Contents lists available at ScienceDirect

Journal of Cleaner Production

journal homepage: www.elsevier.com/locate/jclepro

A framework for implementing sustainable lean manufacturing in the electrical and electronics component manufacturing industry: An emerging economies country perspective

K. Mathiyazhagan^a, A. Gnanavelbabu^{b,*}, Naveen Kumar.N^b, Vernika Agarwal^{c,**}

^a Thiagarajar School of Management, Madurai, 625005, Tamilnadu, India

^b Department of Industrial Engineering, CEG Campus, Anna University, Chennai, 600025, India

^c Amity International Business School, Amity University, Noida, 201313, Uttar-Pradesh, India

ARTICLE INFO

Handling Editor: M.T. Moreira

Keywords:

Sustainable lean manufacturing Triple-bottom line Electronics component manufacturing Critical success factors Complex proportional assessment Best-worst method

ABSTRACT

The survival of the manufacturing industry has been faced with multiple challenges due to changing stakeholder requirements, global competition and pressure to integrate sustainability practices. Lean manufacturing has proven positive relevance in enhancing the sustainability and operational economic performance of manufacturing industries by eliminating the non-value added operations. The growth of the Even with the rapidly growth Electrical and Electronics Component Manufacturing (EECM) is experiencing, its sustainability performance has remained an unexplored avenue. In this context, the present study aims to examine the 'critical success factors (CSFs)' for implementing sustainable lean manufacturing (SLM) in the Indian EECM organization through a hybrid multi-criteria decision-making technique. A total of 40 CSFs representing Management, Workforce, Operational and Knowledge factors were collected through extant literature and expert opinion. The collected factors were shortlisted using 'Complex Proportional Assessment (COPRAS)' method based on their ease of collecting data. The findings provided 20 CSFs under management, workforce, operational, and knowledge criteria, which will facilitate the EECM organization for implementing SLM. The shortlisted CSFs were prioritized using Best-Worst Method (BWM) to identify the most crucial CSF. "Top-management commitment", "internal expertise" and "employee involvement" were identified to be the top three CSFs. Involvement of top-management was found to have direct impact on working culture and competitive advantage of the organization over the competitors.

1. Introduction

Increasing global awareness about sustainability and the pressure to integrated sustainable development goals in manufacturing industries is reforming the conventional production techniques to attain a heightened level of triple-bottom line performance (Gopal and Thakkar, 2016). India's per capita emission of CO_2 was 1.6 tonnes, while its share in total global CO_2 emission was estimated to be 6.4% (India, 2020, report published by International Energy Agency). The environmental impact caused by manufacturing industries has started forcing the organizations to expand their metrics of performance from economic aspect towards environmental aspect. The pressure from stakeholders and international market scenario is further pushing the industries in the South Asian region like India and China to adopt sustainable practices in their manufacturing system (Dwivedi et al., 2019; Chen et al., 2020). Thus, sustainability and lean are becoming the benchmark for the manufacturing sector.

According to 'Indian Manufacturing Industry Analysis' report published by IBEF in October 2020, among all the manufacturing sectors, the electronic component manufacturing is identified to be one of the fast growing industries. A growth rate of 32% has been targeted globally for the sector over the next five years. The 'National Policy on Electronics' report (NPE, 2019) estimates India's share in the global hardware electronic component production was about 3% during 2019–20. The constant growth in customer base and the rising demand for consumer durables have provided enough scope for the growth of the Indian

* Corresponding author.

https://doi.org/10.1016/j.jclepro.2021.130169

Received 11 March 2021; Received in revised form 5 December 2021; Accepted 15 December 2021 Available online 25 December 2021 0959-6526/© 2021 Elsevier Ltd. All rights reserved.

^{**} Corresponding author. E-mail addresses: dr.agbabu@gmail.com (A. Gnanavelbabu), vernika.agarwal@gmail.com (V. Agarwal).

electronics industry, it is both an opportunity and a challenge for the country. To tackle such a situation, the government is focusing to gear up the production rate within the country in every possible way and further aiming in promoting export of electronic goods to attract larger investments. Apart from that, electronics hardware manufacturing has been included among the 25 pillars of 'Make in India' and 'Digital India' campaign. This extreme stipulation noticed from above data enforces the Electrical and Electronics Component Manufacturing (EECM) industries to streamline new techniques in their production system to survive and tackle the challenges. Meeting such huge demand with admissible quality will also heighten the requirement of manpower, material, investment and all sorts of resources along with equivalent environmental degradation which, in turn, imposes a set of constraints on the industries (Dave and Sohani, 2019). The industries aim to minimize resource utilization while being sustainable in their operations.

This demands for the inclusion of sustainable lean manufacturing (SLM). Lean manufacturing is an integrated system composed of many inter-related elements whose main aim is to eliminate waste by reducing or minimizing variability related to supply, processing time, and demand (Shah and Ward, 2003). The major focus of lean is making changes in the processes and striving for continuous improvement which eliminates activities that do not add any value in the production system (Venugopal and Saleeshya, 2019). Lean manufacturing provides a great improvement in productivity when implemented in an integrated way (Panwar et al., 2018). Reducing the waste using lean tool can help the organization in deploying lean manufacturing (Logesh and Balaji, 2020).

The adoption of SLM fundamentally differs from the adoption of sustainable manufacturing. Sustainable manufacturing is the creation of manufactured products through economically-sound processes that minimize negative environmental impacts and maximises social welfare. Lean manufacturing, on the other hand, is based on an ideology of maximising productivity while simultaneously minimising waste within a manufacturing operation. An emphasis on sustainability and lean together in SLM can improve the performance of an organisation and build on lean manufacturing programs by extending the emphasis on waste elimination and the involvement of employees in improvement initiatives. In practice, adopting sustainability into manufacturing process is a challenging task. Especially for developing countries, integrating social and environmental aspects with business goals is a gritty process when compared to developed countries (Malek and Desai, 2019). Unpreparedness and absence of adequate knowledge are the major reasons for failure while trying to implement a new technique (Liao et al., 2017). Knowing the key enablers can serve as a catalyst in successful implementation of the new strategies (Kaswan and Rathi, 2019). The identification and prioritization of the critical success factors (CSFs) which enable the implementation of SLM will to guide the transformation process and make it efficient and successful. Lean manufacturing focuses on reducing costs by eliminating wastes and non-value-added activities, while sustainability aims in environmental protection and providing equity to the employees. The inclusion of SLM will aim to improve efficiency by freeing up employees and resources for innovation and quality control that would have previously been wasted. Thus, the identification of CSF for implanting SLM is an essential step in Indian EECM industries.

To manoeuvre the above mentioned requirements, the need for implementing sustainable lean principles becomes inevitable. For this purpose, the EECM industries have to be studied for recognizing the CSFs. Based on above discussion, the present study deals with the following research questions:

- What are the pillars/components of CSFs which can be applied for SLM adoption in Indian industries?
- How can the CSFs be evaluated to determine the priority to support SLM?

In practice, adopting sustainability into manufacturing industries is a challenging task mainly for developing countries. Lack of resources and absence of adequate knowledge are the major hurdles for reluctance of the industries to implement a SLM. Knowing the key enablers can serve as a catalyst in successful implementation of the new strategies. With reference to the above problems, this study aims at presenting the CSFs which are vital for implementing sustainable lean in EECM industry using a hybrid MCDM approach. In an attempt to answer the research questions, a detailed literature review was carried out to identify the pillar or component of CSFs which are termed as the critical factors. A total of 40 CSFs representing Management (M), Workforce (W), Operational (O) and Knowledge (K) factors were collected. Further, the CSFs are ranked using hybrid MCDM technique comprising Complex Proportional Assessment (COPRAS) for shortlisting and Best-Worst Method (BWM) through industrial experts' judgments. The collected factors were shortlisted using 'Complex Proportional Assessment (COPRAS)' method based on their ease of collecting data. The shortlisted CSFs were prioritized using Best-Worst Method (BWM) to identify the most crucial CSF. Through the prioritization, partial induction of SLM in industries can be also possible for any industry.

The paper proceeds further in the following sequence of contents. The review of literature done on sustainable lean in global, Indian and electronics manufacturing background is explained in section 2. Section 3 provides the case explanation followed by the hybrid MCDM methodology employed in the study and its standard procedure. The data analysis of case organization where the study was conducted and implementation of the methodology are presented in section 4. The final result obtained and discussion on the result are illustrated in section 5. Finally, the conclusion and limitation of the study is presented in section 6.

2. Literature review

In this section the evolution, benefits and current status of sustainable lean practices in manufacturing industries are explored through the past literature. This section comprises two subsections, explaining sustainable lean in global scenario, in Indian context and in terms of EECM industry.

2.1. Sustainable lean in global scenario

The significance and positive impact of implementing lean practices in organization's performance have been explored by many researches, investigating the impact of lean methods over the individual entities of triple bottom line. Chiarini (2014) investigated the efficacy of lean production tools in reducing the environmental impacts caused by the manufacturing companies. Faulkner and Badurdeen (2014) analysed the mapping of the ecological and societal impact as a means of enhancing sustainability in manufacturing industry. The paper analysed metrices which made the manufacturing more lean by focusing on the potential areas for continuous improvement. The study by Caldera et al. (2017) studied the role of lean thinking in sustainable business practices and provided a new strategy called 'regenerative development' with the nine key characteristics regarding to small and medium enterprises (SMEs) in Australian background. Garza-Reyes et al. (2018) and Dieste et al. (2019) established positive relationship between lean methods and environmental performance. Lean tools like TPM, TQM and JIT were found to have the strongest significance on environmental performance. Segura et al. (2019) analyzed the lean manufacturing strategy with respect to its impact on business performance using a system dynamics based methodology. The findings provided guidelines for assessing the organization's business performance and explained the impact of lean in short and long-run conditions.

As lean was found to be an efficient technique to improve operational performance of the organizations, its role in environmental performance and people satisfaction which includes workforce, customers and all stakeholders remained vague initially. Later, the escalating impact induced by manufacturing organizations on the planet and society revealed that improvement in operational performance alone won't help the organizations to become sustainable. In the view of overcoming this challenge, an upswing in triple bottom line, i.e. principles which benefits society, environment and economy in manufacturing grabbed the focus. Bhattacharya et al. (2019) conducted a systematic literature review and highlighted the integrating factors of lean-green as waste reduction, efficiency development, continuous improvement and quality management. The study also notified that the impact of lean-green on sustainability performance is non-linear in nature depending on the dimension. Farias et al. (2019) studied how integrated lean-green practices can be used for performance assessment. The study proposed a framework for evaluating operational and environmental performance of the organization. Helleno et al. (2017) integrated a new set of sustainability indicators with lean manufacturing tool (VSM) to provide a method for assessing organization's performance. Case studies with the proposed method recognized different levels of sustainability performance in Brazilian industries. The paper by Siegel et al. (2019) combined green lean approach and sustainability for SMEs. The study claimed that the most common challenge in SMEs in adopting lean green was lack of metrics and measurement. Globalization has played a crucial role in China's inclusion of sustainability in lean manufacturing (Tong and Huatuco, 2018). The inclusion of SLM will enhance the ecological and business performance, by ensuring the channel partners across globe are also sustainable and lean as in case of China's manufacturing industries (Zhan et al., 2018). In fact, lean and green deployment system, considering companies' needs for survival and short-term profitability in manufacturing sector of China (Fu et al., 2017). The construction industries in china are at forefront in incorporating the lean principles to be more sustainable and resilient (Li et al. 2020a, 2020b).

All the studies combining different aspects of sustainability supported the fact that lean correlates in sustainable development from worldwide researches. It can be observed that the focus on the literature on identifying the CSF in emerging economy such as India is negligible, which is the motivation of the current paper. The constructive welfare brought by undertaking the lean practices in view of attaining sustainability is a revolutionary paradigm which is being studied largely in the recent years. But identifying the overlapping and conflicting areas for lean and sustainability was a tricky task to be dealt with. Caldera et al. (2017) studied the role of lean thinking in sustainable business practices and provided a new strategy called 'regenerative development' with the nine key characteristics regarding to SMEs in Australian background. Garza-Reyes et al. (2018). Wong et al. (2018) tested the effects of sustainable development of supply chains on cost-reduction (lean), environmental (green) and financial (profitable) performance. Results showed that sustainable development positively affect each performance of the organization. Dey et al. (2019) investigated the impact of sustainability practices, lean practices (LP) and process innovation (PI) in achieving sustainability performance in SMEs. The result showed the mediating effect of LP is more when compared with PI. The investigations on finding the relationship among lean and sustainability further narrowed down with identifying potential barriers and enablers. This was because, knowing the barriers will help in where to be cautious and knowing the enablers will help in where to focus while trying to implement a new manufacturing philosophy.

From the analysis of the literature, it becomes obvious that sustainable lean is a manufacturing philosophy which was proved to improvise organization's performance in terms of productivity, people satisfaction and environmental prevention (Liao and Wang, 2021). But a definite method or solution proposed from any country may or may not be effective for the whole globe, since each country has their own government environmental policies, regulations and people culture (Govindan et al., 2014). With this motive many Indian researchers have carried out studies in view of extending sustainable manufacturing practices into electronics manufacturing industry in India. Vinodh et al.

(2013) analyzed the tools for sustainable lean and ranked them using compromise ranking approach in a modular switch manufacturing organization. The study suggested life cycle impact assessment (LCIA) as the best SL tool. Agrawal et al. (2014) developed a model for forecasting return of product to the company for recycling in Indian electronics industry. The findings suggested Graphical Evaluation and Review Technique (GERT) to be an effective tool for forecasting the product return. Gupta et al. (2015) developed an AHP- based model with the key sustainability practices and ranked them based on scores by assessing the relationship between manufacturing practices used and sustainability performance in electrical panel industry from India. Logesh and Balaji (2020) made an experimental investigation to implement green manufacturing by reducing waste generation using lean tools in an electrical component manufacturing company. Lean tools like kanban, takt-time, single minute exchange of dies, kaizen were employed and the data collected before and after deploying the lean tools showed results with improved resource utilization by reducing waste. It can be seen that the literature has delved upon the interaction between lean manufacturing and sustainability, however, the concept of identifying the CSF which enable the integration of sustainability and lean practices in Indian EECM sector is lacking in the literature.

2.2. Sustainable lean in Indian background

India, being a country with huge workforce and natural resource availability is growing as an important manufacturing hub over the past years. To meet the huge demand with expected quality and balanced capacity utilization, industries are changing conventional operating practices with new techniques. Studies regarding implementation of lean manufacturing and sustainability in Indian context have gained momentum in the past years. Vimal and Vinodh (2013) made practical studies before and after implementing lean in an industry and established the reduction in environmental impact after implementation of lean practice. Sajan et al. (2017) investigated and established the positive linkage between lean manufacturing practices and sustainability performances in Indian SMEs and also tested the relationship among the triple bottom line entities. Dave and Sohani (2019) studied the association between implementing lean practices and overall productivity of the organization in central India based industries. The findings established that adopting lean practices is mandatory for improving overall productivity and following island approach is suggested to be unsupportive. Thanki and Thakkar (2019) investigated influence of lean-green practices on organization's operational and environmental performance in Indian SMEs. The study suggested that the performance enhancement can be achieved practically through strategies like lean-green rather than reducing the operational size. Dwivedi et al. (2019) studied and identified the interactive connection among the key performance indicators (KPIs) which can assist implementation of sustainable manufacturing practices in Indian leather industry. Swarnakar et al. (2020) integrated lean tool (VSM) with various sustainability indicators and proposed a model to assess the manufacturing process under three dimensions of sustainability. The above mentioned inferences exhibit lean-sustainability relationship in Indian context. It can be seen that focus on the researchers are more towards the SMEs and small scale businesses, a wholistic picture of a manufacturing sector is however, missing.

The literature has also delved upon the identification of the CSF and enablers is extensive with focus on lean or sustainable practices. Thirupathi and Vinodh (2016) employed a hybrid modelling technique to analyze the sustainable manufacturing factors in Indian automotive component sector and established the existing structural relationship. Jadhav et al. (2014) developed a framework for sustainable lean implementation in which the lean practices were modelled establishing powerful driving and dependence factors. Luthra et al. (2018) modelled the critical success factors for sustainability initiatives in supply chain in automotive background. The relationship among the CSFs were established from which 'Government Legalisation' has been found to be the most influential factor and 'Community Welfare and Development' is the most easily influenced factor. Toke and Kalpande (2019) identified critical success factors of green manufacturing for achieving sustainability from the data collected from automobile, refrigeration and electrical component manufacturing industries. Top management commitment and societal concern for protection of natural environment got top two weightage of all the factors. The relationship between lean practice and sustainability performance was studied by a large number of authors and the integrating and overlapping areas were identified in Indian background (Cherrafi et al., 2016; Mellado and Lou, 2020). But the problem is that the practitioners were unable to figure out where to focus for achieving such a business performance from the mathematical perspective is missing. Most of the literature have concentrated on empirical studies and hypothesis testing while there is lack of analysing the quantitative relationships with the help of decision maker opinion which is the highlight of the present work.

The implementation of SLM practices is essential in the upcoming years for all manufacturing industries to be successful in the dynamic market (Singh et al., 2021). Each manufacturing sector involves its own operating procedures and production techniques, the strategy for each industry varies accordingly. So the findings established for implementing SLM in a specific industry may not be effective in other industries when it comes to application. The EECM which produces products in wide range of variety on a huge scale needs to be studied exclusively. Doolen and Hacker (2005) developed a lean assessment instrument with available tools and conducted an exploratory study to assess the performance of an electronic manufacturing industry. The research suggested size of organization and type of manufacturing as significant factors in impacting the results for implementing lean. Lindgreen et al. (2009) studied the status of supply management and corporate social responsibility in Korean electronics industry. The outcome showed that the pressure and standards on social aspect were not accepted and implemented as on environmental aspect. Govindan et al. (2013) studied and established the green supply chain management tools for electronics industry in Brazilian background which will improve environmental performance. Commitment of senior managers and cooperation with customers were found to lead the other practices. Hsu and Chang (2017) used DEMATEL method and identified the critical success factors and related best practices for the emerging electronics industry to get included in Dow Jones Sustainability Index. Fantazy et al. (2019) explored how the impact of culture of competitiveness and knowledge development of a firm is related to sustainable supply chain management. The results established positive relationship. Sellitto et al. (2019) investigated the efficiency of green practices in enhancing organization's competitiveness by including three factors influenced by the constructs that facilitate construction of competitiveness. Banik et al. (2020) examined the critical success factors for green supply chain management in Bangladesh-based electronic industry. Vinodh (2020) identified barriers in adopting lean practices in an electronic component manufacturer. The inter-relationship among barriers were established using TISM tool. From the above researches, it can be seen that the performance improvement in EECM sector through adoption of lean and sustainability concepts is not explored together. The literature has much focused on understanding the lean concepts and the SLM aspect is still missing. Moreover, the use of hybrid methodology to reduce the factors based on certain attributes related to information gathering and further prioritization of these factor is not carried out in literature.

2.3. Research gap

The above literature reveals that studies related to environmental (green) performance improvement and investigation of the practices and tools of sustainability in EECM industry is missing in literature. The studies have focused more on implementing sustainable or lean practices. The integration of sustainability and lean concepts as SLM was not

carried out for the mentioned sector in Indian context. Also, all the past studies exploring the CSFs for other industries or for electronic industries in other countries have a common property of selecting the factors for study based only on past literature and expert opinion. No study was found to have employed analytical tools to critically evaluate the significance of the available factors in terms of sustainability before studying them. Since selecting the factors through expert discussion is a qualitative method, the reliability of the process can't be rationalized as the linguistic variables do not have standard representation. A quantitative method which records an equivalent numerical value for the linguistic opinion of the expert can overcome the above drawback. Hence, a research involving identification of CSFs and ranking them with appropriate analytical tool must be applied to provide a clear picture to the management and practitioners and help them where to focus for successful implementation of SLM. All the above mentioned research gaps justify the purpose of this study.

With reference to the above problems, this study aims at presenting the CSFs which are vital for implementing sustainable lean in EECM industry using a hybrid MCDM approach. In this view, the factors collected from past literature were subjected to evaluation based on sustainability aspects and complexity for organization followed by prioritizing the identified factors.

3. Research framework

The study has been undertaken in an electronic component manufacturing organization situated in Tamil Nadu, India. Organization ABC is a large manufacturer of installation systems for the electrical infrastructure of buildings and facilities with a large variety of products and services. The organization is said to be the world leader in the cable support and lightning protection systems. It manufactures and supplies products like surge protection systems, earthing systems and junction box etc. The case organization has already implemented the concept of 'lean manufacturing' successfully. In order to face the global market, safe handling of toxic and hazardous raw materials involved in production and ensure the quality constantly, the organization is continuously seeking for appropriate techniques and better manufacturing principles which could bring improvement to the company as well as to the society. Also, increase in e-waste production is becoming a major challenge and demands immediate actions. Having all this dimensions in consideration, the organization is concerned in incorporating sustainability in their manufacturing process. The organization wants to understand how to integrate the sustainability factor in lean manufacturing Thus the foremost step in this direction is to know the CSF for them to achieve sustainable lean manufacturing (SLM). The understanding of the pillars/components of CSFs which can be applied for SLM adoption in Indian industries is a crucial aspect for the decision makers.

3.1. Identification of the CSFs from literature

It is evident from the literature that researchers have analysed the lean and sustainability paradigms in the literature, however SLM is still lacking. There is clear lack of integration of SLM in EECM industries. To understand the SLM integration there is need to identify and prioritize the CSFs, which is motivation for the current study. Initially, we did systematic literature review by using the terms. The various CSFs for the integration of lean and sustainability in EECM were identified through an extensive literature survey. Initially, the research papers were collected from reputable databases such as Science Direct, Springer, Elsevier, Emerald, Taylor & Francis, SAGE, etc. The keywords used for the research were 'critical success factors', 'sustainable supply chain management', 'lean supply chain', 'Electrical and Electronics Component Manufacturing'. In these databases, we narrowed our search by assessing peer-reviewed journals in the field of supply chain management. Through this process, we identified the CSF for SLM in business operations. Based on this detailed survey of the extant literature on

sustainable lean in Indian context was done and a total of 40 CSFs representing individual dimensions of triple-bottom line were collected. A large number of factors have been identified to be the CSFs of sustainable lean for different types of manufacturing sector in the past years by many authors. Further, the collected factors which are considered to be the alternatives of the study are clustered into four major categories after discussions with the decision makers namely Management (M), Workforce (W), Operational (O) and Knowledge (K) factors. The alternatives under each category is listed in Table 1.

The hybrid multi-criteria decision making technique used in the study is explained in this section and is briefly presented in Fig. 1. The selected factors were then shortlisted using COPRAS method, based on the responses collected from the decision makers. A questionnaire relating each factor to the selected parameters depicting five different dimensions of sustainable lean was used to collect the response. The various CSFs were ranked on the basis of various parameters such as Stakeholders satisfaction, Environmental impact reduction, Productivity improvement, Cost for implementation and Technical difficulty in collecting data for the CSFs.

In the first phase of research, the qualitative analysis, we have conducted semi structured interviews with various stakeholders. To achieve the research objectives, a team of panel members from the case organization was formed. The team had 5 experts or decision makers (DM) from various departments of the case organization. Each panel member has a working expertise of over 7-10 years in their respective departments and also has a good knowledge about lean principles and significance. The details of the experts are shown in Table 2. We approached these decision makers for helping us to understand the CSF which are needed for SLM adoption in EECM industry. A detailed session was conducted to make them understand the research objectives. The session was followed by semi structured interview with each participant to collect insights on the problem faced by the company. The collected factors were discussed and finalized with the decision makers. The interviews were conducted on Zoom/MS teams/Skype.

The general aspects of Complex Proportional Assessment (COPRAS) are given as:

3.2. Shortlisting of CSFs using COPRAS method

The COPRAS is a multi-criteria decision making tool introduced by Zavadskas in 2008. This method involves identifying a set of testing parameters by the researcher. The available alternatives are then rated against the selected parameters with which the relative importance and utility level of the alternatives can be obtained (Ghorabaee et al., 2014; Govindan et al., 2019).

COPRAS method was used to identify the factors (or alternatives) with the highest utility degree in order to shortlist them. The COPRAS method was preferred in the study over the other approaches such as Delphi method, as it is more systematic and qualitative method. The Delphi method on the other had is quantitative where biasness of the decision makers is overlooked. COPRAs on the other hand is more mathematical and helps in systematic decision making. The parameters used for assessing, scale used for rating, procedure for data collection and results obtained are explained in the following subsections.

3.2.1. Determining the parameters and scale for rating

With the purpose of assessing the alternatives based on the triple bottom line and practical difficulty of the organization, three beneficial and two non-beneficial parameters were selected in such a way that each parameter represented a discrete aspect of sustainability. Subsequently a five-point likert scale ranging from very low (1) to very high (5) was selected for recording the numerical opinion of the DMs for the corresponding linguistic variable in order to rate the relationship of the alternatives with the selected parameters (Bai et al., 2019). The parameters and scale are shown in Table 3 and Table 4

Table 1

Cat

Ma

List of factors	selected	for	study	7
-----------------	----------	-----	-------	---

tegory	Code	Factor	Description	Reference
anagement	M1	Top-management commitment	Top-management commitment in adopting sustainable lean manufacturing	(Govindan et al., 2014), (Kumar et al., 2020)
	M2	Prioritize and select projects	Choose projects which has supports both	(Kornfeld and Kara, 2013)
			sustainability dimensions and organization's	
	М3	Make collaborative decisions	strategic goals Organise brainstorming sittings at all levels of organization and make decision taking their inputs	Govindan et al. (2014)
	M4	Adopt Government regulations and standards	into account Integrate the standards and update the current	(Luthra et al., 2018), (Malek and Desai, 2019)
	М5	Acquire cleanest	regulations of government with the present operating procedure Ready to acquire	(Toke and
	M3	technologies	the technologies which have low impact on environment	Kalpande, 2019)
	M6	Implement Green purchasing policy	Prefer purchasing products that has reduced impact on people and environment	(Toke and Kalpande, 2019), (Malek and Desai, 2019)
	Μ7	Upgrade to high quality manufacturing facilities	Enhance the production facility at right times in order to meet customer expectation and maximize efficiency	(Vinodh et al., 2011), (Kumar et al., 2020)
	M8	Readiness to invest	Maintain strong financial base and be prepared to invest for achieving organization's milestone	(Mani et al., 2015),(Prasad et al., 2018)
	M9	Engage in certification programs	Involve in 'certification programs which reinforce social and environmental sustainability in organization's operating	(Mani et al., 2015), (Singh et al., 2016)
	M10	Establish company's brand image with sustainability dimension	procedure Make efforts to project a socially responsible corporate image in society (Green company)	Gandhi et al. (2018)
	M11	Multi-skilled workforce	Maintain a workforce which can readily handle the updated	Kumar et al. (2020)

M12 Focus on berding dynamic tasks in productions marking gamma in berding marking gamma in berding and programs in a generation of the second information in generation of the second other in addition of generations of the generation of the second of the second information in generation of the generation of the generation of the generation of the generation of the generation of generation of genepoode generation of generation of	ategory	nued)	Factor	Decorintion	Peferonco	Catago	Code	Factor	Description	Reference
Marka Renson of beak Grandmerice (Forder periods) (Forder period	ategory	Code	Factor		Reference	Category	Code		-	
M12 Process on back in branch in the performance of the first integration of the performance of the first integration of the first integratin of the first integration of the first integratin of the first in								0		Kumar et al.
91/12 Section backs analyzing marking stability of ple from 5 which is no requirements integration of pla from 5 which is no requirements integration integration of pla from 5 which is no requirements integration of pla from 5 which is no requirements integration integratintegration integratintegration integratintegration integration in				•				programs		(2020)
Intring Income from the period of the performance of default requirements of the performance of default requirements of the performance of default requirements interperformance interper interperformance i		M12	Focus on bench	•	(Tomelero					
Marka marking pages of the forwards of the fitm to other which issue which issue which issue which issue which issue autifing programs descense of all programs Operational (01) Effective scheduling which issue programs market programs M14 Comply with legal requirements by autifing programs Yundb et al. (2015) Operational (2015) Operational (2015) Operational (2015) Operational (2015) Operational (2015) Market programs Market (2015) M14 Resurve to requirements by programs which conduct autifier reduce programs which in reduce autification (2015) Comply with legal requirements by programs which conduct autifier reduce programs which conduct autifier in information (2015) Of autifier is autifier in information (2015) Operational (2015) Operational (2015) <td></td> <td>14112</td> <td></td> <td>*</td> <td>•</td> <td></td> <td></td> <td></td> <td>-</td> <td></td>		14112		*	•				-	
Mail end of the firm or order order firm order order firm order index diamondary index diamondary Mail order firm order order firm order order firm order index diamondary index diamondary Mail order firm order requirementant constrained order firm order index diamondary Mail Mail Mail Mail Watch is a large order firm order index diamondary Mail Mail Mail Mail Mail School (Stree firm order) index diamondary Mail Mail Mail Mail Mail School (Stree firm order) index diamondary Mail Mail <t< td=""><td></td><td></td><td>internet</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			internet							
Main operations of second										
M13 Seengly with legal requirements and service incomental requirements and requirements and service incomental requirements and requirements and requirement				of the firm to					through proper	
M13 Comply with lead indicate the legal				other					training programs	
M13 Comply with leg mean is and improve requirements and improve requirements and improve requirements of requirements				0		Operational	01		Eliminate the	Vinodh et al
M13 Congoty with legal evolutiones and salidity program individuality or program is allowing the set individuality or program is allowing the set individua								scheduling	0	(2015)
M14 requirements and anditing program requirements by requirements by			0 1 11 1	-	× ** 11 . 1					
 winding program is program in program is p		M13								
random following the sequence of specific sector and conduct auting programs which contributes to organization of the program			-		(2013)				-	
M14 Messares to endice auditing programs with equinities of equines in the second organization is equinities of equines in the second equines in the second eq			additing programs				02	Standardize the		Panizzolo
M14 Mesuare is applicable is app				-			02			et al. (2012)
M14 Measures to organization's reduce environmental import Take contributes to organization's reduce environmental import Chang and contributes to organization's reduce environmental environmental import OB Efficient use Efficient use information technology information Incorport environmental env										
M14 Neasures is provibation is contributes to organization is contributes to information informatin information information informatio				-					the tasks to avoid	
M14 Measures to reduce environmental impact environmental impact environme				programs which					confusion and	
M14 Massess region region <thregion< th=""> <thregion< th=""> <thregion< th=""></thregion<></thregion<></thregion<>										
M14 Measures to reduce reduce accountibility for very commeniation impact Contained accountibility to reduce contained accountibility to red									-	
reduce accountability for environmental impact impact and impact and deploy required 2018) utehnology system and information ist information M15 Organization of learning through impact and development 2018) information information H18 Organization of development (information information information H18 development (information information information introduce Granization of development (information information information introduce Granization of development Granization (information information introduce Granization of development Granization (information information introduce Granization (information information information introduce (information (information information information introduce (information (information information information introduce Granization (information information information introduce		M14	Management		(Chuene - 1		03		*	(Singh et al.
environmental impact environmental edipor required effort to edidense and control the material united to edidense and control the impact Latthe et al. (2015) or (2015) or (2015) M15 Organization's learning through HR development Organization can econtrol 104, (memory and assist development (Kramar, (Kramar, development Organization can econtrol 104, (memory and assist development Organization can econtrol 104, (manufacturing (2015) lead time by predicting and scheduling maintenance of the equipment econtrol 2000, (erganization organization Organization 2000, (erganization erganization Organization erganization Organization erganization Organization erganization Var Rewards and Marian the erganization erganican erganican Maria t al. erganican		M14								
Impact impact impact information information effort to address								technology		et dl., 2018)
M15 Organization's effort no address and control the import Organization can organization the employee within turn Organization can econome Organization econome Minite time waste and barries in information Minite time waste and barries in the employee within turn Intervention Organization 's econome Organization 's econome Organization 's econome Organization (Control evention ad assist the employees within in turn Organization eprioration Vinodi te econome Intervention Intervention Organization (Control evention ad assist eprioration) Office (Control evention) Office (Control evention) Office (Control evention) Intervention Intervention Organization (Control evention) Office (Control evention)										
M15 Organization's import (Cramer, import 04 Control over information organization's information (Vandh e organization's development 000 (Cramer, information (Cramer, inf			impuer	1	2010)					
M15 Organization learning through learning through HR development Constrainton can 2014) (constrainton can development Offensionton 2014) (constrainton can development Offensionton constrainton development Offensionton 2014) (constrainton development Offensionton constrainton development Intra et constrainton development Variation constrainton material uses Mainton constrainton material uses Mainton constrainton constrainton material uses Offensionton constrainton constrainton constrainton material uses Intra et constrainton cons										
M15 Organization's levening through HR development Organization mentor development Organization (cenari, 2019) 04 0, Control over decies Ontwinkin (2015) lead time by predicting and statume by predicting and predicting and statume by predicting and statume by p				and control the					waste and barriers	
loaming through HR development programs to mentor and assis 2019) (Medea and development programs to mentor and assis 04 Control over defects Mini down manufacturing lead time by predicting and scheduling (2015) Hereitor and assist ortkforce W1 Employee Involvement Genari, 2019) Genari, 2019) 04 Control over defects Mini down manufacturing (2015) ortkforce W1 Employee Involvement Oally and 05 Ecofriendly Product design (2018) working culture of sustanable lean exhibited by the statinable lean Hang (201) Product design developing (2018) working culture of sustanable lean adopting to adopting to Control over material uses working culture of sustanable lean material uses (2018) working culture of sustanable lean material uses control to 2001) material uses (2018) working culture of sustanable lean frequention frequention material uses (2018) working culture of sustanable lean frequention frequention frequention (2019) W2 Rew				impact					in information	
IRR development programs to programs to the employees which in turn improves the performance of orgination Macke and Generi, 2019) O4 Control over lead time by prodicting and scheduling mainteannee of orgination Bring down (2015) Windent en manufacturing scheduling mainteannee of orgination forkforce W1 Employee Involvement mainteannee of orgination O5 Eco-friendly Focus on developing products that avoid or returne working culture of sustinable lea Lathra et have a scheduling mainteannee of products that avoid or returne working culture of sustinable lea O5 Eco-friendly Focus on developing products that avoid or returne material uses Lathra et products that avoid or returne working culture of sustinable lea Maintain the employees with at most Maintain the employees with at most Maintain the erronomitinent Maintain the eronomitinent Maintain the erronomi		M15	Organization's	Organization can	(Kramar,				flow within	
development programs to mentor and assist the employees which in turn improves the organization improves the enformance of organization organization Genari, 2019) defects manufacturing lead time by predicting and scheduling maintenance of the equipment (2015) Jorkforce W1 Employee Involvement (Daily and organization 05 Eco-friendly product design Focus on derect in products Luthra et derect in products W2 Rewards and material use and recognition of employees with actoorite corganization Mani et al. material use and adopting to actoorite corganization material use and material use and material material use and material material use and material mat										
fortkforce W1 Employee Immoves the preprint turn improves the performance of organization (Daily and products 05 Eco-friendly product design Focus on developing product design Luthra et products that adopting to sustainable lean W2 Rewards and precognition system Maintein the performance of organization Maintein the product design Gever fingent developing product design Control Luthra et product design W2 Rewards and precognition system Maintein the performance organization Maintei tal. material utilization Utilize visual utilization (Motwan) utilization W3 Employee motivation Kimar et al. Gover fingent understanding Information about understanding Communicate the performance communicate tal. Performance information about and creating Gever fingent understanding Gever fingent understanding W4 Safety and ergonomics measures Integret human safety factors and performance or employee Safety Safety and ergonomics into working ergonomics into working ergonomics into working ergonomics into working ergonomics Safety and ereg			HR development				04		0	Vinodh et al
vorkforce VI Employees which in turn improves the organization (Daily and organization 05 Eco-friendly product design He equipment which auss Lathra et defect in products vorkforce VI Employee (Daily and organization 05 Eco-friendly product design Focus on avoid or reduct working culture of working culture of organization Lathra et avoid or reduct working culture of working culture of organization 05 Eco-friendly product design Focus on avoid or reduct working culture of working culture of working culture of working culture of working culture of material strong of employees with of employees with of employees with and cerating motivation 06 Effective visual control (Motivani material control W3 Employee motivation Enahancing enably motivation Kumar et al. working procedure to ergonomics (Motivani motivation (Motivani motivation (Motivani motivation W4 Safery and working procedure to ergonomics Safery factor and safery factor and procedure to employee Safery factor and (Carture at motivation Nagaraj et al. (Control (Parimetrial procedure to employee Peeling (Carture at motiving procedure to employee Of (Cart down Design reusible profuncts Peeling (Carture at motiving procedure to employee Peeling (Carture at motiving products Peeling (Carture at motiving products <td></td> <td></td> <td></td> <td>-</td> <td>Genari, 2019)</td> <td></td> <td></td> <td>defects</td> <td>-</td> <td>(2015)</td>				-	Genari, 2019)			defects	-	(2015)
vorkforce W1 Employee interpance of organization or organization									•	
Vorkforce W1 Employee involvement (Daily and organization 05 Eco-friendly product design Feco-friendly developing products that avoid or reduce vorking to working to working to working to working to maximable lean (Daily and Hanag, 2001) 05 Eco-friendly product design Feco-friendly products design (2018) W2 Rewards and recognition system Maini et al. maximise errognition of employees with acknowledging de performance Maini et al. maximise material use and of employees with acknowledging the performance O6 Effective visual control to control to material control to material control to control to material developing maximise material control to control to material developing maximise material control to control to material developing maximise material control to control to control to control to control to control to material developing maximise material control to control to control to material developing maximise material control to control to control to material developing maximise material control to control to control control to control control to control co control to control cont										
Vorkforce W1 Employee involvement Improves the preformance of organization (bally and the equipment 05 Eco-friendly product design Focus on product design Luthra eff Vorkforce W1 Employee involvement Kabibited by the sustainable lean Mani et al. Focus on product balant Focus on products that Luthra eff W2 Rewards and recognition Mainiai nte Mani et al. material use material material material W3 Employee for enformance of organization (2015) Effective visual Utilize visual (Motwari organization W3 Employee financing Kimmer et al. material material (Motwari organization Pointizzation W4 Safety and regonomics the gradorustion Integrate human Sakthi Safety and mad creating Safety factors and safety factors and procedure to workspace Of Engin reusable Pointial of minerestranding Integrate human W4 Safety and measures Integrate human Sakthi and operational Call operational Pointial of minerestranding Integrate human W5									0	
workforce W1 Employee involvement (Daily and low organization 05 Eco-friendly product design Focus on developing Luthra et developing working culture of system employees adopting to working culture of system Maini et al. material material utilization material working culture of system material the performance of communicate the product shat working culture of system material the performance of employees with at most No Effective visual (Vilize visual control to and crainy in and crainy										
W1 Employee Involvement (Daily and exhibited by the exhibited by the employees in adopting to working culture of sustainable lean OS Eco-friendly product design Focs on developing products that avoid or reduce toxic or hazardous material use and maximise (2018) W2 Rewards and recognition system Main et al. material (2015) material use material use achnowledging the performance (2015) material utilization utilization W3 Employee Enhancing motivation Kumar et al. (2020) Control to and creating healthy working procedure to enhance quality O7 Cut down Reduce information about and creating healthy Grumnur workspace Grumnur and creating healthy W4 Safety and measures Integrate human ergonomics into enhance quality Safethi (2019) O8 Design reusable products Integrate human maximum potential of improve business performance of employee O8 Design reusable products Design rousable witch brings out maximum potential of material strough multiple life underial strough multiple life				-						
involvement employees in adopting to working culture of working culture of sustainable leanHuang, 2001)product design avoid or reducedeveloping products that avoid or reduce(2018) products that avoid or reduceW2Rewards and recognition systemMaintain the backnowledging the performance of employees withMani et al. (2015)material utilizationmaterial utilizationW3Remployee motivationEmployee findenceColoColocontrol to any process for quick recognition2003). et al. 201control to any process for quick recognition2003). et al. 201W4Safety and ergonomics measuresIntegrate human safety factors and procedure to enhance quality procedure to enhance quality procedure to enhance quality procedure to enhance qualityO7Cut down inventoryReduce employee employee inventoryGurumur et al. 201 any process for quick recognition inventoryGurumur et al. 202 any process for quick recognition inventoryGurumur et al. 202 any process for quick recognitionGurumur et al. 202 any process for employing proper employing proper 				organization					defect in products	
working culture of sustainable leanmair et al.product's that avoid or reduce toxic or hazardous material use and maximise naterial utilizationW2Rewards and recognition systemMani et al.material (2015) material (2015)material utilizationW3Employee motivationEnhancing working culture of (2020)O6Effective visual controlUtilize visual (2020) any process for understanding(Motwani control control to 2003), (control to any process for understandingW3Employee motivationEnhancing workspaceKumar et al. (2020)of material understanding(Motwani control control to any process for understandingW4Safety and measuresIntegrate human safety factors and measuresSakthi (2019)O7 material controlCut down inventory inventoryGrummur material understandingW4Safety and measuresIntegrate human safety factors and ergonomics into working performance of enhance quality and operational performance of enhance quality materials through maximumO8Design reusable peign reusable productsPeign proces peign reusable peign procesW5Feedback from feedback sabout workforceReceiving (Kaswan and Rathi, 2019) work culture and maximumO8Design reusable peign reusable productsDesign reusable peign reusable peign reusable peign reusable productsDesign reusable peign reusable peign reusable peign reusable productsCit al. (20 max	/orkforce	W1	Employee	Involvement	(Daily and		05	Eco-friendly	Focus on	Luthra et al.
W2 Rewards and recognition system adopting to working culture of sustainable lean Mani et al. material use and maximise material use material control material maximise W2 Rewards and recognition Maintain the practice of comployees Mani et al. material control material control material control material control Workand control W3 Employee motivation Mani et al. control Effective visual control (Movand control 2003), (C 2003), (C 2003), (C 2003), (C 2003), (C 2004), (C 2004), (C 2004), (C 2004), (C 2004), (C 2005), (C 2004), (C 2004), (C 2005), (C 2005), (C 2005), (C 2007), (C 2007), (C 2007), (C 2007), (C 2008), (C 2009), (C 2008), (C 2009),			involvement	-	Huang, 2001)			product design		(2018)
W2Rewards and recognition systemMani et al. practice of (2015)toxic or hazardous material use and material use and material utilizationW2Rewards and material of employees with of employees with at most commitmentO6Effective visual control(Motwall 2003), (communicate the employeed information about et al., 201 and creating heusefficiency(2020) transitiononto to commitment2003), (communicate the employee information about and creating healthyO7Cut down inventoryReduce employing proper inventoryet al., 201 and creating et al., 201W4Safety and ergonomics measuresIntegrate human safety factors and procedure to enhance quality and operational procedure to enhance qualitySafety factors and procedure to enhance quality and operational procedure to enhance quality and operational procedure to enhance quality and operational productsO8Design reusable productsDesign products et al., 201 maximumW5Feedback from workforceReceiving feedback sabout material moticul efficiency(Kaswan and material, 2019)O8Design reusable productsDesign products material improve business performance products(Habidin material, 2019)W5Feedback from material material material material material material productsReduces about material products<									•	
W2sustainable lean Maintain the preceognition systemMaintain the Maintain t										
W2Rewards and recognition systemMaintain the practice of acknowledging the performance of employees with at mostMani et al. (2015)maximise material utilizationW3Employee motivationEnhancing workspaceKumar et al. (2020) through support and creating healthyOfEffective visual controlUtilize visual control to(Motwari 2003), (C communicate the panizzolo information about and creating healthyV3Employee motivationEnhancing workspaceKumar et al. (2020) through support and creating healthyO7Cut down inventoryReduce engonomics inventory by employing proper forecasting working procedure to enhance quality and operational workingO7Cut down inventoryReduce engonomics inventory by employing proper forecasting technique and improve business performanceO8Design reusable productsDesign products material strough material strough material strough multiple life cycles and saveW5Feedback from workforeReceiving Receiving (Kaswan and making employee(Kaswan and Rathi, 2019)O8Design reusable potential of material strough material strough multiple life cycles and save(Habidin et al., 201 material strough material strough multiple life cycles and savePerformance				0						
recognition system in acknowledging acknowledging acknowledging acknowledging be performance in of employees with in organization information informa		W2	Rewards and		Mani et al					
system acknowledging the performance of employees with of employees with though support O6 Effective visual control Utilize visual Utilize visual (Motwari 2003), (C W3 Employee Enhancing Kumar et al. workers efficiency C020) and clarity in and creating and clarity in understanding and clarity in understanding and clarity in understanding and clarity in understanding W4 Safety and ergonomics Integrate human safety factors and procedure to enhance quality Nagaraj et al. (2019) O7 Cut down employee employing proper inventory by et al. (201 inventory by W5 Feedback from workforce Receiving Receiving (Kaswan and performance of effedbacks about workforce (Kaswan and feedbacks about workforce O8 Design reusable products Design products which brings out materials through workforce (Habidin wick brings out materials through work culture and workfore		112								
W3Employee of employees with at most commitmentKumar et al. (2020) through support and creating healthyO7Cut down commitmentUtilize visual (2003), (communicate the panizzolo information about et al., 201 any process for quick recognition and clarity in understandingUtilize visual (2020) quick recognition and clarity in understandingUtilize visual (2003), (communicate the panizzolo information about et al., 201 any process for quick recognition and clarity in understandingUtilize visual (2003), (communicate the any process for quick recognition and clarity in understandingUtilize visual (2019)(Motwari control or any process for quick recognition and clarity in understandingUtilize visual (2019)(Motwari control any process for quick recognition and clarity in understandingW4Safety and ergonomics measuresIntegrate human safety factors and Nagaraj et al.O7Cut down inventory unnecesary ergonomics inventory by technique and improve business performanceG8Design reusable productsDesign products (Habidin materials through materials through materials through materials through materials through materials through materials through materials through materials through materials through mating employeeO8Design reusable potential of materials through materials through mater			-		()					
 of employees with at most at most communicate the panizzolo information about information			-				06	Effective visual		(Motwani,
W3Employee motivationEnhancing workers efficiencyKumar et al. (2020) through supportinformation about any process for quick recognition and creating healthyC2020) through support and creating healthyO7Cut downReduce muderstandingGurumur et al. (2020) through supportW4Safety and ergonomics measuresIntegrate human safety factors and measuresSakthiO7Cut downReduceGurumur et al. (2020)W4Safety and ergonomics measuresIntegrate human ergonomics measuresSakthimuncessary et al. (2019)et al. (2019)W5Feedback from workforce(Kaswan and feedback sabout work culture and making employeeC8Design reusable productsPotential of materials through(Habidin waterials through materials throughHabidin et al., 201W5Feedback from workforceReceiving feedback sabout making employee(Kaswan and materials through work culture and making employeeC8Design reusable productsPotential of materials through materials through materials throughet al., 201				-				control	control to	
W3 Employee motivation Enhancing workers efficiency through support and creating healthy Kumar et al. (2020) any process for quick recognition and clarity in understanding W4 Safety and ergonomics Integrate human safety factors and measures Sakthi O7 Cut down inventory Reduce unnecessary et al. (2020) W4 Safety and ergonomics Integrate human safety factors and measures Sakthi reconsistion (2019) working procedure to enhance quality working procedure to enhance quality Nagaraj et al. orecasting technique and improve business performance performance W5 Feedback from workforce Receiving feedbacks about making employee (Kaswan and making employee O8 Design reusable products Design products (Habidin mating employee										Panizzolo
motivation workers efficiency (2020) quick recognition through support and creating and clarity in understanding healthy O7 Cut down Reduce Gurumur workspace inventory unnecessary et al. (2020) W4 Safety and Integrate human Sakthi inventory unnecessary et al. (2020) measures ergonomics safety factors and Nagaraj et al. procedure to employing proper forecasting enhance quality and operational (2019) Keit al. (2019) performance ergonomics performance W5 Feedback from Receiving (Kaswan and O8 Design reusable potential of workforce feedbacks about Rathi, 2019) work culture and maximum potential of working employee working potential of maximum potential of enhance quality maximum potential of maximum potential of work culture and maximum potential of maximum potential of work culture and <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>et al., 2012)</td>										et al., 2012)
And clarity in understandingand creating healthy workspace07Cut down inventoryReduceGurumur inventoryW4Safety and ergonomicsIntegrate human safety factors and workingSakthi07Cut down inventoryend clarity in understandingW4Safety andIntegrate human ergonomicsSakthiend clarity in understandinget al. (20)W4Safety andIntegrate human ergonomicsSakthiemploying proper forcastinget al. (20)measuresergonomics into procedure to enhance quality and operational performance of employeeN8Design reusable productsDesign products(Habidin et al., 20)W5Feedback from workforceReceiving feedbacks about work culture and making employee(Kaswan and Rathi, 2019)08Design reusable potential of materials through multiple life cycles and savepotential of materials through multiple life		W3		•						
and creating understanding understanding healthy workspace 07 Cut down Reduce Gurumur workspace inventory unnecessary et al. (20) inventory by et al. (20) inventory by ergonomics safety factors and Nagaraj et al. employing proper forecasting working procedure to enhance quality and operational performance of employee enhance of employee (Habidin performance of feedbacks about Rathi, 2019) work culture and making employee (Kaswan and multiple life cycles and save enhance quality and operational making employee (Kaswan and multiple life cycles and save enhance quality and operational making employee (Kaswan and multiple life cycles and save enhance quality and operational making employee (Kaswan and multiple life cycles and save enhance quality and operational making employee (Kaswan and multiple life cycles and save enhance quality making employee (Kaswan and multiple life cycles and save enhance quality making employee (Kaswan and multiple life cycles and save enhance quality making employee (Kaswan and multiple life cycles and save enhance quality making employee (Kaswan and multiple life cycles and save			motivation		(2020)					
healthyO7Cut downReduceGurumurworkspaceinventoryunnecessaryet al. (20)W4Safety andIntegrate humanSakthiinventoryinventory byergonomicssafety factors andNagaraj et al.employing propermeasuresergonomicis(2019)forecastingworkingprocedure toprocedure toperformanceenhance qualityand operationalO8Design reusableDesign productsperformance ofemployeemaximumet al., 20)workforcefeedbacks aboutRathi, 2019)materials throughwork culture andmating employeematerials throughmaterials throughwork culture andmaking employeecycles and savecycles and save				0 11						
W4 Safety and ergonomics measures Integrate human safety factors and ergonomics into working Nagaraj et al. (2019) inventory unnecessary inventory by employing proper forecasting employing proper forecasting working ergonomics into moving (2019) inventory employing proper forecasting procedure to enhance quality and operational performance of employee O8 Design reusable products Design products (Habidin et al., 201 W5 Feedback from workforce Receiving (Kaswan and making employee matri, 2019) matri, 2019)				0			07	Cut down	0	Cumumout
W4 Safety and ergonomics measures Integrate human safety factors and ergonomics into procedure to enhance quality and operational performance of employee Nagaraj et al. (2019) inventory by employing proper forecasting technique and performance W5 Feedback from workforce Receiving feedbacks about maxing employee O8 Design reusable products Design products (Habidin performance W5 Feedback from workforce Receiving feedbacks about maxing employee (Kaswan and maxing employee potential of maxing employee matinum multiple life cycles and save				-			07			
ergonomics safety factors and measures safety factors and ergonomics into (2019) (2019		W4	Safety and	-	Sakthi			mventory		ct ai. (2020)
measures ergonomics into working (2019) forecasting working technique and improve business procedure to enhance quality performance and operational O8 Design reusable Design products performance of products which brings out et al., 201 employee maximum potential of maximum W5 Feedback from Receiving (Kaswan and workforce potential of workforce feedbacks about Rathi, 2019) materials through multiple life multiple life work culture and making employee cycles and save cycles and save cycles and save										
working technique and improve business performance and operational O8 Design reusable Design products (Habidin performance of employee employee feedbacks about Rathi, 2019) materials through workforce feedbacks about Rathi, 2019 technique and multiple life cycles and save technique and save technique and improve business performance technique and improve business performance technique and performance of endbacks about Rathi, 2019 technique and technique and performance of technique and performance of technique and performance of technique and technique and technique and technique and technique and performance of technique and technique an										
enhance quality performance and operational O8 Design reusable Design products (Habidin performance of products which brings out et al., 201 employee maximum maximum W5 Feedback from Receiving (Kaswan and workforce feedbacks about Rathi, 2019) matrials through work culture and making employee cycles and save				-					-	
and operational O8 Design reusable Design products (Habidin performance of products which brings out et al., 201 employee maximum et al., 201 W5 Feedback from Receiving (Kaswan and workforce feedbacks about Rathi, 2019) materials through work gemployee materials through materials through				procedure to					improve business	
performance of employee products which brings out et al., 201 W5 Feedback from Receiving (Kaswan and workforce potential of workforce feedbacks about Rathi, 2019) materials through multiple life work culture and making employee cycles and save				enhance quality					performance	
W5 Feedback from workforce Receiving (Kaswan and feedbacks about work culture and making employee potential of materials through multiple life cycles and save				*			08	-		
W5 Feedback from workforce Receiving feedbacks about work culture and making employee (Kaswan and Rathi, 2019) potential of materials through multiple life cycles and save								products	0	et al., 2018)
workforce feedbacks about Rathi, 2019) materials through work culture and multiple life making employee cycles and save			T 11 1 C							
work culture and making employeemultiple life cycles and save		W5		-					•	
making employee cycles and save			workforce		Katni, 2019)				-	
ici inpowercu resource									-	
W6 utilization		WE		ieer empowered						

К.	Mathiyazhagan	et	al
----	---------------	----	----

Table 1 (continued)

Category	Code	Factor	Description	Reference
	09	Adopt reduce, reuse, recycle	Employ design for manufacture and assembly which creates the scope for recycling and	(Habidin et al., 2018), (Vinodh et al., 2015)
	010	Internal expertise	repairing of the product Make use of packaging materials, technology and disposal	(Chuang and Yang, 2014)
	011	Proper utilization of floor space	procedure which minimizes environmental impact and cut down cost Build a reverse logistic network for proper handling of	(Toke and Kalpande, 2019)
۲nowledge	К1	Run product life cycle assessment	products at end of life-cycle and reduce material consumption which benefits the environment as well as business Ensure availability of expert member inside the	Govindan et al. (2014)
	K2	Link sustainable lean practices to business objectives	organization to track and direct while implementing sustainability principles Workspace need to be properly organized to accommodate equipment and facilitate work by	(Singh et al., 2014), (Toke and Kalpande, 2019)
	КЗ	Run product life cycle assessment	eliminating unproductive movements. Conduct product life cycle assessment and attain knowledge	Cheung et al. (2017)
	K4	Link sustainable lean practices to business objectives	about environmental impacts by the end of life-cycle Reinforce sustainability aspect in every business related operation which includes	(Govindan et al., 2014), (Kaswan and Rathi, 2019)
	К5	Source from environmentally friendly suppliers	innovation, customer engagement, supplier relationship, etc Give priority to suppliers who incorporated and maintain an environmental management	(Habidin et al., 2018)
	K6	Customer awareness	system with high standards Make effort in creating	Kumar et al. (2020)

Category	Code	Factor	Description	Reference
			awareness among the customers about eco-friendly products and their benefits over the	
	K7	Feedback from buyers	other choices Involve buyers in quality program through feedbacks and learn from their	Panizzolo et al. (2012)
	K8	Technical support to supplier	response Provide technical support to the suppliers regarding issues in implementing sustainability concepts while collaborating	(Malviya and Kant, 2017)
			-	
Literatur review		Expert consultation		
Selectin	g CSFs of	sustainable lean		
	for the			
	Ļ	»		
De	termine pa	arameters to		
	rate the alt	ernatives		
	Ļ			
	buting que collecting	stionnaire and response		
	Ļ		_	
		e alternatives AS method		
	<u> </u>	17 On 201 - 22 De Marine Marine 2002 De		
Choosin	g the best	and worst factor		
	Ļ			
Reco	ording pre	ference value		
L	Ļ		_	
	itizing the best-wors	factors using method		ultation with rt members
	Ļ	6		
				Î
/	Is			
<	consist			
	ratio	>1		
	\searrow			
1000 March	¥		-	
Fi	nalising th ECM in	e CSFs for		
	EL M In			

Fig. 1. Methodology.

3.2.2. Distributing questionnaire and response collection

A questionnaire based survey relating each parameter to individual alternative was designed. The questionnaire was initially distributed to few DMs who were asked to rate the strength of relation for each alternative with individual parameter. Pilot or a small scale investigation was done to assess the feasibility of the questionnaire. The data collected from the pilot study aided in modifying the final questionnaire

Table 2Details of decision makers.

Sl.no	Job description
1	Product manager
2	Logistics associate
3	Maintenance engineer
4	Sales engineer
5	Marketing head

Table 3

Parameters for rating.

Sl. no	Parameter	Parameter code	Description
1	Stakeholders satisfaction	P1 ⁺	The level of satisfaction for all the stakeholders from supplier to customer
2	Environmental impact reduction	P2 ⁺	Contribution of the factor in bringing down negative environmental impact
3	Productivity improvement	$P3^+$	Enhance the output with minimum consumption of resources
4	Cost for implementation	P4 ⁻	The cost incurred to the organization for implementing the factor
5	Technical difficulty	₽5 ⁻	Difficulty faced by the organization in technical aspect

Table 4

Five point likert scale.

Linguistic Variable	Numerical Value
Very low (VL)	1
Low (L)	2
Moderate (M)	3
High (H)	4
Very high (VH)	5

Table 5

Numbers and relative importance.

Number	Relative importance
1	Equally important
2	Weakly important
3	Moderately important
4	Moderately plus important
5	Strongly important
6	Strongly plus important
7	Very strongly important
8	Very, very strongly important
9	Extremely important

which was then distributed to the DMs for collection of their response. The final questionnaire form is included in Appendix 1.

3.2.3. The procedure for COPRAS method

Step 1 Initial decision matrix

Construct the initial decision matrix X from the numerical response of DMs by arranging the alternatives in rows (m) and the parameters in columns (n). Since there are five DMs, the five different decision matrices under each major criterion were aggregated into one by constructing aggregate decision matrix. By taking average of values by all DMs for each parameter, this can be constructed.

$$X = [Xij]_{mxn} = \frac{\sum_{d=1}^{5} xP}{d}$$

where, $i = \{1, 2, .., 5\}$

Step 2 Normalized decision matrix

Normalized decision matrix (R) is formed by dividing the individual vale of a parameter to the sum of all values of that particular parameter.

Step 3 Weighted Normalized decision matrix

The weighted normalized decision matrix (D) is constructed by multiplying the normalized value of an alternative to the corresponding weight assigned to the parameter.

Step 4 Sum of Weighted Normalized Decision Matrix

The sum of beneficial values of an alternative (S_{+i}) and sum of nonbeneficial values of an alternative (S-i) are calculated separately from the weighted normalized values as shown below,

$$S_{+i} = \sum_{j=1}^{n} y + ij$$
$$S_{-i} = \sum_{j=1}^{n} y - ij$$

Step 5 Relative significance of alternatives

The relative significance (Q_i) provides the importance of an alternative in relative to others. It is found using the following formula,

$$Q_{i} = S_{+i} + \frac{S - \min\sum_{i=1}^{m} S - i}{S - i\sum_{i=1}^{m} (\frac{S - \min}{S - i})}$$

Step 6 Calculate utility ratio

The utility ratio (U_i) provides the degree of profitability or usefulness of an alternative. The alternative with the highest percentage of utility is considered to be the best. The U_i is calculated using the formula shown below,

$$U_i = \left[\frac{Qi}{Qmax}\right] * 100$$

The above mentioned procedure was used to shortlist the collected CSFs under each major criterion based on their utility value.

3.3. Prioritizing the shortlisted CSFs using BWM

The BWM is a multi-criteria decision making (MCDM) tool introduced by Jafar Rezaei in 2015. In this method, the best (most important) and the worst (least important) factors are selected by the decision maker from all the factors involved in the study. The selected factors are then compared pairwise with all the other factors by DM using range from 1 to 9, where 1 = "equally important" and 9 = "extremely important". Using these comparison values a minimization model is built and solved, which provides the weight of the factors and consistency ratio. Rezaei (2015) and Mi et al. (2019) found that BWM provides more consistent results eliminating the inconsistency in Analytical Hierarchy Process (AHP). This is because BWM requires less pairwise comparison than AHP. The major variation exists between the two methods is the mathematical function they involve. For BWM f(n) =2n-3, whereas for AHP f(n) = n(n-1)/2. The standard procedure for BWM is explained below.

Step 1 Determine the decision factors

The factors which are going to be evaluated for finding the final decision are selected in this step.

Step 2 Select the best and worst factor

The best (most important) and the worst (least important) factors under each major criterion are selected by the decision maker.

Step 3 Determine the preference value for best to others

Determine the preference value by comparing the factor which is selected as the best with all the other factors in the particular criterion using a scale of 1-9. The best-to-others comparison will provide the following vector,

$$F_B = (f_{B1}, f_{B2}, ..., f_{Bn})$$

where f_{Bj} indicates the preference value provided for comparing the best factor B to the jth factor. When the best factor is compared to itself (f_{BB}), the preference value will be 1.

Step 4 Determine the preference value for others to worst

Determine the preference value by comparing all the factors of a criterion to the factor which is selected to be the worst using the 1-9 scale. The others-to-worst comparison will provide the following vector,

 $F_W = (f_{W1}, f_{W2}, ..., f_{Wn})^T$

where f_{Wj} indicates the preference value provided for comparing the jth factor to the worst factor W. When the worst factor is compared to itself (f_{WW}), the preference value will be 1.

COPRAS methodology was adopted to understand the difficulty in evaluating the CSFs, once we are clear about the CSF for which data can be easily obtained, we start the prioritization process. Finally, the identified factors were evaluated and prioritized using BWM, from which the CSFs of SLM for the case organization were established. The procedure for performing the above mentioned hybrid methodology is explained in the following subsections. The BWM method uses two stage response collection process to understand the importance of each criteria. The detailed steps of the same are given below:

3.3.1. Two stage response collection

The response collection for BWM included two stages (see Table 5). In the first stage, the five DMs were asked to choose the best (most important) and the worst (least important) factor from all the criteria individually. This provided five different set of factors for each criterion. The questionnaire form used for collecting the best and the worst factors is given in Appendix 2. In the second stage, the DMs were asked to compare their selected factors to all other factors in that particular

Table 6	
Utility degree for management factors	<i>.</i>

criterion by providing a preference value. The preference scale ranging from 1 to 9 was used for comparison as shown in Table 9. The comparison was made in the manner of weighing up the selected best factor to others and others to the selected worst factor. For the best to others comparison, preference value was provided in such a way that value for the best-best factor is '1' and value for the best-worst value is '9'. The best to all other factors was awarded value between 1 and 9. Likewise for the others to worst comparison, preference value for the worst-worst factor is '1' and value for the worst-best is '9'. All other factors to worst were awarded value between 1 and 9. Based on the response collected in the last step, best-to-others (BO) vector and others-to-worst (OW) vector were formed using the procedure explained in methodology. The questionnaire form used for recording comparison values and response collected are shown in Appendix 3.

3.3.2. Determine optimal weights

Find the optimal weight for each factor $(w_1^*, w_2^*, ..., w_n^*)$ in this step. The solution obtained is optimal when the weights for factors have $w_B/w_j = f_{Bj}$ and $w_j/w_w = f_{jw}$.

In order to meet these conditions for all the factors, the maximum absolute differences, $|\frac{wB}{wj} - f_{Bj}|$ and $|\frac{wj}{ww} - f_{jw}|$ for every factor are minimized. Taking the non-negativity condition and sum condition for weights into account, the following equation is attained,

$$\min_{j}\max\{|\frac{wB}{wj}-f_{Bj}|, |\frac{wj}{ww}-f_{jw}|$$

subject to,

$$\sum_{j} wj = 1$$

 $w_j \ge 0$, for all j.

Then, a linear programming minimization model is generated from the above equation,

min ε subject to,

$$\frac{|wB}{wj} - f_{Bj}| \le \varepsilon \text{ for all } j$$
$$\frac{|wj}{ww} - f_{iw}| \le \varepsilon \text{ for all } j$$
$$\sum wi = 1$$

 $w_i \ge 0$, for all j.

The optimal weights (w_1^* , w_2^* ,..., w_n^*) and optimal value ε^* are obtained by solving the above problem for all the DMs.

Code	P1+	P2+	P3+	P4-	Р5-	S+i	S-i	Qi	Ui
M1	0.01811	0.016176	0.017692	0.011765	0.010924	0.051979	0.022689	0.083066	100
M2	0.012598	0.013971	0.012308	0.011765	0.013445	0.038877	0.02521	0.066855	80.48422
M3	0.014173	0.010294	0.013846	0.01098	0.013445	0.038313	0.024426	0.06719	80.88774
M4	0.014173	0.013971	0.013077	0.013333	0.013445	0.041221	0.026779	0.06756	81.33309
M5	0.013386	0.013971	0.013077	0.011765	0.012605	0.040433	0.02437	0.069377	83.51964
M6	0.012598	0.014706	0.010769	0.014902	0.014286	0.038074	0.029188	0.062239	74.92723
M7	0.015748	0.013235	0.016154	0.015686	0.015126	0.045137	0.030812	0.068029	81.89689
M8	0.012598	0.013971	0.013846	0.013333	0.010924	0.040415	0.024258	0.069492	83.65871
M9	0.011024	0.013971	0.012308	0.014118	0.012605	0.037302	0.026723	0.063697	76.68184
M10	0.011811	0.009559	0.009231	0.014902	0.010924	0.030601	0.025826	0.057912	69.71729
M11	0.013386	0.011765	0.016154	0.014118	0.014286	0.041304	0.028403	0.066137	79.62004
M12	0.012598	0.0125	0.014615	0.013333	0.013445	0.039714	0.026779	0.066053	79.51896
M13	0.011024	0.016176	0.012308	0.013333	0.014286	0.039508	0.027619	0.065046	78.30615
M14	0.013386	0.014706	0.01	0.014902	0.016807	0.038092	0.031709	0.060336	72.63613
M15	0.013386	0.011029	0.014615	0.011765	0.013445	0.039031	0.02521	0.067009	80.66952

Table 7

Utility degree for workforce factors.

Code	P1+	P2+	P3+	P4-	Р5-	S+i	S-i	Qi	Ui
W1	0.031148	0.04	0.031667	0.028571	0.028571	0.102814	0.057143	0.179808	100
W2	0.034426	0.032941	0.033333	0.037363	0.030952	0.100701	0.068315	0.165103	91.82185
W3	0.032787	0.030588	0.031667	0.030769	0.035714	0.095042	0.066484	0.161219	89.66134
W4	0.036066	0.030588	0.035	0.037363	0.038095	0.101654	0.075458	0.15996	88.96142
W5	0.034426	0.028235	0.03	0.028571	0.030952	0.092662	0.059524	0.166576	92.6408
W6	0.031148	0.037647	0.038333	0.037363	0.035714	0.107128	0.073077	0.167334	93.06235

Table 8

Utility degree for operational factors.

Code	P1+	P2+	P3+	P4-	Р5-	S+i	S-i	Qi	Ui
01	0.016575	0.01704	0.02246	0.016346	0.017172	0.056075	0.033518	0.095359	96.81775
02	0.020994	0.017937	0.02246	0.017308	0.018182	0.061392	0.03549	0.098493	100
03	0.018785	0.018834	0.02139	0.020192	0.019192	0.059009	0.039384	0.092442	93.85583
04	0.01768	0.017937	0.023529	0.016346	0.017172	0.059146	0.033518	0.09843	99.93609
05	0.016575	0.019731	0.012834	0.017308	0.019192	0.04914	0.0365	0.085215	86.51827
06	0.018785	0.015247	0.018182	0.017308	0.017172	0.052213	0.034479	0.090402	91.78453
07	0.016575	0.015247	0.019251	0.016346	0.017172	0.051073	0.033518	0.090357	91.73895
08	0.016575	0.018834	0.013904	0.019231	0.019192	0.049312	0.038423	0.083582	84.86037
09	0.016575	0.018834	0.016043	0.019231	0.017172	0.051451	0.036402	0.087623	88.96305
010	0.01768	0.019731	0.012834	0.020192	0.020202	0.050245	0.040394	0.082841	84.10868
011	0.023204	0.020628	0.017112	0.020192	0.018182	0.060945	0.038374	0.095257	96.71447

Table 9

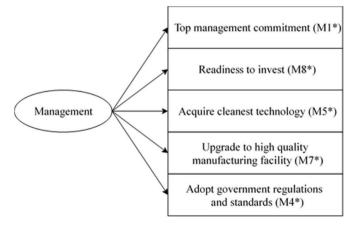
Utility degree for knowledge factors.

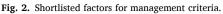
Code	P1+	P2+	P3+	P4-	P5-	S+i	S-i	Qi	Ui
K1	0.025	0.024638	0.029457	0.025954	0.022951	0.079095	0.048905	0.130064	100
K2	0.025	0.023188	0.029457	0.024427	0.027869	0.077646	0.052296	0.125309	96.34449
K3	0.023529	0.026087	0.027907	0.025954	0.022951	0.077523	0.048905	0.128492	98.79159
K4	0.022059	0.021739	0.031008	0.022901	0.027869	0.074806	0.05077	0.123903	95.2629
K5	0.023529	0.030435	0.021705	0.027481	0.02459	0.07567	0.052071	0.123539	94.98364
K6	0.025	0.026087	0.017054	0.030534	0.022951	0.068141	0.053485	0.114745	88.22233
K7	0.027941	0.021739	0.021705	0.019847	0.02459	0.071386	0.044437	0.127479	98.01239
K8	0.027941	0.026087	0.021705	0.022901	0.02623	0.075734	0.04913	0.126469	97.23584

Then, using the consistency index and optimal value ε^* , consistency ratio for each DM is calculated. The consistency ratio always ranges from 0 to 1. The closer the value of ratio to 0, indicates the comparison is more consistent.

Consistency ratio = ϵ^* / consistency index.

The implementation of the above discussed methodology in the case organization is explained in the next section.


4. Data analysis


The case organization, selection of factors, shortlisting and prioritizing the CSFs for EECM using the hybrid methodology are presented in this section.

4.1. Result obtained using COPRAS method

The responses for 15 management factors, 6 workforce factors, 11 operational factors and 8 knowledge factors from five DMs were organized separately and steps of COPRAS were performed. After discussion with DMs, equal weights were applied to each parameter for determining weighted normalized matrix. The result for management factors is shown in Table 6 in which weighted normalized matrix, relative significance and utility degree are presented.

It can be observed from the table that the factor which holds the highest utility degree come by 100% and the utility degree for remaining factors descends gradually. It can also be noted that the factors having high value in beneficial parameters and low value in non-beneficial parameters will be holding the top utility degrees. This is because of the fact that those factors favour the organization in sustainability dimensions and have less difficulty in implication. In management criterion, 'top management commitment' (M1) got the highest utility (100%) and 'establish company's brand image with sustainability dimension' (M10) got the lowest utility (69.71%). Although 'upgrade to high quality manufacturing facilities' (M7) got next highest value for stakeholders satisfaction (P1⁺) and productivity improvement (P3⁺), it obtained fourth Ui because of high cost (P4⁻) and technical difficulty (P5⁻) for the implementing organization. For shortlisting purpose, the factors which

secured top five utility degree values were selected from every criterion. The management criterion with five shortlisted factors, as shown in Fig. 2, is then used in BWM.

The same procedure is followed to shortlist the workforce, operational and knowledge factors. Regarding workforce criterion, 'employee involvement' (W1) got the highest utility (100%) and 'safety and ergonomics measures' W4 got the lowest utility (88.96%) as shown in Table 7. Here, even though safety and ergonomics are very important and got the highest P1⁺ of all the factors, the high values in P4⁻ and P5⁻ (non-beneficial parameters) have resulted in lower degree of utility. The five shortlisted factors of workforce criterion are shown in Fig. 3.

Coming to operational criterion, 'standardize the work' (O2) secured the highest utility degree (100%) and 'environment friendly packaging' (O10) secured the lowest utility degree (84.10%) as shown in Table 8. Environment friendly packaging got the lowest position in this criterion because of its less contribution to beneficial aspects when compared to high non-beneficial demands. 'Eco-friendly product design' got high value in P2⁺ and less rating for P1⁺ and P3⁺ which brought sum of beneficial parameters closer to sum of non-beneficial parameters resulting in low utility degree. The operational criterion with five shortlisted factors is presented in Fig. 4.

Regarding knowledge criterion, 'internal expertise' (K1) secured the top utility degree (100%) and 'customer awareness' (K6) got the lowest utility degree (88.22%) as given in Table 9. 'Customer awareness' towards sustainable products is an important factor, however the less contribution by the factor to productivity $(P3^+)$ of the organization with high cost for implementing (P4') has resulted in low utility for the factor. Likewise 'link sustainable lean practices to business objectives' (K4) and 'sourcing from environmentally friendly suppliers' (K5) got comparatively less values due to the difficulty involved in implementation with moderate benefits gained for organization. The knowledge criteria with five shortlisted factors is presented in Fig. 5.

All the above mentioned 20 factors are further evaluated with BWM in the next section.

4.2. Evaluating the factors using best-worst method

In this section, BWM was used to evaluate and prioritize the shortlisted factors to determine the final CSFs for the electronic component manufacturing organization involved in the study.

Following the formation of priority vectors from the collected preference values, the optimal weights for the factors are found. For this purpose, a linear programming minimization model was used to generate separate priority vector for each DM as explained in the procedure. The optimal weights and consistency ratio are then determined by solving the model. Since responses from five DMs were used, each 20 factors under four criteria would get five different weights

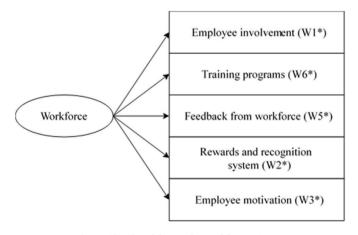


Fig. 3. Shortlisted factors for workforce criteria.

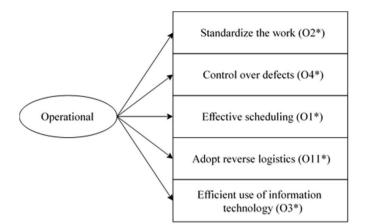


Fig. 4. Shortlisted factors for operational criteria.

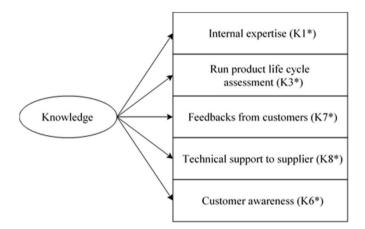


Fig. 5. Shortlisted factors for knowledge criteria.

corresponding to them. For the sake of finding the final weight of a factor, weighted mean is calculated from all the optimal weights obtained. Also while calculating weighted mean, equal significance to each decision maker's opinion was ensured by providing equal weightage individually. The final weights obtained for all the factors under four different criteria are presented in Table 10 and the finalized CSF are given in Table 11.

Based on the final weight obtained, the factors are ranked from 1 to 5. Under management criterion, 'top management commitment (M1*)' got first place by holding highest weight (0.0779) of all management factors followed by 'readiness to invest (M8*)' which got second rank with next highest weight (0.0541) implying the significance of financial support from the organization. 'Acquire cleanest technologies (M5*)' secured third highest weightage (0.0399) indicating the importance of controlling environmental impact through management's contribution. 'Adopt government regulations and standards (M4*)' got fourth weightage (0.0159) signifying the demand on the management in adopting standards. 'Upgrade to high quality manufacturing facilities

Table 10
Final weights for the factors

Management	Workforce	Operational	Knowledge
code/final wgt	code/final wgt	code/final wgt	code/final wgt
(M1*)0.0779	(W1*)0.0698	(02*)0.0692	(K1*)0.0734
(M8*)0.0544	(W6*)0.0543	(04*)0.0672	(K3*)0.063
(M5*)0.0399	(W5*)0.051	(01*)0.0141	(K7*)0.0368
(M7*)0.0117	(W2*)0.0137	(011*)0.0281	(K8*)0.0154
(M4*)0.0159	(W3*)0.011	(03*)0.0212	(K3*)0.0112

Table 11

Finalised CSFs from the study.

Rank	Code	Factors
1	M1*	Top-management commitment
2	K1*	Internal expertise
3	W1*	Employee involvement
4	O2*	Standardize the work
5	O4*	Control over defects
6	K3*	Run product life cycle assessment
7	M8*	Readiness to invest
8	W6*	Training programs
9	W5*	Feedback from workforce
10	M5*	Acquire cleanest technologies
11	K7*	Feedback from buyers
12	011*	Adopt reverse logistics
13	O3*	Efficient use of information technology
14	M4*	Adopt Government regulations and standards
15	K8*	Technical support to supplier

 $(M7^*)'$ got the fifth weight, ranking last in the management criterion (0.0117). The consistency ratio of the optimal weights for management factors derived from five DMs are as follows: DM1 = 0.0986, DM2 = 0.0859, DM3 = 0.0746, DM4 = 0.0950, DM5 = 0.0707.

Analysing the weights of workforce factors, 'employee involvement (W1*)' got first rank with the highest weightage (0.0698) establishing the significance of workforce readiness in sustainable lean implementation. 'Training programs (W6*)' came second with next weightage (0.0543) which stresses the skill development of the workers. It was followed by 'feedback from workforce (W5*)' which was ranked third (0.0510) underscoring the importance of considering employee opinion for healthy work environment. Fourth rank was acquired by 'rewards and recognition system (W2*)' with weight (0.0137) indicating the value for recognising employee effort in business environment. And, 'employee motivation (W3*)'secured fifth position with least weightage (0.0110) showing the level of importance for motivated employee. The consistency ratio of the optimal weights for workforce factors derived from five DMs are as follows: DM1 = 0.0746, DM2 = 0.0927, DM3 = 0.0499, DM4 = 0.0761, DM5 = 0.0549.

Regarding operational factors, 'standardize the work (O2*)' secured the first position with highest weight (0.0692) highlighting the prominence of building and maintaining a standard operating procedure. The second highest weight (0.0672) was acquired by 'control over defects (O4*)' exhibiting the importance of preventing defects before occurring with appropriate techniques. 'Adopt reverse logistics (O11*)' got the third position (0.0281) indicating the significance of setting up the network to collect the used and extinct products and 'efficient use of information technology (O3*)' was given fourth rank (0.0212) stressing the need for expeditious information flow in the organization. Finally, 'effective scheduling (O1*)' ranked last (0.0141) conveying the necessity for eliminating time waste in the operations. The consistency ratio of the optimal weights for operational factors derived from five DMs are as follows: DM1 = 0.0711, DM2 = 0.0976, DM3 = 0.0986, DM4 = 0.0781, DM5 = 0.0711.

Likewise for knowledge factors, 'internal expertise (K1*)' acquired the first rank with highest weightage (0.0734) which exhibits the demand for having an expert for sustainable lean principles inside organization. 'Run product life cycle assessment (K3*)' secured the second rank (0.0630) intimating the need to acquire knowledge about all the stages of a product life cycle followed by 'feedbacks from customers (K7*)' at third rank (0.0368) underlying the importance of assessing and knowing the performance from consumer point of view. The fourth rank (0.0154) was acquired by 'technical support to supplier for green activities (K8*)' conveying the significance of extending the organization's sustainable principles to the stakeholders. And, 'proper utilization of floor space (K2*)' ranked fifth (0.0112) indicating the level of importance for having the knowledge to design a proper workspace eliminating unproductive activities. The consistency ratio of the optimal weights for knowledge factors derived from five DMs are as follows: DM1 = 0.0709, DM2 = 0.0847, DM3 = 0.0973, DM4 = 0.0586, DM5 = 0.0859.

5. Discussion

Advanced smart devices are being innovated, produced and consumed all over the globe persistently. Irrespective of the discipline, electronics is impinging into every technological device and becoming an inevitable ingredient in innovations which are considered to be the future. In order to bring such exceeding devices in real time, the demand for various types of electrical components is sky high. To meet demands of this kind with excellent quality, the electronics component manufacturing industry is gearing up with full enthusiasm. Growing pressure from stakeholders to reduce waste is the main reason academia is focusing on the analysis of sustainable lean factors in manufacturing industries. Lean manufacturing aims in reducing costs by eliminating wastes and non-value-added activities, which is the focal point for all top management (Shokri et al., 2021). SLM aims to improve efficiency by freeing up employees and resources for innovation and quality control that would have previously been wasted. Thus, the focus of academia has integrated this mechanism as a business modelling approach that needs immediate attention.

A total of 40 success factors were collected from the available literature on sustainability and lean concepts and finalized for the study after discussions with the panel members from the case organization. The panel had five decision makers from different departments of the organization. The collected factors were then classified into four criteria and shortlisted using COPRAS method based on the responses collected from the decision makers. The factors with top five utility degrees were shortlisted from each criterion which contracted 40 into 20 factors. The shortlisted 20 factors were further evaluated and prioritized using BWM. Optimal weights for the factors were found based on the responses from five decision makers. From the optimal weights calculated using BWM, weighted mean was determined to find the final weights. Ranking was provided to the 20 factors depending on the final weights obtained. The factors which got top 15 ranks were finalized to be the CSFs for the case organization in implementing sustainable lean principles. The Topmanagement commitment (M1*) has the highest priority in the sustainable lean CSF. The willingness from the management in implementing SLM was ranked to be the most important factor, since every business and strategic decision is taken by the people at administration level. Involvement of top-management was found to have direct impact on working culture and competitive advantage of the organization over the competitors. The Top-management commitment gained the highest priority in the sustainable lean CSF, since every business and strategic decision is taken by the people at administration level. Involvement of top-management was found to have direct impact on working culture and competitive advantage of the organization over the competitors. Focus from the management is essential as they drive the whole process of leading and implementing SLM in industries. The recent pandemic has also questioned the survivability of many EECM industries problems, with low investment, the sustainability and resilience of the sector is at stake. Less waste and better adaptability makes for a business that's better equipped to thrive well into the future. Further, the study by Wijethilake and Lama (2019) supports the claim that top management commitment has positive effect on the sustainability practices of the companies. Another essential CSF is the Internal expertise (K1*), the availability of experts in SLM principles inside the organization to direct and monitor the process got second most importance. This is because many organizations lack in attaining the expected improvement in performance even after adopting lean and sustainability concepts due to absence of proper guidance when any problem is detected (Vinodh et al., 2015). Also absence of technical expertise was identified to be a barrier in SLM implementation (Govindan et al., 2014).

According to the results Employee involvement (W1*) got third rank

which stresses the significance of human factors required while implementing a new normal. Fulfilling the technical and scientific aspects alone won't help the organization in achieving sustainability when the human factors and involvement are left unsatisfied (Daily and Huang, 2001). Academia must focus on identifying the ways to engage workforce to adapt lean sustainable manufacturing to reduce wastage and sustain in long run. Standardization of the operations can overcome the existing mismatch between available technology and employee skills. Employees should be trained not only on lean principles, but on the specific lean methods and processes to be utilized moving forward. The paper by Kumar et al. (2019) supports this CSF by stating that the employee involvement and creativity is a crucial environment problem-solving resources for adapting lean in processes. Standardizing the work got the fourth importance out of 15 top factors. Work standardization has a direct role in enhancing productivity of the organization as it removes the unwanted complexity in performing the operations. In addition, a standardized workspace will have least possibility of accidents with improved safety level (Gandhi et al., 2018). The study by Jakhar et al. (2018) aligns with this CSF, it states that the standardization of the work leads to reduction in the waste, thereby promoting the lean sustainable production Another essential CSF is the Control over defects (O4*), which further reduce the wastage of the resources. Producing a defective product or service is vain for both organization and consumer. Incorporating scheduled maintenance as an element in organization's conventional operation will eliminate such defects even before occurring. This can be achieved by analysing the operations involved in production cycle and finding the source of defects which makes it possible to deliver the products to the buyer at the scheduled time without any delay (Vinodh et al., 2015). The control of imperfect quality items is directly related to the monetary benefits (Jakhar et al., 2018). This is followed by run product life cycle assessment (K3*). Conducting product life cycle assessment is important in the electrical component manufacturing industry as production of the surge protector and earthing system involves usage of metal oxide nanoparticles which could be a threat to environment. The knowledge about impact caused in the stage of production, usage and end of life can be studied in detailed using LCA technique which in turn helps the organization while manufacturing such products (Cheung et al., 2017). The paper by Blass and Corbett (2018) asses the life cycle environmental impact used at the supply chain and firm levels to be more resilient and sustainable.

The readiness to invest (M8*) by the Management's inclination for adoption of sustainable lean principles got seventh rank. The level of financial support from organization will have a major influence in adopting sustainability principles successfully, since every technique of sustainability which includes up gradation of facility, knowledge and decision making comes with a cost (Mani et al., 2015; Prasad et al., 2018). A strong training programs (W6*) of the firm helps in enhancing the lean and sustainable practices. All the strategies and scientific techniques are executed in real time of production by the employees. To make any manufacturing philosophy work on the production floor, upgrading the employee skills and knowledge is an inevitable factor. India is one of the countries which have seen downward trend in skill adequacy in recent years. Scale up reskilling and up-skilling in emerging skills, combined with active labour market policies is established to be one of the priorities of human factor development. Acquiring feedback about the working culture (W5*) is another crucial CSF, which enhances the employee empowerment, which in turn motivates them. Providing a healthy working environment to the employees is essential for achieving the organization's business goals. Considering employees' opinion and making required alternations were set to improve commitment level of employees (Daily and Huang, 2001). India should amend labour laws and social protection for the new economy and the new needs of the workforce. The paper by Agarwal et al. (2021), cites the need for the industries to upskill and reskill the employees to gain competitive sustainable advantage and reduce wastage.

Acquire cleanest technologies (M5^{*}) is an important CSF which aims in reducing the ecological impact and enhancing the leanness of the firm. Readiness to acquire the cleanest technology was an important factor for achieving long-term sustainability goals. With the right technology which is having less pessimistic impact to the planet, the environmental aspect of sustainability can be attained (Toke and Kalpande, 2019). The Feedback from buyers (K7^{*}) aims in the overall satisfaction of customers, which is the ultimate goal for any organization which drives the need for development programs. Involving buyers in quality program through feedback effectively helps the organization to realize where to focus. Feedback from the consumers or collaborating organizations will reveal not only the quality of the product from client's point of view, but also the expectations, perceptions and trends of the market (Panizzolo et al., 2012).

Adopting a reverse logistic network (O11*) to support proper handling of products at the end of life-cycle which will reduce new material consumption. This will benefit the environment as well as the business. This is because manufacturing of electronic components involves usage of materials which need proper and safe way of disposal of waste or reusing them. Adopting this principle will help the development of organization and the society (Toke and Kalpande, 2019). Efficient use of information technology (O3*) helps the organizations in incorporating an advanced communication system to eliminate the barriers in information flow both internally and externally. Efficient use of information technology eliminates the unpredictability associated with a network of supplier and buyer by enhancing the information flow timely (Singh et al., 2016; Luthra et al., 2018).

Adopt government regulations and standards (M4*): Adopt the recent regulations of government and take part in international certification programs which focus on standards for social and environmental welfare like ISO 14001, ISO 9001 and ISO 26000. It supports sustainable performance of the organization with getting a good brand image (Mani et al., 2015). Technical support to supplier (K8*) regarding issues in implementing sustainability concepts while collaborating. The suppliers who are smaller business firms compared to the large-scale organization will have a support and also will be demanded to follow sustainable lean principles benefiting the triple bottom line. But, on the contrary a reduction in collaboration between companies was observed due to the pandemic which needs to be focussed and eliminated immediately. Hence, the above discussed 15 factors are crucial CSFs for the case electrical component manufacturing industry in implementing the sustainable lean manufacturing.

6. Conclusions

Increasing global awareness about sustainability in the field of EECM sector for a clean and safe living environment demands reforming the conventional production techniques to attain a heightened level of triple-bottom line performance (WEF, 2020). So, achieving the business goals along with environment prevention and embracing social factors can be supported by incorporating sustainable lean practices, which is the motivation behind the current paper. The implementation of sustainable lean practices is pressuring the industrial leaders to understand the factors for becoming lean and sustainable in their manufacturing operations. The primary requirement for Indian EECM sector is to identify the CSF that can be adopted in their production and operations systems.

Concerning to the discussed issues, this study involved in identifying and prioritizing the CSF for implementing SLM concepts in one of the EECM organizations. Although many researchers have already established the CSFs for SLM, the fuzziness associated with factors selection for the study through discussion with experts remains obscured. The literature lacks the analytical evaluation of the CSF in the view of exploring their significance level before modelling or prioritizing them. A team of five experts from various departments of the case organization were identified, having a working expertise of over 7–10 years in their respective departments. A hybrid multi-criteria decision making technique was employed in the present study. In the first step of the study involved collecting the critical success factors for SLM from the available literature and analysing them with the help of decision makers. A total of 40 CSFs representing Management (M), Workforce (W), Operational (O) and Knowledge (K) factors were collected. The selected factors were then shortlisted using COPRAS method, based on the responses collected from the decision makers. COPAS was used to shortlist the CSF based on the ease of collecting information. In the second step BWM multi-criteria decision making technique was employed and 20 CSFs were finalized for implementing sustainable lean. BWM was used to evaluate and prioritize the shortlisted factors to determine the final CSFs for the electronic component manufacturing organization involved in the study.

The results found from the methodology established topmanagement commitment in implementing SLM, availability of an internal expert who can monitor and provide proper guidance to the organization and involvement level of employees in accepting, learning and practicing new principles to be the top three CSFs for the case organization. Focus from the management is essential as they drive the whole process of leading and implementing SLM in industries. The identified factors will help the people at the managerial level of EECM industry to make right decisions which in turn will benefit the triple bottom line. The recent pandemic has also questioned the survivability of many EECM industries problems, with low investment, the sustainability and resilience of the sector is at stake.

The future studies may consider extending the research by involving more industries as respondents which will make the outcomes generic.

Appendix 1. Questionnaire form for rating the factors

The COPRASs and BWM method utilises expert opinion which are difficult to gather. Moreover, these methods are mathematical in nature so data collection is a tedious process. The biasness of the sample size and the respondents are also limitation of the study. The shortlisted factors can be mathematically modelled with advanced analytical tools in order to provide a framework for SLM implementation in EECM industries. In addition to that, in a country with varying geography and cultures like India, it is quite hard for the findings from one particular region of a country to work out in other regions. A practical case implementation is needed when the results found are to be incorporated countrywide, to include this aspect more industries and decision makers can be interviewed. Future studies may also benefit from other emerging approaches to incorporate hybrid approaches. This study can also be extended to other areas and disciplines.

CRediT authorship contribution statement

K. Mathiyazhagan: Conceptualization, Writing – review & editing, Supervision. A. Gnanavelbabu: Writing – review & editing, Supervision. Naveen Kumar.N: Writing – original draft. Vernika Agarwal: Writing – original draft.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

	RESPONDENT DETAILS						
FACTORS	P1 ⁺	$P2^+$	P3 ⁺	P4 ⁻	P5 ⁻		
Management	(VL = 1, L = 1)	(VL = 1, L = 2, M = 3, H = 4, VH = 5)					
M1							
M2							
M3							
•							
•							
External							
E3							
E4							

Appendix 2. Questionnaire form for selecting best and worst factor

	CRITERIA						
	FACTOR 1	FACTOR 2	FACTOR 3	FACTOR 4	FACTOR 5		
BEST WORST							

Appendix 3. Questionnaire form for recording comparison values

The most important factor	Other factors
The least important factor	
Other factors	

(continued)

The least important factor

References

Agarwal, V., Mathiyazhagan, K., Malhotra, S., Saikouk, T., 2021. Analysis of challenges in sustainable human resource management due to disruptions by Industry 4.0: an emerging economy perspective. Int. J. Manpower. https://doi.org/10.1108/ijm-03-2021-0192.

Agrawal, Saurabh, Singh, Rajesh K., Murtaza, Qasim, 2014. Forecasting product returns for recycling in Indian electronics industry. J. Adv. Manag. Res. 11 (1), 102–114.

Bai, C., Satir, A., Sarkis, J., 2019. Investing in lean manufacturing practices: an environmental and operational perspective. Int. J. Prod. Res. 57 (4), 1037–1051.

- Banik, A., Taqi, H.M.M., Ali, S.M., Ahmed, S., Garshasbi, M., Kabir, G., 2020. Critical success factors for implementing green supply chain management in the electronics industry: an emerging economy case. Int. J. Logistics Res. Appl. 1–28.
- Bhattacharya, A., Nand, A., Castka, P., 2019. Lean-green integration and its impact on sustainability performance: a critical review. J. Clean. Prod. 236, 117697.
- Blass, V., Corbett, C.J., 2018. Same supply chain, different models: integrating perspectives from life cycle assessment and supply chain management. J. Indus. Ecol. 22 (1), 18–30.
- Caldera, H.T.S., Desha, C., Dawes, L., 2017. Exploring the role of lean thinking in sustainable business practice: a systematic literature review. J. Clean. Prod. 167, 1546–1565.
- Chen, P.K., Lujan-Blanco, I., Fortuny-Santos, J., Ruiz-de-Arbulo-López, P., 2020. Lean manufacturing and environmental sustainability: the effects of employee involvement, stakeholder pressure and ISO 14001. Sustainability 12 (18), 7258.
- Cherrafi, A., Elfezazi, S., Chiarini, A., Mokhlis, A., Benhida, K., 2016. The integration of lean manufacturing, Six Sigma and sustainability: a literature review and future research directions for developing a specific model. J. Clean. Prod. 139, 828–846
- Cheung, W.M., Leong, J.T., Vichare, P., 2017. Incorporating lean thinking and life cycle assessment to reduce environmental impacts of plastic injection moulded products. J. Clean. Prod. 167, 759–775.
- Chiarini, A., 2014. Sustainable manufacturing-greening processes using specific Lean Production tools: an empirical observation from European motorcycle component manufacturers. J. Clean. Prod. 85, 226–233.
- Chuang, S.P., Yang, C.L., 2014. Key success factors when implementing a greenmanufacturing system. Prod. Plann. Contr. 25 (11), 923–937.
- da Costa, L.G., Ferreira, J.C.E., Kumar, V., Garza-Reyes, J.A., 2020. Benchmarking of sustainability to assess practices and performances of the management of the end of life cycle of electronic products: a study of Brazilian manufacturing companies. Clean Technol. Environ. Pol. 1–17.
- Daily, B.F., Huang, S.C., 2001. Achieving sustainability through attention to human resource factors in environmental management. Int. J. Operations Prod. Manag. 21 (12), 1539–1552.
- Dave, Y., Sohani, N., 2019. Improving productivity through Lean practices in central India-based manufacturing industries. Int. J. Lean Six Sigma 10 (2), 601–621.
- Dey, P.K., Malesios, C., De, D., Chowdhury, S., Abdelaziz, F.B., 2019. Could lean practices and process innovation enhance supply chain sustainability of small and medium-sized enterprises? Bus. Strat. Environ. 28 (4), 582–598.
- Dieste, M., Panizzolo, R., Garza-Reyes, J.A., Anosike, A., 2019. The relationship between lean and environmental performance: practices and measures. J. Clean. Prod. 224, 120–131.

Doolen, T.L., Hacker, M.E., 2005. A review of lean assessment in organizations: an exploratory study of lean practices by electronics manufacturers. J. Manuf. Syst. 24 (1), 55–67.

Dwivedi, A., Agrawal, D., Madaan, J., 2019. Sustainable manufacturing evaluation model focusing leather industries in India. J. Sci. Technol. Pol. Manag. 10 (2), 319–359.

Fantazy, K., Tipu, S.A.A., 2019. Exploring the relationships of the culture of competitiveness and knowledge development to sustainable supply chain management and organizational performance. J. Enterprise Inf. Manag. 32 (6), 936–963.

Farias, L.M.S., Santos, L.C., Gohr, C.F., de Oliveira, L.C., da Silva Amorim, M.H., 2019. Criteria and practices for lean and green performance assessment: systematic review and conceptual framework. J. Clean. Prod. 218, 746–762.

Faulkner, W., Badurdeen, F., 2014. Sustainable Value Stream Mapping (Sus-VSM): methodology to visualize and assess manufacturing sustainability performance. J. Clean. Prod. 85, 8–18.

Fu, X., Guo, M., Zhanwen, N., 2017. Applying the green Embedded lean production model in developing countries: a case study of China. Environ. Dev. 24, 22–35.

Gandhi, N.S., Thanki, S.J., Thakkar, J.J., 2018. Ranking of drivers for integrated leangreen manufacturing for Indian manufacturing SMEs. J. Clean. Prod. 171, 675–689. Garza-Reyes, J.A., Kumar, V., Chaikittisilp, S., Tan, K.H., 2018. The effect of lean

methods and tools on the environmental performance of manufacturing organisations. Int. J. Prod. Econ. 200, 170–180.

Ghorabaee, M.K., Amiri, M., Sadaghiani, J.S., Goodarzi, G.H., 2014. Multiple criteria group decision-making for supplier selection based on COPRAS method with interval type-2 fuzzy sets. Int. J. Adv. Manuf. Technol. 75 (5–8), 1115–1130.

- Gopal, P.R.C., Thakkar, J., 2016. Sustainable supply chain practices: an empirical investigation on Indian automobile industry. Prod. Plann. Control 27 (1), 49–64.
- Govindan, K., Jha, P.C., Agarwal, V., Darbari, J.D., 2019. Environmental management partner selection for reverse supply chain collaboration: a sustainable approach. J. Environ. Manag. 236, 784–797.

Govindan, K., Kaliyan, M., Kannan, D., Haq, A.N., 2014. Barriers analysis for green supply chain management implementation in Indian industries using analytic hierarchy process. Int. J. Prod. Econ. 147, 555–568.

Govindan, K., Khodaverdi, R., Jafarian, A., 2013. A fuzzy multi criteria approach for measuring sustainability performance of a supplier based on triple bottom line approach. J. Clean. Prod. 47, 345–354.

Gupta, S., Dangayach, G.S., Singh, A.K., Rao, P.N., 2015. Analytic hierarchy process (AHP) model for evaluating sustainable manufacturing practices in Indian electrical panel industries. Procedia-Soc. Behav. Sci. 189, 208–216.

- Gurumurthy, A., Nair, V.K., Vinodh, S., 2020. Application of a hybrid selective inventory control technique in a hospital: a precursor for inventory reduction through lean thinking. TQM J. 33 (3), 568–595.
- Habidin, N.F., Mohd Zubir, A.F., Mohd Fuzi, N., Md Latip, N.A., Azman, M.N.A., 2018. Critical success factors of sustainable manufacturing practices in Malaysian automotive industry. Int. J. Sustain. Eng. 11 (3), 217–222.
- Helleno, A.L., de Morees, A.J.I., Simon, A.T., 2017. Integrating sustainability indicators and Lean Manufacturing to assess manufacturing processes: application case studies in Brazilian industry. J. Clean. Prod. 153, 405–416.

Hsu, C.W., Chang, D.S., 2017. Investigating critical organizational factors toward sustainability index: insights from the Taiwanese electronics industry. Bus. Ethics: Eur. Rev. 26 (4), 468–479.

India, 2020. Energy Policy Review, Report Published by International Energy Agency. https://www.iea.org/reports/india-2020. (Accessed 21 December 2021).

Jadhav, J.R., Mantha, S.S., Rane, S.B., 2014. Development of framework for sustainable Lean implementation: an ISM approach. J. Indus. Eng. Int. 10 (3), 72.

Jakhar, S.K., Rathore, H., Mangla, S.K., 2018. Is lean synergistic with sustainable supply chain? An empirical investigation from emerging economy. Resour. Conserv. Recycl. 139, 262–269.

Kaswan, M.S., Rathi, R., 2019. Analysis and modeling the enablers of green lean six sigma implementation using interpretive structural modeling. J. Clean. Prod. 231, 1182–1191.

- Kornfeld, B., Kara, S., 2013. Selection of lean and six sigma projects in industry. Int. J. Lean Six Sigma 4 (1), 4–16.
- Kramar, R., 2014. Beyond strategic human resource management: is sustainable human resource management the next approach? Int. J. Human Resour. Manag. 25 (8), 1069–1089.
- Kumar, A., Mangla, S.K., Luthra, S., Ishizaka, A., 2019. Evaluating the human resource related soft dimensions in green supply chain management implementation. Prod. Plann. Control 30 (9), 699–715.
- Kumar, A., Moktadir, M.A., Khan, S.A.R., Garza-Reyes, J.A., Tyagi, M., Kazançoğlu, Y., 2020. Behavioral factors on the adoption of sustainable supply chain practices. Resour. Conserv. Recycl. 158, 104818.

Li, L., Li, Z., Li, X., Zhang, S., Luo, X., 2020b. A new framework of industrialized construction in China: towards on-site industrialization. J. Clean. Prod. 244, 118469.

Li, S., Fang, Y., Wu, X., 2020a. A systematic review of lean construction in Mainland China. J. Clean. Prod. 257, 120581.

Liao, M.H., Wang, C.T., 2021. Using enterprise architecture to integrate lean manufacturing, digitalization, and sustainability: a lean enterprise case study in the chemical industry. Sustainability 13 (9), 4851.

- Liao, Y., Deschamps, F., Loures, E.D.F.R., Ramos, L.F.P., 2017. Past, present and future of Industry 4.0-a systematic literature review and research agenda proposal. Int. J. Prod. Res. 55 (12), 3609–3629.
- Lindgreen, A., Swaen, V., Johnston, W.J., 2009. Corporate social responsibility: an empirical investigation of US organizations. J. Business Ethics 85 (2), 303–323.

Logesh, B., Balaji, M., 2020. Experimental investigations to deploy green manufacturing through reduction of waste using lean tools in electrical components manufacturing company. Int. J. Prec. Eng. Manuf. Green Technol. 1–10.

- Luthra, S., Mangla, S.K., Shankar, R., Prakash Garg, C., Jakhar, S., 2018. Modelling critical success factors for sustainability initiatives in supply chains in Indian context using Grey-DEMATEL. Prod. Plann. Control 29 (9), 705–728.
- Macke, J., Genari, D., 2019. Systematic literature review on sustainable human resource management. J. Clean. Prod. 208, 806–815.
- Malek, J., Desai, T.N., 2019. Interpretive structural modelling based analysis of sustainable manufacturing enablers. J. Clean. Prod. 238, 117996.
- Malviya, R.K., Kant, R., 2017. Modeling the enablers of green supply chain management. Benchmark.: Int. J. 24 (2), 536–568.

Mani, V., Agrawal, R., Sharma, V., 2015. Social sustainability in the supply chain: analysis of enablers. Manag. Res. Rev. 38 (9), 1016–1042.

- Mellado, F., Lou, E.C., 2020. Building information modelling, lean and sustainability: an integration framework to promote performance improvements in the construction industry. Sustain. Cities Soc. 61, 102355.
- Mi, X., Tang, M., Liao, H., Shen, W., Lev, B., 2019. The state-of-the-art survey on integrations and applications of the best worst method in decision making: Why, what, what for and what's next? Omega 87, 205–225.
- Motwani, J., 2003. A Business Process Change Framework for Examining Lean Manufacturing: a Case Study. Industrial Management & Data Systems.
- NPE, 2019. National Policy on Electronics. https://www.meity.gov.in/writereaddata /files/Notification_NPE2019_dated25.02.2019.pdf. (Accessed 20 November 2021).
- Panizzolo, R., Garengo, P., Sharma, M.K., Gore, A., 2012. Lean manufacturing in developing countries: evidence from Indian SMEs. Prod. Plann. Control 23 (10–11), 769–788.
- Panwar, A., Jain, R., Rathore, A.P.S., Nepal, B., Lyons, A.C., 2018. The impact of lean practices on operational performance–an empirical investigation of Indian process industries. Prod. Plann. Control 29 (2), 158–169.
- Prasad, D.S., Pradhan, R.P., Gaurav, K., Chatterjee, P.P., Kaur, I., Dash, S., Nayak, S., 2018. Analysing the critical success factors for implementation of sustainable supply chain management: an Indian case study. Decision 45 (1), 3–25.
- Rezaei, J., 2015. Best-worst multi-criteria decision-making method. Omega 53, 49–57. Sajan, M.P., Shalij, P.R., Ramesh, A., 2017. Lean manufacturing practices in Indian
- Sajan, M.P., Shanj, F.K., Ramesh, A., 2017. Lean manufacturing practices in indian manufacturing SMEs and their effect on sustainability performance. J. Manuf. Technol. Manag. 28 (6), 772–793.
- Sakthi Nagaraj, T., Jeyapaul, R., Vimal, K.E.K., Mathiyazhagan, K., 2019a. Integration of human factors and ergonomics into lean implementation: ergonomic-value stream map approach in the textile industry. Prod. Plann. Control 30 (15), 1265–1282.
- Sakthi Nagaraj, T., Jeyapaul, R., Vimal, K.E.K., Mathiyazhagan, K., 2019b. Integration of human factors and ergonomics into lean implementation: ergonomic-value stream map approach in the textile industry. Prod. Plann. Control 30 (15), 1265–1282.

Segura, M.G., Oleghe, O., Salonitis, K., 2019. Analysis of lean manufacturing strategy using system dynamics modelling of a business model. Int. J. Lean Six Sigma.

Sellitto, M.A., Hermann, F.F., Blezs Jr., A.E., Barbosa-Póvoa, A.P., 2019. Describing and organizing green practices in the context of green supply chain management: case studies. Resou. Conserv. Recycl. 145, 1–10.

Shah, R., Ward, P.T., 2003. Lean manufacturing: context, practice bundles, and performance. J. Operations Manag. 21 (2), 129–149.

- Shokri, A., Antony, J., Garza-Reyes, J.A., Upton, M., 2021. Scoping review of the readiness for sustainable implementation of Lean Six Sigma projects in the manufacturing sector. Int. J. Qual. Reliab. Manag. 38 (8), 1747–1770.
- Siegel, R., Antony, J., Garza-Reyes, J.A., Cherrafi, A., Lameijer, B., 2019. Integrated green lean approach and sustainability for SMEs: From literature review to a conceptual framework. J. Clean. Prod. 240, 118205.
- Singh, C., Singh, D., Khamba, J.S., 2021. Understanding the key performance parameters of green lean performance in manufacturing industries. Mater. Today: Proceedings 46, 111–115.

- Singh, R.K., Rastogi, S., Aggarwal, M., 2016. Analyzing the factors for implementation of green supply chain management. Competitiveness Rev. 26 (3), 246–264.
- Singh, S., Olugu, E.U., Fallahpour, A., 2014. Fuzzy-based sustainable manufacturing assessment model for SMEs. Clean Technol. Environ. Pol. 16 (5), 847–860.
- Swarnakar, V., Singh, A.R., Tiwari, A.K., 2020. Assessment of manufacturing process through lean manufacturing and sustainability indicators: case studies in Indian perspective. In: Emerging Trends in Mechanical Engineering. Springer, Singapore, pp. 253–263.
- Thanki, S., Thakkar, J.J., 2019. An investigation on lean-green performance of Indian manufacturing SMEs. Int. J. Prod. Perform. Manag. 69 (3), 489–517.
- Thirupathi, R.M., Vinodh, S., 2016. Application of interpretive structural modelling and structural equation modelling for analysis of sustainable manufacturing factors in Indian automotive component sector. Int. J. Prod. Res. 54 (22), 6661–6682.
- Toke, L.K., Kalpande, S.D., 2019. Critical success factors of green manufacturing for achieving sustainability in Indian context. Int. J. Sustain. Eng. 12 (6), 415–422.

Tomelero, R.L., Ferreira, J.C.E., Kumar, V., Garza-Reyes, J.A., 2017. A lean environmental benchmarking (LEB) method for the management of cutting tools. Int. J. Prod. Res. 55 (13), 3788–3807.

Tong, Z., Huatuco, L.H., 2018. Lean manufacturing, culture and their role on sustainability: a case study in the Chinese automotive industry. In: International Conference on Sustainable Design and Manufacturing. Springer, Cham, pp. 1–10.

Venugopal, V., Saleeshya, P.G., 2019. Manufacturing system sustainability through lean and agile initiatives. Int. J. Sustain. Eng. 12 (3), 159–173.

- Vimal, K.E.K., Vinodh, S., 2013. Application of artificial neural network for fuzzy logic based leanness assessment. J. Manuf. Technol. Manag. 24 (2), 274–292.
- Vinodh, S., 2020. TISM for analysis of barriers affecting the adoption of lean concepts to electronics component manufacture. Int. J. Lean Six Sigma 11 (6), 1127–1159.
- Vinodh, S., Arvind, K.R., Somanaathan, M., 2011. Tools and techniques for enabling sustainability through lean initiatives. Clean Technol. Environ. Pol. 13 (3), 469–479.

Vinodh, S., Kamala, V., Shama, M.S., 2013. Compromise ranking approach for sustainable concept selection in an Indian modular switches manufacturing organization. Int. J. Adv. Manuf. Technol. 64 (9–12), 1709–1714.

Vinodh, S., Selvaraj, T., Chintha, S.K., Vimal, K.E.K., 2015. Development of value stream map for an Indian automotive components manufacturing organization. J. Eng. Des. Technol. 13 (3), 380–399.

WEF, 2020. Sustainability Development Report, Sustainable Development Report 2020 [accessed on 20 Nov 2021].

Wijethilake, C., Lama, T., 2019. Sustainability core values and sustainability risk management: moderating effects of top management commitment and stakeholder pressure. Bus. Strat. Environ. 28 (1), 143–154.

Wong, C.W., Wong, C.Y., Boon-itt, S., 2018. How does sustainable development of supply chains make firms lean, green and profitable? A resource orchestration perspective. Bus. Strat. Environ. 27 (3), 375–388.

Zhan, Y., Tan, K.H., Ji, G., Chung, L., Chiu, A.S., 2018. Green and lean sustainable development path in China: Guanxi, practices and performance. Resour. Conserv. Recycl. 128, 240–249.