variational parameters θ are obtained by minimising the Kullback–Leibler divergence KL[q ∥

ween the variational distribution and the real posterior distribution (Amin, 2019; Chen & Shao, 1997). T

llback–Leibler divergence is zero when both distributions are identical. Assuming that the data are statistica

ependent, one obtains: 

0

0

1

 

KL[ ] [ln ] KL[ ( ) ln ( , )] ( ) ln ( , ) KL[ ( ) ( )]

( ) ln ( ( )) KL[ ( ) ( )]

q

n

i i

i

q
q p E q p q p d q p

p

q p f d q p

  



 

      

   


    

  





Y X Y X

y x

 (2

ere ( )f    is a dense deep neural network with 

 
1

L

i i



 M  (2

ng the corresponding weights. Deterministic neural networks with stochastic regularisation, such as dropouts (

rey, 2013), may be interpreted as Bayesian neural network approximations (Kononenko, 1989; Springenberg

 2016). Indeed, applying a stochastic regularisation technique is equivalent to multiplying the neural netwo

ights by random noise: 

.i i iW M  (2

The resulting stochastic matrix samples the posterior distribution over the Bayesian neural network weigh

nonenko, 1989; Mullachery et al., 2018). The KL[q ∥p] divergence may be generalised by means of Amari’s 

ergence (Hernandez-Lobato et al., 2016; Cai et al., 2020), this latter being defined as 

 11
D 1 ( ) ( ) .

(1 )
[ ]p q p q d 

   
 

 
 ‖  (2

ari’s α-divergence encompasses numerous metrics which include the KL[q ∥p] divergence (α = 0), and the Helling

tance (α = 1/2 ), amongst others. Therefore, the Kullback–Leibler divergence in Eq. 21 may be replaced with Amar

ivergence. The resulting energy function (a cost or loss function) is called a black-box α energy functi

rnandez-Lobato et al., 2016). Such an energy function provides a better approximation for the marginal likelihoo

ulting in a model that is less biased and which better fits the data distribution (Habeck, 2012). To make the te

re readable, the following notation shall be adopted henceforth: 

0

1
( ) ( ) ( ), n

n

p p f
Z

     
(25a

( ) ( , )p p  X Y , (25b

( ) ( , ),n n nf p  y x  (25c)

( ).Z p Y X  (25d

he most general case, the black-box α energy function is given by 
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1/

0

1/

( ) ( )1
[ ] D [ ] ( ) ln . 

( )

N

n
q N

n

f p
KL q p q p q E

q



 

 

 

  
      
   

  (2

s equation reduces to Eq. 21 when α → 0: 

0 0
0

lim ( ) ( ) KL[ ] [ln ( )].q n

n

q q q p E f





    (2

, Eq. 26 is computationally prohibitive ( ( )N ). In order to solve this problem, (Santana & Hern´andez-Loba

0) proposed a reparametrisation of the black-box α energy function in order to reduce the computational burde

stly, the posterior distribution is approximated with a free-form cavity distribution: 

0

1 ( )
( ) ( ) .

( )

N

q

q
q q

Z p




 



 
  

 
 (2

en this approximation is substituted in Eq. 26, the energy function reduces to 

1

/

0

0

(  
1 1 ( )

( ) ln ) ( ) ( ) .
( )

N
N

N

n

n q

q
q q p f d

Z p





 




   

 




 

      
  

 

   

As α/N ≃ 0 in general, this expression may be further simplified: 

0
0

1
lim ( ) ( ) KL[ ] [ln ( ) ].q n

n
N

q q q p E f 





     (2

ce our Bayesian network is employed in a regression/prediction context, we have  

( ) ( , ) exp[ ( , ( ))]n n n n nf p f    y x y x  (3

ere ( , ( ))n nf 
y x  is a loss function which measures the discrepancy between the prediction and the real da

 energy function may be further simplified by assuming a quadratic loss function: 

2

2
( , ( )) , ( )

2
n n n nf f 

y x y x  (3

 a Gaussian likelihood 
1~ ( ; ( ), ).n nf   

y y x I  (3

his function is sampled with a Monte Carlo technique, one finally obtains: 

 

2 2MC

22

1 1
( ) ln exp[ , ( ) ] log ,

2 2

~ ( )

k

n n i i

n k i

k

ND
q f p

K

q










 

      y x M
                (33) 

ere the  k  are sampled from the variational distribution q(ω), and the {Mi} are the dropout matrices as defin

q. 23. The financial trajectories are also needed to evaluate the path integral; these are generated using a t-GAN

Generating financial trajectories with a temporal GAN 

In order to evaluate the path integral, multiple financial trajectories must be generated. Instead of assuming an 

 model, we propose to learn this model, and to generate these trajectories with a temporal generative adversar
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work (Goodfellow et al., 2014; Zhao et al., 2016). Indeed, as the evaluation of the path integral with a Monte Car

hnique entails sampling the underlying data distribution, we propose to learn and sample this distribution with

N. As the generated trajectories will be more realistic, the Monte Carlo calculation is more likely to converge rapid

h high accuracy. In its original form, generative neural networks consists of a generator and a discriminator. T

erator creates financial trajectories from a uniform random function, while the discriminator ensures that the

jectories are as realistic as possible. In order to meet these requirements, the energy function was originally defin

odfellow et al., 2014) as 

~ ~minmax ln ( ) ln(1 ( ( ))) ,

~

[ ] [ ]
D G D G

G D

G p pE D E D G  
 

  
x z

x z

z

 (3

ere the discriminator DθD(·) is a deep neural network with parameters θD, GθG(·) is the generator, a deep neur

work with parameters θG, and z is a random vector sampled from a uniform distribution . The two networks m

assimilated to players in a minimax game (Du & Pardalos, 2013; Wang et al., 2017). These networks are notorious

icult to train, and tend to be unstable (Thanh-Tung & Tran, 2020). Therefore, the Wasserstein generati

ersarial network (Arjovsky et al., 2017) has been proposed as an alternative. During the learning process, th

work minimises an approximation of the earth mover’s distance (Weng, 2019) based on the Kantorovic

binstein duality (Deshpande et al., 2018; Adler & Lunz, 2018). These networks tend to be easier to train, and mo

ble, while avoiding mode dropping (Bau et al., 2019). The discriminator of the Wasserstein generative adversar

work must satisfy a K-Lipschitz constraint (Liu, 2018; Arjovsky et al., 2017): 

( ) ( ) , ,i j i j i jD D K   x x x x x x  (3

ere K is a constant. The Wasserstein loss (cost or objective) function (Frogner et al., 2015; Dukler et al., 201

ich approximates the earth mover’s distance, has the form: 

~ ~minmax ( ) ( ( )) ,

~

[ ] [ ]
G

G D

W p pE D E D G
 

 
x z

x z

z

 (3

 is set to one, the K-Lipschitz condition may be enforced by clipping the weight matrices’ singular values to o

ito et al., 2017): 

†

1

,

diag( , )

1 1

i i i i

n

j j

 

 

 

  

  

W U V

                                                                        (37

ich implies that the spectral norms of the weights matrices are always smaller than, or equal to, one. 

Financial trajectories are a particular form of time series. In their original form, generative adversarial networ

re designed to handle static data such as images, not for temporally varying entities such as time series. For th

son, we propose to employ a temporal generative adversarial network for generating the financial paths (Linetsk

7; Kakushadze, 2015). Let us assume that the price of the securities are generated over the discrete-time interv

, which results in T realisations of the security being considered. The t-GAN consists of two generato

 first generator, named the temporal generator, takes a latent variable z0 as an argument, and generates a laten

iables time series , in which each temporal latent variable corresponds to a particular realisation of t

ncial trajectory. The latent variable z0 is drawn from a uniform distribution U. The second generator, named t

ncial generator, generates a particular instance of the financial trajectory from the latent variable z0 and from

ticular instance of the temporal latent variable: . 

a result, the Wasserstein loss function associated with the t-GAN becomes: 
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0 01
0 1

1 1

~ 1 0 1 1 0 1
,

, , ~

0

1

0 1 1

min max ( , , ) ( ( , ), , ( , ) ) ,

~ ,

( ) , ,

[ [ ] ] [ [ ] ]
[ ]

[ ]

GTG G D

T T

T p
p

T

E D E D G G

G

   

   

 

z
x x

x x z z z z

z

z z z

 (3

hould be noted that, while z1 varies in time, z0 is stationary in order to ensure consistency in between generat

tances. As mentioned earlier, the K-Lipschitz condition is enforced with singular value clipping (Saito et al., 201

he next section, three architectures are proposed for the t-GAN. 

GAN architectures 

Three architectures are proposed for the t-GAN, illustrated in Fig. 2. The first architecture consists of two den

works: one for the generator and one for the discriminator. The second architecture involves a dense network a

STM. The last architecture combines two temporal convolutional networks (TCN). 

 

Figure 2: GAN architectures: a) Dense network–dense network, b) Dense network–LSTM, c) TCN–TCN 

As for the Dense-Dense GAN, both the generator and the discriminator consist of four fully connected layers havi

0, 20, and 1 neurons respectively. The generator creates financial trajectories from a uniform random functio

ile the discriminator ensures that these trajectories are as realistic as possible. The discriminator is trained with

ary cross-entropy loss function, which aims to distinguish between fake and real samples. 
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Algorithm 1 Dense-Dense GAN 
Input: financial time series, uniform distribution. 
Output: Predicted trajectory for financial instrument 

 

In the case of the Dense-LSTM architecture, the GAN consists of a generator (comprising four fully connected laye

sisting of 10, 20, 40 and 1 neurons respectively) and a discriminator (comprising three LSTM layers having 10, 

 80 neurons and of an output neuron). As for the Dense-LSTM architecture, the discriminator distinguish

ween fake and real samples. The LSTM layers are capable of capturing sequential patterns in financial time serie

s forcing the generator to create realistic fake samples. 

Algorithm 2 Dense-LSTM GAN 
Input: financial time series, uniform distribution. 
Output: Predicted trajectory for financial instrument 

 

Initialization: 
  

• GenerativeNetwork 

1. Denselayer 
{ units=5,act-fcn=ReLU } 

2. Denselayer 
{ units=10,act-fcn=ReLU } 

3. Denselayer 
{ units=20,act-fcn=ReLU } 

4. Denselayer 
{ units=1 } 

5. DiscriminativeNetwork 
6. Denselayer 

{ units=5,act-fcn=ReLU } 
7. Denselayer 

{ units=10,act-fcn=ReLU } 
8. Denselayer 

{ units=20,act-fcn=ReLU } 
9. Denselayer 

{ units=1,act-fcn=Sigmoid } 
10. Model 

{ loss=binarycrossentropy,optimizer=Adam } 

Initialization: 
 

• GenerativeNetwork 

1. Denselayer 
{ units=10,act-fcn=ReLU } 

2. Denselayer 
{ units=20,act-fcn=ReLU } 

3. Denselayer 
{ units=40,act-fcn=ReLU } 

4. Denselayer 
{ units=1 } 

5. DiscriminativeNetwork 
6. Denselayer 

{ units=10,act-fcn=ReLU } 
7. Denselayer 

{ units=40,act-fcn=ReLU } 
8. Denselayer 

{ units=80,act-fcn=ReLU } 
9. Denselayer 

{ units=1,act-fcn=Sigmoid } 
10. Model 

{ loss=binarycrossentropy,optimizer=Adam } 
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In this architecture, the generator has two TCN layers, consisting of 10 neurons each, and an output neuron. 

trast, the discriminator’s two TCN layers consist of 6 neurons each, followed by an output neuron. Both networ

ploy causal padding to prevent information leakage. As for LSTM, TCNs learn sequential patterns and long-ter

aviours. When compared to LSTMs, TCNs tend to have a greater long-term memory. In our study, they outperfor

 other networks for long-term predictions (20 and 30 days). 

 
Algorithm 3 TCN-TCN GAN 
Input: financial time series, uniform distribution. Output: 

Predicted trajectory for financial instrument 

Initialization: 

• Generative Network 

1. TCN layer 
{units = 10, act-fcn = ReLU, padding = causal} 

2. TCN layer 
{units = 10, act-fcn = ReLU, padding = causal} 

3. Dense layer 
{units = 1} 

4. Discriminative Network 
5. TCN layer 

{units = 6, act-fcn = ReLU, padding = causal} 
6. TCN layer 

{units = 6, act-fcn = ReLU, padding = causal} 
7. Dense layer 

{units = 1, act-fcn = Sigmoid} 
8. Model 

{loss= binary crossentropy, optimizer = Adam} 

 

 

Figure 3: a) Illustration of a temporal convolution with dilation factors d = 1,2,4 and a filter size of k = 2, b) 
Architecture of the residual block associated with the temporal convolutional network. 

In a time series, such as a financial trajectory, time flows from the past to the future. This causal directionali

ich is of fundamental importance, is inherently absent from a standard convolutional neural network, so that t

re may influence the past! This problem may be circumvented by employing a TCN (Wan et al., 2019). Our TC

ich is inspired by (Bai et al., 2018), consists of two dilated causal convolution layers as described in Fig. 

bining residual and dilated convolution layers provides the ability to make predictions from both recent and pa

nts (long-term memory) while enforcing causality (Bai et al., 2018). The dilated convolution operator F(s) over

e series s is defined as (Bai et al., 2018) 

1

* .

0

( ) ( )( ) ( ).
d

k

s i d

i

F s f s f i






 x x  (3
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ere d is the dilation factor, k is the filter size, and s − i.d explains the direction of the past. The dilation fact

ermines the scale of the convolution stride. For instance, d = 1 corresponds to a standard neural network. In ord

void a vanishing or an explosion of the gradient, the TCN employs a residual module (Bai et al., 2018), this latt

ng illustrated in Fig. 3(b). Essentially, the residual module consists of a dilated causal convolution, followed 

ight normalization and a non-linear activation function (ReLU). 

Algorithm 4 QuantumPath 

Input: Prediction period T 

Output: predicted financial trajectory 

Data: m : number of neurons per layer (BNN): 10–200 

Data: l :number of hidden layers (BNN): 1–5 

Data: n : number of randomly generated Bayesian network architectures: 1024 

Data: err mod: error model (BNN): homoscedastic or heteroscedastic  

Data: act fcn: activation function (BNN): ramp, SELU and Tanh 

1. Prediction of drifts and volatilities with a deep Bayesian network: 

(a) Generate randomly n BNN architectures by varying the number of neurons per layer (1– m); t

number of hidden layers (1–l), the activation functions (act fcn), and the error model (err mo

(b) Train each generated network with Adam, with the loss function described by Eq. 33. (c) Sele

the most accurate network. 

(d) Employ the network to predict the drifts and volatilities 

2. Prediction of the financial trajectory: 

(a) Train the t-GAN with Adam, employing the loss function described by Eq. 38. 

(b) Generate financial trajectories with the t-GAN (sampling of the data distribution). 

(c) Evaluate the expected predicted financial trajectory with a Feynman–Dirac path integral (E
14–16) with Monte Carlo techniques (Eq. 16–17) from the financial trajectories generated 
the t-GAN, and the drifts and volatilities predicted by the BNN 

 

The whole procedure for price predictions is summarised in Algorithm 1. Stocks are first selected while the

ces, over a given time period, are retrieved. For each stock, the time series is partitioned into a training set and

t set; the test set consists of either the last twenty or last thirty days of the time series. A set of 1024 random

erated Bayesian networks, as described in Section 2, are trained with Eq. 33. The best network is selected to pred

 drift and volatility associated with the prices. From the drifts and the volatilities, the Lagrangian is form

ording to Eq. 14, the probability associated with each point of each financial path being a function of the Lagrangia

 predictions, which correspond to the expectation values, are obtained from Eq. 15. The path integral is evaluat

ording to Monte Carlo techniques as defined in Eq. 16: as the various paths are generated with a t-GAN, t

bability distribution associated with the stocks is sampled directly by the GAN. 

Experimental results 

Our dataset consisted of nine stocks, eight of which are included in the S&P 500 index, namely Apple (AAP

anced Micro Devices (AMD), Amazon (AMZN), Alphabet, better known as Google (GOOG), Microsoft (MSFT

idia (NVDA), Pfizer (PFE), Shopify (SHOP), and Walmart (WMT). These stocks are drawn from various sectors, su

igh-technology, retail, e-commerce, and pharmaceutical, among others. Therefore, the proposed approach may 

luated against diverse financial ecosystems. The only parameters are the start and end dates which were set to

uary 2019 and 31 December 2020 respectively. Therefore, the time series contain data from both before and duri

 Covid-19 pandemic. For each tick, the data consist of open, close, high and low prices. The low, high and closi

ces are normalised with respect to the opening price (Soleymani & Paquet, 2020). Our aim is to predict stock pric

r periods of twenty days and thirty days. For the twenty-day prediction period, the training set consisted of t

t 479 trading days, while the last twenty days’ records were assigned to the test set. For the thirty-day predicti

iod, the training dataset consisted of the first 469 trading days, and the last thirty days’ records constituted the te



Journal Pre-proof

set ue 

to t ly 

wit

in 

Sec er 

lay m 

var or 

mo rs, 

one st 

mo ty 

day

th 

Ten er 

411 .2 

hou

ty 

for he 

tra ne 

tho he 

sto re 

eva ty 

day cy 

of o
Jo
ur

na
l P

re
-p

ro
of

14 

. The chosen trading period was during the Covid-19 crisis, which makes the prediction task more challenging d

he economical and financial instability induced by the pandemic. The financial time series were retrieved direct

h Mathematica with the FinancialData function. 

The calculations were performed as follows: a total of 1024 dense Bayesian neural networks, as described 

tion 2, were generated randomly. Each of these networks consisted of 1 to 5 layers with 10 to 200 neurons p

er, 3 choices for the activation function (ramp, SELU, and tanh), and either a homoscedastic (all the rando

iables have the same variance) or heteroscedastic (the random variables do not share the same variance) err

del. The models were trained in parallel on an HP Apollo System with 40 Dual Intel Xeon Gold 6149 processo

 Nvidia Tesla V100 (32 GB) and 968 GB of memory; one model for each stock. For each particular stock, the be

del was selected for predicting the drifts and volatilities over the test periods, that is, the last twenty and thir

s, respectively. 

The deep Bayesian network was implemented with Mathematica while the GANs were implemented wi

sorFlow 2.2 and Python 3.7. The code for the GANs was executed on a HP Z6 workstation with two Intel Xeon Silv

4 CPUs, 176 GB of RAM and a NVIDIA GeForce RTX 3090 GPU with 24 GB of RAM. The total execution time was 0

rs including both training and predictions. 

The drifts and the volatilities were substituted into the Lagrangian in order to evaluate the occurrence probabili

 each day of each financial trajectory with the help of Eq. 14. Afterwards, all three GANs were trained with t

ining set using the Adam algorithm (Kingma & Ba, 2015). Once trained, they were employed to generate o

usand financial trajectories or paths for the evaluation of the path integral. The mathematical expectations of t

ck prices over the test period, which are inherently the predictions made by our QuantumPath framework, we

luated with the help of Eq. 14 and 15. The relative errors for the predictions over a period of twenty and thir

s, for all three GAN architectures, are reported in Fig. 4 and 5 respectively. These results demonstrate the efficien

ur QuantumPath framework. 

 

Figure 4: Relative errors for price prediction for all nine stocks over a period of 20 days: a) Dense network–
dense network GAN, b) Dense network–LSTM GAN, c) TCN–TCN GAN 
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Figure 5: Relative errors for price prediction for all nine stocks over a period of 30 days: a) Dense network–
dense network GAN, b) Dense network–LSTM GAN, c) TCN–TCN GAN 

The maximum relative errors, for all three GAN architectures, are reported in Fig. 6 for prediction periods of bo

and 30 days. From Fig. 4-6, it may be concluded that the TCN–TCN GAN slightly outperforms the others, while t

se network–LSTM GAN presents the lowest performances. These results point to the importance of the long-ter

mory for price predictions. 

 
(a) (b) 

Figure 6: Maximum relative error for price predictions for the three GAN architectures: a) 20day period, b) 
30-day period 

The proposed method has been evaluated in low and high volatility conditions. Indeed, because of the start an

 dates, 1 January 2019 and 31 December 2020 respectively, the networks were trained both with pre-pandem

 pandemic time series while the predictions were made during a volatile and uncertain period strongly affected 

genous factors such as Covid-19 (He et al., 2020; Soleymani & Paquet, 2021; Zhang et al., 2020; Cervell´oRoyo

jarro, 2020; Nti et al., 2020). In order to determine the impact of the time horizon on the accuracy, the RMSV w

luated for each stock over periods of 5, 10, 15, and 20 days. The results are reported in Tables 1, 2 and 3. The tabl

w that the RMSV remains relatively stable, or at least increases only slowly, as the investment horizon increases

Table 1: RMSV on 5, 10, 15, 20 and 30-day predictions for the Dense-Dense GAN architecture. 

Stocks/Days 5 10 15 20 30 

AAPL 0.025 0.035 0.035 0.040 0.308 

AMD 0.026 0.021 0.024 0.032 0.269 

AMZN 0.023 0.029 0.025 0.030 0.310 

GOOG 0.017 0.017 0.017 0.029 0.314 

MSFT 0.012 0.019 0.025 0.032 0.344 

NVDA 0.011 0.035 0.041 0.035 0.364 

PFE 0.011 0.022 0.037 0.042 0.340 

SHOP 0.043 0.074 0.079 0.081 0.385 

WMT 0.009 0.019 0.021 0.048 0.291 
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Table 2: RMSV on 5, 10, 15, 20 and 30-day predictions for the Dense-LSTM GAN architecture. 

Stocks/Days 5 10 15 20 30 

AAPL 0.094 0.060 0.063 0.148 0.081 

AMD 0.076 0.075 0.081 0.080 0.139 

AMZN 0.094 0.045 0.133 0.072 0.091 

GOOG 0.083 0.069 0.088 0.076 0.128 

MSFT 0.150 0.055 0.078 0.079 0.077 

NVDA 0.075 0.057 0.097 0.096 0.096 

PFE 0.140 0.059 0.132 0.062 0.091 

SHOP 0.125 0.092 0.102 0.151 0.100 

WMT 0.065 0.060 0.118 0.088 0.114 
 

Table 3: RMSV on 5, 10, 15, 20 and 30-day predictions for the TCN-TCN GAN architecture. 

Stocks/Days 5 10 15 20 30 

AAPL 0.022 0.032 0.028 0.031 0.047 

AMD 0.020 0.027 0.030 0.052 0.054 

AMZN 0.021 0.025 0.026 0.025 0.041 

GOOG 0.015 0.024 0.020 0.027 0.030 

MSFT 0.011 0.018 0.026 0.024 0.033 

NVDA 0.016 0.042 0.023 0.038 0.044 

PFE 0.016 0.018 0.033 0.055 0.051 

SHOP 0.038 0.075 0.068 0.070 0.096 

WMT 0.009 0.028 0.017 0.021 0.045 

 

In order to compare our approach to classical ones, the financial predictions have also been performed with 

oregressive integrated moving average (ARIMA) model (Li et al., 2020), a generalised autoregressive condition

eroscedasticity (GARCH) model (Li et al., 2020), and a Markov chain Monte Carlo (MCMC) Ornstein-Uhlenbeck (O

chastic process (Donado et al., 2017). All these methods are commonly employed in time series financ

dictions. The parameters for ARIMA and GARCH were evaluated with the method of moments, while t

ameters for the OU process were evaluated with nested sampling (Sivia & Skilling, 2006), a state-of-the-a

esian inference technique. Their predictions, as well as those obtained with the proposed quantum-hybr

roach, were compared over a period of thirty trading days with the root mean square value (RMSV) metric. T

ults are reported in Table. 4. QuantumPath outperforms OU, ARIMA and GARCH. 

Table 4: RMSV on 30-day predictions for GARCH, ARIMA, OU, and QuantumPath. 

Stocks/Algorithm QuantumPath GARCH ARIMA OU 

AAPL 0.308 23.008 1.016 2.070 

AMD 0.269 16.920 1.146 1.617 

AMZN 0.310 586.176 10.887 35.085 

GOOGL 0.314 325.065 7.836 19.530 

MSFT 0.344 39.834 0.846 1.972 

NVDA 0.364 24.417 1.203 1.360 

PFE 0.340 7.113 0.603 0.829 

SHOP 0.385 203.662 31.288 31.209 

WMT 0.291 27.182 1.392 0.967 

 

Summary and Conclusions 

This paper proposed a new framework, called QuantumPath, for long-term financial predictions. The expect

ncial trajectory is predicted with a Feynman–Dirac path integral which results from the stochastic equati
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ociated with the financial instruments. The path integral parameters—the drifts and the volatilities at all times

 predicted with a deep Bayesian network. The Monte Carlo evaluation of the path integral, which involved sampli

 data distribution, is performed with a t-GAN which incorporates mechanisms for short and long-term memory

ll as causality. Prices for nine stocks, including eight stocks from the S&P 500, were predicted over periods of twen

 thirty days with high precision. 

ically, the temporal evolution of a financial instrument is described with stochastic equations (Linetsky, 1997).

 paper, it has been demonstrated that such an equation may be formulated in terms of a Feynman–Dirac pa

gral. Quantum computing is not, therefore, introduced ad hoc, but is rather the result of the stochastic nature

 stocks: a data-centric approach. These path integrals make it possible to predict the expected value of a financ

trument at a later time. The Monte Carlo evaluation of the path integrals involves sampling the data distributio

rder to optimise the sampling and the precision, and to minimise the computational complexity and the numb

rajectories generated, the trajectories are generated with a t-GAN, which means that only the most probable pat

 considered. Therefore, the sampling mechanism is learned and not assumed, while being optimal in t

sserstein sense. The same may be said about the parameters which are learned and predicted with a deep Bayesi

ral network rather than being fixed by inspection. In addition to financial predictions, this QuantumPa

ework may be applied to risk mitigation, portfolio management, and crisis management. Risk mitigation an

tfolio management are closely related. Indeed, our approach allows us to predict stock prices over a given perio

ime. By knowing the behaviour of the stocks forming a portfolio, it becomes possible to reallocate the assets 

er to maximize the return on investment, thus mitigating the risk. As for crisis management, a sudden decline 

ck prices may be an indicator of an emerging crisis (Liu et al., 2021; Samimi & Samimi, 2021). By knowing 
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