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Abstract

This paper presents a new deep learning framework, QuantumPath, for long-term stock price prediction, which is of
great significance in portfolio management and risk mitigation, especially when the market becomes volatile due to
unpredictable circumstances such as a pandemic. Our approach is based on stochastic equations, the Feynman-Dirac
path integral, deep Bayesian networks, and temporal generative adversarial neural networks (tGAN). The expected
financial trajectory is evaluated with a Feynman-Dirac path integral. The latter involves summing all possible financial
trajectories that could have been taken by the financial instrument. These trajectories are generated with a t-GAN. A
probability is attributed to each point of each path. The probability is a function of the Lagrangian, which is derived
from a stochastic equation describing the temporal evolution of the stock. The drift and the volatility at each point,
which are required in order to evaluate the Lagrangian, are predicted with a deep Bayesian neural network. Given
that the evolution of a stock’s price is isomorphic to a time series, our temporal GAN consists of long short-term
memory (LSTM) neural networks, which introduce a memory mechanism, and temporal convolutional neural
networks (TCN), which ensure causality. Stock prices are predicted over periods of twenty and thirty days for nine
stocks, eight of which are included in the S&P 500 index. Our experimental results clearly demonstrate the efficiency
of our approach.

Keywords: Temporal generative adversarial network, time series, financial predictions, long short-term
memory, temporal convolutional network

The stock market is known for its erratic behaviour (Ziemba et al., 2017) with a 2020 episode resulting from the
pandemic (Zhang et al., 2020; Ashraf, 2020). During the first quarter of 2020, while numerous companies experienced
a sharp decline in their value, others such as Amazon, Walmart, and Tesla were sharply rising. As a result, those who
invested in these companies prior to the pandemic made substantial profits while others suffered heavy losses (Nicola
etal, 2020). In such contexts, stock price prediction may contribute to improving the return on investment while also
mitigating the risks associated with uncertainty (Zhou et al., 2018). Generative models have the ability to learn the
probability density function associated with a dataset (e.g., audio and images) (Lucic et al., 2018) while the posterior
distribution may be inferred from discriminative models (Ulusoy & Bishop, 2006). Generative adversarial networks
(GAN) are generative models that were first introduced by (Goodfellow et al., 2014). They aim to generate synthetic
data with the same probability distribution function as the training dataset. They consist of a generator that produces
synthetic data and a discriminator, which evaluates the discrepancy between the synthetic data and the real data.

These networks are notably difficult to train and tend to suffer from mode collapse (He et al., 2019; ThanhTung &
Tran, 2020). High-frequency stock market prediction based on GAN was first proposed by (Zhou et al., 2018). Their
network consisted of a long short-term memory (LSTM) network for the generator and a convolutional neural
network (CNN) for the discriminator. Mode collapsing was reduced in (Saatci & Wilson, 2017) by employing Bayesian
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inference. Bayesian neural networks were employed both for the generator and for the discriminator, and the loss
function was defined in terms of maximum likelihood. However, this approach did not guarantee convergence
(Kononenko, 1989; Saatci & Wilson, 2017). Additionally, a stock market prediction framework based on GAN was
proposed in (Zhang et al.,, 2019), where the discriminator and the generator were implemented with a multi-layer
perceptron (MLP) and a LSTM, respectively. The objective was to predict the daily closing prices of various stocks
from the S&P 500.

In quantum mechanics, quantum state evolution has been tackled by renowned scientists such as Schrodinger,
Dirac, and Feynman. Initially, Schrodinger derived a wave equation from the Hamiltonian of the system under
consideration(Andreev, 2006). Later on, Dirac and Feynman proposed an alternative, but completely equivalent,
formulation, based on the Lagrangian. In Dirac and Feynman'’s approach, time evolution is expressed in terms of a path
integral which is evaluated as a weighted sum over all possible paths or trajectories between the initial and the final
states, the weight being determined by a functional of the Lagrangian associated with the system under consideration
(Perepelitsa, 2018). The path integral is discrete in nature and may be evaluated with a truncated expansion
(Kakushadze, 2015; Perepelitsa, 2018). Such path integrals have been employed in numerous applications, including
protein folding, quantum mechanics, stochastic dynamics, quantum field theories, to mention just a few (Linetsky,
1997; Ingold, 2002).

Temporal convolutional networks (TCNs) were originally introduced by (Lea et al., 2016) for video-based action
segmentation. They allow a hierarchical, bi-level analysis of time series (Lea et al., 2016). Low-level features are
initially extracted with a CNN, and high-level features are subsequently captured by a recurrent neural network (RNN)
(Lea et al,, 2016). TCNs tend to outperform standard recurrent networks when temporal series or data streams are
involved (Chung et al., 2014; Pascanu et al., 2013; Jozefowicz et al., 2015; Bai et al,, 2018). In addition, TCNs tend to
have a longer long-term memory than RNNs, making them more suitable when remote past events are required in
order to obtain accurate predictions (Oord et al., 2016; Bai et al., 2018; Wan et al., 2019).

In this paper, a new framework for financial predictions, called QuantumPath, is proposed. The expected financial
trajectory for a given stock is obtained from a Feynman-Dirac path integral derived from a generic stochastic equation,
this latter describing the temporal evolution of the financial instrument. The drifts and the volatilities, which are the
parameters required to evaluate the probability associated with a particular realisation of a given path, are predicted
by a deep Bayesian neural network. The various trajectories which result from sampling the data distribution and
which are required in order to evaluate the path integral with Monte Carlo techniques are predicted using a temporal
GAN. Three architectures are proposed for the t-GAN: a dense network for both the generator and the discriminator,
a dense network for the generator and a LSTM network for the discriminator, and a TCN for both the generator and
the discriminator.

The paper is organised as follows. Feynman-Dirac path integrals for financial predictions are introduced in Section
1. The prediction of the path integral parameters, using deep Bayesian networks, is addressed in Section 2. Financial
path generations and data distribution sampling with a t-GAN are exposed in Section 3. The architecture of our t-GAN
is described in Section 4. Our experimental results are reported in Section 5, while Section 6 concludes the paper.

1. Financial path prediction using stochastic equations and the Feynman-Dirac path integral

Essentially, there are two formulations of quantum mechanics: the Schrédinger (Goldin, 2008) equation, and the
Feynman-Dirac equations (Truman, 1978) (The Heisenberg equation (Esteve, 2002) is an alternative formulation of
the Schrodinger equation (Aizenman et al.,, 2006) in which the state vectors are stationary while the operators are
time-dependent.) The Schrédinger and the Feynman-Dirac formulations are entirely equivalent (Wu"thrich, 2010).
The Schrodinger formulation is based on the time-dependent Schrédinger equation:
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in which |S(t)) is the time-dependent state vector and # is the Hamiltonian operator; the latter expressing the
system’s total energy. Whereas most quantum computing algorithms are based on the Schrodinger formulation, here
we formulate the quantum algorithm in terms of Feynman-Dirac path integrals. In contrast to most approaches, the
quantum formulation is not imposed ex cathedra but, rather, derived directly from the stochastic equations associated



with the temporal evolution of the financial instruments. The temporal evolution of a security S may be characterised
by a stochastic equation (Linetsky, 1997):

ase) _
dt

where p(t) and o(t) are the drift and volatility, respectively. It is worth nothing that no hypothesis is made about the
nature of these functions. The stochastic noise is defined as
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where E[-] is the mathematical expectation (Strukov & Timan, 1977) while T:and Tr define the investment horizon.
Naturally, the evolution of a security is a discrete process characterised by a ‘tick,’ €, which is the smallest temporal
movement admissible:
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Instead of considering the evolution of a state vector, the Feynman-Dirac equation considers all possible financial
trajectories associated with a security: a probability, determined by the Lagrangian of the financial process, is
associated with every realisation. This is to be contrasted with the Hamiltonian-based Schrodinger equation; the
Lagrangian and the Hamiltonian are related by a Legendre transformation (Tulczyjew, 1977). As the various
realisations of a security are determined by the stochastic noise, the Feynman-Dirac equation considers all possible
noise realisations. A detailed description of path integrals may be found in (Masujima, 2008; Perepelitsa, 2018).
Therefore, the Feynman-Dirac integration metric is given by
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where the integration is carried out over all possible noise values up to the investment horizon. According to the
Feynman-Dirac equation, the probability of a given noise realisation is
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where Z is a normalisation factor:

Z = [ D& exp[AL]] ™

and

Al¢]= [ dt £[&] (®)

is the action associated with the stochastic noise, i.e. the time integral of the Lagrangian (Dirac, 2005). The Lagrangian
may be defined as a quadratic function:
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Let us define
z(t) = In S(¢).

Then, Eq. 2 becomes:
dz(t)
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The path integral of the Dirac delta function (Linetsky, 1997) of Eq. 11 is hence
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As this path integral is equal to the identity, Eq. 12 may be inserted into Eq. 7 without changing its value:
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This expression may now be simplified by integrating over the stochastic noise:
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Such a path integral is illustrated in Fig. 1. It follows that the expectation value of a security, which is the prediction,

becomes

E[z];jDz p[z]z= %IDZ exp[A[z]] z

(15)

where all the terms are defined in Eq. 14. This path integral may be evaluated with Monte Carlo techniques (Hurtado

& Barbat, 1998):
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where Z(i)(t) is a particular realisation of the financial instrument z(t). The expected value, which is also the

observable, corresponds to a weighted sum over all possible financial trajectories; the weights have Gaussian
probability distribution functions. In order to apply this quantum model, one should be able to predict, at each time
step, the drift and the volatility as well as generating the various financial paths. Instead of utilising an ad hoc model,
we propose to generate the financial paths with a temporal generative adversarial network, and to predict the drift
and the volatility with a deep Bayesian network. Applying Monte Carlo techniques entails sampling the probability
distribution associated with the data; the better the sampling, the faster the convergence, and the higher the accuracy
that may be achieved. Unfortunately, these distributions are notoriously difficult to sample because of their high
dimensionality (Hurtado & Barbat, 1998). By employing generative models, which learn the data distribution, we
expect that both fast convergence and accuracy may be achieved with a relatively small number of paths. Experimental
results shall indeed demonstrate that it is the case. Deep Bayesian neural networks are introduced in the next section.
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Figure 1: Some of the paths, or trajectories, involved in evaluating a Feynman-Dirac path integral
The parameters of the path integral are predicted using deep Bayesian neural networks.

2. Deep Bayesian neural network for predicting drift and the volatility

Bayesian neural networks were introduced by (David, 1992). They are essentially stochastic networks in which
the parameter estimation is done by Bayesian inference (Jospin et al.,, 2020). A Bayesian neural network may be
defined as Z

P [%, X, Y) = [ p(y[x, @) p(e|X, Y)d (18)

N

where x is the input, y the corresponding output, w represents the parameters of the neural network, and X = {Xi }H

N
and Y={yi}i:1 are the input and output training sets, respectively. Here, p(y

X, X,Y) is the conditional

probability of the output given the input and the training set, P(y

X, ®) is the conditional probability of the output

given the input and the parameters, and p(a)| X,Y) is the posterior distribution over the training set. As opposed to

a predictive standard neural network, the output of a predictive Bayesian neural network is a density probability



function rather than just a single value. It thus allows for the prediction of drift and volatility. Our Bayesian neural
network is a dense deep neural network, which means that

o={W} (19)

L
where {Wi},_1 are the weights associated with the various layers. The weights priors are all assumed to be
Gaussian:

o (W) = N (W,;0,1). (20)

The weights posterior is are not tractable, in general, but may be approximated by variational inference (Zhang et al.,
2018; Blei et al., 2017). As a result, the real posterior weights posterior p(w |X)Y) is approximated with a variational
distribution ge(w). The variational parameters 6 are obtained by minimising the Kullback-Leibler divergence KL[q l|p]
between the variational distribution and the real posterior distribution (Amin, 2019; Chen & Shao, 1997). The
Kullback-Leibler divergence is zero when both distributions are identical. Assuming that the data are statistically
independent, one obtains:

KL[a|pl=E,[In %] = KLIg, (@)[In p(Y[X,@)] = ~[a,(@)In p(Y[X, @)do+KLIG, (@) ] py(«)]

(21
= —qu,, (@)In p(y; | £(x,)) dw+KL[G, (@) [ py(@)]
Where f“(*) is a dense deep neural network with
L
0={Mi},, (22)

being the corresponding weights. Deterministic neural networks with stochastic regularisation, such as dropouts (Ba
& Frey, 2013), may be interpreted as Bayesian neural network approximations (Kononenko, 1989; Springenberg et
al,, 2016). Indeed, applying a stochastic regularisation technique is equivalent to multiplying the neural network
weights by random noise:

W, =M. (23)

The resulting stochastic matrix samples the posterior distribution over the Bayesian neural network weights
(Kononenko, 1989; Mullachery et al., 2018). The KL[q Ilp] divergence may be generalised by means of Amari’s a-
divergence (Hernandez-Lobato et al., 2016; Cai et al., 2020), this latter being defined as

0, [l a]= (1 [ pt)"a(e)do). @0

Amari’s a-divergence encompasses numerous metrics which include the KL[q IIp] divergence (a = 0), and the Hellinger
distance (a=1/2), amongst others. Therefore, the Kullback-Leibler divergence in Eq. 21 may be replaced with Amari’s
a-divergence. The resulting energy function (a cost or loss function) is called a black-box @ energy function
(Hernandez-Lobato etal.,, 2016). Such an energy function provides a better approximation for the marginal likelihood,
resulting in a model that is less biased and which better fits the data distribution (Habeck, 2012). To make the text
more readable, the following notation shall be adopted henceforth:

1 (25a)

p(w) = = Po (@] ] f.(@),
p(®) = p(w|X,Y), (25b)
f.(@) = p(y, X, @), (250)
Z =p(Y|X). (25d)

In the most general case, the black-box a energy function is given by
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This equation reduces to Eq. 21 when a - 0:
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Yet, Eq. 26 is computationally prohibitive ((O(N)). In order to solve this problem, (Santana & Hern’andez-Lobato,

2020) proposed a reparametrisation of the black-box a energy function in order to reduce the computational burden.
Firstly, the posterior distribution is approximated with a free-form cavity distribution:

4(0) =5 L )( Q(w)J - (28)
Z, Py (@)

When this approximation is substituted in Eq. 26, the energy function reduces to
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As a/N = 0 in general, this expression may be further simplified:
_ 1 .
lim £, () = L.(q) = KL[q||p,]-=>_E,[In f, ()] (29)
%*}0 a
Since our Bayesian network is employed in a regression/prediction context, we have
£y () o< p(Y, Xy, @) o= exp[-((y,, £ (x,)] 30)

where ﬁ(yn, fo (Xn)) is a loss function which measures the discrepancy between the prediction and the real data.

The energy function may be further simplified by assuming a quadratic loss function:

(2] T @
(0 20D =5y (31)
and a Gaussian likelihood
y~N(y,; f°(x,), 7). (32)
If this function is sampled with a Monte Carlo technique, one finally obtains:
2
£7(a) =——Zln—Zexp[—— Yoo f Ml
(33)
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where the {(?)k} are sampled from the variational distribution q(w), and the {M;} are the dropout matrices as defined

in Eq. 23. The financial trajectories are also needed to evaluate the path integral; these are generated using a t-GAN.

3. Generating financial trajectories with a temporal GAN

In order to evaluate the path integral, multiple financial trajectories must be generated. Instead of assuming an ad
hoc model, we propose to learn this model, and to generate these trajectories with a temporal generative adversarial



network (Goodfellow et al., 2014; Zhao et al., 2016). Indeed, as the evaluation of the path integral with a Monte Carlo
technique entails sampling the underlying data distribution, we propose to learn and sample this distribution with a
GAN. As the generated trajectories will be more realistic, the Monte Carlo calculation is more likely to converge rapidly
with high accuracy. In its original form, generative neural networks consists of a generator and a discriminator. The
generator creates financial trajectories from a uniform random function, while the discriminator ensures that these
trajectories are as realistic as possible. In order to meet these requirements, the energy function was originally defined
(Goodfellow et al.,, 2014) as

£, =minmaxE,_, [InD, 0] +E,.,, [In@-D,, (&, @N],
z~U

where the discriminator Des(-) is a deep neural network with parameters 6p, Gos(:) is the generator, a deep neural

(34)

network with parameters g, and z is a random vector sampled from a uniform distribution I/ . The two networks may
be assimilated to players in a minimax game (Du & Pardalos, 2013; Wang et al., 2017). These networks are notoriously
difficult to train, and tend to be unstable (Thanh-Tung & Tran, 2020). Therefore, the Wasserstein generative
adversarial network (Arjovsky et al., 2017) has been proposed as an alternative. During the learning process, this
network minimises an approximation of the earth mover’s distance (Weng, 2019) based on the Kantorovich-
Rubinstein duality (Deshpande et al., 2018; Adler & Lunz, 2018). These networks tend to be easier to train, and more
stable, while avoiding mode dropping (Bau et al., 2019). The discriminator of the Wasserstein generative adversarial
network must satisfy a K-Lipschitz constraint (Liu, 2018; Arjovsky etal., 2017):

‘D(xi)—D(xj)‘s K‘xi—xj‘,in,xj (35)

where K is a constant. The Wasserstein loss (cost or objective) function (Frogner et al.,, 2015; Dukler et al., 2019),
which approximates the earth mover’s distance, has the form:

£, =minmax E,., [D0]+E,, [DG@)],
z~U

If K is set to one, the K-Lipschitz condition may be enforced by clipping the weight matrices’ singular values to one
(Saito et al., 2017):

(36)
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which implies that the spectral norms of the weights matrices are always smaller than, or equal to, one.

Financial trajectories are a particular form of time series. In their original form, generative adversarial networks
were designed to handle static data such as images, not for temporally varying entities such as time series. For this
reason, we propose to employ a temporal generative adversarial network for generating the financial paths (Linetsky,
1997; Kakushadze, 2015). Let us assume that the price of the securities are generated over the discrete-time interval

[tl b2 tT], which results in T realisations of the security being considered. The t-GAN consists of two generators.
The first generator, named the temporal generator, takes a latent variable zo as an argument, and generates a latent-

1 T
variables time series[zl’ X ], in which each temporal latent variable corresponds to a particular realisation of the
financial trajectory. The latent variable zo is drawn from a uniform distribution U. The second generator, named the
financial generator, generates a particular instance of the financial trajectory from the latent variable zo and from a
1 T
particular instance of the temporal latent variable: [Gl (Z0:21);-- - G120, 2, )]
As aresult, the Wasserstein loss function associated with the t-GAN becomes:
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It should be noted that, while z1 varies in time, Zo is stationary in order to ensure consistency in between generated

instances. As mentioned earlier, the K-Lipschitz condition is enforced with singular value clipping (Saito et al., 2017).
In the next section, three architectures are proposed for the t-GAN.

4. GAN architectures

Three architectures are proposed for the t-GAN, illustrated in Fig. 2. The first architecture consists of two dense
networks: one for the generator and one for the discriminator. The second architecture involves a dense network and
a LSTM. The last architecture combines two temporal convolutional networks (TCN).

Real Sample
Generative Network Discriminative Network

Generative Network Discriminative Network

Generative Network Discriminative Network

Figure 2: GAN architectures: a) Dense network-dense network, b) Dense network-LSTM, c) TCN-TCN

As for the Dense-Dense GAN, both the generator and the discriminator consist of four fully connected layers having
5, 10, 20, and 1 neurons respectively. The generator creates financial trajectories from a uniform random function,
while the discriminator ensures that these trajectories are as realistic as possible. The discriminator is trained with a
binary cross-entropy loss function, which aims to distinguish between fake and real samples.
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Algorithm 1 Dense-Dense GAN

Input: financial time series, uniform distribution.
Output: Predicted trajectory for financial instrument
Initialization:

* GenerativeNetwork

1. Denselayer
{units=>5,act-fcn=ReLU }
2. Denselayer
{units=10,act-fcn=ReLU }
3. Denselayer
{units=20,act-fcn=ReLU }
4. Denselayer
{units=1 }
5. DiscriminativeNetwork
6. Denselayer
{units=>5,act-fcn=ReLU }
7. Denselayer
{units=10,act-fcn=ReLU }
8. Denselayer
{units=20,act-fcn=ReLU }
9. Denselayer
{units=1,act-fcn=Sigmoid }
10. Model
{loss=binarycrossentropy,optimizer=Adam  }

In the case of the Dense-LSTM architecture, the GAN consists of a generator (comprising four fully connected layers
consisting of 10, 20, 40 and 1 neurons respectively) and a discriminator (comprising three LSTM layers having 10, 40
and 80 neurons and of an output neuron). As for the Dense-LSTM architecture, the discriminator distinguishes
between fake and real samples. The LSTM layers are capable of capturing sequential patterns in financial time series,
thus forcing the generator to create realistic fake samples.

Algorithm 2 Dense-LSTM GAN

Input: financial time series, uniform distribution.
Output: Predicted trajectory for financial instrument
Initialization:

* GenerativeNetwork

1. Denselayer
{units=10,act-fcn=ReLU }
2. Denselayer
{units=20,act-fcn=ReLU }
3. Denselayer
{units=40,act-fcn=ReLU }
4. Denselayer
{units=1 }
5. DiscriminativeNetwork
6. Denselayer
{units=10,act-fcn=ReLU }
7. Denselayer
{units=40,act-fcn=ReLU }
8. Denselayer
{units=80,act-fcn=ReLU }
9. Denselayer
{units=1,act-fcn=Sigmoid }
10. Model
{loss=binarycrossentropy,optimizer=Adam  }
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In this architecture, the generator has two TCN layers, consisting of 10 neurons each, and an output neuron. In
contrast, the discriminator’s two TCN layers consist of 6 neurons each, followed by an output neuron. Both networks
employ causal padding to prevent information leakage. As for LSTM, TCNs learn sequential patterns and long-term
behaviours. When compared to LSTMs, TCNs tend to have a greater long-term memory. In our study, they outperform
the other networks for long-term predictions (20 and 30 days).

Algorithm 3 TCN-TCN GAN

Input: financial time series, uniform distribution. Output:
Predicted trajectory for financial instrument
Initialization:

¢ Generative Network

1. TCN layer

{units = 10, act-fcn = ReLU, padding = causal}
2. TCN layer

{units = 10, act-fcn = ReLU, padding = causal}
3. Dense layer

{units = 1}
4. Discriminative Network
5. TCN layer

{units = 6, act-fcn = ReLU, padding = causal}
6. TCN layer

{units = 6, act-fcn = ReLU, padding = causal}
7. Dense layer

{units = 1, act-fcn = Sigmoid}
8. Model

{loss= binary crossentropy, optimizer = Adam}
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Figure 3: a) Illustration of a temporal convolution with dilation factors d = 1,2,4 and a filter size of k = 2, b)
Architecture of the residual block associated with the temporal convolutional network.

In a time series, such as a financial trajectory, time flows from the past to the future. This causal directionality,
which is of fundamental importance, is inherently absent from a standard convolutional neural network, so that the
future may influence the past! This problem may be circumvented by employing a TCN (Wan et al,, 2019). Our TCN,
which is inspired by (Bai et al, 2018), consists of two dilated causal convolution layers as described in Fig. 3.
Combining residual and dilated convolution layers provides the ability to make predictions from both recent and past
events (long-term memory) while enforcing causality (Bai et al., 2018). The dilated convolution operator F(s) over a
time series s is defined as (Bai et al,, 2018)

F() =, N = 3 T, 39
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where d is the dilation factor, k is the filter size, and s - i.d explains the direction of the past. The dilation factor
determines the scale of the convolution stride. For instance, d = 1 corresponds to a standard neural network. In order
to avoid a vanishing or an explosion of the gradient, the TCN employs a residual module (Bai et al., 2018), this latter
being illustrated in Fig. 3(b). Essentially, the residual module consists of a dilated causal convolution, followed by
weight normalization and a non-linear activation function (ReLU).

Algorithm 4 QuantumPath
Input: Prediction period T
Output: predicted financial trajectory

Data: m : number of neurons per layer (BNN): 10-200

Data: [ :number of hidden layers (BNN): 1-5

Data: n : number of randomly generated Bayesian network architectures: 1024
Data: err mod: error model (BNN): homoscedastic or heteroscedastic

Data: act fcn: activation function (BNN): ramp, SELU and Tanh

1. Prediction of drifts and volatilities with a deep Bayesian network:
(a) Generate randomly n BNN architectures by varying the number of neurons per layer (1- m); the
number of hidden layers (1-I), the activation functions (act fcn), and the error model (err mod)
(b) Train each generated network with Adam, with the loss function described by Eq. 33. (c) Select
the most accurate network.
(d) Employ the network to predict the drifts and volatilities
2. Prediction of the financial trajectory:
(a) Train the t-GAN with Adam, employing the loss function described by Eq. 38.
(b) Generate financial trajectories with the t-GAN (sampling of the data distribution).

(c) Evaluate the expected predicted financial trajectory with a Feynman-Dirac path integral (Eq.
14-16) with Monte Carlo techniques (Eq. 16-17) from the financial trajectories generated by
the t-GAN, and the drifts and volatilities predicted by the BNN

The whole procedure for price predictions is summarised in Algorithm 1. Stocks are first selected while their
prices, over a given time period, are retrieved. For each stock, the time series is partitioned into a training set and a
test set; the test set consists of either the last twenty or last thirty days of the time series. A set of 1024 randomly
generated Bayesian networks, as described in Section 2, are trained with Eq. 33. The best network is selected to predict
the drift and volatility associated with the prices. From the drifts and the volatilities, the Lagrangian is formed
according to Eq. 14, the probability associated with each point of each financial path being a function of the Lagrangian.
The predictions, which correspond to the expectation values, are obtained from Eq. 15. The path integral is evaluated
according to Monte Carlo techniques as defined in Eq. 16: as the various paths are generated with a t-GAN, the
probability distribution associated with the stocks is sampled directly by the GAN.

5. Experimental results

Our dataset consisted of nine stocks, eight of which are included in the S&P 500 index, namely Apple (AAPL),
Advanced Micro Devices (AMD), Amazon (AMZN), Alphabet, better known as Google (GOOG), Microsoft (MSFT),
NVidia (NVDA), Pfizer (PFE), Shopify (SHOP), and Walmart (WMT). These stocks are drawn from various sectors, such
as high-technology, retail, e-commerce, and pharmaceutical, among others. Therefore, the proposed approach may be
evaluated against diverse financial ecosystems. The only parameters are the start and end dates which were set to 1
January 2019 and 31 December 2020 respectively. Therefore, the time series contain data from both before and during
the Covid-19 pandemic. For each tick, the data consist of open, close, high and low prices. The low, high and closing
prices are normalised with respect to the opening price (Soleymani & Paquet, 2020). Our aim is to predict stock prices
over periods of twenty days and thirty days. For the twenty-day prediction period, the training set consisted of the
first 479 trading days, while the last twenty days’ records were assigned to the test set. For the thirty-day prediction
period, the training dataset consisted of the first 469 trading days, and the last thirty days’ records constituted the test
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set. The chosen trading period was during the Covid-19 crisis, which makes the prediction task more challenging due
to the economical and financial instability induced by the pandemic. The financial time series were retrieved directly
with Mathematica with the FinancialData function.

The calculations were performed as follows: a total of 1024 dense Bayesian neural networks, as described in
Section 2, were generated randomly. Each of these networks consisted of 1 to 5 layers with 10 to 200 neurons per
layer, 3 choices for the activation function (ramp, SELU, and tanh), and either a homoscedastic (all the random
variables have the same variance) or heteroscedastic (the random variables do not share the same variance) error
model. The models were trained in parallel on an HP Apollo System with 40 Dual Intel Xeon Gold 6149 processors,
one Nvidia Tesla V100 (32 GB) and 968 GB of memory; one model for each stock. For each particular stock, the best
model was selected for predicting the drifts and volatilities over the test periods, that is, the last twenty and thirty
days, respectively.

The deep Bayesian network was implemented with Mathematica while the GANs were implemented with
TensorFlow 2.2 and Python 3.7. The code for the GANs was executed on a HP Z6 workstation with two Intel Xeon Silver
4114 CPUs, 176 GB of RAM and a NVIDIA GeForce RTX 3090 GPU with 24 GB of RAM. The total execution time was 0.2
hours including both training and predictions.

The drifts and the volatilities were substituted into the Lagrangian in order to evaluate the occurrence probability
for each day of each financial trajectory with the help of Eq. 14. Afterwards, all three GANs were trained with the
training set using the Adam algorithm (Kingma & Ba, 2015). Once trained, they were employed to generate one
thousand financial trajectories or paths for the evaluation of the path integral. The mathematical expectations of the
stock prices over the test period, which are inherently the predictions made by our QuantumPath framework, were
evaluated with the help of Eq. 14 and 15. The relative errors for the predictions over a period of twenty and thirty
days, for all three GAN architectures, are reported in Fig. 4 and 5 respectively. These results demonstrate the efficiency
of our QuantumPath framework.
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Figure 4: Relative errors for price prediction for all nine stocks over a period of 20 days: a) Dense network-
dense network GAN, b) Dense network-LSTM GAN, ¢) TCN-TCN GAN

14



40

o

Relative prediction error (%)

40!

20

Relative prediction error (%)

w— AAPL
— AMD
— AMZN
— GOOG
— MSFT
w— NVDA
s PFE
s SHOP
wMT

15 20
Time (days)

(a)

2

s
S

Relative prediction error (%)
S

e W S
1 5 10 20 25 30

15
Time (days)

()

15
Time (days)

()

20

Figure 5: Relative errors for price prediction for all nine stocks over a period of 30 days: a) Dense network-
dense network GAN, b) Dense network-LSTM GAN, ¢) TCN-TCN GAN

The maximum relative errors, for all three GAN architectures, are reported in Fig. 6 for prediction periods of both
20 and 30 days. From Fig. 4-6, it may be concluded that the TCN-TCN GAN slightly outperforms the others, while the
dense network-LSTM GAN presents the lowest performances. These results point to the importance of the long-term

memory for price predictions.
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Figure 6: Maximum relative error for price predictions for the three GAN architectures: a) 20day period, b)

30-day period

The proposed method has been evaluated in low and high volatility conditions. Indeed, because of the start and
end dates, 1 January 2019 and 31 December 2020 respectively, the networks were trained both with pre-pandemic
and pandemic time series while the predictions were made during a volatile and uncertain period strongly affected by
exogenous factors such as Covid-19 (He et al.,, 2020; Soleymani & Paquet, 2021; Zhang et al., 2020; Cervell'oRoyo &
Guijarro, 2020; Nti et al,, 2020). In order to determine the impact of the time horizon on the accuracy, the RMSV was
evaluated for each stock over periods of 5, 10, 15, and 20 days. The results are reported in Tables 1, 2 and 3. The tables
show that the RMSV remains relatively stable, or at least increases only slowly, as the investment horizon increases.

Table 1: RMSV on 5, 10, 15, 20 and 30-day predictions for the Dense-Dense GAN architecture.

Stocks/Days 5 10 15 20 30
AAPL 0.025 | 0.035 | 0.035 | 0.040 | 0.308
AMD 0.026 | 0.021 | 0.024 | 0.032 | 0.269
AMZN 0.023 | 0.029 | 0.025 | 0.030 | 0.310
GOOG 0.017 | 0.017 | 0.017 | 0.029 | 0.314
MSFT 0.012 | 0.019 | 0.025 | 0.032 | 0.344
NVDA 0.011 | 0.035 | 0.041 | 0.035 | 0.364

PFE 0.011 | 0.022 | 0.037 | 0.042 | 0.340
SHOP 0.043 | 0.074 | 0.079 | 0.081 | 0.385
wmT 0.009 | 0.019 | 0.021 | 0.048 | 0.291
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Table 2: RMSV on 5, 10, 15, 20 and 30-day predictions for the Dense-LSTM GAN architecture.

Stocks/Days 5 10 15 20 30
AAPL 0.094 | 0.060 | 0.063 | 0.148 | 0.081
AMD 0.076 | 0.075 | 0.081 | 0.080 | 0.139
AMZN 0.094 | 0.045 | 0.133 | 0.072 | 0.091
GOOG 0.083 | 0.069 | 0.088 | 0.076 | 0.128
MSFT 0.150 | 0.055 | 0.078 | 0.079 | 0.077
NVDA 0.075 | 0.057 | 0.097 | 0.096 | 0.096

PFE 0.140 | 0.059 | 0.132 | 0.062 | 0.091
SHOP 0.125 | 0.092 | 0.102 | 0.151 | 0.100
WMT 0.065 | 0.060 | 0.118 | 0.088 | 0.114

Table 3: RMSV on 5, 10, 15, 20 and 30-day predictions for the TCN-TCN GAN architecture.

Stocks/Days 5 10 15 20 30
AAPL 0.022 | 0.032 | 0.028 | 0.031 | 0.047
AMD 0.020 | 0.027 | 0.030 | 0.052 | 0.054
AMZN 0.021 | 0.025 | 0.026 | 0.025 | 0.041
GOOG 0.015 | 0.024 | 0.020 | 0.027 | 0.030
MSFT 0.011 | 0.018 | 0.026 | 0.024 | 0.033
NVDA 0.016 | 0.042 | 0.023 | 0.038 | 0.044
PFE 0.016 | 0.018 | 0.033 | 0.055 | 0.051
SHOP 0.038 | 0.075 | 0.068 | 0.070 | 0.096
WMT 0.009 | 0.028 | 0.017 | 0.021 | 0.045

In order to compare our approach to classical ones, the financial predictions have also been performed with an
autoregressive integrated moving average (ARIMA) model (Li et al., 2020), a generalised autoregressive conditional
heteroscedasticity (GARCH) model (Li etal., 2020), and a Markov chain Monte Carlo (MCMC) Ornstein-Uhlenbeck (OU)
stochastic process (Donado et al., 2017). All these methods are commonly employed in time series financial
predictions. The parameters for ARIMA and GARCH were evaluated with the method of moments, while the
parameters for the OU process were evaluated with nested sampling (Sivia & Skilling, 2006), a state-of-the-art
Bayesian inference technique. Their predictions, as well as those obtained with the proposed quantum-hybrid
approach, were compared over a period of thirty trading days with the root mean square value (RMSV) metric. The
results are reported in Table. 4. QuantumPath outperforms OU, ARIMA and GARCH.

Table 4: RMSV on 30-day predictions for GARCH, ARIMA, OU, and QuantumPath.

Stocks/Algorithm QuantumPath GARCH ARIMA ou

AAPL 0.308 23.008 1.016 2.070

AMD 0.269 16.920 1.146 1.617

AMZN 0.310 586.176 10.887 35.085
GOOGL 0.314 325.065 7.836 19.530

MSFT 0.344 39.834 0.846 1.972

NVDA 0.364 24.417 1.203 1.360

PFE 0.340 7.113 0.603 0.829

SHOP 0.385 203.662 31.288 31.209

wMT 0.291 27.182 1.392 0.967

6. Summary and Conclusions

This paper proposed a new framework, called QuantumPath, for long-term financial predictions. The expected
financial trajectory is predicted with a Feynman-Dirac path integral which results from the stochastic equation
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associated with the financial instruments. The path integral parameters—the drifts and the volatilities at all times—
are predicted with a deep Bayesian network. The Monte Carlo evaluation of the path integral, which involved sampling
the data distribution, is performed with a t-GAN which incorporates mechanisms for short and long-term memory as
well as causality. Prices for nine stocks, including eight stocks from the S&P 500, were predicted over periods of twenty
and thirty days with high precision.

Typically, the temporal evolution of a financial instrument is described with stochastic equations (Linetsky, 1997). In
this paper, it has been demonstrated that such an equation may be formulated in terms of a Feynman-Dirac path
integral. Quantum computing is not, therefore, introduced ad hoc, but is rather the result of the stochastic nature of
the stocks: a data-centric approach. These path integrals make it possible to predict the expected value of a financial
instrument at a later time. The Monte Carlo evaluation of the path integrals involves sampling the data distribution.
In order to optimise the sampling and the precision, and to minimise the computational complexity and the number
of trajectories generated, the trajectories are generated with a t-GAN, which means that only the most probable paths
are considered. Therefore, the sampling mechanism is learned and not assumed, while being optimal in the
Wasserstein sense. The same may be said about the parameters which are learned and predicted with a deep Bayesian
neural network rather than being fixed by inspection. In addition to financial predictions, this QuantumPath
framework may be applied to risk mitigation, portfolio management, and crisis management. Risk mitigation and
portfolio management are closely related. Indeed, our approach allows us to predict stock prices over a given period
of time. By knowing the behaviour of the stocks forming a portfolio, it becomes possible to reallocate the assets in
order to maximize the return on investment, thus mitigating the risk. As for crisis management, a sudden decline of
stock prices may be an indicator of an emerging crisis (Liu et al., 2021; Samimi & Samimi, 2021). By knowing in
advance, it is possible to plan a better management strategy. We plan to apply this approach to other financial
instruments such as options and forward and future contracts, as well as for forecasting the evolution of the pandemic
from the financial market.
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