
Array 10 (2021) 100057
Contents lists available at ScienceDirect

Array

journal homepage: www.elsevier.com/journals/array/2590-0056/open-access-journal
Deep learning for object detection and scene perception in self-driving cars:
Survey, challenges, and open issues

Abhishek Gupta, Alagan Anpalagan *, Ling Guan, Ahmed Shaharyar Khwaja

Ryerson University, 350 Victoria Street, Toronto, M5B2K3, Ontario, Canada
A R T I C L E I N F O

Keywords:
Self-driving cars
Levels of automation
Machine learning
Deep learning
Convolutional neural networks
Scene perception
Object detection
Multimodal sensor fusion
LiDAR
Computer vision
Autonomous driving initiatives
* Corresponding author.
E-mail address: alagan@ee.ryerson.ca (A. Anpala

https://doi.org/10.1016/j.array.2021.100057
Received 2 September 2020; Received in revised fo
Available online 23 February 2021
2590-0056/© 2021 Published by Elsevier Inc. This
A B S T R A C T

This article presents a comprehensive survey of deep learning applications for object detection and scene
perception in autonomous vehicles. Unlike existing review papers, we examine the theory underlying self-driving
vehicles from deep learning perspective and current implementations, followed by their critical evaluations. Deep
learning is one potential solution for object detection and scene perception problems, which can enable algorithm-
driven and data-driven cars. In this article, we aim to bridge the gap between deep learning and self-driving cars
through a comprehensive survey. We begin with an introduction to self-driving cars, deep learning, and computer
vision followed by an overview of artificial general intelligence. Then, we classify existing powerful deep learning
libraries and their role and significance in the growth of deep learning. Finally, we discuss several techniques that
address the image perception issues in real-time driving, and critically evaluate recent implementations and tests
conducted on self-driving cars. The findings and practices at various stages are summarized to correlate prevalent
and futuristic techniques, and the applicability, scalability and feasibility of deep learning to self-driving cars for
achieving safe driving without human intervention. Based on the current survey, several recommendations for
further research are discussed at the end of this article.
1. Introduction

With recent advances in artificial intelligence (AI), machine learning
(ML) and deep learning (DL), various applications of these techniques
have gained prominence and come to fore. One such application is self-
driving cars, which is anticipated to have a profound and revolutionary
impact on society and the way people commute [1]. Although, the
acceptance and domestication of technology can face initial or prolonged
reluctance, yet these cars will mark the first far reaching integration of
personal robots into the human society [2]. The last decade has witnessed
growing research interest in applying AI to drive cars [3]. Due to rapid
advances in AI and associated technologies, cars are eventually poised to
evolve into autonomous robots entrusted with human lives, and bring
about a diverse socio-economic impact [4]. However, for these cars to
become a functional reality, they need to be equipped with perception
and cognition to tackle high-pressure real-life scenarios, arrive at suitable
decisions, and take appropriate and safest action at all times [5].

Embedded in the self-driving vehicles’ AI are visual recognition sys-
tems (VRS) that encompass image classification, object detection, seg-
mentation, and localization for basic ocular performance [6]. Object
detection is emerging as a subdomain of computer vision (CV) that
gan).
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benefits from DL, especially convolutional neural networks (CNNs) [7].
This article discusses the self-driving cars’ vision systems, role of DL to
interpret complex vision, enhance perception, and actuate kinematic
manoeuvres in self-driving cars [8]. This article surveys methods that
tailor DL to perform object detection and scene perception in self-driving
cars. In the survey, we also answer the following questions while
appreciating the contribution of DL in these areas [9,10]:

1. What are the mutually reinforcing and fundamental operational re-
quirements for fully functional self-driving cars?

2. What landmarks and developments have been achieved in self-
driving cars in the last 20 years and what are some promising
research directions for the next decade?

3. What is DL and how does DL create artificial perception? With the
arrival of DL, is it eventually feasible to attain human level cognition
and perception in self-driving cars?

4. Why is DL a promising technique for solving object detection and
scene perception in self-driving cars? What are the cutting-edge DL
models used for object detection and scene perception in self-driving
cars?
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Table 1
List of abbreviations in alphabetical order.

Acronym Explanation Acronym Explanation

2D Two Dimensional IVS Intelligent Vision Systems
3D Three Dimensional IVSS Intelligent Visual Surveillance

System
5G Fifth Generation

Mobile Networks
KITTI Karlsruhe Institute of Technology

Dataset
ADAS Advanced Driver

Assistance Systems
L1 & L2,
L0-L5

NA (regularization techniques),
levels of automation defined by
SAE

AE Auto Encoder LiDAR Light Detection and Ranging
AGI Artificial General

Intelligence
LSTM Long Short-Term Memory

AI Artificial Intelligence MAP Map Attention Decision
ANN Artificial Neural

Network
MCP McCulloch& Pitts neural network

AR Average Recall MIT-
AVT

Massachusetts Institute of
Technology-Advanced Vehicle
Technology

ATRI American Transport
Research Institute

ML Machine Learning

AV Autonomous Vehicles MLP Multilayer Perceptron
AWS Amazon Web Services NHTSA National Highway Traffic Safety

Administration
BP Back Propagation NN Neural Network
CNN Convolutional Neural

Network
OBU On-board Unit

CoreML Core Machine
Learning

openCV Open Source Computer Vision

CPU Central Processing
Unit

PB Petabytes

CUDA Compute Unified
Device Architecture

PD-DBM Partially Directed DBM

cuDNN CUDA Deep Neural
Network Library

RADAR Radio Detection And Ranging

CV Computer Vision RBM Restricted Boltzmann Machines
DAE Denoising

Autoencoder
rCDN Reverse Content Distribution

Network
DBN Deep Belief Network R–CNN Region-CNN
DBM Deep Boltzmann

Machine
ResNet Residual Network

DIP Digital Image
Processing

RGB Red, Green, & Blue

DIVS Deep Intelligent
Visual Surveillance

RNN Recurrent Neural Network

DL Deep Learning RoI Region of Interest
DLib Deep Library RPN Region Proposal Network
DLR Docklands Light

Railway
S3C Spike & Slab Sparse Coding

DMV Department of Motor
Vehicles

SAE Society of Automotive Engineers,
Stacked Autoencoder

DNN Deep Neural
Networks

SciPy Scientific Python

DPM Deformable Parts
Model

SSD Singleshot Multibox Detection

DRL Deep Reinforcement
Learning

STR Smart Transportation Robots

DSRC Dedicated Short-
Range
Communication

SVM Support Vector Machines

DVS Deep Vision Systems SSVM Structured Support Vector
Machines

FCNN Fully Connected
Neural Network

TB Terabytes

FPS Frames Per Second TL Transfer Learning
GAN Generative

Adversarial Network
TLI Traffic Light Information

GLAD GoogLeNet for
Autonomous Driving

TPU Tensor Processing Unit

GM General Motors UAV Unmanned Aerial Vehicle
GPS Global Positioning

System
V2V Vehicle to Vehicle

GPU Graphical Processing
Unit

V2I Vehicle to Infrastructure

HD High Definition V2X Vehicle to Everything
VANET Vehicular ad hoc Network

(continued on next page)
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5. With deployment of 5Gmobile communication and conceptualization
of ultra-fast 6G technology, how is multi-sensor data fusion and 3D
point cloud analysis realized and impacted in autonomous vehicles?

6. What are the most recent and successful object detection techniques
applied to autonomous vehicles and promising directions for further
research?

The rest of the article is structured as follows: Section II provides a
brief introduction to the evolution of self-driving cars, and discusses the
levels of automation to gradually and progressively achieve fully
autonomous vehicles. A list of abbreviations used in the paper is also
presented in Table 1 and the Table 2 presents a summary of existing
literature related to deep learning and self-driving cars. Section III in-
troduces big data, the role of big data in autonomous vehicles and col-
lecting driving data using LiDAR cameras. Processing driving data
captured using various sensors in real-time is a significant challenge, and
some promising solutions such as multimodal sensor fusion, road scene
analysis in adversarial weather conditions, and polarimetric image
analysis for object detection in autonomous driving scenarios are dis-
cussed in this section. Section IV introduces deep learning (DL) and the
factors that make DL a powerful technique in computer vision. Section IV
delves deeper into CNNs, RNNs, DBNs, and other widely used DL tech-
niques in CV. In section V, we investigate the role of deep reinforcement
learning (DRL) to enable vision in self-driving cars. We discuss unsu-
pervised learning and explore the possibilities of scene perception in self-
driving cars without being explicitly trained on data, leading to artificial
general intelligence (AGI) in self-driving cars. Self-driving cars and their
ability to achieve human level driving is jointly reviewed from a deep
learning perspective with a focus on scene perception and object detec-
tion to complement advanced vision. We also provide insights into cur-
rent applications of DL to achieve AGI that could enable self-driving cars
to perceive their environment and take appropriate actions without the
need of human intervention. Lastly, we enlist some promising future
directions to achieve next generation autonomous vehicles based on the
survey and conclude the paper.

2. Evolution of self-driving cars

2.1. Brief history of self-driving vehicles

The concept of self-driving cars has been around for almost 80 years,
first reported in 1939 World’s Fair in New York by general motor’s (GM)
Futurama [51]. Contemporary developments in communication net-
works and wireless connectivity, arrival of accurate and robust sensors
that continuously miniaturize in size and cost, coupled with AI have been
the cornerstone for autonomous driving systems [52]. Embedded in these
self-driving systems are human-machine interface applications, network
enabled controls, multiple-sensor data fusion, 3D drive scene analysis,
and software-defined signal processing to transport materials, payloads,
goods, and people [53]. The AI based self-driving machines must be able
to navigate successfully in all situations at all times [54]. The accuracy of
autonomous navigation depends significantly on attaining precise
localization, unobtrusive data collection, fused data-set generation, and
uninterrupted high-level communication with other vehicles and sur-
rounding smart infrastructure [55]. In the longer run, self-driving tech-
nology can also expected to be extended to tractor-trailers, cargo trucks,
mining trucks, and buses [56]. In the last decade, Carnegie Mellon Uni-
versity and the Defense Advanced Research Projects Agency (DARPA)
self-driving cars have contributed to autonomous vehicles advancement
[57]. Tesla Motors implemented an autopilot technology to its electric
vehicles where the cameras and sensors predicted collisions with up to
76% accuracy leading to collision prevention rate of over 90%. Google,
Tesla Motors, General Motors, Waymo, Uber, nuTonomy and other
automobile companies envision a future with autonomous vehicles in
approximately 15–20 years time [57]. Several infrastructure upgrades
such as automated highway system, robotic vehicle cruisingmanagement
2



Table 1 (continued )

Acronym Explanation Acronym Explanation

HoG/
HOG

Histograms of
Oriented Gradients

HRPN Hyper Region
Proposal Network

VaaS Vehicle-as-a-Service

iOS iPhone Operating
System

VAE Variational Autoencoder

ICT Information and
Communication
Technology

VGG Visual Geometry Group

IoT Internet of Things VOC Visual Object Classes
IoU Intersection over

Union
VRS Visual Recognition Systems

IoV Internet of Vehicles XOR Exclusive-or
ITS Intelligent

Transportation
Systems

YOLOv3 You Look Only Once version 3

Table. 2
Summary of existing literature related to deep learning and self-driving cars.

Publication Brief summary

[1] Self-driving cars: human perception, factors affecting their acceptance,
psycho-social impacts

[11] SAE levels of automation in vehicles
[12] Transition-time requirements and driver behaviour in automated

driving scenarios
[13] Studies on driver behaviour changes in automated and autonomous

driving scenarios
[14] Studies on lane-change behaviours, traffic flow optimization, vehicular

trajectory planning, and bottlenecks in intelligent vehicle assistance
systems

[15] Visual, manual, and cognitive aspects in deciding optimum takeover
time

[16–18] Deep reinforcement learning and deep Q-learning for self-driving cars
[19] Current state-of-the-art in autonomous driving; social, legal, and

technological challenges
[20,21] Multimodal sensor fusion and LiDAR camera technology coupled with

DL for self-driving cars
[22] V2V, V2X, V2I, cloud platform, fog, and edge computing in self-driving

cars
[23] Challenges in scene understanding, object detection, artificial

perception in self-driving cars
[24,25] Evolution of DL and significant milestones
[26] DL for object detection, object localization, object categorization
[27] Computer vision, scene perception, object detection, and localization

in self-driving cars
[28] Advances in AI techniques for object detection, inference in self-driving

utilizing geometrical features and event reasoning
[23] Object detection for self-driving cars using DL: techniques to detect

other vehicles, road markings, curb, bicyclist, pedestrian, traffic light,
road constructions and signs

[29] 3D object detection in self-driving cars from ground truth labelled data
[30] Crowdsourcing, social media analytics, surveys using questionnaires

discussing public acceptance, attitude, and fears towards self-driving
cars

[31] Tests conducted on self-driving cars to navigate in real-world:
industrial, startups, and University initiatives; study of miles driven by
different self-driving cars and role of DL for scene perception and object
detection

[32] Crashes involving self-driving cars and their impact on researchers
[33] Deep neural networks (DNN) for object cetegorization such as

pedestrian detection and traffic scene understanding
[6] Surveys on DL and CV for visual understanding, pedestrian detection

and tracking
[34] A survey on DL for CV and scene understanding
[7] Surveys on recent advances in 3D semantic image segmentation using

NN, DL, and CNN
[35] A survey on advances in deep vision systems (DVS) and their adoption

in self-driving cars
[36] Learning in DNN: feature extraction and optimization, CNN for image

detection
[37] Unsupervised DL for object detection in self-driving cars
[38] CNN for driver distraction, pedestrian, and video object detection in

self-driving scenarios
[39] A survey of class imbalance problem in CNN, impact on self-driving

cars’ perception ability
[40] CNN as feature learners and feature extractors in self-driving scenarios
[41] Helmholtz machines, gradient descent, convex optimization, and batch

normalization for visual odometry and instance-level segmentation in
self-driving cars

[42] Object position, orientation detection, vehicle counting, and parking
occupancy using DNN & CNN

[43] GPU and DL libraries and application in self-driving
[44] State-of-the-art CNN architectures
[45] Visual perception in self-driving cars using DL
[46] Ethics, AI and self-driving cars as smart transportation robots (STR)
[47] Advances in unsupervised DL, AlphaGo, AlphaGoZero, and AGI
[48] Transfer learning: accelerating self-driving research
[49] Data Science, data collection, and publicly available datasets for

autonomous driving applications
[50] A survey on DL for big data
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systems, 6G cell-free mobile communication systems with real-time
video processing and near-zero latency are parallel research areas that
would contribute to realizing full-fledged autonomous vehicles
kick-starting a greener future through autonomous electric vehicles [57].

Self-driving cars, also known as autonomous vehicles, driver-less cars,
smart transportation robots (STR) or robocars are one of the most spec-
ulated scientific invention with a potential to change the world [54]. The
recent and broader implications of self-driving cars incorporate integra-
tion with novel infrastructure, smart cities, urban planning with pro-
visions for advanced cyber-security, privacy, and insurance [58]. It is
worth mentioning that while the self-driving cars have gained intense
attention in the last decade, driver-less transportation has been in exis-
tence for over a decade [59]. Trains are a prominent example of wide-
spread use of self-driving technology [60]. Some of such train examples
include the:

� SkyTrain in Vancouver, Canada [61].
� Docklands Light Railway (DLR) in London, United Kingdom [59].
� Yurikamome in Tokyo, Japan [60].
� London Heathrow airport’s ultra-pods [59].

These autonomous rail systems transport thousands of passengers on
a daily basis. Authors in Ref. [59] note that the majority of passengers
commuting through self-driving trains were not worried about using
those trains. However, the aforementioned trains and autonomous pods
operate on enclosed tracks, isolated from the public roads, and bypass the
need to interact with other vehicles or pedestrians [61]. In contrast,
self-driving cars are set to encounter various users, thereby resulting in
complex interactions and the possibility of collision [12]. Whether peo-
ple will be as accepting of self-driving cars as they appear to be of existing
autonomous transport is an active area of research [61].

2.2. Advantages of self-driving cars

The advances in wireless networking, software-defined networking,
and information and communication technology (ICT) have found ap-
plications in intelligent transportation systems (ITS) to reduce collisions,
reduce pollution, ameliorate mobility issues, provide newer ways of
public transportation, and share resources, materials and space [8]. Ac-
cording to studies, there are 1.3 million deaths every year due to drunk,
drugged, distracted and drowsy driving, which can potentially be saved
with the help of autonomous AI systems by eliminating some of the
human follies [62]. The following advantages motivate the current
research in self-driving cars:

� For users, the advantages may be reduced stress, faster commutes,
reduced travel times, enhanced user productivity, optimum fuel
consumption, reduced carbon emissions. These cars can be
3

programmed to drive defensively, stay clear of blind spots, and follow
speed limits [63].
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� For Governments, self-driving cars would assist in traffic enforce-
ment, enhance roadway capacity, reduce road casualties and the
number of on-road driving related accidents, and lead to better
observance of speed limits [12].

� Self-driving cars are envisioned to eliminate drunk driving issues,
eliminate issues related to distracted driving, texting and other cell
phone use, less braking and accelerating, and less gridlock on high-
ways [64]. Reduced accidents are expected to be beneficial for chil-
dren and the elderly, encouraging people to feel comfortable and
amiable towards self-driving cars [65].

� Autonomous electric vehicles would introduce a greener mode of
transport, leading to less greenhouse and noise pollution, along with
increased mobility for the elderly and disabled people [65]. In current
driving landscape, cars are parked for a long time. With self-driving
cars, parking lots can be converted to parks and other green infra-
structure [65].

� Self-driving cars would be equipped to improve scheduling and
routing, and provide best routes to improve travel times, while also
lowering the travel cost [5].

� Although self-driving cars would reduce or even eliminate car
ownership, they would expand shared access, keep transportation
personalized, efficient and reliable [65].

2.3. Probable disadvantages and drawbacks of self-driving cars

Cars are one of the most widespread and readily available modes of
transportation and while technology has developed safer cars, driving is
still a dangerous activity [66]. Self-driving cars formulate a scenario
where a few lines of source codes, coupled with AI get to decide the life of
a human beings [67]. Some disadvantages of self-driving cars are out-
lined as follows:

� The foremost catastrophic consequence of self-driving cars would be
elimination of jobs in the transportation industry [62].

� Although the role of AI in our society is consistently evolving, an AI
system making critical decisions need to respect societal values and
conform to social norms to gain acceptance [68]. The acceptance of
self-driving technology at philosophical, ethical and technological
levels is a fundamental research problem in psychology and cognitive
science. It is argued that in case autonomous vehicles and AI systems
malfunction, a person would not die or suffer injuries if they them-
selves were in control of the system [66].

� Driving at intersections without traffic lights, malfunctioning traffic
lights, uncontrolled intersections, busy intersections, regions with
humans in close proximity are a challenge for self-driving cars [69].
As self-driving cars use global positioning system (GPS) for localiza-
tion, they are deemed unsuitable to drive in non-mapped areas [70].

� The scope of car’s connectivity, the car being online at all times,
makes it susceptible to hacking. The safety and convenience offered
by self-driving cars might compromise privacy of passengers as their
moves will be tracked and logged [22].

2.4. Communication between different entities in self-driving cars

Two well-known collisions mentioned below, involving vehicles
operating with a certain degree of autonomous technology emphasize the
benefits of vehicle to vehicle (V2V), vehicle to infrastructure (V2I), and
vehicle to everything (V2X) communication in self-driving cars:

� A fatal accident involving a semi tractor-trailer that turned in front of
a Tesla car operating on its autopilot program in Florida, caused due
to sensors failing to detect a turning vehicle [32].

� A fatal Uber crash in Arizona [32].

Investigation and analysis of these accidents indicates that these ac-
cidents could have been avoided if the involved vehicles were
4

communicating with each other [32]. The V2V and V2X broadcast a
vehicle’s current location to nearby traffic, alert traffic to upcoming
maneuvers, traffic jams, accidents and road constructions. A crash, three
cars ahead, is too far to be detected by sensors but can easily be
communicated over longer distances using V2V [71]. The V2I technology
consists of sending traffic light information (TLI) to self-driving cars’
acceleration and braking systems, which can assist in plannning routes
based on the frequency of traffic light changes [72]. The V2V can provide
360-degree road-situation awareness to enhance safety. Although the
user of these techniques requires all vehicles to operate on a standard
mode of communication such as dedicated short range communication
(DSRC) to relay critical information, a formal policy to mandate DSRC in
vehicles is still under development [73]. Scientists, researchers, and ex-
perts have historically viewed the lack of computational infrastructure as
a major bottleneck that prevents achieving reliable V2V, V2I, and V2X
communication. Deploying roadside infrastructure partly mitigated the
problem by providing uninterrupted wireless coverage while also
improving handover and coverage [72]. Authors in Ref. [73] proposed
vehicle-as-a-service (VaaS) by leveraging vehicular cloud, vehicular fog
and internet of vehicles (IoV) to provide the necessary real-time
computing platform that will define self-driving vehicular environment
[74,75].

2.5. Levels of automation: semi automated, automated and self-driving
cars

Autonomy in self-driving cars is based on progression from human
centered autonomy to complete autonomy where all the driving tasks are
governed and controlled by the vehicle’s AI system, and human inter-
action is summoned only when necessary [11]. To investigate the capa-
bilities of the present AI systems [76], Fig. 1 briefly outlines the six levels
of vehicular automation defined by the society of automotive engineers
(SAE). The Fig. 1 also highlights the differences between fully automated
(level-5) and partially automated vehicles (levels-3& 4). The functioning
of involved AI systems at an accuracy less than 100% is dangerous to
human life [10]. Even if the AI algorithms function exceptionally well on
the engineering side, their performance remains disputable from an
ethical point of view [77]. As an example, if the driver is intoxicated or
incapable to drive, is it safe for AI system to demand human takeover?
Offering technology to humans can make them trust the system all the
time, rendering them lazy and not able to re-engage themselves [78]. A
test on level-2 cars revealed that drivers fell asleep when the vehicle was
set on auto-pilot, questioning the ways in which humans interact with AI
[46]. The prevailing deep learning architectures for scene perception and
object detection in autonomous vehicles are depicted in Fig. 2.

Driving is an activity used by many for recreation, relaxation, and for
exercising control [79]. Imparting it into the hands of an AI system tests
their ability to perceive environment and interact and build trust with the
driver and passengers. Upon encountering situations when they cannot
handle control themselves, these systems need to efficiently and volun-
tarily transfer control to humans [80]. The transfer of control to humans
represents a fascinating opportunity for testing the performance of AI
[81]. The authors in Ref. [13] studied the effect of vehicle automation on
driver behavior and concluded that secondary task engagement by the
driver cannot be avoided entirely. Whereas listening to music, lectures
and discourses are prevalent in today’s driving environment, a significant
degree of autonomy could encourage occupants in self-driving cars to
engage in activities such as playing board games, getting actively
engaged in smartphones, engrossed in conversation without attention on
road, thereby totally disconnected with the driving environment [13]. It
is feared that when AI asks for help, it is not guaranteed as the human
might be distracted or not paying enough attention to the AI system.
Recapturing human attention, exercising vigilance by alerting a sleepy
human, relaying multi-sensory, localized, and meaningful warning sig-
nals to human to assume control continues to be a central AI research
problem [46]. Autonomous vehicles incorporate inherent human



Fig. 1. SAE Levels of automation.

Fig. 2. Deep learning architectures for scene perception and object detection in autonomous vehicles.
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element in driving as humans must develop the algorithms and write the
code that control them. The Department of Motor Vehicles (DMV) in the
USA has issued a preliminary draft that addresses the requirements of
steering wheel, brakes, registration, certifications, licensing, and cyber-
security and privacy [82]. The DMV mandates that a licensed driver be
present inside the self-driving cars at all times, capable of assuming
5

control in case of a technology failure or emergency, vehicle operator
having the ability to override the autonomous features [83].

SAE level-3 combines several automated functions and is the first
layer where rather than needing to instantly seize control, the driver can
be fairly oblivious to road conditions and driving operations. The tran-
sition between self-driving and driver-based control can be more relaxed,
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allowing up to 10 s for the driver to take over [84]. An active avenue for
discussion is the number of seconds ideally needed for a driver to take
over and assume control. Level-0 to level-2 semi-autonomous vehicles are
primarily human-assisted vehicles, where AI systems can make decisions
with the driver’s permission, such as forward-collision and automatic
braking [85]. The National Highway Traffic Safety Administration
(NHTSA) defines level-4 automation as fully self driving under certain
conditions, where the vehicle can operate on its own with the driver only
providing the destination information. A human driver will be necessary
to assume control outside the ideal condition zones [11]. SAE level-5
self-driving cars are fully equipped to monitor their surroundings and
react safely, without a human in the driver’s seat [11]. Waymo, nuTon-
omy and other leading manufacturers have such vehicles operating on
customized driving terrains [31]. Whereas level-3 automated cars follow
orders about destination and route, lane-keeping or car-following, a
level-5 autonomous car would be able to decide on destination, route, as
well as control within the lanes.

Some impediments towards achieving level-4 and level-5 include
federal and provincial regulations, insurance issues, and comprehensive
street mapping [82]. Waymo tested a level-5 car without a driver, engi-
neer or staff member inside the car. It is recorded as a fully autonomous
trip, with transportation from point A to point B without a driver or
human assistance [86]. Auto supplier Delphi’s Roadrunner drove from
San Francisco to New York City traversing 15 states, spanning approxi-
mately 3400 miles in 9 days. While the car had a driver to assume control
if needed, the car reportedly completed 99% of the trip without needing
any driver intervention [87]. The drive successfully faced varying con-
ditions such as construction zones, tunnels, bridges, traffic circles, other
aggressive drivers, different weather conditions. The trip successfully
tested a number of self-driving components, as well as amassed 3Ter-
abytes (TB) of real-world driving data for research [87].

3. Big data and big-sensed data for self-driving cars

The availability of big data related to self-driving cars facilitates the
application of data-driven learning methods to autonomous vehicles.
Data emphasizes the role of ML and DL as it is infeasible to craft all
possible if-then-else rules that learn all possible situations a self-driving
vehicle might encounter in the drive-terrain [89]. Training on data al-
lows self-driving cars to learn by driving, develop efficient inference al-
gorithms, identify patterns in data models and relate complex
dependencies in real-time. A fundamental problem in self-driving cars is
localization, which is solved using maps. Mapping is expensive and
building road maps of the world is an even more expensive task [90].
Usually, mapping is done through dedicated vehicles with many sensors.
Often, these sensors have limited coverage, providing a minuscule and
narrow view of the driving environment. Drones, unmanned aerial ve-
hicles (UAVs), planes, and satellites have been used to create high defi-
nition (HD) maps, capable of capturing information such as parking
spots, and sidewalks. Universities and organizations across the globe
have voluntarily made these data available to the community at large
[91]. In addition, capturing hyper-accurate mapping information from
other vehicles on the road results in a massive, but not insurmountable
amount of data transmission for real-time analysis [92].

3.1. Role of big data in self-driving cars

Defining a self-driving vehicle problem, formalizing it, collecting
sufficient related data on it, and to devise solutions through general
purpose AI such as reinforcement and unsupervised learning usually re-
quires raw sensor information and low-level data [93]. Deep learning,
however, involves training and testing on labelled data, which can be
labelled in case of self-driving cars and annotated by means of
ground-truth bounding boxes. By training self-driving cars on these
datasets, they are expected to respond to new input data they have never
seen before [77]. The self-driving cars need information on their
6

surroundings such as one-way streets, navigation routes, no-entry status,
and speech recognition [92]. Localization, i.e. to know where the
self-driving car is in the scene, and to decide if and where it has seen this
place before is crucial for autonomous systems. While big-data analytics
offers affordable self-localization, the scalability depends on aspects such
as how the driving environment looks like at every point in time, in every
season, at every time of the day, just as humans have the ability to
navigate in unknown areas [46,94].

3.2. Collecting big data for self-driving cars

Data collection on public roads is valuable to aid autonomy in self-
driving vehicles [95]. The vehicles used for data discovery and collec-
tion are equipped with a vast array of sensors and cameras, specifically
LiDAR [96]. The data from the sensors are logged on a disk or transmitted
to the nearby cloud, which are used to train and test various algorithms
for self-driving cars such as vehicle detection, pedestrian detection, or
motion estimation [97]. Sensors collect data from external environment,
the software analyzes the data, and recreates road conditions in three
dimensions. Data collection is a long and costly process, and redundancy
is avoided by directly exploiting existing datasets as well as collaborating
with data collected by other researchers. To facilitate the analysis of ML
or DL controlled driving, these datasets vary in terms of traffic conditions,
application focus, detector setup, format, size, tool support, and perfor-
mance aspects [98]. Driving regularly on the public roads amidst real
traffic to evaluate performance and refine technology is crucial to the
future of self-driving cars [49]. As DL thrives on datasets, and powerful
computational resources enable data processing on GPUs, Massachusetts
Institute of Technology’s advanced vehicle technology (MIT-AVT) con-
sortium provides a large-scale naturalistic dataset collected over 275,000
miles and having 4.7 billion video frames actively annotated [99]. The
dataset is based on 25 types of car pictures to represent various
real-world driving scenarios covering Waymo, Cruise, Uber and many
prominent self-driving car manufacturers engaged in conducting public
trials and test drives in the United States [95,99].

Authors in Ref. [100] present 27 publicly existing vehicular datasets,
compare them based on different criteria, and provide suggestions for
choosing appropriate dataset pertaining to specific objectives. Another
example of collecting big data for self-driving cars is presented in
Ref. [101], the KITTI benchmark dataset. The KITTI dataset established
that vehicular datasets are significantly large in size. The authors in
Ref. [101] also evaluate how well can LiDAR and RGB cameras collect
real-time driving data. In self-driving cars, high accuracy is usually
defined as 100% accuracy and less than 100% could lead to fatality. The
driving data comprises vast range of weather conditions, traffic at
different times of the day, roundabouts, intersections, traffic lights, blind
turns, curved roads, lane markings, lane change behaviours, and
on-street parking [102]. This data spans into petabytes (PB), manually
collected, annotated and deduced with accurate ground truth represen-
tations. Once the data is ready, the next step is to choose a DL model and
architecture [103].

Human visual system is the benchmark for self-driving cars to classify
objects, perform edge detection, track lanes and expand visibility range
[104]. The AI system in self-driving cars must be able to reveal when it
does not see some aspects of a scene. The main sources of raw data in
self-driving cars are the automotive sensors. Whereas LiDAR is the most
powerful camera, it is expensive and researchers argue that images
captured using RGB cameras are sufficient for self-driving applications in
certain conditions [105]. Research is underway to manufacture low-cost
LiDAR. A brief comparison of images generated by the three cameras is
presented below [106].

1. Camera: Cameras are image sensors that operate on RGB values.
Cameras capture infrared visual data and offer high resolution in-
formation. Cameras can be used as readily available and cheap sen-
sors to capture information that can be learned and inferred to
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interpret external scene. Human brain uses similar sensor technology,
with eyes acting as sensors that work under illumination, and operate
in RGB space to detect and segment lane markings, traffic lights,
pedestrians, etc. Cameras work well in visible light but their perfor-
mance degrades in darkness and extreme weather, and are bad at
depth estimation [105].

2. RADAR: Highly reliable and provide higher resolution and accuracy.
They are ultrasonic, cheap, and work extremely well in extreme
weather. However, under low resolution, they are mostly used as
automotive sensors for object detection [106].

3. LiDAR: Although expensive, LiDAR provides extremely accurate
depth information, has resolution much higher than RADAR, and
provides 360 degress visibility. LiDAR has been a successful source of
3D ground truth data in driving environment [107].

In summary, the need for annotated data increases the demands on
camera technology [70]. Cloud based real-time transmission of these
annotated images and videos has drawn attention to multi-agent deep
reinforcement learning (DRL) techniques to control multiple cars [17].
Although cameras operate in clear, well lit conditions, good visibility
requirements over a long range in dark conditions, heavy rain, snow, and
fog makes CV and image processing a critical and open research problem
[107]. A novel technique suggests cameras, RADAR, and LiDAR be in-
tegrated together through sensor fusion, where DL methods can be used
to interpret the spatial-visual characteristics to understand, interpret and
track the dynamics of the environment [69].

3.3. Multimodal sensor fusion in autonomous vehicles

Sensor modalities allow reconstruction of images for regularization
and feature-based reconstruction on data from multiple sources and
sensors, where each modality provides significant knowledge and valu-
able information pertaining to the object of interest [108]. This enables
driving under uncertainty through dynamic sampling, characterization
and image denoising, deblurring and segmentation [108,109].

3.3.1. Multimodal data fusion
Deep multimodal representation learning incorporates meaningful

information from heterogeneous multimodal driving data spanning a
multitude of autonomous driving scenarios [110]. Multimodal sensor
fusion in self-driving vehicles enhances the representation ability,
abstraction and coordinated representation [111] that use variational
auto encoders (VAE) and generative adversarial networks (GANs) to
resolve multiple data modalities [112]. In autonomous driving scenarios,
deep convolutional neural networks (DCNN) have been used to automate
feature extraction from vehicular sensor inputs, whereas to capture and
model the driving scene temporal dynamics from multimodal LiDAR
sensors, recurrent neural networks (RNN) with convolutional and LSTM
recurrent units have been used [21,113]. Multimodal RNNs label the
driving scenes using gate recurrent cells with computation-intensive GPU
clusters to model self-driving vehicle behavior. Multimodal sensor fusion
is widely used to ensure robustness of data acquired from different sen-
sors in different driving scenarios and cross-modality generalization, and
to approximate missing data through correlation between different
available modalities [114]. Visual driving features captured using
multimodal RNNs can be enhanced using restricted Boltzmann machines
(RBM), a generative graphic model that captures the probability distri-
bution between visible units and hidden units [113,115]. Driving scene
object detection captioning is usually followed by stacked autoencoder
(SAE) to model time dependency of the intrinsic temporal features,
where bounds-based filtering and delta product reduce the redundant dot
product calculations in multi-modal computations [111,116].
Modality-specific unsupervised Boltzmann models capture the inherent
representation of the driving scene transform the modality-specific rep-
resentations to semantic features using probabilistic graphical networks
[109].
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3.3.2. Multimodal driving scene understanding
For collision avoidance in autonomous vehicles, multimodal sensor

data fusion is critical for decision making [114]. The KITTI benchmark
dataset comprises stereo and laser driving information collected at
various driving environments spanning surveillance cameras to discover
variables from multi-source data [101]. The 3D images in autonomous
driving environment consists of data modalities in camera images due to
image depth and semantic labels [20]. Multimodal fusion for detecting
objects such as pedestrian, traffic lights, and road infrastructure uses
multi spectral identification based on visual odometry to capture deep
features of the object direction [117]. Interpreting the multiple
object-dynamics from driving image sequences is efficiently done
through unsupervised learning using a probabilistic model that estimates
positions for objects through a linear state-space model and localizes the
positions of the objects through a non-linear process to encompass spatial
and temporal dependencies of the multimodal driving data [118]. The
driving scene consists of features distributed across spatially and
temporally distinct feature-space and involves finding groups of closely
related data samples [116]. Multimodal data fusion and multi-instance
unsupervised learning in autonomous driving helps to estimate the dis-
tributions in the driving space where data labels are learned from specific
ensemble learning to improve generalization and distributed represen-
tation of objects in driving environment [119]. Autonomous driving
surveillance videos contain complex visual events [120], and to generate
video descriptions effectively and efficiently without human supervision
needs recognizing multiple events in a given video [121].

3.4. Robust decision making in uncertainty and artificial general
intelligence in autonomous vehicles

Maneuver planning, driving scene perception, and decision-making
for autonomous vehicles is based on some predefined functional re-
quirements that define an initial state of the vehicle, a route map, the
obstacles in the region of interest, and a destination [122]. Randomized
prior functions help to estimate the uncertainty of decisions in autono-
mous driving to identify trajectories and the likelihood of a self-driving
vehicle following them [123]. Dynamically feasible trajectories for
collision avoidance, overtaking, path planning for autonomous vehicles,
and collaborative autonomy in decision-making have been tried to ach-
ieve in autonomous driving using hidden Markov model and partially
observable Markov decision processes [124]. The intelligence and
smartness of an autonomous vehicle are strongly related to the use of AI
[125]. Whether artificially intelligent autonomous vehicles can safe-
guard humanity from on-road accidents, drivers frustration and other
driving related catastrophes is an active field of research [126]. The
ethical aspect of AI technologies, algorithms, and their current and pro-
spective applications to achieve artificial general intelligence (AGI) in
autonomous vehicles is a current research topic in terms of driving effi-
ciency, control and planning, obstacle detection and avoidance [127,
128]. AGI ultimately aims to integrate sustainability, security, safe
transportation and urban infrastructure in autonomous vehicles [129].

3.5. Road scene analysis in adversarial weather conditions

Object detection is critical to autonomous driving assistance systems,
especially in road scenes with poor illumination, strong reflections, or
other adversarial weather conditions [130], as reflection from rain and
ice over roads could lead to significant detection errors [131]. Polari-
zation images characterize light waves and can be used to robustly cap-
ture and describe physical properties of the objects in the driving vicinity
[132]. Polarimetric imaging modality significantly overcomes the limi-
tations of classical object detection methods in adverse weather condi-
tions, as compared to RGB images for object detection [133]. Semantic
foggy scene understanding (SFSU) is an active research area where neural
networks trained on RGB images are tested on images augmented by
polarimetry for recognition of road-based objects [134]. As intelligent



Table 3
Self-driving cars: Industrial and academic initiatives to build prototypes and test
in real-world driving environments [31,88].

Industrial/
Academic
initiative

Principal
entity

Miles travelled Notes

Industrial Tesla
Autopilot

One billion miles of
automated driving,
33% miles driven
autonomously

Remarkable adoption rate
with drivers actively
disengaged from driving. L2
system with autopilot
equipped perception control
system

Industrial Waymo Four million miles
driven autonomoulsy
by Dec 2017

No driver although operated
in restricted conditions.
Marks a significant step
forward from human-AI
collaboration to fully
autonomous vehicles

Industrial Uber Two million miles
driven autonomously

Drivers over-trusting the
system is an issue

Industrial Google Most autonomously
driven miles
accumulated on road

Huge investment in DL
based self-driving
technology research

Industrial Delphi San Francisco to New
York, 99% in fully
automated mode

Detailed report available in
[87]

Industrial Audi A8 To be released Introduction to
commercially available
traffic jam assist, first L3
model. Driver obliged to
keep hands on vehicle at all
times, and to monitor the
traffic and intervene
immediately when required

Academic University
of
Michigan

In-campus autonomous
driving shuttle

Feedback available in
newspapers and online blogs

Table 4
Significant milestones in artificial neural networks (ANN) leading to the current
deep learning era.

Milestone Principal instigator Reference

MCP model: The foundation of ANN McCulloch and Pitts,
1943

[24,153]

Basic (single-layer) perceptron Rosenblatt, 1958 [24]
Multilayer perceptron Minsky and Papert,

1969
[24,154]

Backpropagation of errors Werbos, 1974 [149]
Neocognitron: a hierarchical multilayer ANN,
first used for pattern recognition and serves
as a foundation for CNN

Kunihiko
Fukushima, 1980

[149]

Boltzmann Machines G. Hinton et al.,
1985

[155]

Restricted Boltzmann Machines Smolensky, 1986 [26]
Recurrent neural networks Jordan, 1986 [26]
Autoencoders Rumelhart, Hinton,

and Williams, 1986
[156,
157]

LeNet LeCun, 1990 [150]
Long short-term memory (LSTM) Hochreiter and

Schmidhuber, 1997
[26]

Deep belief networks: Beginning of deep
learning

G. Hinton, 2006 [158]

Deep Boltzmann machine G. Hinton and
Salakhutdinov, 2009

[155]

SuperVision (AlexNet): Marks the beginning of
CNN revolution and transfer learning

G. Hinton and
Krizhevsky, 2012

[151,
157]
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visual traffic surveillance systems depend on cameras and sensors fusion
systems [135], adverse weather conditions add constraints to camera
functionality impacting computer vision and scene understanding ability
of autonomous vehicles [136,137].

3.6. Polarimetric images for autonomous driving scene perception

In autonomous driving scenarios, object detection involves locating
and classifying instances of semantic objects [138]. Typical object
detection models such as simultaneous localization and mapping (SLAM)
have high accuracy on benchmark datasets and are used in applications
such as mobile robotics, self-driving cars, unmanned aerial vehicles,
drones, and underwater vehicles [139]. LiDAR-SLAM fusion in situations
with lack of light, lack of visual features, or haphazard motion of vehicles
uses different spatial resolutions to interpolate the missing data with
quantifiable uncertainty [140]. Optical technology for optimizing data
for driving tasks uses light scan technology, stereo/depth cameras,
monocular (RGB) and time-of-flight (TOF) cameras for mapping, obstacle
detection, avoidance and localization [141]. Multimodal polarimetric
data streams are spatially, geometrically and temporally aligned using
low-cost and compact 3D visual sensing devices that offer panoramic
background subtraction for visual scene understanding, spectral signal
processing to locate objects in a scene, and polarization signatures to
detect glare from hazardous road conditions [134,142].

3.6.1. Data labeling to deal with multi-modalities with different signal forms
and different resolutions, LiDAR pros and cons, and how to overcome range
issue in LiDAR

LiDAR imaging performance for long-range, high spatial resolution in
the daytime, real-time autonomous driving environment depends
significantly on tolerance to solar background noise, short and long-
range narrow and wide fields of view, as well as on the detection range
of single-beam LiDAR [20]. LiDAR has a rotating wheel at high speed and
multiple stacked single-photon avalanche diode (SPAD) detectors [140].
LiDAR uses a time-of-flight method for detecting laser light in presence of
natural light [141]. The output of the SPAD-LiDAR is a monocular image
data and a single beam operating at high pulse rate to record a point
cloud quickly [131] by comparing a return pulse with one of the trans-
mitted pulses to compute the correct distance [143]. Airborne sensors in
LiDARs transmit a single, relatively high-power, pulse in order to maxi-
mize the detection range, noise reduction amidst multiple return pulses
from each transmitted pulse [144]. Constrained to a specific range of
spatial resolutions, it aims to optimize the effectiveness of sensors to
solve real-world autonomous driving [145]. Whereas the eariler LiDAR
sensors passively searched a scene to detect objects against fixed back-
grounds in both time and space, the later solid-state LiDAR sensors
enable intelligent information capture through active search by actual
acquisition of classification attributes and the nuances of objects in real
time [146]. The frame rate of LiDAR imaging systems include object
revisit rate to capture instantaneous resolution and detection range as a
measure of sensor’s ability to intelligently enhance perception [147].

4. Deep learning: A subset of artificial intelligence and machine
learning

Deep learning is a multi-layered computational model used for
feature extraction and representation learning at various levels of
abstraction [24]. DL is a branch of ML that automatically extracts fea-
tures and patterns from raw data and makes predictions or takes actions
based on some reward function [148]. It comprises techniques such as
neural networks, hierarchical probabilistic methods, supervised and
unsupervised learning models, and deep reinforcement learning (DRL).
As stated in Table 4, DL builds on the earliest developments in artificial
neural networks (ANN), reported in 1943, that tried to understand how
human brain transmits and perceives information [24]. The basic entity
of ANN was neuron, which is the fundamental computational unit in all
8

the DL models and architectures [149]. Later in 1958, the first ANN
consisting of a connection of six neurons in a single layer, termed as basic
perceptron was proposed [24]. The model was critiqued on the basis that
the perceptron could not solve the basic ex-or gate (XOR) problem. The
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concept of multi layer perceptron, proposed in 1969, led to a reinvigo-
rated interest in ANN. A significant way to train ANN was to learn from
errors, or back-propagation, that is still used today with convex optimi-
zation and gradient descent [25]. The Table 3 outlines some industrial
and academic initiatives to build prototypes and test in real-world
driving environments.

Later, models such as LeNet, deep belief networks (DBN), restricted
Boltzmann machines (RBM) were developed in the 2000s [150]. The
interest in ANN and DL has been intermittent due to lack of availability of
fast computation [151]. With the advances in cloud computing, and
arrival of computing platforms such as Google Cloud, and Amazon Web
Services (AWS), computing large datasets has become fast, easy, and
accessible [152]. The growth in internet and wireless communication
technology has led to developments of computationally intensive tasks
such as CV [34]. The combination of DL, Internet connectivity, 5G
communication, data science and analytics, and cloud computing engines
is critical to the development of self-driving cars [25]. Self-driving ve-
hicles have garnered considerable interest and investment in recent years
largely due to breakthroughs in DL, CNN, and deep neural networks
(DNN) [95].

Supervised learning requires data to be annotated by human beings
[158]. Indirectly, humans are at the core of DL performance. Human data
annotation is replaced by augmented annotation methods [159]. Unsu-
pervised learning in autonomous driving interprets the driving environ-
ment and surroundings with minimal input from humans [97]. Unlike
support vector machines (SVM), the DL can solve complex and non-linear
problems without projecting them onto a higher dimension [25]. DL uses
a large number of hyper-parameters and layers to solve problems. Table 5
summarizes tools and techniques that enable deploying DL for vision and
perception self-driving cars.

To achieve object-detection, cognition and scene perception, self-
driving cars are expected to perceive surroundings in a way at least
similar to the way human eye processes information [165] leading to
cognitive AI systems that can learn, relearn, take actions [166]. To ach-
ieve human level driving from CV perspective, self-driving cars need to
be able to recognize environment, interpret 3D representation of world,
to discern the movement of objects, pedestrians, and other cars, and deal
with human emotions [167]. The feasibility of DL is being established as
some state-of-the-art results have been achieved by Google cars and Uber
cars in maps-based localization, that were trained to drive with little
prior knowledge of the roads [86]. These vehicles use DL for path plan-
ning, obstacle avoidance, and try to process camera based information to
solve complex CV problems [168]. While DL algorithms learn effective
perception control from data, LiDAR costs and the expenses involved in
Table 5
Summary of tools and techniques that enable deploying deep learning for vision and

Technique Examples Scope

Advanced parallel computing [160] GPU, TPU, CUDA, cuDNN Vehicle onboard
devices, mobile s
workstations

Dedicated deep learning libraries
[43–152]

TensorFlow, Theano, Caffe,
Torch, Keras

Edge nodes, serve

Fog, Edge, and Cloud computing
[22–161]

CoreML Mobile devices, w

Advanced image processing and CV
[34–162]

openCV, Tesseract, DLib,
SciPy, TensorFlow

Mobile servers, w

Regularization and prevention of
overfitting in DL architectures
[41–150]

Momentum, L1 & L2
regularization, dropout, early
stopping

Mobile devices, w
devices

Fast optimization algorithms [163] Nesterov, Adagrad, RMSprop,
Adam

Fast training of DL
novel CNNs

Distributed machine learning systems
[25]

MLbase, Adam, GeePS Distributed data c
server, IoT device
infrastructure

Big data captured using LiDAR and
cameras [50–164]

LiDAR, sensors Mounted on vehi
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manually annotating the maps restrict the application of DL to autono-
mous driving [49]. The Table 6 summarizes a few DL architectures and
deep vision systems that have been applied for object detection in
self-driving cars [169]. DL and ML can be classified into three categories;
supervised, unsupervised, and reinforcement learning [170]. The math-
ematical framework to implement these DL techniques involves the
following steps:

� Backpropagation: the primary method of learning. Calculates error,
computes error function and tries to minimize error function in sub-
sequent forward passes [171].

� Use gradient descent to backpropagate the error function [25,171].
� Subtract a fraction of the gradient from the weight [171].
� Recalculate the weights responsible for making a correct or incorrect
decision [171].

� The objective is to minimize the error function, by updating the
weights using minibatch or stochastic gradient descent [171].

� More data and very large networks lead to too many parameters, and
increased training times [171,172].
4.1. Deep learning architectures for object detection and computer vision in
autonomous vehicles

4.1.1. Convolutional neural networks
Convolutional neural networks (CNN) have been extensively applied

to image classification and computer vision, and have returned 100%
classification rates on datasets such as ImageNet [180]. In CNN archi-
tecture, successive layers of neurons learn progressively complex features
in a supervised way by back-propagating classification errors, with the
last layer representing output image categories [181]. CNNs do not use a
distinct feature extractionmodule or a classificationmodule, i.e. CNNs do
not have an unsupervised pre-training and the input representation is
implicitly through supervised training but eliminate the need for manual
feature description and feature extraction [182]. It extracts features from
raw data based on pixel values leading to final object categories [173].
The CNNs have been used in self-driving cars to determine driver
behavior and information such as where they are looking, emotional
state, cognitive load, body pose estimation, and drowsiness [36]. The
CNNs explore the nature of AI and the role of artificially intelligent
systems in the society, as full autonomy in self-driving cars involves
creating intelligence [183].

The inputs to CNN can be images, video, text, audio depending on
different data with one-to-one, one-to-many, or many-to-many relation
perception self-driving cars.

Functionality Performance

units, smart IoT
ervers,

Enable fast, real-time training and inference of DL
models in mobile vehicular environments

High

rs High-level toolboxes that help to build novel CNN
and DL architectures

High

orkstations Facilitate edge and fog based DL computation for
real-time mission critical applications, uses 5G

Medium

orkstations, GPU Process images for scene understanding, object
detection, and object localization in real-time

Medium

orkstations, IoT Avoid overfitting to improve model performance Medium

architectures and Accelerate model optimization process Medium

enters, cross-
s, smart

Support DL frameworks in mobile systems, cloud,
and data centers

High

cles Capture 2D and 3D images of driving
environment

High



Table 6
Summary of Different deep learning architectures and their application for vision and perception in self-driving cars.

Model Learning
scenarios

Example
architectures

Object detection problems in
autonomous driving

Pros Cons Applications in autonomous
driving object detection

MLP [24] Supervised,
unsupervised,
reinforcement

ANN, AdaNet Identifying correlations in visual
data

Easy structure,
design and
implementation

Slow convergence, less
patterns

Can be used as a component
of DL to model multi-
attribute data

RBM [173] Unsupervised DBN Entropy maximization, robust
scene representation

Data points
generation

Complex training, lack of
self-awareness

Learning from unlabeled
data, augmented data,
scene/object prediction

AE [174,175] Unsupervised DAE, SAE, VAE Learning representations and
features from sparse data, in
locations with less mapping

Effective
unsupervised
learning

Time consuming to train,
real-time communication
not guaranteed

Weight initialization, data
dimensionality reduction

CNN [38–176] Supervised,
unsupervised,
reinforcement

LeNet, AlexNet,
ResNet, VGG,
GoogLeNet,
DenseNet

Spatial data modelling Invariant to image
transformations

Finding optimal hyper-
parameters needs deep
structures

Spatial data analysis, object
detection, object
localization

RNN [177] Supervised,
unsupervised,
reinforcement

LSTM Sequential, time-series data
modelling

Capture temporal
dependencies

Gradient vanishing
problem

Traffic flow analysis, spatio-
temporal data modelling

GAN [178] Unsupervised GAN Data generation in varying
driving scenarios

Produces real-
world data
artefacts

Difficult convergence Virtual driving scene
generation, simulation,
assist supervised learning

DRL [179] Reinforcement Deep Q-learning Analyze high dimensional data Models high
dimensional
driving
environment

Slow convergence Driving scene control,
management and AI
decision-making
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between input data and output classes. Depth in CNNs is provided by the
number of layers, and is analogous to features, taking all the features
generated by filters of different sizes and using backpropagation to arrive
at the best features [184]. Novel CNN architectures are designed using
transfer learning where a series of predefined convolutions are followed
by series of fully connected layers, without having to train CNNs from
scratch [185]. In a CNN, a driving image is convolved with activating
functions to obtain feature maps, which can be further scaled down to
identify patterns in an image or signal [25]. CNNs are robust to trans-
lational invariance and rotational invariance, as convolution multiplies
the same weight everywhere on the given input. Each layer in the CNN
finds successively complex features where the first layer finds a small,
simple feature anywhere on the image, the second layer finds more
complex features and so on [6]. At the last layer, these feature maps are
processed using fully connected neural networks (FCNN). In addition to
reducing the driver’s responsibilities and assist them in critical tasks, the
end result envisioned is to eliminate the active need for driver engage-
ment, which extends much beyond currently available semi-autonomous
models with ADAS [186].

4.1.2. Recurrent neural networks
Recurrent neural networks (RNN) recognize sequences and patterns

in structures consisting recurrent computations to sequentially process
the input data [177]. Long short-term memory (LSTM) is an RNN based
method which uses feedback connections for sequences and patterns
recognition using input, output, and forget gates [120]. LSTM remembers
the output computed from the previous time step, and provides output
based on the current input [121]. The connection between units forms a
directed cycle and the RNN input and output are related as the edges of
RNN feed output from one timestep into the next time step [187]. RNNs
have been applied for robust and accurate visual tracking in autonomous
vehicles in constrained scenarios [188]. Temporal correlation of RNNs
predicts the object at next time frame based on region of interest (ROI)
and uses that image as the input of the next frame, resembling a pre-
diction model for object tracking [189].
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4.1.3. Deep belief networks
A deep belief network (DBN) is a hybrid multi-layered, generative

graphical model used for learning robust features from high dimensional
data and consists multiple layers of stochastic, latent (hidden) variables
connected between the neurons of different layers, but not between the
units of each layer [179]. The undirected Restricted BoltzmannMachines
(RBM) where each layer trains separately to produce an expected input
are the building blocks of DBN architecture [158]. Each RBM layer
communicates with the previous and next layers for accuracy and
computational efficiency [155]. DBN handles non-convex objective
functions and local minima through multiple layers of latent variables
where a hidden layer acts as the visible input layer for the adjacent layer
[190].

4.1.4. Stacked autoencoders
Autoencoders are a class of unsupervised feature extractors that find a

generalized transformation of the input and assist a classifier in a su-
pervised task [191]. Stacked autoencoders (SAE) are used in autonomous
vehicles vision systems to visualise high-dimensional data to find clusters
and to create similarity metrics between samples [192]. SAE are sued to
reduce the dimensions of the input image data captured using LiDAR
sensorsin self-driving vehicles. Dimension reduction avoids learning the
identity function without any explicit changes to the driving accuracy
and gives smaller reconstruction errors.SAE restrict the driving scene
output to be sparse, imposing a sparsity constraint [25]. SAE add random
noise to the input, requiring a reconstruction of the original input. This
forces the driving vision system to learn the structure of the input dis-
tribution to undo the effects of the added noise [23], which makes the
system more robust to small changes of the input [25]. The learned
features of the autoencoder are tolerant to the changes in the input space
[26]. DBN and SAE assist in building a non-linear, distributed repre-
sentation of the input, where DBN captures the representation in sto-
chastic distribution form, while the SAE learns a direct mapping of the
input to another space [25]. Unlike CNNs, other methods such as RNN,
SAE, DBN, LSTM, and deep reinforcement learning (DRL) models do not
exploit prior knowledge about the structure of images. If the pixels of all
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images in the driving environment were randomly permuted, it would
not affect the performance of the models in scene analysis, environment
perception and object detection [193].
4.2. Singleshot multibox detection

A previous technique known as sliding window utilizes CNNs for
better image detection. In realistic self-driving scenarios, some images
might have zero objects, and some might have up to 50 objects. The
output of a CNN is still going to be a fixed set of numbers that the pro-
cessing infrastructure or the vehicle AI system needs to interpret [194].
Single shot multibox detection (SSD) is largely viewed as a milestone in
digital image processing (DIP) and CV research to enhance real-time
performance requirements [195]. Self-driving cars have to recognize
objects as soon as they see them, which is a CV problem as well as a
security requirement in self-driving cars [89]. Singleshot multibox
detection improves both speed and accuracy by looking for the presence
of an object, and its location. If an image has multiple class instances such
as people, cars, trucks, bicycles, people, traffic lights, traffic signs, land-
marks, lane markers in a single image, in such settings, image classifi-
cation has limited applications [196]. This leads to research into object
localization, which tells a vehicle whether an object is present in an
image and its location. This is done using bounding boxes or rectangles,
and depending on applications these can be ellipses, facial key points
known as landmarks, or fingerprints and retina structures. A requirement
for images is to have translational invariance, rotational invariance, color
invariance, and size invariance [197]. Comparable techniques are you
only look once (YOLO) and region-CNN (R–CNN) and have been out-
performed by SSD as it addresses the following two problems in an
efficient manner [198].

4.2.1. Problem of scale
According to the problem of scale, a car is much larger than a bicycle

in all three dimensions, height, width and length. Singleshot multibox
detection makes an assumption that our window size is pre-known.
Utilizing the general principle of CNNs that an image shrinks at each
layer, and the feature becomes larger, SSD attaches mini-neural networks
to intermediate layers of a pre-trained network, known as region pro-
posals [199]. This technique inherent in SSD eliminates the need to
define where to search for an object in an image and tackles the problem
of scale. Cross entropy does not fit as a suitable loss function due to
increased dimensions and increased classes [197]. A requirement of
bounding box is that it should be normalized coordinate between 0 and 1.
Then a code maps a particular windows’ bounding box to the full image’s
box in de-normalized pixel coordinates. A drawback of this sliding win-
dow technique is that it needs O(N2) computations, where N implies the
number of steps per image dimension [195]. In SSD, we only have to pass
an image through the CNN once rather than O(N2) times. This is an
improvement over R–CNN.

4.2.2. Problem of shape
Cars are wide and people are tall, therefore an efficient window size is

based on the aspect ratio. In an autonomous driving scenario, multiple
objects can occur in the same window, one occluding the other [48]. In
general, humans are endowed with an inherent ability to effortlessly
figure the difference through the context of surrounding image. The
current CV research aims to impart such human level perception to
computers, enhancing their pattern recognition abilities. Authors in
Ref. [200] tackled the problem of image localization as the opposite of
regression, where instead of trying to find the object, they placed the box
and let the CNN decide if an object is present there or not [200]. SSD
shows considerable improvement over YOLO that operates over a single
scale feature map [198]. Singleshot multibox detection searches every-
where in an image through parallel computing and convolution. Instead
of considering the whole CNN as a feature extractor, each subpart of the
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CNN is a feature extractor that takes output from multiple parts of CNN
[182]. Mini-neural networks attached at various convolution or pooling
layers of CNN lead to their own object detection at each layer. Thus, SSD
efficiently applies to any neural network and makes use of transfer
learning [201].
4.3. Object detection approaches in self-driving vehicles: pros and cons

Object detection is a mechanism to identify class instances to which
an object belongs [202]. To gain a complete 3D view of the environment,
self-driving cars need to classify different objects present in an image,
and precise locations of these objects [203]. Object detection for se-
mantic scene understanding is broadly divided into following three
categories:

1. Region proposal/region selection: The most popoular technique for
region selection in pre-DL era was to scan the whole image using a
multi-scale sliding window. However, for self-driving cars, sliding
window technique is computationally intensive and fails to meet real-
time need to find all positions of an object exhaustively [201].

2. Feature extraction: Techniques such as Haar-transform, Haar-like
features and histograms of oriented gradients (HoG) were widely
used for feature extraction. However, in self-driving scenarios, these
techniques do not provide robustness to fluctuating environmental
conditions [204].

3. Classification: Once the objects are perceived and localized, classifi-
cation is accomplished using ML algorithms such as MLP and SVM.
Deformable parts model (DPM) gained widespread acceptance for
object classification and has been proposed in self-driving scenarios
[205].

Histogram of oriented gradients (HoG) is a feature detection tech-
nique that found application in pedestrian detection. Histogram of ori-
ented gradients calculates gradients for the whole image at multiple
scales and employs linear classifier for each scale at every position. The
HoG model for self-driving cars in heavy traffic situations with multiple
vehicles needs near perfect accuracy to avoid crashes. The model proved
to be too slow for real-life situations involving pedestrians and other
vehicles [206]. As HoGs represent edges, edges symbolize convolutions
and histograms represent pooling, CNNs can be seen analogous to fast
HoG. Later, a modification known as DPM replaced the HoG linear
classifier with a linear template for the object [207]. Another variation
used latent SVM to learn and evaluate, leading to a powerful classifier
that allowed more deformability in the model. Classification was still
computationally demanding, and needed to test many positions and
scales that became infeasible for cluttered images [205]. An improve-
ment was region proposals, that found regions likely to contain objects.
The technique was not very accurate but was fast to run. An advancement
to this approach was selective search that merged adjacent pixels having
similar colour and texture. Merged regions at multiple scales led to
reduced search space [208].

As the image scenario approaches more and more real-world condi-
tions, certain constraints and added complexities arise in form of:

� Partial view [209] and side/angled view [209].
� Occluded object [210].
� Multiple objects in the vicinity [194].
� Similar objects at varying distance, hence appearing to be of distinct
sizes when in reality they belong to the same class instance [23].

� Illumination variation based on time-of-day [18].
� Road conditions such as slippery road and unclear road markings
[28].

� Weather conditions such as snow, fog, and rain [211].
� Faded lane markings
� Changing traffic lights [98].



Table 7
DL based object detection and scene perception for meaningful AI actions in self-
driving cars.

Self-driving
car
behaviour
type

Manoeuvre
and
intervention
type

Scenarios emphasizing
the underlying role of
DL and generating
sufficient input for the
vehicle AI system

Achievable action

Operational Initiate
response

Vehicle sensors detect
an obstacle, DL
processes the image in
real-time and the AI
system initiates
deceleration, braking,
or steering. The AI
system also issues alerts
to the driver/human
inside the vehicle to
intervene to lessen the
impact of a probably
unavoidable crash
[224].

Adaptive cruise control
in modern vehicles
works in a similar way,
defined by SAE level-2.
Fully autonomous,
level-4 and level-5
vehicles would need
increased real-time
information processing
and transmitting
capabilities.

Operational Supplement
response

Sensors detect a threat,
DL processes the image
in real-time and infer a
response from other
vehicles using V2V and
V2I communication.
The nearby vehicles
adjust trajectories and
speed to accomodate
the threat [61].

Elicit nearby self-
driving vehicle’s
collaboration in real-
time to an inevitable
crash that exceeds a
vehicle’s ability to
respond alone

Operational/
Tactical

Guide
response

Sensors detect a threat,
DL processes the
information and guides
the vehicle AI system to
initiate appropriate
response [30–183].

DL detects vechicle
fllowing too close and
activates forward-
collision warning
system. The AI system
initiates braking.

Precautional Direct
attention

Sensors detect a crash
or roadside hazard, DL
processes the image and
alerts the AI system and
the vehicles behind, but
does not initiate a
response [225].

An alarm that indicates
the presence of
hazardous weather
conditions, or a
roadside hazard.

Tactical/
Strategic

Enhance
awareness

DL processes the images
and estimates
deficiencies in roadside
conditions, weather
conditions, and driving
performance of other
autonomous vehicles.
The AI system
determines the
likelihood of a lane drift
or a crash [226].

The system constantly
sends out alerts to
nearby V2I cloud, and
nearby vehicles using
V2V to engage in more
appropriate driving
behaviour.

Tactical Deliver
information

GPS and sensor data to
constantly update
location information to
ensure vehicle is
enroute to destination.
A new scene in image
could alert the vehicle
to having taken wrong
path [227–229].

The guidance and
regulatory route
information based on
DL scene understanding
is analogous to human
drivers following signs
and directions. This
also eliminates the
human propensity to
occasionally fail to obey
traffic controls, but
needs accurate scene
perception and object
localization.

Tactical/
Strategic

Enhance
feedback
and tune
expectations

Sensors capture images,
DL processes them and
AI system repeatedly
exposes drivers/
humans to alerts based
on specific hazards.
This enhances driver

Such a system
motivates a human to
stay alert to roadside
conditions, be ready to
intervene, and be
cautious of specific
situations when self-

Table 7 (continued )

Self-driving
car
behaviour
type

Manoeuvre
and
intervention
type

Scenarios emphasizing
the underlying role of
DL and generating
sufficient input for the
vehicle AI system

Achievable action

awareness and tunes
their expectations to
situations in which self-
driving vehicles can
demand attention [95].

driving car can demand
takeover. Marks a huge
step towards level-5
self-driving vehicles.

Tactical/
Strategic

Calibrate
capacity and
demand

Sensors capture
information, DL
processes them and
detects objects and
repeated exposure of AI
system to those images
makes it learn the
roadway occupancy
pattern at specific times
[230].

Such systems will be
crucial to have human
passengers adapt their
behaviour to self-
driving cars’
intervention-demand
cycle, based on time-of-
the-day.

Strategic/
Tactical

Postdrive
feedback

The DL system provides
the images of same
route over and over
again to the AI system.
The AI system compares
it with decisions made
during previous drives,
identifies suboptimal or
erroneous decisions and
tries to imprive
behaviour, either on its
own or with human
collaboration [43].

The DL system captures
images, AI system
generates a report of
risky situations
encountered and
decisions taken. Human
experts designing the
system can assiciate
consequences and
retrain the system
accordingly.
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� Invariancy requirements such as translation-invariance, rotational
invariance, colour and size invariance

Although various object detection architectures such as R–CNN, fast
R–CNN, faster R–CNN, YOLO, and SSD have produced remarkable ac-
curacy and very low error rates (less than 5%) on ImageNet and Pascal
VOC datasets, the speed of these architectures to yield low error in real-
time self-driving scenarios is still a concern. Authors in Ref. [212] present
a thorough evaluation of different region proposal mechanisms analyzing
the pros and cons of each technique. Combining region proposals and
CNNs became known as R–CNN. R–CNN showed good results for AlexNet
and visual geometry group-16 (VGG-16). However, it was slow as it
needed to run full forward pass of CNN for each region proposal [204].
For a large number of regions, the need to evaluate CNN for each region
leads to CNN weights update in response to the parts of the network
pointing towards similar regions. Box annotations to train mask R–CNN
were used to detect vehicles in aerial imagery. Vehicle detectionmethods
based on sliding-window search led to powerful feature representations
than faster R–CNN [212], which used region proposal networks (RPN)
and had poor performance for accurately locating small-sized vehicles
due to their inability to distinguish vehicles from complex backgrounds.
Although CNN operation interweaved with computation of region pro-
posals for an image is faster, yet it is not a robust mechanism to train the
whole system end-to-end at once in self-driving scenarios. A solution to
the weights update problem was known as fast R–CNN [213]. Fast
R–CNN introduces region of interest (RoI) pooling by passing an input
image through convolution and pooling layer, followed by the FCNN
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layer to compute low-level features using backpropagation, maxpooling,
and instance segmentation. Fast R–CNN tackles object detection as a
variable size regression problem, which proved to be slow for real-time
object detection in self-driving cars [199]. In self-driving cars, sliding
window technique for extracting regions followed by CNN leads to slow
R–CNN at test-time. Faster R–CNN has found application in traffic
monitoring from unmanned aerial vehicle (UAV) imagery captured over
signalized intersections for vehicle detection. It is robust to illumination
changes and detection insensitive to the number of cars in a frame. Faster
R–CNN has also shown high accuracy for parking lot car detection, and
its application to detect other transportation modes such as buses, trucks,
motorcycles, and bicycles is still research domain. Processing real-time
video streams to find the objects of interest is computationally inten-
sive for self-driving scenarios [214].

Object detection with faster R–CNN was a 101 layer ResNEt with
faster R–CNN as the FCNN [215]. You look only once tries to pose
localization as regression and divides an image into an S x S grid. Within
each grid cell, it predicts B bounding boxes with four coordinates plus the
confidence function [216]. Although YOLO was faster than faster
R–CNN, it still showed performance degradation on benchmark datasets.
Different variants of faster R–CNN on VGG, ResNEt, and GoogLeNet
(inception) were slower than YOLO but outperformed YOLO perfor-
mance [217]. Whereas YOLO is orders of magnitude faster than other
object detection algorithms for intelligent visual surveillance system
(IVSS), it struggles to detect small objects within the image. In
self-driving cars, YOLO could detect nearby cars with high confidence,
but faraway cars that appear small were detected and localized with
lesser confidence, attributed to the spatial constraints of the algorithm
[49]. Being able to detect and localize objects in meaningful vicinity
using DL will serve the following AI related tasks in self-driving vehicles,
stated in Table 7.

4.3.1. 3D outdoor object detection and point cloud analysis for autonomous
vehicles

Automated processing of uneven, unstructured, noisy, and massive
3D point clouds in autonomous driving environment is a challenging task
[218]. Deep learning models assist LiDAR point clouds segmentation,
detection, classification, and accurate distance measurement to detect
objects in dynamic urban environments [219]. Processing large volumes
of information in real-time, detecting objects in autonomous driving
trajectory has crucial applications for driving safety and security [220].
YOLOv3 method is among the most widely used deep learning-based
object detection methods [221]. It uses k-means clustering to estimate
the initial width and height of the predicted bounding boxes [222]. The
estimated width and height are sensitive to the initial cluster centers
[223].
4.4. Deep learning libraries

Modern deep learning libraries such as Theano, PyTorch, TensorFlow,
and Keras make designing neural networks easier [173]. TensorFlow
allows for plug-and-play script [157]. As training neural networks takes
long time, ranging from days to weeks and months, these DL libraries
make use of GPUs, that speed up matrix multiplications and other
mathematical operations by orders of magnitude. Table 8 presents a brief
Table 8
Comparison of deep learning platforms.

Platform Workstation hardware supported Mobile hardware suppor

TensorFlow [26–173] CPU/GPU/TPU CPU
Caffe [26–173] CPU/GPU/TPU CPU
Keras [26–173] CPU/GPU/TPU CPU
ncnn [26–173] CPU/GPU/TPUs CPU
CoreML [26–173] CPU/GPU/TPU CPU/GPU
DeepSense [26–173] CPU/GPU/TPU CPU
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comparison of prevalent DL libraries used in neural network designs,
transfer learning (TL), and object detection techniques. Utilizing these DL
libraries in conjunction with GPU and vehicular cloud for real-time CV in
self-driving cars and carrying out the task in Table 7 is an active area of
research.

5. Deep reinforcement learning for computer vision in self-
driving vehicles

With images captured using powerful LiDAR, RADAR, and RGB
cameras, DL has been applied extensively for object detection and scene
perception in self-driving cars [231], which is broadly concerned with
following tasks:

� Self localization [23].
� Understanding driving environment and reconstructing the environ-
ment [193].

� Pixel labeling, differentiating between individual objects, 3D detec-
tion and tracking [179].

� Generalize to unseen driving scenarios and predict trajectories where
car has never driven before [232].

� Semantic scene understanding, and understanding high level se-
mantics and scene understanding in traffic patterns [34].
5.1. Is training on data always necessary: the case of AlphaGoZero

Application of AI in a variety of domains such as speech recognition,
image classification, and natural language processing is based on
leveraging human expertise and enormous amounts of data [94]. A
drawback of supervised learning is that AI systems are trained to achieve
best performance based on a reward function, and defining a good
reward function is difficult. The AI system risks discovering local pockets
of high reward ignoring the implied bigger picture goal. In addition,
specifying a reward function for self-driving cars raises ethical questions
[96]. How the actual system behaves is important for the acceptance of
autonomous vehicles. However, training self-driving cars with no data
and expecting them to learn driving scenarios on their own is an open
avenue for research. However, human knowledge is usually too expen-
sive, unreliable or unavailable. Consequently, AI research aims to bypass
the need for human expertise and create algorithms that achieve super-
human performance with no human input, even in most challenging
situations [94]. A significant step towards achieving this goal was
observed in 2017, when a board game known as AlphaGoZero defeated
its previous version, AlphaGo. Whereas prior versions of the game were
AI systems trained on human data, AlphaGoZero was not trained on
training data or human input. AlphaGoZero beat AlphaGo andmany of its
variants by playing itself and generating moves that surprised human
experts [96]. However, authors in Ref. [233] argue that detecting pat-
terns and outliers in unlabeled data in self-driving domain is an ill-posed
problem until the spatio-temporal relation between objects is adequately
represented and the inconsistencies filtered out.
ted Speed Code size Mobile compatibility Open sourced

Slow Medium Medium Yes
Slow Large Medium Yes
Medium Small Medium Yes
Medium Small Good Yes
Fast Small Only iOS 11þ supported No
Medium Not known Medium No



Fig. 3. Deep reinforcement learning architectures for scene perception and object detection in autonomous vehicles.
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5.2. Deep reinforcement learning for computer vision and object detection
in autonomous vehicles

To classify an image, to assign one or more labels from a given set to
describe the contents of the image, image segmentation, object detection,
and object recognition are some of the challenges in autonomous vehicle
scene perception [234]. To design vision systems independent of varia-
tions in the input image, such as translation, rotation, scaling, stretching
and other distortions of the image is also a significant challenge [173].
For real-time image segmentation in self-driving cars, less communica-
tion across V2V and V2I servers is desired. This led to designing smaller
DNN that require low bandwidth to communicate from the cloud to a
self-driving car’s limitedmemory [176]. A direct perception approach for
autonomous driving focused on feature extraction from road markings
and other vehicles in the scene was known as GoogLenet for Autonomous
Driving (GLAD). This architecture eliminated the need for unrealistic
assumptions about a self-driving cars’ surroundings using five avoidance
parameters as compared to 14 used by earlier models, both on empty
roads and while driving in the presence of other surrounding vehicles
[185]. A DRL approach for scene perception and object detection is
shown in Fig. 3.

Strong nonlinear mapping capability, and increasing number of layers
and neurons in a given layer enhanced their representation ability [235].
However, these models suffered from overfitting as the vehicle datasets
lacked diversity in captured scenes [159]. To prevent overfitting, dropout
was used as a simple and efficient way, where some nodes in the network
were randomly removed, along the incoming and outgoing edges. A
stacked denoising autoencoder combined with dropout, achieved better
performance than singular dropout [174]. Existing CNN implementa-
tions were improved using recurrent neural networks (RNNs) [236].
Spike-and-slab models for object recognition in self-driving cars was
proposed using spike-and-slab sparse coding (S3C), and a variant of S3C,
partially directed deep Boltzmann machine (PD-DBM) [237]. PD-DBM
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generated better results than deep Boltzmann machine (DBM) and
deep belief networks (DBN) and was trained successfully without greedy
layerwise training. Simultaneously training all layers of the DBM led to
single generative models and RNNs that maximized approximation
likelihood and improved accuracy based on shared network parameters
[200]. In self-driving scenarios, inference approximation and classifica-
tion in case of missing inputs is inherently dangerous. To avoid approx-
imation, a structured support vector machine (SSVM) in the last two
layers of a CNN trained a DPM by backpropagating the error of the DPM
to the CNN [205]. Authors in Ref. [238] proposed a deep vision tech-
nique by formulating the DPM as a CNN. The technique introduced
detection proposals to search objects, avoiding exhaustive sliding win-
dow search across images. Each step of the DPM was mapped to an
equivalent CNN layer, replacing the DPM image features with a CNN
feature extractor. The model was named DeepPyramid DPM [238].

Model-based RL in autonomous driving uses driving experience to
construct a model of the driving state transitions and outcomes in a
driving environment [239]. Based on a reward function, actions are
chosen by the vehicular agent to plan next set of actions in driving
environment [231]. Model-free RL uses driving experience to learn
state-action values and based on an optimal driving policy, achieve an
optimal behavior [240]. Deep reinforcement learning (DRL) combines
deep learning and reinforcement learning to solve sequential
decision-making problems such as driving trajectory planning [16]. A
few actor-critic and proximal policy optimization (PPO) methods, and
their applications in autonomous vehicle object detection are briefly
described below [17]:

� In policy optimization methods, a vehicular agent learns a stochastic
policy function that maps a state to an action, that outputs a proba-
bility distribution over actions in a given state [239]. This process is
called Partially Observable Markov Decision Process (POMDP) [231].
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� In policy gradient methods, a driving policy based on a driving
parameter outputs a probability distribution of probable actions
[239], and aim to find the best parameter that improves the policy
[239]. Gradient descent optimization in policy gradient methods uses
a random search to provide a function approximation for arbitrary
policies [25].

� In asynchronous advantage actor-aritic (A3C)methods, several agents
are trained in an environment the experience of each agent is inde-
pendent of the experience of the others [240]. The overall experience
becomes more diverse and combines the benefits of both approaches
from policy-iteration method and value-iteration method [240].

� Trust region policy optimization (TRPO) is an on-policy algorithm
used or environments with both discrete or continuous action spaces
[16]. In autonomous vehicles, TRPO updates policies by taking the
largest step possible to improve performance based on the driving
environment constraints [17].

� Proximal policy optimization (PPO) is an on-policy algorithm appli-
cable to both discrete as well as continuous action spaces [16]. In
autonomous drivnig scenarios, PPO aims to increase policy
improvement by limiting the policy update at each training step [16].

� Q-learning is a value-iteration method that learns the action-value
function to determine how good will be a particular driving action
when the autonomous vehicle agent is in a given state [17].

� Distributional reinforcement learning, for each state-action pair, a
distribution of value-functions is learned to improve the overall
driving policy [17].

5.3. Critical evaluation of recent implementations and tests conducted on
self-driving cars

This section summarizes the applications of deep machine learning to
autonomous vehicles and the methods are briefly compared. The above
mentioned object detection mechanisms provide repeatability, ground
truth annotation recall, and impact DPM, R–CNN, and Fast R–CNN
detection performance [241]. Smaller bounding boxes on high-resolution
layers with a smaller stride and larger bounding boxes on low-resolution
layers with a larger stride inspired the conv/deconv structure [238].
While this fully leveraged the low-level local details and high-level
regional semantics, it was slow to identify the objects in an image
[213]. Instead of using images, video frames have also been used in CV. A
reverse content distribution network (rCDN) is a collection of related
video streams emerging from multiple content sources, leading to highly
dynamic video data [117]. The rCDN uses fog computing to serve con-
nected and autonomous vehicles, where video content from vehicles
cameras and street cameras are distributed across rCDN nodes [117].
This allows communication from downstream devices (cameras) to up-
stream devices (e.g., IoT gateway, road side unit, vehicular edge node) to
stream the content directly to the cloud or proccess data in a distributed
fashion [161]. To optimize the overall training loss, map attention de-
cision (MAD) bridged the gap between DL and conventional object
detection frameworks. MAD aggressively searches for neuron activations
to gather dense local features from discriminatively trained CNNs [177].
However, this model is highly sensitive to initialization, and even if a
single neuron is initialized poorly, it might not fire for the entire training
dataset [242].

In autonomous vehicles’ vision systems, deep learning and deep
reinforcement learning (DRL) aim to learn data-representation through
consecutive non-linear transformations [243]. Representation refers to a
vector of values comprising compressed and encoded statistical infor-
mation about the driving-environment input space [244]. For object
detection, obstacle avoidance, and scene perception, the images con-
taining similar objects are usually represented by similar values in the
vector, even in different backgrounds, enhancing the vehicle’s ability to
capture meaningful information in various types of input scenarios
[245]. The representation learning methods need an exponential number
of parameters to approximate the function that maps the input to the
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output [246]. The mean square expected error for a given number of
driving images rises exponentially with the number of the dimensions of
the input space [247]. Hyper-parameter tuning in autonomous vehicle
computer vision is described by functions that have underlying patterns
with high variance that form linear combination of the most dominant
features [248]. However, due to real-time communication requirements
and computational resource constraints, the number of parameters based
on prior knowledge about the driving task reduce the dimensions of the
input [249]. Moreover, this approach is object specific, and a system
designed to recognize traffic lights might not be able to recognize pe-
destrians [250].

In autonomous driving scenarios, such as one depicted in Fig. 3, the
relation between the input and the output is highly non-linear with un-
derlying patterns [247]. Kernel-based methods such as SVM need a large
number of parameters to reduce training error and fail to generalize to
previously unseen inputs [246]. The representations of the driving
environment input learned by DL architectures are Gaussian distributed
and have a mutually exclusive feature representation [17,248]. The DL
architectures need OðNÞ parameters to distinguish between OðNÞ fea-
tures and using multiple parameters to represent an input space can
distinguish up to Oð2NÞ features, as the number of features and object
combinations is exponential to the number of parameters [16,17,250] in
highly non-linear spaces, such as complex drive terrains.

6. Conclusion and future directions

In this article, we reviewed and studied the recent trends and de-
velopments in deep learning for computer vision, specifically vision,
object detection, and scene perception for self-driving cars. The analysis
of prevailing deep learning architectures, frameworks and models
revealed that CNN and a combination of RNN and CNN is currently the
most applied technique for object detection due to remarkable ability of
CNNs to function as feature extractors. The CNNs can learn subtle pat-
terns in an image, and are robust to translational and rotational varia-
tions. We outlined the ongoing initiatives taken by researchers to test
self-driving cars and emphasized the role of DL in real-time object
detection. With GPU and cloud based fast computation, DL could process
captured information in real-time and communicate it to nearby cloud
and other vehicles in the meaningful vicinity. The study also revealed
that in order to improve performance metrics such as accuracy, precision,
recall, and F1 scores, transfer learning is used to enhance accuracy of
object detection. In this survey, we focused on the recent advancements
in CNNs that are principally used for images. In self-driving cars, CNN
dependent strategies still need to be fine-tuned so as to achieve the
precision level of human eye. The findings reported that although DL is a
key catalyst to realize object detection and scene understanding in self-
driving cars, there is a huge scope for additional advancements. It is
yet to be investigated that when and under what conditions CNNs cease
to perform well and can pose a threat to human life in self-driving
scenarios.

The artificial driving intelligence is still incapable to annotate and
categorize driving environment on its own, without need for human
assistance. Also, much of the earlier tests conducted on autonomous
driving were predominantly on open roads and good weather, but more
recent tests include weather conditions such as driving in fog, adverse
weather events, or snow. Limited exposure of the self-driving LiDAR
cameras has been enhanced using multimodal sensor fusion and point
cloud analysis for object classification. The findings of the survey sum-
marize that self-driving cars are no longer a question of if but more of
when and how. The penetration rate of these autonomous robots into
human society depends on their ability to drive safely. This puts forth a
critical need for reliable object detection techniques, mathematical
models and simulations to mimic reality and arrive at best parameters
and configurations that can adapt with changes in surroundings.
Nevertheless, with big data, DL and CNNs, we have tools at our disposal
that can achieve high levels of arbitrary accuracy to solve perception
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problems in self-driving cars. These tools have provided researchers with
the ability to break complex problems into easier ones and previously
impossible problems into solvable but slightly expensive ones such as
capturing and annotating data to create ground truth. A number of
questions surrounding self-driving technology have emerged from this
survey, given as follows:

1. How do people respond to self-driving technology ?
2. What evolutionary advances can be anticipated in LiDAR technology

to capture high quality 3D data ?
3. What evolutionary advances can be expected with advent of 5G to

enhance safety and communication in self-driving cars ?
4. At present, how does deep learning based image perception compare

with that of the human eye ?
5. How are self-driving vehicles expected to increase in accuracy, and

approach 100% accuracy over the next five years ?
6. Howwill the human driver respond to various system alerts and other

electronic stimuli ?
7. What is the range of driver response times to assume control of the

vehicle upon receiving alert, and is the response always guaranteed ?

One aspect to answer these questions is the advancement of self-
driving car’s ability for scene perception and object detection to navi-
gate safely. To achieve these objectives, some future works are outlined
below:

� An immediate future work is to collect data in hazardous weather
conditions such as rain, hail, snow and study self-driving cars’ navi-
gation without human intervention.

� One of the current challenges involves transfer learning, as DL models
are unable to transfer representations to unrelated domains. A
research avenue is to apply transfer learning between domains that
could lead to novel ways to interpret scenes, leading to real-time
object detection.

� Current SSD techniques may be modified to work on videos [214]. A
recently released dataset contains vehicular videos taken at 40 frames
per second (fps) and can be used to test current cloud based DL in
real-time [159].

� Self-driving cars are expected to be rolled out in phases, merging with
existing cars. One application of DL is to process sounds of emergency
vehicles up to a considerable distance and gauge the direction the
sound is coming from. If self-driving cars are deployed with existing
transportation networks, a mixture of human driven and autonomous
vehicles will lead to highly complex driving scenarios. The beneficial
effects of autonomous driving will depend on how well these cars
differentiate between human driven cars and other self-driving cars.
Scene inference and subsequent control actions could play a crucial
role to integrate new technologies with legacy, conventional and
existing systems in the least disruptive manner.

� Driving scene understanding and segmentation can be integrated
with temporal propagation of information to understand both space
and time. Different DL architectures such as RNNs can be used to
generate automatic captioning of images, localizations and detection.

� The AI systems take decisions based on a cost/reward function, and
execute a maneuver associated with lowest cost/highest reward. In
cases where an unsafe/dangerous maneuver is the lowest cost option,
the self-driving car would nonetheless execute that maneuver. This
calls for reviewing cost/reward strategy in vehicular AI.
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