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Abstract: Internet of Things connects the physical and cybernetic world. As such, security issues
of IoT devices are especially damaging and need to be addressed. In this treatise, we overview
current security issues of IoT with the perspective of future threats. We identify three main trends
that need to be specifically addressed: security issues of the integration of IoT with cloud and
blockchains, the rapid changes in cryptography due to quantum computing, and finally the rise of
artificial intelligence and evolution methods in the scope of security of IoT. We give an overview of
the identified threats and propose solutions for securing the IoT in the future.

Keywords: Internet of Things; cloud; blockchain; postquantum; evolution; artificial intelligence

1. Introduction

The perceived reality of every person consists not only of physical dimensions but
includes a significant virtual presence in cyberspace. The cyberspace dimension, however,
is not separate: a huge array of connected sensors brings data from the physical world to
cyberspace. These data influence the behavior of people connected to cyberspace, as well
as feed back to processes in the physical world, especially in control systems. Similarly,
data produced only in cyberspace can influence the physical world either by influencing
human minds or control systems connected to cyberspace.

The connected physical and cybernetic world faces many important questions, such
as: What if the data are incorrect or even malicious? What if the processes are incorrectly
programmed or are outright programmed to produce harmful results? Can people with
wrong intentions influence our cybernetic systems and, through them, the physical world
in unexpected or outright forbidden ways? We know that the answer is yes, and the
potential of physical harm through the virtual world is real. Thus, it is critically important
to focus on security aspects of cybernetic reality, especially in domains, where it has a
strong interaction with the physical world.

The core of the interactions between physical and virtual worlds is due to the emer-
gence and spread of the Internet of Things. Similar to the classical Internet, the Internet
of Things is extremely complex. In the security domain, a core principle is to keep things
simple. Complex things are difficult to secure: the attacker has an advantage, as he only
needs to find a single chain of exploitable vulnerabilities to achieve his goals. On the other
hand, the defender needs to protect all parts of the system, and all interactions between the
system, its components, and the rest of the world. The security of complex systems, such
as the Internet of Things, requires a combination of partial security solutions, which create
a further potential for attacks. Nevertheless, we need to study even these partial solutions,
because without them the attackers’ task becomes trivial, and security nonexistent.

In this article, we focus on emerging security technologies that are promising to
provide security for IoT applications in the (near) future. Cloud storage and blockchain
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technologies provide secured distributed databases for transparent and verifiable deploy-
ment and device management. Postquantum cryptography provides tools to secure devices
against future quantum attackers. Evolutionary algorithms are used to find solutions to
hard security problems by solving related optimization tasks. Evolutionary techniques are
connected to the development of artificial intelligence that oversees the security of our IoT
devices and report and prevents possible security incidents.

2. IoT Security Challenges

In this survey, we focus on the security of IoT devices, products, and technologies.
IoT devices have become one of the most common attack targets for cybercriminals. A
rapidly rising number of IoT devices acerbates these problems even further. Between 2019
and 2030, the number of IoT-connected devices in the world is predicted to grow from 7.6
billion to 24.1 billion [1]. This includes connected devices, sensors, actuators, GPS- and
mobile-enabled devices, and the expected further innovations in smart technologies. These
devices are integrated to form hybrid networks based upon concepts such as the Internet
of Things (IoT), Smart Grids, sensor networks, etc.

The authors in [2] suggest cooperation between IoT and cloud computing because the
devices used in an IoT environment have limitations such as low power, low capacity, and
limited performance. Efficient services can be created by combining IoT devices with cloud
computing technology. In [3], the concept of the Internet of cloud is discussed. Traditional
approaches to the IoT cannot satisfy both demands of low cost and simplicity—either the
things become more expensive and complex or limits on their computation resource needs
are imposed. However, the cloud presents a solution with the potential to satisfy both
demands. Thus, cloud computing provides an alternative solution, presenting the IoT with
a virtually limitless source of computing power, easily accessible via the Internet, with
better resilience, and at a lower cost.

It is already noted in [3] that the pairing of cloud and IoT has an impact on safety. IoT
adopting cloud services has also brought new security challenges.

The security aspects of IoT and cloud computing are discussed in more existing articles.
Some of the new and interesting challenges in this area are highlighted in [4]. Security
and privacy are becoming key challenges in the deployment of IoT infrastructure. While
cloud security is a well-documented challenge, the pairing between the cloud and the IoT
presents additional concerns. In [5], a survey of IoT and cloud computing with a focus
on the security issues of both technologies is presented. They also connect these areas
with another technology, called Mobile Cloud Computing (MCC). Mobile cloud computing
is defined as an integration of cloud computing technology and mobile devices to make
mobile devices resourceful in terms of computational power, memory, storage, energy, and
context awareness.

According to [5], the main security problems are an outdated OS and weak passwords.
According to [5], security has not always been considered in product design, due to the idea
of networking appliances and other objects being relatively new. IoT products are often
sold with old and unpatched embedded operating systems and software. Furthermore,
purchasers often fail to change the default passwords on smart devices—or if they do
change them, fail to select sufficiently strong passwords.

The security of IoT and cloud systems is becoming more intertwined. According to [6],
the first IoT botnet was found in December of 2013, with more than 25 percent of the botnet
made up of devices other than computers, including smart TVs, baby monitors, and other
household appliances.

Since there are many different technologies and platforms deployed in IoT, it is
difficult to create a unified security strategy. Some devices simply do not have sufficient
computing capacity and/or memory for implementing security precautions. IoT devices
are often powered by batteries with limited capacity and must save energy. Securing an IoT
device against some types of attacks causes significant increases in energy consumption;
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therefore, it is important to first identify possible threats and then implement appropriate
countermeasures for the specific architecture of the developed IoT system.

2.1. Security Model for IoT, Standards and Protocols

Security modeling is an important preliminary for building secure systems. In this
section, we summarize the security model for IoT infrastructure we used. In general, we
can consider IoT area to suffer from all standard classes of adversaries with attributes
typical to internet-based attackers. Thus, we can use the general models of attackers for
internet applications, such as one introduced in Chapter 1 of the book [7].

We can point out some specific differences when considering IoT: Specifically for
industrial IoT, industrial espionage agents can play a more significant role as threat agents.
Their specific objectives include industrial secrets and know-how and a potential disruption
of industrial processes.

A dangerous category of attackers with potentially high impact are cyber terrorists.
These attackers might target specific IoT devices that have the potential for a physical
world impact as a consequence of a cyber attack. Their objectives are thus a real-world
(physical) impact, where IoT device represents a transitional asset, instead of a final aim of
the attacker.

Another important difference between the general security model and IoT specific
model is that attackers’ capabilities can be significantly enhanced by a physical access to
IoT devices, such as sensors or physically unprotected computing nodes.

A significant problem for IoT security is a lack of standards. The IoT solution integrates
various kinds of hardware types, communication protocols, and services. This is a double-
edged sword that provides comfort to users but can also create a large number of security
threats and attacks.

In Figure 1, we summarize the attack types that can be used by the attacker on various
layers of IoT solution. In a specific security modeling, the IoT builders need to map possible
attacks to their IoT architecture and assign appropriate risks according to asset and attacker
models. The attack-type features in Figure 1 are described in more details in the rest of this
section. Note that when modeling attackers and their capabilities, we should consider all
parts of an IoT solution, including all parts of the solution on the physical layer, network
layer, and application layer. Attackers try to target the weakest part of the system. A
security breach on one layer can undermine potential defenses on other layers; thus, it is
also necessary to include crosslayer security in the security model.

Survey [8] analyzes various research challenges and open issues related to the security
of IoT protocols, on the network and application layers. The survey describes different
types of communication protocols, and protocols used for security based on the IoT layer
architecture. A significant lack of standards for IoT is also pointed out in [9], which
primarily analyzes various types of IoT architectures. Different architectures have been
proposed for IoT, such as three-layer [10], middleware-based architecture [11], service-
oriented architecture (SOA) [12,13], four-layer [14], and five-layer [11].

In Figure 1, we adopted only the basic three-layer architecture model, with different
classification of layers related to security. IoT architecture and layer description are impor-
tant for security modeling, as each layer of the IoT model is connected to specific security
challenges and, at the same time, a possibility to enforce security and privacy standards
and protocols (see also [15] for more details). Study [9] surveys advanced features of IoT
solutions such as IoT data, machine learning algorithms, and light encryption algorithms,
and propose a new compacted and optimized architecture for IoT based on five layers. A
more fine-grained model can lead to a better security model but can be more complex to
analyze and properly understand all interactions.

Study [15] also proposed new IoT layered models: generic and stretched with the
privacy and security components and layers identification. This is a model more suitable
for evaluation of solutions that include cloud/edge support. The security protocols and
critical management sessions are between each of the architectural layers to ensure the
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privacy of the users’ information. A categorization of attacks can be also performed relative
to standard network layers. E.g., survey [16] summarized the common attacks and security
issues according to network layers and protocols.

Figure 1. A prerequisite for the attack model for IoT: create a mapping between possible attacks to
architectural components of your solution.

A comprehensive study [17] tried to characterize the types of attacks on IoT into
four categories: Physical attack, Network attack, Software attack, and Encryption Attack.
We adopt the methodology from [17] and characterize the attacks in more details in the
following subsections.

2.2. Physical Attacks

This category includes attacks targeting the hardware itself.

• Node Tampering—to perform this attack, the attackers must have physical access to
the IoT device. Their goal is to obtain sensitive information such as the encryption key
used to communicate with other nodes. According to the authors [18], it is possible to
characterize these attacks as invasive and noninvasive. An invasive attack requires
expensive equipment because the attacker tries to obtain the contents of the processor’s
memory by directly observing the semiconductor chip. Noninvasive methods consist
of gaining access to the bus, which can be used to access the microprocessor’s memory.
The JTAG bus is very often harnessed for these purposes. In this way, it is possible
to cause great damage, because it is possible, e.g., overwrite the bootloader of the
processor with its bootloader and activate reads and writes operations in memory at
the request of the attacker. According to [19], it is possible to protect against this attack
relatively easily, by detecting an intrusion into the device box. Mechanical switches or
additional sensors can be used to detect fluctuations in the supply voltage. A problem
with using this countermeasure can be a frequent false alarm.

• RF interference—interferences are caused by transmitting several devices at the same
time on the same frequency. An attacker does not have to transmit any data; it is
enough to transmit noise on the carrier or subcarrier frequency of a given communica-
tion channel. The goal of this attack is to achieve denial of service.

• Node Jamming—this attack is mainly known from Wireless Sensor Networks (WSN).
In WSN, the communication between nodes is essential; therefore, rapid attack de-
tection is highly desirable. To successfully execute the attack, the attacker needs to
have a high understanding of the communication protocol. Publication [20] describes
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this attack in detail. The authors of the article also suggest various countermeasures,
e.g., channel hopping, frequency hopping, and spread-spectrum modulation. It is also
possible to use software solutions related to the modification of the communication
protocol. By adjusting the routing, it is possible to avoid jammed areas. JAM (jammed-
area mapping protocol), SAD-SJ (self-adaptive and decentralized MAC-layer), or
JAM-BUSTER protocols are suitable.

• Malicious Node Injection—an attacker tries to cause a collision in the network. It is
a coordinated attack of several malicious nodes. To perform the attack, the attacker
must have certain data of the node to be attacked (e.g., encryption key). The attack
consists of two phases. In the first phase, a copy of the node whose data have been
compromised is created. This first malicious node has the properties of a legitimate
node, but of course, it has other features that make it malicious. The compromised
node is isolated from the network (removed or depleted its power). The malicious
node creates its copy and attacks another suitable node in a coordinated way. When a
legitimate node is requested (either directly or only to forward a message), these two
malicious nodes create a collision. The victim never receives or forwards the message,
and the other legitimate nodes mark it as malicious or defective. As a result, this node
is excluded from the network. It is assumed that the network has certain protection
elements to detect malfunctioning nodes. This attack can effectively bypass these
bases of protection. A countermeasure could be the MOVE protocol developed by the
authors of [21]. It works on the principle of monitoring the transmission of packets in
nodes, taking into account the mobility of nodes in the network.

• Physical Damage—this is an attack causing a denial of service. It is necessary to equip
IoT devices with quality boxes with simultaneous detection of such an attack in the
form of an antitamper technique to mitigate it [19].

• Sleep Deprivation Attack—the IoT device is mostly battery powered and therefore
has a limited life. For this reason, IoT devices have implemented sleep modes with
varying degrees of energy savings. The purpose of this attack is to prevent IoT devices
from going into sleep mode. In this way, the devices run out of power very quickly
and switch off permanently. There are several ways to perform this attack. The first
way is the so-called barrage attack. In this scenario, the attacker constantly bombs
the victim with legitimate requests and thus does not allow it to activate the sleeping
mode. This method is simple to implement but can also be easily detected. The second
method is based on querying the node in a more sophisticated way. Ultimately, the
attack also prevents the IoT device from going to sleep, but it takes longer to drain
the battery entirely compared to the previous case. One suitable approach against the
sleep deprivation attack is the solution proposed by the authors in [22]. The solution
is based on reducing the chance for an attacker to become the central node of the
cluster (cluster heads).

• Malicious Code Injection—is a dangerous attack that, if the attacker succeeds, can
cause extensive damage. An example is the Stuxnet worm, which has spread to PLC
devices controlling various industrial processes. Another type of attack can take
control of a large number of IoT devices and launch a large-scale distributed denial
of service (DDoS) on the IT infrastructure. An example is the Mirai malware [23].
The attack aims to get full control over the IoT device. An attacker can, for exam-
ple, steal confidential data from the device or force the victim to carry out the attacker’s
commands and thus take part in other malicious activities. The attacker exploits the
weaknesses of the IoT devices. The most attractive IoT devices for an attacker are those
devices that have relatively large computing power and have an operating system,
e.g., various IP cameras, routers, or popular hardware platforms such as Raspberry Pi,
BeagleBone, or ESP32. Authors in [24] also found a vulnerability in a less powerful
platform, Arduino Yún. The main idea of the attack is the so-called memory corrup-
tion, specifically buffer overflows and control flow hijacking. A known protection
against such attacks is address space layout randomization (ASLR). For low-power
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IoT devices, implementing memory randomization can be challenging. The author of
the publication [25] managed to implement such protection using external FLASH
memory and an additional ATmega processor. Such solutions are possible on less
powerful devices but always at the expense of energy consumption and solution price.

2.3. Network Attacks

• Traffic Analysis Attacks—a prerequisite for the realization of this attack is the pos-
sibility of interception of communication between the IoT gateway and users who
communicate with the gateway via the Internet. Passive eavesdropping allows an
attacker to find out the type of IoT devices and the activity of IoT devices connected
to the gateway. Communication can also be encrypted. It does not matter for this
attack whether the communication is encrypted or not. Traffic analysis provided data
that are needed for other dangerous attacks, e.g., Malicious Code Injection. According
to [26], there is no perfect protection against this attack, but it is possible to mitigate
this attack. The authors in [27] describe a traffic morphing technique that masks real
traffic using dummy traffic. This method can significantly reduce the success of the
machine learning technique, which is used for analyzing obtained traffic data.

• Sinkhole Attack—the basic idea of the attack is to compromise the data communication
of nearby nodes around the malicious node. There are two main types of countermea-
sures. The first way is to implement an intrusion detection system such as [28,29]. In
general, the disadvantage of these systems is the accuracy and thus the relatively high
frequency of false alarms. Another option is proper key management [30], in which
the identity of each node is secured using an identity-based encryption algorithm.

• Man-in-the-Middle Attacks—this attack is similar to malicious node injection. In a
passive attack, the attacker eavesdrops the communication. If the attack is active, the
attacker takes control of the communication. They can delay packets, drop packets,
or alter their content. The difference is that the attacker does not have to be part
of the network because the whole attack takes place exclusively through a given
network communication protocol of the sensor network. The most common protec-
tion against MITM is a quality intrusion detection system (IDS). In this solution, a
compromise is sought between low latency, high detection rate, low CPU load, and
the resulting low power consumption of the algorithm. IDS is usually deployed on
hierarchically higher and more powerful devices such as gateways for Fog or Edge
devices. Publications [31,32] resolve the problematic properties of IDS on these IoT
devices.

• Denial of Service—a more accurate description of the attack is given in the publica-
tion [21]. An attacker exploits the TCP-based protocol by sending a disproportionate
amount of data requests to the victim’s device. In this way, all the free resources of the
IoT device are gradually occupied. The IoT device thus does not respond to legitimate
data requests and ceases to fulfill its function. According to [33], there are three levels
of defense against DoS: attack detection, attack mitigation, and attack prevention. Sev-
eral approaches are known. These are the various classification algorithms, machine
learning algorithms, honeypot, IDS, mutual authentication schemes, and many more.
To mitigate the DoS attack, a newly developed IOTA protocol may also be used [34].
IOTA protocol was originally developed to verify IOTA cryptocurrency transactions,
and it is designed specifically for IoT.

• Sybil Attack—in this attack, the adversary has several identities in the network.
They can either create or steal identities. The adversary can then reduce network
performance and cause DoS. If data are sent unencrypted, the attacker can steal it and
misuse it for other purposes. They can also forward altered data and significantly
disrupt the functionality of the proposed system. Protection against this attack is user
authentication, encryption of communication, and an efficient Sybil’s node detection
algorithm [35,36].
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2.4. Software Attacks

These types of attacks are implemented at the application layer of the solution. The
most common threats are the following:

• Phishing Attacks—most IoT solutions use websites to control IoT devices, collect data,
or visualize them. In this attack, the intruder tries to obtain sensitive data from users,
such as the name and password. The intruder uses an email with a link to a fake
website to lure private user data. The counterfeit website looks similar to the original,
so the user submits his login details freely. Suitable antiphishing software [37,38] is
a good countermeasure. It can detect suspicious emails and also has a database of
suspected websites.

• Virus, Worm, Trojan horse, Spyware, and Adware—the attacker tries to cause damage
to the victim through the attacker’s malicious code. Typically, an attacker exploits the
vulnerabilities of the IoT device and takes control of it. They can then use the device
for another type of attack (e.g., phishing, DDoS, and cyber spying) and spread the
malware to other devices. More powerful IoT devices can have a full operating system
loaded. Attackers often exploit unsecured default settings (e.g., open service ports, a
default admin password, etc.). The diversity of operating systems, communication
protocols, and installed software is constantly creating new security threats. As the
number of IoT devices connected to the network grows, the risk of malware infection
specifically directed against IoT devices and their infrastructure increases [9,39]. A
specific problem is ransomware, where IoT is an ideal target for attackers [40]. This is
growing more serious as the quality of ransomware implementations has improved in
recent years [41]. According to publication [17], there are several countermeasures.
Depending on the IoT architecture and capabilities, it is advisable to have a strong
antivirus system, use a firewall, or use a honeypot to detect dangerous software
signatures. Note that these countermeasures are typically applied on devices with full
OS support, and parts of IoT infrastructure, such as servers, gateways, edge devices,
or cloud infrastructure.

• Malicious Scripts—an attacker can run a malicious script through a website visited on
the Internet and gain control over devices in the entire LAN network of the victim [42].
An attacker could gain access to devices that are hidden behind NATs. The suggested
countermeasures from [42] are based on the correct configuration of the webserver.

• Denial of Service—it is also possible to attack the application layer of the IoT device.
This attack is primarily an attack on a web server that usually has some more powerful
IoT devices. An attacker could also target a web server (or cloud) to which IoT devices
send messages.

2.5. Encryption Attacks

The goal of this group of attacks is to obtain a private key from an IoT device. An
attacker can gain the necessary data through the various techniques mentioned below.

• Side-channel Attacks—a measure of power consumption of the device during cryp-
tographic operations associated with the private key is the most common way to
gain a secret parameter. Simple power analysis or differential power analysis is an
example of such attacks. There are other techniques: for example, measuring the EM
spectrum emitted by the device; acoustic attacks, where the sound generated by the
various components of the IoT device is measured; and time attacks, where the time
duration of running program is measured at specially selected values on the input. A
more detailed description of previous attacks and countermeasures can be found in
publications [43–45].

• Man-in-the-Middle Attacks—an attacker eavesdrops on a user’s communication by
exchanging the public key. The attacker is in the function of an intermediary. They can
inadvertently throw their public key and can read and modify encrypted messages
between users [46].
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2.6. How to Improve Security

To improve security, IoT devices that need to be directly accessible over the Internet
should be segmented into their network segment and have other network access restricted.
The network segment should then be monitored to identify potential anomalous traffic,
and action should be taken if there is a problem.

In [47], authors mainly focus on the security threats for cloud-based IoT, especially
in the aspects of secure packet forwarding with outsourced aggregated transmission evi-
dence generation and efficient privacy-preserving authentication with outsourced message
filtering. Besides the traditional data confidentiality and unforgeability, the unique security
and privacy requirements in cloud-based IoT are presented:

• Identity Privacy: the mobile IoT user’s real identity should be well protected from the
public; on the other hand, when some dispute occurs in emergency cases, it can also
be effectively traced by the authority.

• Location Privacy: If the adversary knows that the target node with pseudonym PID
occasionally visits n locations, sets of nodes’ real identities passing by these n locations
can be observed. The intersection would reveal the target node’s real identity and its
private activities in other regions.

• Node Compromise Attack: the adversary extracts from the resource-constrained IoT
devices all the private information including the secret key used to encrypt the packets,
the private key to generate signatures, and so on, and then reprograms or replaces the
IoT devices with malicious ones under the control of the adversary.

• Layer Removing/Adding Attack: the attack occurs when a group of selfish IoT users
removes all the forwarding layers between them to maximize their rewarded credits
by reducing the number of intermediate transmitters sharing the reward.

• Forward and Backward Security: due to the mobility and dynamic social group
formulation in IoT, newly joined IoT users can only decipher the encrypted messages
received after but not before they join and revoked IoT users can only decipher the
encrypted messages before but not after leaving the cluster.

• Semitrusted and/or Malicious Cloud Security: for the convergence of the cloud with
IoT, the security and privacy requirements for the cloud should be specially considered.
For outsourced computation, the following three security targets should be achieved:

– Input privacy: The data owner’s inputs should be well protected even from
collusion between the cloud and authorized data receivers.

– Output privacy: The computation result should only be successfully deciphered
by authorized data receivers.

– Function privacy: The underlying function must be well protected even from the
collusion of the cloud and malicious IoT users.

In [47], a focus is given on providing security mechanisms for complete cloud systems
by implementing encryption and intrusion detection systems. They applied hybrid encryp-
tion on data at the cloud client level. This means that both data in the medium as well
as stored in the cloud server are secured. Security can be improved by implementing an
intrusion detection system that detects the anomaly traffic toward the server and blocks
unauthorized and unauthenticated traffic. Specific cipher types might be more suitable for
IoT applications [48].

The authors in [49] discuss risks if cloud security is not handled properly:

• Privacy and Legal Compliance Risks: such as identity theft resulting in a privacy
breach.

• Common Threats and Vulnerabilities: Common threats to both cloud and traditional
computing include eavesdropping, fraud, theft, denial of service, logon, abuse, and
network intrusion.

According to them, the principal requirement of a secure cloud-based system is to
mitigate any known vulnerabilities in the system and make sure that system performance
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is not compromised when it is under external malicious attack. The key factors that they
recommend for the secure cloud system are:

• Dependability
• Trustworthiness
• Resiliency
• Availability and Fail-Safe
• Sensitive Data handling and Input validation
• Code practices and Language Options

They suggest a way to ensure that requirements of a secure cloud system are captured
unambiguously using the S.M.A.R.T.E.R. method (Specific, Measurable, Achievable, Rele-
vant, Time-Oriented, Evaluate, and Revise). They recommend NIST 33 Security principles
as guidance for developing any cloud applications. They highlight that the design princi-
ples should also be used as a guideline for cloud application security testing to ensure that
the cloud applications are built in the right (secured) way to achieve their goals.

IoT and cloud provide a large attack surface and need a significant effort to achieve
optimal security. Different authors suggest several core challenges for the security of IoT
and cloud systems. The authors in [47] identify these important challenges:

1. Fine-grained ciphertext access control in cloud-based IoT.
2. Besides data confidentiality, location privacy and query privacy for cloud-based IoT

users in location-based service (LBS) should also be protected.
3. Increasing batches of data to be processed securely.
4. Privacy-preserving outsourced data mining in cloud-based IoT.

Authors of [49] consider security policy implementation as the most challenging task
in cloud computing for service providers. The key challenges include also:

• Virtualization management.
• Remote Management Vulnerabilities.
• Denial of Service.

In [50], the main challenge is that the attacks are becoming more intelligent and
diverse as time passes. Conventional security intrusion incident detection and response
technologies typically use pattern-based and behavior-based statistical methods. However,
an effective intelligent response method is required. An access control technique based on
ontology reasoning was suggested as a solution. This can be achieved by adopting a variety
of intelligent reasoning technologies for security intrusion incidents. Various reasoning
technologies based on ontology and semantic web technology are being actively studied in
intelligent systems. Malicious code detection technologies based on an intelligent access
control model, text mining, and natural language processing technologies were proposed
in [51].

3. Cloud and Blockchain in IoT Security

In recent years, there have been a lot of proposals for using blockchain technologies
as a replacement for cloud storage. According to [52]: “Utilizing blockchain can bring
increased security and efficiency of network maintenance. The key feature of blockchain,
immutability, brings resistance to unauthorized modifications.” There is a large number
of papers that focus on blockchain and IoT integration. A comprehensive recent survey
of blockchain and IoT integration is provided by [53]. In our work, we focus on security
issues related to blockchains, which apply to IoT applications.

First, we need to analyze the differences between blockchain and standard cloud
solutions for IoT (see e.g., [54] for a recent survey of the topic). In the core of the Internet of
Things is the network of physical objects connecting and exchanging data with other objects
over the Internet [55]. These objects can potentially be fully autonomous. However, a
typical IoT solution requires a management layer, to provide basic configuration, software
updates, monitoring, and other noncore functionality. When creating a complex IoT
solution, we have three principal options for creating the management layer:
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• Solution hosted by IoT owner (or manufacturer). This solution does not scale well
and has additional costs associated with maintenance. It is also prone to a single
point of failure security problems: any successful attack on the management node
can compromise the whole network. We can also use this category for integration
platforms such as [56,57].

• Solution hosted in the cloud. There is a large number of examples, surveyed e.g., in [58].
We can include new trends in this, such as serverless computing [59]. Cloud provider
provides scalability of the solution and cares for security. Costs of the cloud solution
can be lower than maintenance of own servers, depending on the required services
and the infrastructure and personnel costs of the IoT solution owner. The security of
the solution depends on the quality of the cloud service, and its costs are typically
included in the service cost. This requires trust in the cloud provider and does not
remove the single point of failure property. However, we can use multiple providers
to provide redundancy and attack resiliency (for an increase in operating costs). A
recent study focused on security of cloud based solutions is [60].

• Solution based on peer-to-peer decentralized technology, typically a blockchain solu-
tion. There are many recent examples, including [61–66], and the number of solutions
is growing quickly. Decentralization removes the requirement of trusting the cloud
provider. Costs of the decentralized solution, however, can be significant, and, depend-
ing on the technology chosen, the current transaction fees in a blockchain network.
The core question is, does the blockchain-based solution avoid a single point of failure
property, and does it provide required scalability?

The main confusion comes from the fact, that the term blockchain joins multiple
technologies under the same name. In the previous paragraph, we have used the term
“blockchain” as an antonym to centralized hosting, either owned or rented on a cloud.
However, some blockchain technologies (a private blockchain) can be characterized as
centralized hosting. Blockchain is sometimes used to denote distributed databases, dis-
tributed ledger, or even a distributed virtual machine (such as Ethereum, see e.g., [67] for
its security overview).

Proper scientific blockchain taxonomy is still evolving, see e.g., [68] for current defi-
nitions. We define a blockchain as a sequence of blocks joined by cryptographic hashes,
typically shared by many peers (in the network). Once the hash of the final block is known,
then the history of the chain is immutable. It is computationally infeasible to change
previous blocks in such a way that the final hash stays the same. However, any peer can
append anything to the chain as a new valid block. The extension of the chain requires
a consensus protocol, which provides some security guarantees that all members of the
network share the same final block and by extent the whole chain. Examples are Nakamoto
consensus based on proof of work [69], proof-of-Stake protocols [70], and others [71], with
different degrees of resilience against compromised peers in the network. Once the con-
sensus protocol is correctly specified, the blockchain can provide a public bulletin board:
peers can append data to the end (and never remove them), and everyone in the network
can read the data, with a guaranteed common history. Such a public bulletin board then
can be a base for many other solutions, such as transaction ledger for (crypto-)currencies,
publicly shared virtual machine (such as Ethereum), and many others.

What the IoT implementer needs to understand is that blockchain, in general, does
not equal cryptocurrencies, or a distributed solution. Here, the important part is also the
definition of who the network peers are. We can run a blockchain on a single node (e.g., to
build an immutable log file). We can build a blockchain for a closed network (private
blockchain). If those nodes are fully trusted, a simple first-come-first-appends consensus
might be sufficient. A simple voting consensus can be sufficient if no more than 50% of the
peers are compromised. For open blockchains (such as Bitcoin), a potential peer is every
device connected to the Internet. Nakamoto proof of work [69] requires that no untrusted
peer or group of peers can control more than 50% of the computational resources of the
whole network. Thus, the cost of the consensus is extremely high. In a private blockchain
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(such as [72]), e.g., a chain with defined peers and restricted access, the cost of consensus
agreement can be much lower than on public blockchains. However, private blockchain
requires additional security solutions to guarantee correct access control. See, e.g., [73] for
an overview of these issues.

3.1. Public Blockchains and IoT Security

By public blockchain, we understand a distributed open peer-to-peer blockchain
with a consensus mechanism without central trust. There are many examples of public
blockchains and their applications, see, e.g., [74]. In the security sense, a public blockchain
is a secure public bulletin board: append-only list of items, which everyone can read, and
no one can modify. Note that the history of the chain is immutable only if the security
prerequisites of the used technology hold, e.g., there is a trusted majority of nodes in PoS
types of protocols, or no attacker can obtain more computing power than other nodes
combined in PoW protocols.

Note that open public blockchain does not guarantee legal protection or trust. The main
principle of blockchain is replacing the trust in some legal entity (e.g., a cloud provider) with
trust in technology (blockchain itself, and the software running the blockchain). Blockchain
operations might face various regulatory restrictions, see, e.g., [75]. IoT providers should
only select public blockchains that fulfill regulatory mandates. A lack of global standards
is a significant problem in this area.

While blockchain technology provides some level of integrity protection, in principle,
every operation on a public blockchain is public. Confidential data must be encrypted
before submitting them to the blockchain. However, blockchain can reveal important
metadata, such as who posted which data when. Hiding techniques (see, e.g., [76]) involve
additional costs and might not be sufficient for some use cases.

The availability of blockchain access can be a significant problem. Blockchain opera-
tions are costly; thus, posting any information on the blockchain is much more expensive
than using standard distributed data storage solutions. Blockchain does not solve the
problem of denial of service attacks (see, e.g., [77]), which target the network infrastructure
of the IoT clients or command centers.

A significant risk related to a public blockchain is that the security of blockchain access
is typically fully dependent on the blockchain peer. Access to a blockchain is based on
public-key cryptography, and the blockchain peer must secure their private key on their
own. Any security breach that leaks this key means a complete takeover of blockchain-
based infrastructure, and the loss of the key means complete loss of any further access to
the infrastructure.

Despite security problems of the public blockchain technologies, there are some use
cases when public blockchains might be useful in providing security solutions for IoT plat-
forms [78]. Inherent integrity protection and public nonrepudiation make public blockchain
suitable as a timestamping mechanism: Block hashes in a public blockchain can be used
as a control value of a private blockchain in IoT nodes, e.g., for logging and monitoring.
Examples include [79–81]. Public blockchain can also be used to publish checksums (hash
values) for patches, manuals, and similar public materials, as a replacement for PKI signa-
tures. Examples include [52,82,83]. Note however that the problem of revocation remains:
if the private key for blockchain access is compromised, the attacker can push untrusted
updates to IoT devices.

3.2. Private Blockchains and IoT Security

When designing a security solution for IoT, we can consider a private blockchain.
Private blockchain does not require a complex consensus mechanism, various protocols
are resilient even when some IoT nodes are compromised. Note that mechanisms of public
blockchains, such as proof of work are not suitable for private solutions, due to their high
costs that reflect the lack of trust in the network. Blockchain storage is not suitable for
temporary data, as the data structure of blockchain are append-only. To limit the overall
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data storage for blockchain, careful consideration is required, what should be stored in the
chain. We can save data storage and verification time by using Merkle trees [84] and only
store final hashes in the main chain.

Private blockchain requires security mechanisms similar to standard cloud solutions,
including access control, administration, backups, etc. Even private blockchain data
structure incurs additional operation costs compared to a standard database solution [85].
As such, we recommend using blockchains only as a partial technological solution for the
storage of permanent data items, where keeping an immutable linear ordering is required.

4. Postquantum Cryptography Applications

Cybersecurity is now on the edge of a new era. New results in the development
of quantum computer [86] lead to serious consequences. The adversaries have more
computing power and new threats appear. Algorithms currently used in IoT devices
security, especially for key exchange and digital signatures, are vulnerable to new types
of attacks, created by the development of quantum computers. In comparison to classical
computers (desktops and laptops), we have another factor to consider. The computing
power of attackers is increasing, but we have very limited resources on IoT devices.

4.1. Algorithms Used in IoT Security

There are many protocols used to secure IoT communication. However, as we go
deeper, and we look at specific cryptographic algorithms they use, we can see that there is
only a limited number of ciphers used in these protocols.

The authors of [87] mentioned the most important protocols, used in IoT. For each
layer, we show the protocol and used interesting cryptographic algorithms:

• Physical layer—As we see in [88], most of the protocols of physical layer (DASH7,
LoRa) use AES-128 for providing confidentiality of the data.

• Data Link layer—the security is provided by IEEE 802.15.4 [89], which specify several
cryptographic options, but all are based on AES (AES-32–AES-128)

• Network Layer—IPsec protocol is a requirement for IPv6—allowing for Diffie–Hellman,
ECDH, RSA, AES. Another protocol of network layer, 6LoWPAN protocol, only relies
on security of transport layer [90].

• Transport Layer—in the transport layer, we can mainly use two types of protocols,
TCP or UDP.

– For TCP, security is provided by TLS, which in version 1.3 allows AES and
ephemeral Diffie–Hellman.

– UDP is secured by DTLS or QUIC. These protocols allow to use ephemeral
Diffie–Hellman for key exchange and AES for data confidentiality.

• Application Layer—CoAP protocol proposes to use DTLS to provide security, and
AMQP protocol uses TLS. Therefore, the same algorithms are used as in the trans-
port layer.

In all protocols mentioned above, we can see these algorithms: AES, RSA, or Diffie–
Hellman (or ECDH). The question here is: are these algorithms secure against the quantum
computer?

4.2. Quantum Algorithms That Threaten Our Cryptography

When we talk about a quantum computer as a threat to modern cryptography, we talk
mainly about two algorithms:

1. Shor’s algorithm is a quantum computer algorithm for finding prime factors of a
given number (integer factorization) in polynomial time. This is enough to break
modern asymmetric cryptography since it is based on integer factorization or similar
problems.

2. In 1996, Lov Grover published a database search algorithm. One interesting conse-
quence is that Grover’s algorithm is able to find the n-bit key with time complexity
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√
n. As Grover’s algorithm can brute force more or less any black-box function, we

need to reconsider the security of symmetric cryptography used in IoT.

4.2.1. Vulnerable Public Key Crypto-Algorithms

All public-key algorithms currently used for key exchange or digital signatures are
broken. RSA cipher, which is based on integer factorization problem, is the obvious
victim of Shor’s algorithm. Other commonly used ciphers are based on discrete logarithm
problem, as Diffie–Hellman or its variant based on the elliptic curves over finite fields
(ECDH). As mentioned in [91], Shor’s algorithm can be used also for computing discrete
logarithms. Proos and Zalka [92] have shown that breaking cryptography based on elliptic
curves is even easier than breaking RSA.

4.2.2. Vulnerable Symmetric Crypto-Algorithms

Symmetric ciphers are not completely broken with Grover’s algorithm. The square
root speedup of brute-force attacks requires the change of what is considered to be “secure”.
As we have shown in Section 4.1, the Advanced Encryption Standard (AES) is widely used
for providing data confidentiality in IoT. With Grover’s algorithm in mind, the security
level of AES-128 is lowered to 64 bits. This means that AES settings with a key length of
128 bits or lower is no longer a secure, and AES needs to be used with 192 or 256 bits for
key sizes.

4.3. Postquantum Cryptography in IoT

In recent years, the topic of postquantum security has become more and more dis-
cussed. In 2016, NIST began a standardization process to replace the algorithms mentioned
above. A new standard is required for two categories: Public-key Encryption and Key-
Establishment Algorithms and Digital Signature Algorithms.

4.3.1. Specifics of IoT Postquantum Security

As we have shown in Section 4.1, the IoT world uses the same mechanisms that
are used in other applications. The security of IoT devices requires us to keep in mind
another, very important factor: the limits of these small devices, namely power, processing,
and memory limitations. These limits should be considered when choosing the suitable
postquantum mechanisms, as well as when creating postquantum protocols. For example,
in many proposals, there is a significant disparity in the difficulty of encryption/decryption
or signing/verifying. Ephemeral key generation is considerably slower, and key sizes
can grow significantly in comparison to currently used keys. The protocols employed
in IoT should reflect the properties of these new underlying algorithms and delegate
computationally harder tasks to the server side. A correct selection of a suitable post
quantum cryptographic algorithm can lower the price of client devices and provide a
competitive advantage to IoT vendor.

4.3.2. Data Confidentiality in Postquantum World

As mentioned in the previous chapters, AES is considered resistant to quantum
computers but with a key size of 192 bits or more. In most cases, this is a simple solution to
quantum-resistant symmetric encryption. In some cases, however, the limits of the devices
force us to search for alternatives. Along with AES, Singh et al. in [93] advise TWINE,
HIGHT, and PRESENT for use in IoT, but for postquantum security, the key sizes are too
small. We can increase the key size to meet the postquantum requirements or look for
quantum-resistant ciphers by design. Li et al. in [94] presented stream encryption scheme
with variable plaintext. In addition, interesting solutions are lightweight ciphers families
SIMON and SPECK, published by the National Security Agency (NSA) in 2013 [95], that
are developed for limited devices. In [96], Jang et al. evaluated and compared SPECK
and SIMON in terms of quantum resources. In PQCRYPTO’s recommendations of long-
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term secure postquantum systems [97], AES-256, Salsa20 with a 256-bit key length and
Serpent-256 are advised to use for postquantum security, if the limits of the device allow it.

4.3.3. Key Establishment in Postquantum World

Things are more complicated when we discuss public-key algorithms. Here, we need
to replace current algorithms and choose new ones. Good replacement algorithms can be
found in the third round of the NIST competition. Here are four candidates for the new
standard, but not all are suitable for all IoT applications. It is important to choose the right
algorithm according to the limits of the device. Some of the postquantum algorithms are
memory intensive, others are computationally intensive, etc.

The first candidate, Classic McEliece [98], is a cryptosystem that takes all the best from
classical code-based systems. The first public key system based on a decoding problem
was introduced by Robert J. McEliece in 1978 [99]. A random error vector is added to the
codeword (ciphertext), and these errors are removed during decryption. The advantage
of this method is a relatively high level of security. In the more than 40 years since this
system was published, several papers examined its security, and the cipher is still strong.
An overview of some of the attacks was written by Zajac and Repka in [100].

McEliece cipher can be also used with symmetric cipher in the dual scheme to provide
complete encapsulation of data. In the work of Zajac [101], the symmetric key is embedded
into the error vector of the McEliece. If the sender does not want to store the whole message
in the memory due to some limitations, the encryption can also be streamed.

The NIST candidate brings a quantum-resistant KEM (key exchange mechanism),
based on Niederreiter’s dual version of the cipher, and uses the same family of codes as
the original design, Goppa codes. The disadvantage of this approach is quite a large size of
public keys, which have more than one megabyte at 128 bits of security. In addition, key
generation is relatively slow. The advantage is the small size of the ciphertext and the rate
of encapsulation and decapsulation.

A better option for IoT devices in terms of saving memory and battery life is a
lattice-based cryptosystem. In the third round of the NIST competition, we can find three
candidates. NTRU [102], based on finding the shortest vector problem and CRYSTALS-
KYBER [103] and SABER [104] based on learning with errors problem (LWE). The memory
consumption for NTRU is less than 50 kilobytes. Similarly, the CRYSTALS-KYBER and
SABER ciphers have public keys with less than 20 kilobytes. All three lattice-based cryp-
tosystems are a bit slower than Classic McEliece but also range from 10 to 15 ns [105] for
both encryption and decryption. Hao et al. [106] also published an implementation of
NTRU Prime for IoT devices. An interesting comparison of LWE and Error Correction
algorithms focused on lightweight devices can be found in Saarinen’s work [107].

4.3.4. Quantum-Resistant Lightweight Digital Signatures

The vulnerability of asymmetric cryptography has also resulted in the need for
the updating of algorithms for digital signatures. The NIST [108] competition also in-
cludes the standardization of a new digital signature. Two candidates in the third round,
CRYSTALS-Dilithium [109] and Falcon [110] are lattice based. The underlying hard prob-
lem of CRYSTALS-Dilithium is learning with errors (LWE), and Falcon relies on short
integer solution problems (SIS). The third candidate for the new standard is Rainbow [111].
It is based on the problem of solving systems of multivariate polynomial equations.

For the comparison and help with choosing the right algorithm for IoT application,
we can find information about energy consumption in the work of Roma et al. [112]. When
generating a key pair, CRYSTALS-Dilithium consumes the least amount of energy and can
complete the process in less than 1 ms. The Falcon is also good: it can generate key pairs
in 22 ms. Signing and signature verification are similar, and all three algorithms did an
excellent job. By a small difference, Falcon wins, because it creates a signature in 0.69 ms
and verifies it in 0.11 ms. Signature sizes are less than 6 kB in all three cases, as well as
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the key size for Falcon and CRYSTALS-Dilithium. However, the size of the keys can reach
almost 2 MB with the Rainbow algorithm.

All three algorithms are good for IoT applications, the choice depends on the needs of
a specific device or application.

4.4. Group Communication Using Limited Devices

There are many more challenges in securing IoT communication in the postquantum
world. In the work of Colombo et al. [113], the authors proposed a new scheme for group
communication in the Quantum Era. Ongoing experiments focus on the implementation of
this scheme on a small device with a low-power ARM Cortex-M4 processor (seCube).

5. Evolutionary Techniques for Security

Evolutionary algorithms are used to solve optimization problems, where the solution
search space is too large for a simple brute-force approach. They take inspiration from
biology, where a set of organisms (representing solutions) is evolved through various
techniques, while the laws of evolution (such as natural selection) apply. The goal is to find
the global optimum of a fitness function that evaluates the quality of a solution.

The most popular evolution algorithm used is genetic programming, mostly because
it is not difficult to implement and it can provide good results to complex problems.

Evolutionary algorithms may not always find the best global solution. The starting
population and definitions of evolution operations (such as crossover and mutation) can
greatly influence the ability of the algorithm to find a global optimum.

Artificial intelligence and machine learning are promising solutions to IoT security.
They can detect abnormal activities on the network, intrusion, and various malware
activities. However, these algorithms have to be trained to successfully detect attacks. This
is where GA comes in. Current research focuses on using GA for the optimization of neural
network parameters or feature selection. For example, Zhang et al. [114] used specially
modified GA to set the parameters of a deep belief network.

Another example where GA is used to optimize the performance of a classification
algorithm was presented by Alqahtani et al. [115]. They created a botnet attack classifier
using an optimized extreme gradient boosting (GXBoost). GA was used to optimize the
parameters of the GXBoost model.

Current solutions using GA achieve very good results. GA allows classifiers to be
more efficient and effective. However, GA is still sensitive to the initial population, and the
global optimum may not always be found. Future research may show how to choose the
initial population and how to evolve it so that global optimum may be found with a very
high probability.

IoT devices generate a large amount of data containing numerous data points. Even
for an expert, it can be difficult to determine which parameters are important for the
detection of harmful activity. GA can be used to select features from this data that can
be later used in a classifier. Zhang et al. [116] combined ordinary GA with the GWO
algorithm, thus eliminating the shortcomings of both algorithms. The selected features
were used to train an SVM model. Intrusion detection using this model performed better
than previously available methods. In the future, we can expect machine learning to play a
major role in malware and intrusion detection. Therefore, it is important to increase the
accuracy of these algorithms. Since combining GA with GWO offered better performance,
other combinations of various evolutionary algorithms have to be researched to find out
which offers the best results.

The advent of 5G networks will further expand the use of new IoT devices. Such a
large number of devices requires careful management of spectrum resources so they can
maintain a good level of connectivity. One of the management techniques is cooperative
spectrum sensing, where devices share sensing information and one control node decides on
spectrum assignment. In this configuration, malicious devices sending false information
can cause the severe degradation of the performance of the network. Khan et al. [117]
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proposed the mitigation to these attacks using GA-based soft decision fusion. This scheme
achieved better performance and a lower probability of errors than conventional schemes.

One of the important operations in IoT security is the collection of events for the
purpose of detecting security incidents and their subsequent mitigation. The technology
to process this large collection of data is called complex event processing. This processing
consists of filtering, normalization, and subsequent aggregation of information. Since IoT
devices do not have large persistent storage space, data are not stored, and these operations
are executed on the run. The parallelization and distribution of these operations between
network nodes is a complex problem. Kotenko and Saenko [118] used GA to optimize the
scheme of aggregation functions. The results were again favorable—the network reached
higher throughput, and the CPU load was lower than the scheme without GA.

Intrusion detection systems based on machine learning classifiers use previously
recorded data to differentiate between normal traffic and an attack. The obvious disad-
vantage is that the attackers sooner or later develop an attack that is not classified as an
attack and allows them to penetrate the network. Mrugula et al. [119] used the principle of
coevolution, where two populations of linked organisms are evolved—predator and prey.
In this case, GA is used to evolve new attackers (as predators), and these are then used
to train an artificial immune system that detects them. They focused on only one type of
attack (interest cache poisoning) with good results. This work has shown that exploring the
attack space may uncover vulnerabilities sooner than they are exploited by attackers. In
the future, we can expect more similar systems that automatically generate new attackers
to improve the detection of IDS and other security systems.

Another disadvantage of classifiers based on machine learning are adversial learning
samples. These samples are created from a malicious sample by a careful small modification.
The purpose of this modification is to flip the detector result from positive to negative,
and the harmful sample thus enters the system. Liu et al. [120] have created a system
that uses GA to create new adversarial samples of Android malware. They chose to add
various application permissions as the modification. With their adversarial samples, they
managed to evade malware detection with almost 100% success. A similar result was
obtained in [121], where the adversarial samples of network traffic were created. Artificial
intelligence and machine learning are being deployed in an increasing number of security
areas, including IoT. Thus, we can expect more research in the field of adversarial samples
and on refining machine learning algorithms to make such samples correctly identified.

Many vulnerabilities in IoT devices are caused by software bugs such as buffer over-
flow, etc. Source code of IoT terminals is usually closed and therefore not available for
independent review. It is therefore necessary to use a different method to detect vulnerabil-
ities in such code. Zhu et al. [122] presented a method in which firmware instructions from
an IoT terminal are extracted in a form of genes. Subsequently, these genes may be com-
pared to other genes representing the instructions that are known to contain vulnerabilities.
The authors used a manually constructed distance function that computed a similarity
between genes. We think that GA can be useful in providing ways to find an optimum
distance function that may provide even better detection rates.

Deep learning, a successor of machine learning, is also showing good results, often
exceeding previous techniques with better accuracy of prediction and classification [123].
Interesting results were achieved by the authors in [124]. Researchers noticed similarities
between layered architecture of deep neural and IoT networks. They suggested decentral-
ized classifier scheme that took advantage of IoT network architecture. As a result, their
framework used just 4% of the original transmission capacity while providing results with
just a 2.5% deterioration in inference.

Deep learning techniques can also provide better protection against adversarial attacks
and transferability attacks, in which an attacker simulates a model with their own deep
learning network [125]. The proposed solution by the author is to use adversarial training
that generates adversarial examples during the training procedure.
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Other aspects of IoT security can utilize deep learning, including those we already
mentioned in this section. This includes intrusion detection [126–129] and other types of
anomaly detection [130]. A full coverage of these areas would require a separate article.

At present, IoT security research is mainly conducted in simulated environments
mainly because such experiments are convenient and simple. The choice of the environment
has a great influence on the results of experiments when a seemingly perfect detector in
a simulated environment does not work well on a real IoT network. Zhang et al. [116]
mentioned a few problems and mistakes that researchers in this field often make. One
of them is the use of an old data set from the KDD Cup 1999 competition. As this data
set is more than 20 years old, it is outdated and not suitable for use as an IoT network
traffic simulation data. Research in this area could be accelerated and improved by creating
high-quality and extensive data sets containing real (not simulated) IoT traffic. GA and
machine learning can be trained on these data sets with better results that would allow these
technologies to transfer into the real world more smoothly. Furthermore, the developed
algorithms have to be optimized, so that they can run on the modest hardware that IoT
devices offer.

6. Discussion

The security of IoT applications is becoming a critical factor. Due to the widespread
adoption of IoT, attacks in the cybernetic domain can now have significant real-world
consequences. IoT devices, especially those connected to the cloud providers can also
represent problems with privacy, leaking unintended real-world private data.

There are many security options we can consider in future trends in IoT security.
Significant challenges are connected to an interaction between IoT devices and the cloud,
with an extra layer added by the emerging integration with blockchain technologies.
Careful design and consideration need to be given both to basic security properties such as
confidentiality, integrity, and availability. However, we must keep in mind the emerging
threats that cross cyber and physical boundaries.

A new asymmetry in potential threat assessment comes from the area of quantum
computing. With the rapid development of quantum computing, some of the most used
cryptographic algorithms, such as RSA, will become obsolete. When considering physical
IoT devices that should stay secure during a longer lifetime, we should consider a way to
prepare for migration to quantum-safe algorithms.

We consider the security of IoT as a scope for a cybernetic evolution: attackers evolve
new techniques, which are then mitigated by new defense mechanisms. Evolutionary
techniques and machine learning have many security applications, especially in processing
a large number of network traffic and logs produced by IoT devices. It is an interesting
question, whether this type of cybernetic evolution that resembles the natural prey–predator
relationship, can lead to the emergence of new artificial intelligence techniques.
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23. Sinanović, H.; Mrdovic, S. Analysis of Mirai malicious software. In Proceedings of the 2017 25th International Conference on

Software, Telecommunications and Computer Networks (SoftCOM), Split, Croatia, 21–23 September 2017; pp. 1–5. [CrossRef]
24. Pastrana, S.; Canseco, J.R.; Calleja, A. ArduWorm: A functional malware targeting arduino devices. In Actas de Jornadas Nacionales

de Investigación en Ciberseguridad; Universidad de Granada: Granada, Spain, 2016.
25. Habibi, J.; Gupta, A.; Carlsony, S.; Panicker, A.; Bertino, E. MAVR: Code Reuse Stealthy Attacks and Mitigation on Unmanned

Aerial Vehicles. In Proceedings of the 2015 IEEE 35th International Conference on Distributed Computing Systems, Columbus,
OH, USA, 29 June–2 July 2015; pp. 642–652. [CrossRef]

26. Dyer, K.P.; Coull, S.E.; Ristenpart, T.; Shrimpton, T. Peek-a-Boo, I Still See You: Why Efficient Traffic Analysis Countermeasures
Fail. In Proceedings of the 2012 IEEE Symposium on Security and Privacy, San Francisco, CA, USA, 20–23 May 2012; pp. 332–346.
[CrossRef]

27. Hafeez, I.; Antikainen, M.; Tarkoma, S. Protecting IoT-environments against Traffic Analysis Attacks with Traffic Morphing. In
Proceedings of the 2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom
Workshops), Kyoto, Japan, 11–15 March 2019; pp. 196–201. [CrossRef]

https://iotbusinessnews.com/2020/05/20/03177-the-iot-in-2030-24-billion-connected-things-generating-1-5-trillion
http://doi.org/10.1109/INFOCOM.2015.7218628
http://dx.doi.org/10.1007/978-3-319-73676-1_11
http://dx.doi.org/10.1016/j.jnca.2016.01.010
http://dx.doi.org/10.1016/j.future.2016.11.031
https://internetofthingsagenda.techtarget.com/definition/IoT-security-Internet-of-Things-security
https://internetofthingsagenda.techtarget.com/definition/IoT-security-Internet-of-Things-security
http://dx.doi.org/10.1016/j.jnca.2020.102763
http://dx.doi.org/10.3390/s20133625
http://www.ncbi.nlm.nih.gov/pubmed/32605178
http://dx.doi.org/10.1016/j.jisa.2017.11.002
http://dx.doi.org/10.1109/COMST.2015.2444095
http://dx.doi.org/10.1109/TII.2014.2300753
http://dx.doi.org/10.1109/JSEN.2020.2981558
http://dx.doi.org/10.3390/app10124102
http://dx.doi.org/10.1016/j.procs.2020.10.069
http://dx.doi.org/10.1109/I-SMAC.2017.8058363
http://dx.doi.org/10.6633/IJNS.201805.20(3).11
http://dx.doi.org/10.30534/ijeter/2020/05852020
http://dx.doi.org/10.1080/15501320600642718
http://dx.doi.org/10.23919/SOFTCOM.2017.8115504
http://dx.doi.org/10.1109/ICDCS.2015.71
http://dx.doi.org/10.1109/SP.2012.28
http://dx.doi.org/10.1109/PERCOMW.2019.8730787


Electronics 2021, 10, 2647 19 of 22

28. Stephen, R.; Arockiam, L. An Enhanced Technique to Detect Sinkhole Attack in Internet of Things. Int. J. Eng. Res. Technol.
2018, 5, 1–4.

29. Cervantes, C.; Poplade, D.; Nogueira, M.; Santos, A. Detection of sinkhole attacks for supporting secure routing on 6LoWPAN for
Internet of Things. In Proceedings of the 2015 IFIP/IEEE International Symposium on Integrated Network Management (IM),
Ottawa, ON, Canada, 11–15 May 2015; pp. 606–611. [CrossRef]

30. Yuan, E.; Wang, L. A key management scheme realising location privacy protection for heterogeneous wireless sensor networks.
Int. J. Sens.Netw. 2020, 32, 34–41. [CrossRef]

31. Owusu Agyemang, J.; Jerry, K.; Acquah, I. Lightweight Man-In-The-Middle (MITM) Detection and Defense Algorithm for
WiFi-Enabled Internet of Things (IoT) Gateways. Inf. Secur. Comput. Fraud. 2019, 7, 1–6. [CrossRef]

32. Aliyu, F.; Sheltami, T.; Shakshuki, E.M. A Detection and Prevention Technique for Man in the Middle Attack in Fog Computing.
Procedia Comput. Sci. 2018, 141, 24–31. [CrossRef]

33. Salim, M.M.; Rathore, S.; Park, J.H. Distributed denial of service attacks and its defenses in IoT: A survey. J. Supercomput. 2020,
76, 5320–5363. [CrossRef]

34. Attias, V.; Vigneri, L.; Dimitrov, V. Preventing Denial of Service Attacks in IoT Networks through Verifiable Delay Functions. In
Proceedings of the GLOBECOM 2020—2020 IEEE Global Communications Conference, Taipei, Taiwan, 7–11 December 2020; pp.
1–6. [CrossRef]

35. Pu, C. Sybil Attack in RPL-Based Internet of Things: Analysis and Defenses. IEEE Internet Things J. 2020, 7, 4937–4949. [CrossRef]
36. Vaishnavi, S.; Sethukarasi, T. SybilWatch: A novel approach to detect Sybil attack in IoT based smart health care. J. Ambient Intell.

Humaniz. Comput. 2021, 12, 6199–6213. [CrossRef]
37. Lam, T.; Kettani, H. PhAttApp: A Phishing Attack Detection Application. In Proceedings of the Proceedings of the 2019 3rd

International Conference on Information System and Data Mining, Chiang Mai, Thailand, 26–30 July 2019; pp. 154–158. [CrossRef]
38. Rahim, R.; Murugan, S.; Mostafa, R.; Anil, K.; Dubey, D.A.; Rajan, R.; Kulkarni, V.; Dhanalakshmi, K. Detecting the Phishing

Attack Using Collaborative Approach and Secure Login through Dynamic Virtual Passwords. Webology 2020, 17, 524–535.
[CrossRef]

39. Hwang, S.Y.; Kim, J.N. A Malware Distribution Simulator for the Verification of Network Threat Prevention Tools. Sensors 2021,
21, 6983. [CrossRef]

40. Szücs, V.; Arányi, G.; Dávid, Á. Introduction of the ARDS—Anti-Ransomware Defense System Model—Based on the Systematic
Review of Worldwide Ransomware Attacks. Appl. Sci. 2021, 11, 6070. [CrossRef]

41. Ploszek, R.; Švec, P.; Debnár, P. Analysis of encryption schemes in modern ransomware. Rad Hrvat. Akad. Znan. Umjet. Mat.
Znan. 2021, 546=25, 1–13. [CrossRef]

42. Acar, G.; Huang, D.; Li, F.; Narayanan, A.; Feamster, N. Web-based Attacks to Discover and Control Local IoT Devices. In
Proceedings of the Workshop on IoT Security and Privacy; Association for Computing Machinery: New York, NY, USA, 2018; pp. 29–35.
[CrossRef]

43. Sayakkara, A.; Le-Khac, N.A.; Scanlon, M. A Survey of Electromagnetic Side-Channel Attacks and Discussion on their Case-
Progressing Potential for Digital Forensics. Digit. Investig. 2019, 29, 43–54. [CrossRef]

44. Devi, M.; Majumder, A. Side-Channel Attack in Internet of Things: A Survey. In Applications of Internet of Things; Mandal, J.K.,
Mukhopadhyay, S., Roy, A., Eds.; Springer: Singapore, 2021; pp. 213–222._20. [CrossRef]

45. Prouff, E.; Rivain, M. Masking against Side-Channel Attacks: A Formal Security Proof. In Advances in Cryptology—EUROCRYPT
2013; Johansson, T., Nguyen, P.Q., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 142–159._9. [CrossRef]
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