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Abstract
Rising temperatures and changing precipitation patterns will affect agricultural production substantially, exposing crops to 
extended and more intense periods of stress. Therefore, breeding of varieties adapted to the constantly changing conditions 
is pivotal to enable a quantitatively and qualitatively adequate crop production despite the negative effects of climate change. 
As it is not yet possible to select for adaptation to future climate scenarios in the field, simulations of future conditions in 
controlled-environment (CE) phenotyping facilities contribute to the understanding of the plant response to special stress 
conditions and help breeders to select ideal genotypes which cope with future conditions. CE phenotyping facilities enable 
the collection of traits that are not easy to measure under field conditions and the assessment of a plant‘s phenotype under 
repeatable, clearly defined environmental conditions using automated, non-invasive, high-throughput methods. However, 
extrapolation and translation of results obtained under controlled environments to field environments is ambiguous. This 
review outlines the opportunities and challenges of phenotyping approaches under controlled environments complementary 
to conventional field trials. It gives an overview on general principles and introduces existing phenotyping facilities that 
take up the challenge of obtaining reliable and robust phenotypic data on climate response traits to support breeding of 
climate-adapted crops.

Introduction

The increase in atmospheric CO2 leads to rising tempera-
tures and changing precipitation patterns (IPCC 2014), 
which have a strong impact on agricultural production. 
While the anticipated effects of climate change may be 

beneficial for the growing conditions in some regions (e.g. 
boreal region), climate change may cause extended or more 
intense periods of stress and different combinations of stress 
conditions in other regions (Lobell et al. 2011; Asseng et al. 
2015; Leng and Hall 2019; Ray et al. 2019). The anticipated 
climate change affects crops in their environment in multi-
ple ways. On the one hand, elevated atmospheric CO2 con-
centration stimulates photosynthesis and may benefit shoot 
growth and yield production as well as abiotic stress adap-
tation by enhanced root growth, decreased stomatal con-
ductance, and, thus, improved water use efficiency (WUE) 
(Lopes and Foyer 2011). On the other hand, it is most likely 
that these positive effects caused by an increased CO2 con-
centration will be negated by increasing temperature and 
changes in precipitation patterns (Lobell and Gourdji 2012). 
Global warming shifts the timing of seasons and thus the 
phenology of plants: leaf development and flowering begins 
earlier in the year (Piao et al. 2019; Menzel et al. 2020). The 
extension of the frost-free period can be advantageous in 
certain regions, but may also lead to heat stress and summer 
droughts in other regions (Trnka et al. 2011; Teixeira et al. 
2013), by shifting the vegetation period, which increases 
evaporation through plant growth in spring (Lian et  al. 
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2020). Drought stress promotes a diverse set of reactions 
of the plant that vary with plant size and the intensity and 
timing of the drought (Tardieu et al. 2018). Plants exposed 
to drought conditions will have an inhibited photosynthesis 
by stomata closure and reduced leaf area, leading to reduced 
yields (Blum 1996). Water deficit, heat stress or combina-
tions thereof during the reproductive development of the 
plant affect pollen viability, fertility, and seed set, resulting 
in major yield losses (Dong et al. 2017; Mahrookashani et al. 
2017; Fábián et al. 2019). All these effects are summariz-
able as the environmental factor (E). On the contrary, adjust-
ments in tilling, sowing, irrigation, application of fertilizer 
and plant protection, summarizable as the management fac-
tor (M), and modification of the genotype of the cultivated 
crops through breeding, as the genetic factor (G), are called 
upon to diminish negative impacts of climate change effects 
on crop production (Challinor et al. 2014).

The phenotype (P) is a single trait or cumulative infor-
mation that represents just one single constellation of the 
total sum of possible phenotypes, referred to as the phenome 
(Davis 1949). Given the near infinite combinations (G x E 
x M) between a genotype (G), its environment (E) and crop 
management (M), the very most import question is to find 
optimal G x M combinations that enables under given future 
E the best P, in terms of qualitative and quantitative outcome 
of crop production. Following the assumptions of the cli-
mate forecasts, future varieties will have to be significantly 
more tolerant against diverse stresses. Breeding driven adap-
tation of crops, as a main pillar of measures to counter nega-
tive effects of climate change, requires the identification of 
genetic variation contributing to an enhanced adaptation to 
abiotic stress as well as the selection and evaluation of per-
formance under climate conditions of the expected future 
target environment. In case that breeders realize an insuf-
ficient genetic diversity for climate-adaptation traits within 
their genepool, an extension of the genetic resources might 
bring advantages. Elite cultivars from regions that are usu-
ally warmer and drier, and are already exposed to predicted 
future climates of the target region, represent an interesting 
source of genetic variation in order to breed cultivars better 
adapted to future climate conditions (Reynolds et al. 2015; 
Atlin et al. 2017). Due to the high environmental interaction 
(e.g. with the length of days), a transfer to completely dif-
ferent regions may not be as straightforward. In addition, it 
must be considered that despite rising temperatures and dry 
vegetation periods, "old" traits remain relevant (e.g. win-
ter hardiness). Therefore, it is not spared to better elicit the 
exact adaptation mechanisms and disentangle their genetic 
determinants. Importantly, questions need to be answered 
about which traits are particularly relevant and, more impor-
tantly, how they interact with each other under future climate 
conditions. If the infinite number of G x E x M interactions 
are considered, it becomes clear that answers cannot be 

given based on experiments alone, but knowledge must also 
be acquired with the help of models (Cooper et al. 2021a). 
The training of these models requires most realistic and reli-
able phenotypic data. Even though phenotypic data which 
originates from field experiments are undoubtedly preferred 
as they describe the crops in their “real” target environment, 
most likely several questions are not to be answered without 
the methodological bridge of CE phenotyping.

To control or not to control?—That 
is the question

Phenotyping for climate response traits requires clearly 
defined environmental conditions corresponding to the 
experimental question. Field grown crops are unsheltered 
from biotic and abiotic stresses, seasons, weather extremes 
(short-term condition of a magnitude exceeding a predefined 
threshold, e.g. heat wave), and climate change (long-term 
alteration of average weather patterns), which challenge 
plant performance and yield (Lobell and Field 2007). Field 
environments are characterized by strong dynamics in light 
intensity and quality, air and soil temperatures, wind expo-
sure, water and nutrient supply and soil compaction (Poorter 
et al. 2016), leading to a high variability of environmental 
conditions which complicate the evaluation and interpreta-
tion of phenotypic data from field trials. In extreme cases, 
highly varying environmental conditions within two or more 
years can weaken the expected year-to-year correlation con-
siderably: a meta-study has shown that the year-to-year cor-
relation of yield data can be very low (r2 = 0.08; Poorter 
et al. 2016). The rationale for CE phenotyping comes for 
three major reasons.

First, future scenarios cannot be realized in the field today 
and require defined, repeatable and deliberately manipulable 
environmental growth conditions. This concerns not only 
tests in breeding activities of existing crop species but also 
the evaluation of possible other species that will become 
relevant in the future in latitudes where they are not grown 
today.

Second, while some traits are relatively easy to phenotype 
under field conditions (e.g. vegetation indices), some are 
hardly phenotypable in the field or only at the cost of high 
labour intensity. Thus, for several traits non-destructive phe-
notyping under CE allows significant improvements in pre-
cision and enables tracking the course of growth (e.g. root 
morphology and recording of diurnal transpiration profiles 
within days and across the lifecycle).

Third, accurate phenotyping based on standardization of 
a certain E x M constellation is pivotal to reduce the resid-
ual error of experiments and enables a reliable heritability 
estimation, which is a key element of breeding gain (Lush 
1943). CE facilitates a reduction of environmentally induced 
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variation, which is also required for molecular phenotyp-
ing, in order to gain profound understanding of the interplay 
of genomic, transcriptomic, proteomic, and metabolic pro-
cesses in the plant.

Despite the benefits of CE phenotyping, it should not be 
considered as a substitute for field phenotyping but rather 
as a complementing tool that allows to gain insights that 
are hard to obtain under field conditions but are essential 
to receive a mechanistic understanding of pathways and/or 
enable the training of models, provided a well-conceived 
experimental setup is implemented. Especially when com-
plex multigenic traits that show a high interaction with 
environmental factors are studied, it is always necessary 
to ensure that findings originating from controlled-envi-
ronment experiments are significant in the target environ-
ment. The beforehand mentioned meta-study compared 
phenotypic data obtained from controlled environments 
with phenotypic data from field trials and found only a low 
correlation between lab and field conditions (Poorter et al. 
2016). Reasons for this poor comparability are manifold: 
lower light intensities and higher temperatures, especially 
in early developmental stages, and often plant densities in 
controlled-environment scenarios diverging from what the 
plants experience in field conditions which ultimately affect 
total plant biomass, growth rates, leaf area and plant archi-
tecture (Poorter et al. 2012). Furthermore, plants grown in 
CE are regularly constrained by pot size and thus reduced 
soil volume, which impedes root growth, affects biomass 
production and the plants reaction to water and nutrient 
availability (Poorter et al. 2012; Passioura 2006), making it 
especially difficult to phenotype for climate response traits. 
To overcome the poor transferability of results from con-
trolled to field conditions, CE phenotyping facilities offer 
the possibility to approximate the field as closely as possi-
ble by generally refining standard growth parameters e.g. by 
adjusting light and temperature conditions to nature (Song 
et al. 2018), due to regular feedback irrigation (Gosa et al. 
2019), by providing a sufficient root volume by using larger 
pots (Hohmann et al. 2016), or by a combination of them 
(Stahl et al. 2020). This allows comprehensive phenotyping 
of plant responses to different applied stress scenarios with-
out losing too much relevance of the acquired phenotypic 
data to field environments. Increasing temperatures in two 
successive stages from 15 to 25 °C over the time of maize 
development, simulating spring temperatures of a temper-
ate region, substantially improved rank correlations between 
biomass data of the glasshouse cultivation and of field tri-
als (Junker et al. 2015). Furthermore, several reports gave 
evidence for the potential of artificially fluctuating light to 
mimic naturally occurring photosynthetic acclimation pro-
cesses (Suorsa et al. 2012; Hirth et al. 2013). Chiang et al. 
(2020) examined the effect of different patterns of light, 
temperature and humidity (fixed day and night conditions, 

conditions following a sinusoidal curve, and mimicking of 
records of environmental conditions in field trials) in an 
indoor facility on different biomass, pigmentation and leaf 
gas exchange parameters in a range of plant species, compar-
ing them to field grown plants. Depending on the species and 
examined parameter, plants exposed to the sinusoidal condi-
tions or mimicked field conditions were more similar to the 
field-grown plants compared to the plants exposed to fixed 
day and night temperatures (Chiang et al. 2020), showing the 
relevance of short-term fluctuations of environmental condi-
tions, when a higher lab-to-field comparability is desired.

The question may arise in which part of the process for 
breeding climate-adapted crops CE phenotyping offers a 
particular added value. As one area of application, CE can 
be considered in the context of pre-breeding to screen poten-
tial crossing parents and to identify donors of certain traits 
of interest. For selection of entire breeding populations, 
CE can supplement large-scale field trials in order to gain 
additional precise phenotypic data that can serve as a train-
ing dataset for crop models. Those can significantly under-
stand responses across different scales and quantify trade-
off effects of manipulation of certain pathways (Wu et al. 
2019). Moreover, very recently Cooper et al. (2021b) illus-
trated opportunities to integrate mechanistic crop models 
with quantitative genetics to enhance selection response. In 
another sense, CE phenotyping can also be applied in one of 
the final stages of the breeding cycles in order to thoroughly 
evaluate responses to specific environmental conditions 
(Ghanem et al. 2015). However, this multi-tier phenotyp-
ing strategy, with increasing trait resolution and decreasing 
genotype number in each subsequent phenotyping stage, can 
be rather seen as an evaluation tool as potential genotypes 
of interest might be already lost in early selection stages.

State‑of‑the‑art phenotyping

In order to deal with the strong dynamics in environmental 
conditions in field environments, a diverse set of techniques 
and facilities were developed and allowed studying the phe-
notypic response of a plant to a certain environment.

A wide range of facility types exists that allow a varying 
level of environmental control and increasing options for 
collection of phenotyping in an unprecedented multi-faced 
resolution. These range from basic facilities, such as rainout 
shelters, that enable control over one or a few factors, to 
greenhouses that can influence several environmental factors 
up to fully controlled facilities that simulate certain field-like 
environmental scenarios.

Phenotyping of dynamic field environments is mainly per-
formed by cameras and sensors mounted to movable carrier 
platforms, which are exposed to potentially greater interfer-
ence from environmental variables during the measurement 
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procedure (e.g. intensity of sunshine, wind, etc.) than indoor 
systems. With regard to comparability of different measure-
ment runs between locations and time points, unfavourable 
environmental variables like strong windfall moving leaves 
and whole plant canopies, or clouds blocking direct sun-
light and thereby causing colour distortions during imaging 
can render field phenotyping inferior to indoor phenotyping 
under controlled environments in differentiating between 
the contribution of genotypic variation to a recorded image 
of a phenotype from noise introduced by the environment. 
Despite this susceptibility, field phenotyping technologies 
generate meaningful data and contribute significantly to the 
understanding of a crop interacting with its environment 
(Araus and Cairns 2014).

Non-invasive high-throughput phenotyping of field stands 
is realized by camera systems mounted to mobile tractors 
(Salas Fernandez et al. 2017) or unmanned aerial vehicles, 
which score plant height and extract colour-related traits 
from crop canopies with high repeatability and over all 
cover greater areas in shorter time (Madec et al. 2017; Yang 
et al. 2017). Potentially highest throughput for traits like 
normalized difference vegetation index could be achieved 
using satellite images, which capture a whole field within 
one picture, and can lead to highest correlation with biomass 
and yield compared to other techniques (Tattaris et al. 2016). 
Field phenotyping with higher resolution can be achieved 
by stationary equipment built around a field stand. At the 
Rothamsted Research facility, UK, a fixed crane equipped 
with cameras was successfully used to determine wheat 
heading and flowering stages by high-throughput phenotyp-
ing a field stand (Sadeghi-Tehran et al. 2017). A low level 
of control can be applied by automatic rainout shelters to 
field stands and the phenotype as a response to water deple-
tion can be recorded (Beauchêne et al. 2019). Any of the 
above-mentioned field phenotyping devices provide a smart 
solution to dissect G x E x M interaction, but all are confined 
to the environment present at the point in time and space 
of the respective measurement (Araus and Cairns 2014). 
Furthermore, field experiments cannot be performed under 
future environmental conditions predicted to be prevalent 
at a certain location like higher average temperatures due to 
climate change (Pan et al. 2015). Higher minimum tempera-
tures, especially higher night-time temperatures, do nega-
tively impact yield development (Prasad et al. 2008, Hatfield 
et al. 2015). Artificially increasing night-time temperature 
by covering small areas with meshes achieved only a slight 
increase and it was only applicable for small research field 
sites (Beier et al. 2004).

Indoor phenotyping facilities limit the randomness of 
environmental variation and implement a certain degree of 
control but increase the artificiality of the growth condi-
tions (Fig. 1). More control and thereby higher repeatabil-
ity are achieved by integrating high-throughput phenotyping 

systems into indoor glasshouses and growth chambers. There 
are many approaches to improve phenotyping under partially 
controlled environments (Yang et al. 2020; Pieruschka and 
Schurr 2019). Advances in sensor technology paved the 
way for the development of high-throughput-phenotyping 
platforms that provide a broad applicability for phenotyping 
under both controlled and field conditions (Sadeghi-Tehran 
et al. 2017; Czedik‐Eysenberg et al. 2018; Maes and Steppe 
2019).

Drought and salt stress

High-throughput shoot phenotyping facilities were inte-
grated into glasshouses all around the globe following the 
same concept of transporting the plants to imaging stations 
(Plant-to-sensor), which are equipped with cameras that 
cover different spectra of the electromagnetic radiation rang-
ing from visible light to near infrared, that capture images of 
all major crop species like rice (Hairmansis et al. 2014; Yang 
et al. 2014), sorghum (Neilson et al. 2015), maize (Muraya 
et al. 2017; Zhang et al. 2017), barley (Chen et al. 2014; 
Neumann et al. 2015), and canola (Knoch et al. 2019). This 
architecture allows glasshouses to be built large enough to 
phenotype crop species on a whole population level and 
associate natural genomic variation with image-derived 
traits in a genome-wide association study e.g. in rice (Yang 
et al. 2014), in maize (Muraya et al. 2017), and also in canola 
(Knoch et al. 2019). Except from light, glasshouses shield 
the growth area from precipitation and outside temperature 
dynamics, which makes the application of abiotic stresses 
like water or nitrogen deficiency and increased soil salinity 
straight forward (Chen et al. 2014; Hairmansis et al. 2014; 
Neilson et al. 2015; Neumann et al. 2015). During applied 
drought stress, plants were phenotyped non-invasively in a 
daily interval and wilting, the inflection point at rewatering, 
and the recovery phase could all be modelled and closely 
tracked (Chen et al. 2014). The heritability of some traits 
decreased during drought and recovered after rewatering, 
while others were highly heritable throughout the experi-
ment, indicating that having a multitude of traits is beneficial 
to precisely characterize a phenotype with all its experiment 
specific characteristics (Chen et al. 2014). While the increase 
in global mean temperature is a consensus between studies 
(Gornall et al. 2010; Pan et al. 2015), its impact on agri-
culture and severity of drought is a complex topic to pre-
dict on a global scale (Gornall et al. 2010). Robust drought 
indices taking meteorological, agricultural, and socioeco-
nomic droughts into account are necessary to characterize 
and predict the severity of droughts (Mukherjee et al. 2018) 
as crop yield of major crop species is predicted to change 
differently in response to drought and locality of the regions 
they are grown in (Leng and Hall 2019). The increase of soil 
salinity due to sea-level rise in coastal regions (Dasgupta 
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et al. 2015) and due to prolonged droughts and decline in 
precipitation in arid and semi-arid regions (Corwin 2020) 
further impairs crop yield under a global warming scenario. 
Controlled-environment phenotyping can help to elucidate 
the G x E interaction under well-defined drought conditions 
(Chen et al. 2014; Neilson et al. 2015; Neumann et al. 2015) 
and soil salinity levels (Hairmansis et al. 2014). Large vol-
ume containers can counter the constraint of typical CE pot 
size (Hohmann et al. 2016; Thomas et al. 2018; Stahl et al. 
2020).

Temperature

The global temperature increase itself has one of the most 
drastic effects on yield development, and without taking 
CO2-fertilization or further crop improvement into account, 
each degree-Celsius increase is predicted to decrease crop 
yield on average between three and seven percent depending 
on the species (Zhao et al. 2017). Experiments under con-
trolled environments with increased mean temperature found 
that elevated temperature during the onset of the reproduc-
tive stage of development in maize reduced crop yield by 
up to 90% but increased vegetative biomass overall (Hat-
field et al. 2015). The response of crop species differs with 
regard to yield development. The combination of different 

crop species grown at several locations in Australia allowed 
the deduction of sensitivity patterns against environmen-
tal factors (Dreccer et al. 2018). Hence, the temperature 
responses of crops during certain developmental stages are 
unique in their degree of impact and in their direction (Luo 
2011). In Arabidopsis, the genetic architecture of a develop-
mental stage-specific response to temperature extremes was 
dissected in a GWAS and found to differ between pre- and 
post-anthesis in a controlled-environment experiment (Bac-
Molenaar et al. 2015).

Combining CE and repeated non-invasive high-through-
put phenotyping enabled the detection of time resolving 
quantitative trait loci (QTL) action of alleles in maize 
(Muraya et al. 2017), in canola (Knoch et al. 2019), and in 
Arabidopsis (Meyer et al. 2020). The occurrence of growth 
stage-specific QTL during GWAS highlights the impor-
tance of repeated phenotyping in addition to endpoint 
yield phenotyping to gain knowledge in growth dynamics 
and the underlying genetic architecture, which leads to 
the final phenotype. CE phenotyping could provide insight 
into the genetic architecture of developmental stage-spe-
cific temperature responses, to help stakeholders breed cli-
mate change resilient crops. For stakeholders with lower 
budgets, the hurdle of entry into CE phenotyping was 
lowered significantly by recent technology advancements. 

Fig. 1   Illustration of the different phenotyping depths for phenotyp-
ing of trait complexes (vertical axis) and degree of environmental 
control (horizontal axis) using exemplary facilities for different facil-

ity categories. Picture sources: a Sadeghi-Tehran et al. (2017), b Jun-
ker et al. (2015), c–f own records
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Any greenhouse can be upgraded into a high-throughput 
phenotyping platform using affordable Raspberry Pi com-
puters (Minervini et al. 2017), an approach which gener-
ates high-quality data sufficient for deep neural networks 
(Samiei et al. 2020).

Although most of the CE phenotyping experiments were 
run under constant conditions with at most a mild tempera-
ture shift only between night and day, a controlled environ-
ment does not necessarily equal constant climate conditions. 
While climate change will affect the whole ecosphere of the 
planet, lower or higher latitudes will be differently affected 
(Pan et al. 2015). Lower latitudes, and thereby crop species 
currently adapted to those regions, will be more severely 
afflicted than high- and especially mid latitudes (Rosenzweig 
et al. 2014). Flowering time of A. thaliana accessions was 
assessed by simulating the dynamics of the daily tempera-
ture, day length, and the average light intensity per day in 
a growth chamber simulating both spring and summer in 
Sweden and Spain to dissect the genetic components lead-
ing to acclimation processes between the latitude of origin 
(Li et al. 2010). Including the dynamics of an environment 
into CE phenotyping can shed light onto understanding the 
genetic differences of acclimation processes between varie-
ties of the same species to specific latitudes. In addition, CEs 
allow species from other regions to be tested for introduction 
into a target environment through targeted simulation.

In general, elevating the levels of total intercepted light 
from common growth chambers to levels found in a field 
environment can lead to a 60% increase in biomass accumu-
lation (Poorter et al. 2016). Furthermore, a 10 °C difference 
in temperature during the growth period amounts to a differ-
ence of accumulated biomass to up to 600%, while natural 
diurnal temperature shifts caused by day night cycles and 
seasons are commonly neglected in controlled environments, 
which is an additional explanation for the poor lab-to-field 
correlation between phenotyping experiments (Poorter et al. 
2016). High-throughput phenotyping needs to be combined 
with dynamic environments to dissect genetic variation 
under natural or field-like environmental dynamics, but still 
in a controlled and repeatable fashion to not suffer from the 
randomness of field experiments. Bao et al. (2019) approach 
this discrepancy by using an array of eight precisely con-
trolled growth chambers, which are phenotyped by a mobile 
robotic rover. The rover is equipped with a matrix of imaging 
sensors covering different spectra and drives autonomously 
into the environment chambers (Sensor-to-plant), which 
themselves are designed to achieve field-relevant dynamics 
in temperature, humidity, light intensity, and also to simulate 
a range of CO2 concentrations (Bao et al. 2019). However, 
the chambers together cover a growth area of only 14.4 m2 
which requires researchers to invest more into prior experi-
mental planning to achieve interpretable results.

Carbon fertilization

Current and future climate change will further increase 
global temperatures accompanied by increased CO2 levels 
due to anthropogenic carbon emissions (Pan et al. 2015). 
Carbon fertilization due to elevated CO2 levels is expected 
to alleviate the negative impact of temperature increase on 
yield development, with a stronger benefit for C3 than C4 
plants (Fuhrer 2003; Pongratz et al. 2012). The effects of 
elevated CO2 levels on plant growth are not expected to act 
ubiquitously positive but depend in their amplitude on the 
interaction with regional environments (McGrath and Lobell 
2013), on the frequency of droughts (Jin et al. 2018), and 
will likely decrease the nutritional value of both crops (Taub 
et al. 2008) and vegetables (Dong et al. 2018). A large-scale 
comparison of yield increases under elevated CO2 concen-
trations found 50% lower yield increase for C3 plants grown 
in the field than indoor and no increase for C4 plants (Long 
2006). High-throughput phenotyping platforms should be 
able to simulate dynamic environments, as just increasing 
CO2 levels but keeping other environmental factors steady 
will not reflect the full complexity of G x E interaction nec-
essary to generate high-quality input parameters for mod-
elling plant performance under predicted climate change 
conditions.

Simulated field

CE phenotyping facilities have contributed to advances in 
knowledge in various areas with their individual strengths. 
Still, it turns out that each of the mentioned approaches is 
mostly not ideal in all requirements of phenotyping. Some 
facilities allow a multifaceted data acquisition in a level of 
detail not achieved so far but may have weaknesses with 
regard to the comparability of plant growth conditions. On 
the other hand, some systems show their special strengths 
in the cultivation of plants in a field-like manner but may 
not be equipped with high-resolution sensors. The pheno-
typing of adaptation traits in the context of climate change 
requires a triad of realistic growth conditions, sufficient reso-
lution of relevant trait detection, and financial and temporal 
feasibility of the investigations—in other words “Breeders 
Friendly” (Reynolds et al. 2020). Depending on the objec-
tive of the study, the comparative advantages of one sys-
tem may, to a certain extent, justify the neglect of another 
property (Fig. 2). To bridge the gap between controlled 
environments and field phenotyping, a unique plant growth 
and high-throughput phenotyping facility, is currently in 
the prototype phase at the IPK Gatersleben (personal com-
munication Altmann T. 2020). It is designed like a huge 
growth chamber, shielded from the outside environment, but 
recreating field-like dynamics of temperature, light quality 
and quantity, relative air humidity, wind simulation, and the 
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dynamics of CO2 from ambient to up to 1200 ppm. Plants 
are grown in containers filled with layers of soil, loess, and 
gravel, which are large enough to mimic a plot of crops com-
monly found in field stands. An isothermal climate of up to 
six meters from the top soil levels allows the cultivation of 
any major crop species like barley, oilseed rape or maize.

Installations and technologies in this review represent 
only a fraction of the available phenotypic resources as noted 
by Yang et al. (2020) who counted 82 mechanized phenotyp-
ing platforms across the globe. Advances in phenotyping 
technologies, in- and outdoors, have been a joint effort of 
researchers with backgrounds in multiple disciplines from 
many countries. The IPPN, EPPN, and DPPN associations 
act as resources to increase the visibility of the available 
phenotypic resources in the world (https://​www.​plant-​pheno​
typing.​org/​infra​struc​ture_​map, https://​eppn2​020.​plant-​pheno​
typing.​eu/​EPPN2​020_​insta​llati​ons, https://​dppn.​plant-​pheno​
typing-​netwo​rk.​de/​index.​php).

Automated digital trait assessment

The above-listed controlled-environment phenotyping facili-
ties offer particular advances for phenotyping by enabling 
automated high-throughput phenotyping with a lower inten-
sity of manual labour, higher accuracy, “stress on demand”-
conditions, and a higher frequency of time points for assess-
ing traits over the crop lifecycle. Besides the determination 
of a suitable and well-designed experimental set-up, it is 
also necessary to consider which traits are relevant in order 
to identify the performance of the plant in unfavourable 
environments (Negin and Moshelion 2017). A number of 
phenotypic parameters are available that are related to the 

plant’s tolerance against several stress conditions, are robust 
and reliable, show a higher heritability than yield or yield 
stability, and can be used to measure plants characteristics 
towards drought and heat tolerance (Richards et al. 2010; 
Gupta et al. 2012).

Phenotyping approaches can be divided into two classes, 
invasive or non-invasive methods. The former needs to sam-
ple parts of a plant or harvest the whole plant, which is a 
destructive process and prevents any successive measure-
ment of the same tissue or the same individual. It generates 
a snapshot of the characteristics of a plant, which interacted 
with a specific environment until the time of sampling. The 
latter collects information from any tissue or the whole plant 
by non-destructive measurements and enables subsequent 
recordings from the identical individual. Thereby it can gen-
erate a series of phenotypic snapshots, which are still limited 
by the exposure of the plant to a specific environment but 
are not limited by time and can track changes in the pheno-
type throughout the life cycle of a plant. When comparing 
destructive to non-destructive methods, a high correlation is 
achieved between shoot fresh and dry weight, destructively 
measured leaf area and corresponding predictions from RGB 
images (Ge et al. 2016).

Image‑derived trait acquisition

The most common traits which are phenotyped non-inva-
sively in a high-throughput fashion, are the result of the 
interaction between a plant and photons from diverse fre-
quencies of the electromagnetic radiation. In the visible 
light spectrum, red green blue (RGB) cameras are routinely 
used to capture the reflection of photons from the plant and 
extract image related traits like leaf area or digital biomass 
(Klukas et al. 2014; Chen et al. 2014). Digital and real bio-
masses are both multigenic traits, but in contrast to real 
biomass, digital biomass can be repeatedly measured and 
the temporal dynamics of the genome regions significantly 
linked with the measured trait at a specific time point can 
be dissected (Muraya et al. 2017). The reflection of photons 
from the near-infrared spectrum between 750 and 1400 nm 
in plant leaves is directly linked to water content (Seelig 
et al. 2008), and can be used to assess the severity of drought 
in controlled environments in high-throughput phenotyp-
ing platforms (Muscolo et al. 2015) or provide information 
about the vigour and water content of crops in the field with 
UAV or even satellite mounted cameras (Hunt et al. 2016; 
Di Gennaro et al. 2018). Fluorescence, the absorption of 
photons and later re-emission of photons with mostly lower 
energy levels, is used to detect chlorophyll fluorescence in 
plant leaves, which is directly linked to the maximum photo-
system II (PSII) efficiency and the PSII operating efficiency 
(Tschiersch et al. 2017), and can be used to detect drought 
stress (Mathobo et al. 2017) or act as biomarkers for abiotic 

Fig. 2   The circle of phenotyping methods within the triangle of con-
flicting objectives illustrates that improvement of phenotyping facili-
ties in one aspect comes at the expense of the others

https://www.plant-phenotyping.org/infrastructure_map
https://www.plant-phenotyping.org/infrastructure_map
https://eppn2020.plant-phenotyping.eu/EPPN2020_installations
https://eppn2020.plant-phenotyping.eu/EPPN2020_installations
https://dppn.plant-phenotyping-network.de/index.php
https://dppn.plant-phenotyping-network.de/index.php
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stress in crop phenotyping (Kalaji et al. 2018). Hyperspec-
tral cameras, which capture the reflection of a wide range 
of wavelengths often from 400–1000 nm, can be used to 
detect abiotic plant stress like salt stress (Sytar et al. 2017) or 
biotic stress like scoring the disease severity of charcoal rot 
in soybean (Nagasubramanian et al. 2019). The high dimen-
sion of data due to scanning a continuum of the electromag-
netic spectrum, which also generates a large amount of data, 
makes it challenging to handle the output from hyperspec-
tral imaging, which has led to the frequent implementation 
of machine learning for the analysis of hyperspectral data 
(Lowe et al. 2017). Information from photons with a higher 
energy like X-ray or gamma ray radiation is used for high-
resolution root phenotyping by X-ray computer tomogra-
phy (CT) or positron emission tomography (PET) (Atkinson 
et al. 2019). Schmidt et al. (2020) recently demonstrated the 
potential of using an X-ray computed tomographic analysis 
to scan wheat ears exposed to drought and heat stress in 
order to evaluate grain setting and grain size incl. deforma-
tions along the ear. Given the potential to scale the through-
put up to several thousands of heads the approach seems to 
be suitable for large-scale screenings in breeding programs. 
High-resolution root phenotyping and high-resolution phe-
notyping of plant tissues can also be performed by magnetic 
resonance imaging (MRI), measuring the relaxation of the 
spin of atomic nuclei in a magnetic field (Jahnke et al. 2009; 
van Dusschoten et al. 2016).

Image-derived traits capture the integrated prior interac-
tion of environment and genotype which led to the phenotype 
measured at one moment in space and time, which by nature 
makes them multigenic traits. Due to their integrated high 
informational load, image-derived traits can be effectively 
used to not only analyse the plant stress or health status, but 
also to predict a possible phenotype from the observation of 
the performance of a genotype under a specific environment. 
Light reflection spectroscopy led to the prediction of forage 
quality in ryegrass accessions using hyperspectral imaging 
(Shorten et al. 2019), of pepper quality using near-infrared 
reflectance spectroscopy (Toledo-Martín et al. 2016), of 
biotic interaction of sugar beets with nematodes (Joalland 
et al. 2017), of abiotic interaction of rice with arsenic load 
in agricultural soil (Shi et al. 2016), of bean texture quality 
(Mendoza et al. 2018), and also whole plant biomass from 
digital biomass (Chen et al. 2018). A latest summary of the 
application of hyperspectral to investigate yield limits in 
wheat is given by Bruning et al. (2020).

Transpiration and related traits

The ability to accurately measure parameters such as water 
uptake and transpiration helps to dissect water use effi-
ciency and transpiration efficiency and supports breeding 
for drought tolerance. A parameter used for assessment of 

plant transpiration is carbon isotope discrimination (Farqu-
har and Richards 1984). Even though this trait shows a high 
heritability (Condon and Richards 1992), its assessment is 
destructive and labour-intensive making it difficult to ana-
lyse many individuals in parallel. Stomatal conductance, a 
trait related to carbon isotope discrimination, is an interest-
ing trait to select for in order to improve drought and heat 
tolerance.

Further, indirect traits can help to draw conclusions on 
genetic variation of water use associated traits. For example, 
stomatal conductance can be indirectly assessed by measur-
ing leaf temperature. A low canopy temperature indicates a 
high stomatal conductance and can be used as an estimator 
for plant transpiration (Leinonen et al. 2006; Munns et al. 
2010). Indeed, canopy temperature depression (the differ-
ence between the temperature of the plant and the air) has 
been associated with yield performance (Reynolds et al. 
1999).

Considering that drought stress has extremely develop-
mental stage-specific effects and putative traits confer only 
context-dependent stress tolerance (Tardieu 2012; Tardieu 
et al. 2018), the hope is that by continuously tracking the 
interplay between growth dynamics and plant response 
across the life cycle, one can find critical relationships that 
are likely to be missed by endpoint phenotyping or sporadic 
records. A straightforward and accurate method for estima-
tion of plant transpiration is the gravimetric determination 
of transpiration and it is generally considered a valuable tool 
for phenotyping water characteristics due to its accuracy and 
simplicity and allows detailed insights into the drought stress 
response, which cannot be achieved under field conditions. 
Equipping each pot with a scale facilitates such a real-time 
measurement of transpiration enabling tracking of drought 
stress responses across all stages of the plant’s development 
and even genotype-specific diurnal differences in transpira-
tion patterns (Gosa et al. 2019; Dalal et al. 2020). In com-
bination with parallel detection of image-derived traits, as 
plant architecture or stay green, water use can be referred 
to the daily plant biomass allowing the estimation of daily 
transpiration efficiency (Vadez et al. 2015; Ryan et al. 2016; 
Halperin et al. 2017; Chenu et al. 2018; Stahl et al. 2020).

Root architecture

In order to breed for improved abiotic stress tolerance, root 
morphology is a relevant target trait, as altered root system 
and/or roots which tap into deeper soil layers can be benefi-
cial for plant performance under water and nutrient limited 
conditions and can contribute—depending on the environ-
ments—to maintaining yield and yield stability under stress 
conditions. But, phenotyping for root traits has a major 
disadvantage, especially under field conditions: root phe-
notyping methods are mostly invasive and labour-intensive 
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(Trachsel et al. 2011; Perkons et al. 2014; Wu and Guo 
2014). Moreover, the heterogeneity of soil characteristics 
in the field makes it difficult to obtain accurate phenotypic 
data on root properties. A faster and more accurate analysis 
of root system architecture becomes possible with the help 
of special phenotyping platforms that use transparent gels as 
growth medium (Hargreaves et al. 2009; Clark et al. 2011; 
Atkinson et al. 2019) or soil-filled rhizotrons with a transpar-
ent side for root observation (Nagel et al. 2012). Nagel et al. 
(2012) built a high-throughput root phenotyping platform 
into a greenhouse, which allowed phenotypic traits, like root 
system architecture, to be assessed under different environ-
mental scenarios. Species like Arabidopsis, rapeseed, barley, 
wheat, and maize were grown in flat rectangular pots with 
one transparent side, in a fully automated fashion and both, 
shoot and roots were phenotyped non-invasively and thereby 
repeatedly. The visible portion of the root was dependent 
on the species, but in all cases meaningful phenotypes were 
collected with high repeatability depending on the trait and 
species (Nagel et al. 2012). While the controlled environ-
ment makes it possible to precisely measure traits like root 
geometry and track temporal growth responses throughout 
an experiment, plant biomass is likely negatively affected 
by the narrow pots (Poorter et al. 2012) and root system 
architecture in a field stand is additionally affected by the 
presence and competition of roots of neighbouring plants 
(Morris et al. 2017), which in the end makes the lab-to-
field translation a challenge. Since stress conditions further 
decrease the accuracy of measurement and consequently the 
heritability of root traits (Nagel et al. 2012), the reduction 
of introduced noise by controlling the environment and thus 
generating higher achievable accuracy of measurement par-
tially redeems CE phenotyping.

Nevertheless, as the exposure to visible light leads to pho-
totropic responses, roots should be effectively shielded from 
visible light e.g. by filter material only permeable for near-
infrared light (Shi et al. 2016). Magnetic resonance imaging, 
computed tomography and positron emission tomography 
are used in CE for assessing root structure (Atkinson et al. 
2019; Wasson et al. 2020). On top of that, Wasson et al. 
2020 present technologies to be used for non-invasive root 
phenotyping under field conditions, e.g. ground penetrat-
ing radar (GPR). GPR is an already established method for 
phenotyping coarse roots and tubers (Delgado et al. 2017; 
Wasson et al. 2020) but has been explored for detecting and 
characterizing finer roots of e.g. winter wheat, showing sig-
nificant correlation between GPR signal and root parameters, 
depending on soil characteristics (Liu et al. 2018).

Disease resistance

The effects of climate change also favour the spread and 
reproduction of pathogens, increasing disease pressure on 

crops (Garrett et al. 2006; Prank et al. 2019; Trebicki 2020). 
Crops may be exposed to new and more intense combina-
tions of biotic stress in the future necessitating the identifica-
tion of new loci that contribute to biotic and abiotic stress 
resistance and combinations thereof.

In order to better understand the complexity of resistance 
and to evaluate the efficacy of individual resistances against 
specific viruses or fungal isolates under realistic stress sce-
narios and stress combinations, artificial inoculations under 
CE are preferred over random natural infections. Controlled-
environment phenotyping of disease resistance and tolerance 
is independent from the seasonality of field trials, enabling a 
higher frequency of testing, as well as a higher repeatability 
and reliability of phenotypic data compared to field condi-
tions. In controlled environment-based approaches, adult 
plant resistance to leaf rust in barley (Rothwell et al. 2019) 
as well in wheat (Riaz et al. 2016) was phenotyped and data 
obtained from this study showed high correlation to results 
from field trials.

Automated high-throughput approaches are used for a 
precise and objective quantification of the degree of sever-
ity of the disease (Lück et al., 2020). Imaging techniques 
offer an objective and fast assessment of the plant’s suscep-
tibility to diseases (Mutka and Bart 2015). Powdery mildew 
symptoms of barley plants growing in large containers were 
quantified in an automated high-throughput manner using 
a hyperspectral phenotyping system (Thomas et al. 2018).

Knowledge and utilization of “omics”-data is likely to 
help to further understand pathogens infection strategies as 
well as interactions between various types of stress forms 
and to identify genetic components of resistances and toler-
ances that can be helpful for identification of genetic deter-
minants of certain resistances (AbuQamar et al. 2016; Bind-
schedler et al. 2016).

Transferability of collected data 
to agricultural practice is critical

Given the fact that the manifold influences of climatic 
changes on plant growth are influenced by a sheer myriad 
of lots of small effects, which in themselves may be of negli-
gible importance, it is not surprising that effects overlap and 
mask each other. This makes it considerably more difficult 
to record and evaluate the individual effects of genes under 
future climate conditions. For example, genotypes that carry 
positive alleles for certain traits may not be identified as such 
because other negative effects overlap and mask the phe-
notype on the plant level. Moreover, its negative feedback 
regulations could lead to the result that alteration of specific 
enzymatic activities cannot be seen in the phenotype on the 
organ or plant level.
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Many of the results on source sink relationships discov-
ered under controlled conditions in laboratories, climatic 
chambers or greenhouses prove to be meaningless in practi-
cal agriculture (Fernie et al. 2020). To avoid misunderstand-
ings, this does not mean that the results of a particular study 
are incorrect. Rather, one has to keep in mind that the scope 
of the findings is reduced only to the limited constellation 
of environments applied in a particular study. There is no 
better way to sum the G x E interaction up than the way Tar-
dieu (2012) has expressed it: “Any trait or trait-related allele 
can confer drought tolerance: just design the right drought 
scenario”.

With this in mind future research should force the sys-
tem concept and can more and more make use of the pool 
of data for simulations. This requires not only data from 
individual certain soil types, (micro) climate conditions and 
a limited number of genotypes, but also to explore each of 
these parameters factorially in order to better understand 
their interactions. While this was not possible in the past 
because research capacities were limited, digital phenotyp-
ing strategies open unprecedented options. Digital phenotyp-
ing enables the principle of zero marginal costs to be used. 
Accordingly, once the technology has been established, 
each additional phenotypic data point is available almost 
free of charge. While every sample/measurement used to 
require time and money (e.g. using wet chemical laboratory 
analysis), today’s phenotyping using hyperspectral imaging 
can increase the amount of data at different scales from sin-
gle cell to ecosystems many times over without exploding 
costs. This amount of data also provides the prerequisite for 
developing and operating forecast models using the latest 
statistical methods. The size of the data set is of critical 
importance. Given a well-structured and documented data 
matrix, state-of-the-art statistics tools allow performance 
predictions. While this is standard for genomic predictions 
and has been extremely widely applied, it has been recently 
successfully applied to predict yield on the basis of environ-
mental sensitivities (Millet et al. 2019), and the integration 
of plant growth models is rather new territory (Technow 
et al. 2015). The hope is that by combining agronomic, phys-
iological and genetic information in one model, the black 
box will be reduced and the predictive quality of G x E x M 
interactions will be improved (Cooper et al. 2021a, b).

The question arises whether the result of the modelling 
alone is improved by the sheer size of the data set (thousands 
of genotypes in thousands of environments) or whether a 
filigree model, in which the physiological interactions within 
a plant (e.g. source–sink relationships) are better mapped, 
contributes to the gain of knowledge. Hammer et al. (2019) 
have stated that this is not a contradiction in terms. Trans-
scale and trans-disciplinary models from molecular level up 
to the scale of an ecosystem are required to deal with chal-
lenges or climate change ahead. As an example, we would 

like to refer to a trans-scale model approach that quantified 
the effect of molecular modifications on the whole plant 
level with its impact on photosynthesis and yield (Wu et al. 
2019). It can be expected that such modelling approaches, in 
conjunction with artificial intelligence, based on large phe-
notypic, genotypic, and environmental data open completely 
new opportunities for targeted exploitation of bioresources 
(van Eeuwijk et al. 2019).

Data management is key to knowledge 
discovery and innovation in breeding

Phenotypic datasets are increasingly heterogeneous and 
acquired from multiple sources and different scales: from 
the molecular phenotype (genotype and transcriptome) to 
whole-plant phenotypes on a single plant up to plot levels. 
In order to efficiently support breeders decisions by high-
throughput phenotyping, appropriate data management 
infrastructures are of utmost importance and considered 
equally important for field and CE phenotyping. These 
need to be standardized and automated as far as possible and 
thereby enable informed decisions and fast ways of knowl-
edge discovery:

•	 Through cross-domain data integration e.g. phenomics 
and transcriptomics or metabolomics (Großkinsky et al. 
2017) or integration of lab and field phenomics data 
(Millet et al. 2019)

•	 Through meta-phenomics studies (Poorter et al. 2019)
•	 Through integration with environmental data in the G x 

E x M context.

Spatial correction is substantially important (Massonnet 
et al. 2010; Malosetti et al. 2013) and requires appropriate 
experimental designs (Junker et al. 2015; Cabrera‐Bosquet 
et al. 2016) and high resolution, well managed environmen-
tal monitoring (Neveu et al. 2019). The challenge herein 
is not the design of phenotyping systems (imaging sensors 
and other high tech equipment) but rather the design of data 
management systems that can handle, process, integrate and 
analyse the massive amounts of heterogeneous data. This is 
set on a range of prerequisites with respect to hardware and 
software capacities and features (data storage, documenta-
tion) which are supposed to meet certain guidelines referred 
to as the FAIR (Findable, Accessible, Interoperable, Reus-
able) criteria of data management (Wilkinson et al. 2016). 
Datasets need to be findable across decentralized and dis-
tributed storage systems through federated entry points ena-
bling keyword-based search and browse functionalities. A 
key precondition for findability is accessibility of datasets 
which is strongly promoted through open access initiatives 
of funding agencies (https://​www.​opena​ire.​eu/​datac​ite) and 

https://www.openaire.eu/datacite
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journals (ScientificData, GigaScience). A number of gen-
eral purpose FAIR data repositories nowadays exist such as 
e!Dal (Arend et al. 2016a), Zenodo (https://​zenodo.​org/), 
FigShare (https://​figsh​are.​com) and Dryad (http://​datad​ryad.​
org). These assign unique identifiers to datasets (e.g. digital 
objects identifiers, DOIs) and thereby allow for referenc-
ing in open science archives. Some examples for FAIRly 
documented phenotypic datasets are described here: Arend 
et al. 2016b, Gonzalez et al. 2018, Philipp et al. 2019. Inter-
operability and reusability of datasets require the enrichment 
of data with comprehensive metadata describing biological 
materials, growth conditions, measurement and analysis pro-
cedures as well as protocols. For phenotypic datasets, spe-
cific recommendations are elaborated within the MIAPPE 
consortium (Krajewski et  al. 2015; Ćwiek-Kupczyńska 
et al. 2016; Papoutsoglou et al. 2020), which represents a 
minimum information standard about plant phenotyping 
experiments with a checklist of metadata to document. The 
ISA-Tools framework (Rocca-Serra et al. 2010), as a practi-
cal implementation of the MIAPPE guidelines, represents 
a structured tabular format for the standardized description 
of experimental units, links between raw data, result data, 
protocols and traits and makes use of controlled vocabular-
ies ontologies (PlantOntology Jaiswal et al. 2005; Avraham 
et al. 2008; CropOntology Shrestha et al. 2012; Phenotype 
and Trait Ontology (http://​www.​obofo​undry.​org/​ontol​ogy/​
pato.​html), UnitOntology (http://​www.​ontob​ee.​org/​ontol​
ogy/​UO). For an efficient use of FAIR datasets, interlinks 
between databases or repositories and (automated) analysis 
pipelines/routines and tools are inevitable. A recent develop-
ment is the Breeding API (BrAPI, Selby et al. 2019) which 
enables communication between datasets from various 
sources using a standardized interface.

The success of these modern breeding initiatives depends 
on above-mentioned standardized data management which 
not only ensures integration and harmonization of multidi-
mensional data but also facilitates community integration 
for sharing of resources in terms of datasets and beyond in 
terms of code and tools (Leonelli et al. 2017).

The evolution of breeding over the years correlates with 
the advancements in data analytics (Kuriakose et al. 2020), 
and respective data management is considered to be one of 
the main challenges for the field of phenomics (Yang et al. 
2020; Coppens et al. 2017). Especially for crop growth mod-
elling the parametrization of models with various heteroge-
neous datasets is important for an increase in robustness of 
predictions, thus having a great potential for breeders deci-
sion support in ‘prescription agriculture’ (Louarn and Song 
2020; van Eeuwijk et al. 2019). In the view of these future 
perspectives, coordinated and structured action towards fed-
erated initiatives for phenomics data management through 
networks on the European (EPPN2020, https://​eppn2​020.​
plant-​pheno​typing.​eu/ and EMPHASIS, https://​empha​sis.​

plant-​pheno​typing.​eu/, ELIXIR, https://​elixir-​europe.​org/) 
and international level (IPPN, https://​www.​plant-​pheno​typ-
ing.​org/) is key to unlock the potential of phenotyping for 
data-driven breeding.

Summary

Understanding how plants respond to their environment is 
fundamental for breeding crops that are adapted to subopti-
mal growing conditions and thus mitigate future risks aris-
ing from climate change. However, phenotyping for climate 
response traits is challenging under field conditions, as the 
natural occurrence and intensity of certain climate events 
cannot be influenced. Hence, the predicted future climate 
scenarios need to be simulated in CE facilities.

The phenotyping facilities mentioned in this review are 
examples for a wide variety of facilities that have been 
installed across the globe pursuing the common goal to 
study the plant ‘s phenotype under repeatable controlled or 
semi-controlled environments. The need for careful setup 
of growth parameters corresponding to the aim of the study, 
the traits and level of scale to be phenotyped are highlighted.

The recent advances in automation, imaging technolo-
gies, software solutions, and data processing support the 
establishment of phenotyping of plant response to certain 
environmental conditions in an automated, non-invasive, 
high-throughput, and in-depth manner.

High-throughput phenotyping platforms produce substan-
tial amounts of data that are very valuable for plant breeding 
and can be used in statistical prediction models. Still, to fully 
exploit the potential of data derived from many independent 
phenotyping efforts, standardized data management infra-
structures are required.
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