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Abstract: Emerging technologies such as artificial intelligence help operations management achieve
sustainability. However, in sustainable operations management studies, scholars pay less attention
to product design, which can be highly affected by artificial intelligence. In addition, sustainability
is perceived as maintaining economic development while limiting environmental harm caused by
human activity. Therefore, social sustainability is treated as peripheral compared to economic and
environmental sustainability. However, social sustainability now has gained more attention because
it is the basis on which meaningful economic and environmental sustainability can be valid. Thus,
I systematically reviewed present studies on product design considering artificial intelligence to
understand what types of social sustainability are achieved when applying artificial intelligence
to product design. This study discovered artificial intelligence can improve social sustainability in
product design, but social sustainability diversity is necessary. These findings can contribute to the
inclusion of different types of social sustainability in product design when using artificial intelligence.

Keywords: sustainable operation; product design; artificial intelligence; social sustainability; system-
atic review

1. Introduction

Emerging technologies, as competitive resources, help operations management be-
come more sustainable by meeting the needs of the present and future generations in
economic, environmental, and social aspects [1]. The three aspects of sustainability are
based on three pillars of sustainability [2]. Sustainable operations management can advance
these activities not only in the supply chain of a product but also in new product develop-
ment, including product design [3]. On top of sustainable operations management, these
technologies, such as artificial intelligence, can improve the performance of the activities.

Economic sustainability has been related to operational costs such as production and
manufacturing costs [4]. In the economic aspect, association rule mining and decision
trees enabled companies to develop a new digital camera [5] and a new smart phone [6]
efficiently and effectively. Rough set theory and decision trees helped a manufacturer
to design a new notebook visual aesthetic that will decrease consumer complaints and
increase user experience [7].

Environmental sustainability has been associated with the reduction of waste, energy,
and pollution. In the environmental aspect, fuzzy logic along with analytic network pro-
cesses advanced the selection of environmentally sustainable product designs [8]. Bayesian
decision networks for life-cycle engineering advanced the development of an environmen-
tally friendly oil-drill design [9]. Fuzzy extent analysis and fuzzy technique for order of
preference by similarity to ideal solution helped advance green product development [10].

Social sustainability has been connected to the quality of life. In the social aspect, digi-
tal fabrication such as 3D printing, CNC milling, and laser cutting for development enabled
designers to create products that advanced local employment, empowerment, and owner-
ship. This shows system-centric and radical social sustainability, rather than user-centric
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and incremental social sustainability [11]. Communication technologies helped industri-
alization late-comers overcome a mental barrier and promote modernization process by
giving them more opportunities for networking [12]. A handheld device by HP, which
was a relatively new technology in Uganda, promoted microfinance banking transactions
without a one-day journey to a city [13].

However, as the UNEP-SETAC Life Cycle Initiative indicated, the business commu-
nity has paid less attention to social sustainability because its benefits are intangible and
indirect [14]. That is, meeting higher-order needs—e.g., quality of life and safety, and
health—were largely not considered in operations management. Studies have tried to mea-
sure social sustainability throughout the life of a product. Social sustainability indicators
evaluated the needs of employees and customers based on Maslow’s hierarchy of individ-
ual needs [15]. Zhou et al. (2000) considered maximizing profit for economic sustainability,
minimizing resource and energy consumption for environmental sustainability, and maxi-
mizing product values by satisfying the market demands for social sustainability [16]. The
studies focused on sustainable operations management in the supply chain, not in new
product development.

The operations in a supply chain depends on new product development, particularly
product design. This is because parts to be made or procured as well as the necessary
processes of suppliers, manufacturers, distributors, and retailers are determined in the
stage of product design in the supply chain. Thus, it is important to understand socially
sustainable operations management in product design. Socially sustainable product design
can improve a product’s social sustainability by adding customers’ design requirements in
the product’s development and manufacturing process.

It is necessary to understand how new technologies improve product design to become
more socially sustainable than economically and environmentally sustainable. Already, many
scholars are concentrating on the economic and environmental effects of a powerful new
technology, artificial intelligence. Additionally, this is bringing imbalance to sustainability.

Therefore, in this study, I systematically reviewed the highly impactful literatures in
product design and artificial intelligence to clarify contributions of artificial intelligence
in product design to social sustainability. In particular, this systematic review study was
performed based on an efficient systematic review framework [17], and each paper in the
literature was identified as involving a combination of three kinds of social sustainability
offered by [18]. Through this systematic review, the questions I sought to answer were:
(1) What are the contexts of social sustainability in artificial intelligence used in product
design? (2) Which scientific communities using artificial intelligence in product design are
paying attention to social sustainability? (3) What are the temporal and cross-disciplinary
characteristics of social sustainability in artificial intelligence used in product design?
(4) How diverse do the types of social sustainability appear in artificial intelligence applied
in product design over time and among scientific communities?

By answering the questions, this study discovers the scientific communities paying
attention to social sustainability and their characteristics under a certain context of artificial
intelligence and product design. This study also opens a new perspective to consider social
sustainability types and their diversity in artificial intelligence used in product design.
This can reveal our focuses, regarding social sustainability, in artificial intelligence used in
product design. This is important where the integration of product and service becomes
the center of customer satisfaction under the condition of a digitized and globalized
economic environment.

2. Literature Review

Artificial intelligence involves making computers to solve problems in the areas
of search, pattern recognition, learning, planning, and induction [19]. It is, in short, a
process to study the intelligence to identify useful information processing problems, give a
method of how to solve them, and develop algorithms that implement the method [20].
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Artificial intelligence is considered to transform human tasks and activities in a wide range
of applications [21].

In the case of new product development, artificial intelligence was used in various
areas including but not limited to new product development evaluation, product and
process design, quality function deployment, conceptual design, and group decision
making in concurrent engineering [22]. For example, Santillan-Gutierrez and Wright (1996)
applied genetic algorithms to derive promising solutions during the development of a
product [23]. Rao et al. (1999) reported that the various areas include but are not limited to
problem solving and planning [24], expert systems [25], knowledge-based systems [26],
natural language processing [27], robotics [28], computer vision [29], learning [30], genetic
algorithms [31], neural networks [32], case-based reasoning [33], rough set theory [34], and
intelligent agent [35]. A mixture of various areas of artificial intelligence was also utilized.
For example, fuzzy logic, genetic algorithms, and artificial neural networks were applied
in design [36].

Artificial intelligence, the most salient and emerging technology currently, is con-
sidered to have the power to not only to transform our society but also address societal
problems including sustainability [37]. In achieving sustainability everywhere, artificial
intelligence, along with other digital technologies, is considered the key transformation
element [38]. Artificial intelligence can improve economic, environmental, and social
sustainability [39]. However, our attention is still more on economic and environmental
sustainability. Artificial intelligence can increase productivity and decrease production
costs [40]. It can monitor and reduce emissions [41] and conserve ecosystems [42]. It also
can help secure quality and inclusion [43,44]. However, such orientation toward social
sustainability seems to have received less attention according to the UNEP-SETAC Life
Cycle Initiative [14].

Studies on artificial intelligence for social sustainability seem to be rare. Yet it is
the most important type of sustainability to consider [45,46]. Artificial intelligence can
secure social sustainability [45]. For instance, artificial intelligence can increase work
efficiency and reduce working hours, so that a worker’s physical well-being can improve
and physical damage caused during working hours can decrease [47]. Artificial intelligence
can also perform diverse simple tasks in living spaces, hospitals, and classrooms to serve
various small roles in communities [48,49]. Artificial intelligence can automate routine
activities in health care [50], education [51], Human Resources [52], call centers [53], and
customer services [54]. Artificial intelligence is even able to promote socially charitable
and ethical actions [55].

In sustainable operations management, it is necessary to understand the current state
of how artificial intelligence used in product design, which many posterior processes are
dependent on, contributes to social sustainability. We know little about what scientific
community applies what special artificial intelligence in which product design task for
a certain aspect of social sustainability. Thus, a literature review on artificial intelligence
used in product design from the perspective of social sustainability is required.

When reviewing papers in a certain area, methods can vary according to the size
of the papers. If the number of articles is too large, text summarization techniques can
extract concepts from the collection of papers. One popular technique is topic modeling.
Probabilistic topic modeling is a statistical way to analyze the words of documents to find
themes that exist across the words and documents [56]. Among the models that learn
patterns of topics in a collection of documents, latent Dirichlet allocation is the simplest
and most popular [57]. It discovers topic probability distributions among words embedded
in the collection. Recently, given the large amount of textual data, scholars used it for a
literature analysis by extracting research trends from the data [58,59]. Lee et al. (2016) used
it to derive more abstract concepts from research trends by using the relationships among
topics and a community detection algorithm used in network analysis [60]. Song et al.
(2016) extended it to regress topic trends on time and venues (i.e., journals) [61]. Such
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literature analyses were possible due to the rise of algorithms and computational powers
as well as available big data.

The size of the literature to be reviewed is not always very large, but can be large
enough to prevent researchers from reading all relevant papers for a literature review. In
this case, instead of the application of text summarization techniques to literature analyses,
scholars used network analysis. Science of science [62] and scientometrics [63,64] and
are the research fields that utilize network analysis to map science. Semantic network
analysis is an example, and it investigates the associations among the components of
the target subject of a literature review, based on the shared meanings of symbols [65].
It is better to use semantic network analysis when the number of the papers is not too
large [66]. Lee et al. (2017) used semantic network analysis to understand Parkinson’s
disease research [67]. Lee and Jung (2019) also employed semantic network analysis to
understand social sustainability over time [68].

When the number of the papers is small, researchers can use literature review, and
there are three methods for an effective literature review: narrative review, meta-analysis
review, and systematic review. Narrative review is an effective literature review that
heavily relies on the experience and expertise of the author [69]. It is decomposed into
input, processing, and output stages. In the input stage, the quality of literature and the
process of gathering papers are the key activities to secure relevant and sufficient data.
In the processing stage, the author processes data into information according to Bloom’s
taxonomy of educational objectives [70]. Finally, in the output stage, the author develops
and writes arguments. However, this approach is criticized for its subjectivity. Another
effective literature review method is meta-analysis [71,72]. Meta-analysis is a type of
observational study of evidence. It is a statistical analysis that integrates the results of
different independent studies dealing with a research problem. It is decomposed into
problem formulation, data collection and analysis with eligibility criteria and statistical
methods, and results reporting with graphical display.

Whereas meta-analysis is known as a quantitative systematic review and results in a
quantitative summary, a general systematic review generates a qualitative summary. Both
quantitative and qualitative systematic reviews have in common a thoroughly systematic
procedure of formulating a specific research question, collecting data with eligibility criteria,
and summarizing with a critical appraisal to minimize error and bias. A systematic review
has the advantage of summarizing a large collection of studies and explaining differences
among studies on the same research question [73]. In the case of understanding the contri-
butions of artificial intelligence used in product design to social sustainability, a statistical
combination of the studies is impossible and a qualitative systematic review is appropriate.
Thankfully, there is an effective systematic review framework, as outlined by [17].

3. Methodology

To understand the current contribution of artificial intelligence embedded in product
design to social sustainability, I refined the efficient systematic literature review frame-
work [17]. This framework involves six steps: scoping, planning, identification and search,
screening, eligibility and assessment, and presentation and interpretation (Figure 1). Kout-
sos et al. (2019) used a case study on agricultural research to confirm the framework’s ease
of use and efficacy [17].

Through this systematic review process, this study makes answers to (1) What are the
contexts of social sustainability in artificial intelligence used in product design? (2) Which
scientific communities using artificial intelligence in product design are paying attention to
social sustainability? (3) What are the temporal and cross-disciplinary characteristics of
social sustainability in artificial intelligence used in product design? (4) How diverse do
the types of social sustainability appear in artificial intelligence applied in product design
over time and among scientific communities?
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sustainability (n is the number of papers).

The first step is scoping, in which the reviewer defines a protocol for a review. The
second step is planning, where the reviewer identifies appropriate databases and develops
search strategies. The third step is search process, where the reviewer recognizes papers
to include from the databases. In the case study, the authors identified 478 papers and
added two papers manually. The fourth step is screening articles, where the reviewer
identifies papers to exclude from the papers selected in the previous step. In the case study,
the authors excluded 389 papers and three duplicates, leaving 86 papers. The fifth step
is eligibility assessment, where the reviewer reads the remaining full-text articles, leaves
out papers based on exclusion criteria, and adds papers based on inclusion criteria from
other possible sources. In the case study, the authors identified 27 eligible papers to be
reviewed and added two more papers from other sources. The last step is interpretation
and presentation, where the reviewer synthesizes findings and analyzes the heterogeneity
of papers with strong evidence out of eligible papers (11 of 29 papers in the case study). In
this step, the reviewer shows the findings graphically and derives their meanings.

In addition, I applied a general inductive approach to the last step to identify themes
or categories most relevant to the research objectives identified (Figure 1). A coder uses
the typology of social sustainability [18] to identify themes or categories with respect to
development, bridge, and maintenance social sustainability. As a result, I can clarify how
artificial intelligence used in product design contributes to social sustainability. Addition-
ally, a diversity indicator used in ecology was applied to quantify the heterogeneity among
papers (Figure 1).

In detail, the modified efficient systematic literature review framework works as
follows. The first step is scoping, which develops focused research questions and study
design; identifies a few relevant studies for a pilot review study; and searches for previous
systematic reviews on current issues. My focused question was: What are the contributions
of artificial intelligence applied in product design to social sustainability, appearing in
science? Cai and Choi (2020) recently emphasized the importance of the balance among
economic, environmental, and social sustainability in a sustainable supply chain [74].
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They showed how economic, environmental, and social sustainability were achieved in
sustainable design. Yet consideration of social sustainability is not enough, and the role of
technology has not been well examined. There are no previous systematic reviews based
on my focused question. Then, I examined the databases and chose the Scopus digital
database as the source of search.

The second step is planning. It develops the main search queries using Boolean
operators and identifies appropriate digital databases. I developed a query that is an
intersection between documents containing “product design” and “artificial intelligence”
in the abstract, title, or keywords (author and indexed keywords). That is, in the Scopus
database, the query is (TITLE-ABS-KEY (“product design”) AND TITLE-ABS-KEY (“artificial
intelligence”) AND (LIMIT-TO (DOCTYPE, “ar”)) AND (LIMIT-TO (LANGUAGE, “English”)).
For the selection of articles, the inclusion criteria were (a) the document type is set as
“article” and (b) the study was published in peer-reviewed English journals.

Here, the total number of articles containing “product design” and “artificial intelligence”
in the abstract, title, or keywords (author and indexed keywords) with the document type
article at the initial screening was 392. After refining SCI-indexed journals only, the number of
articles was 288. The process of selecting eligible articles based on preferred reporting items
for systematic reviews and meta-analyses (PRISMA) [75] is shown in Figure 2.
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The third step is identification and search, in which I applied the query developed
in the previous step to Scopus DB’s search engine. After retrieving relevant articles from
Scopus DB, I checked the articles thoroughly to determine if their conditions met eligibility
criteria. That is, the conditions were (a) articles containing “product design” and “artificial
intelligence” in the title, abstract, and keywords, including author and indexed keywords;
(b) the document type is categorized as article in Scopus DB; and (c) the articles were
published in peer-reviewed English journals indexed by SCI. Additionally, I checked if the
search strategy needed to be changed and if additional searches were necessary.
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The fourth step was screening. The bibliographic data of the 288 articles were exported
as a CSV file. I again checked duplicates and missing data. Additionally, the highly
impactful papers were selected only. I measured the degree of impact using the number
of citations. According to pareto principle, which is known as 80/20 rule, I assumed that
highly impactful papers were 20% of the total number of papers. Then, the full texts of the
selected highly impactful studies were downloaded and examined to determine if they
were relevant to product design and artificial intelligence.

The fifth step is eligibility and assessment. I read the full text of the selected articles in
depth. Here, I identified if a certain article contained not only keywords such as product
design and artificial intelligence but also content relevant to these topics. Finally, I distilled
papers on artificial intelligence in product design as shown in Figure 3. I also checked if
the article discussed elements that can be categorized as social sustainability. Furthermore,
I classify the types of social sustainability associated with the article.
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Sustainability has three pillars: economic, biophysical (i.e., ecological or environmen-
tal), and social [2]. Additionally, social sustainability can be decomposed into development,
bridge, and maintenance parts [18]. Table 1 summarizes the types of social sustainability.
I categorized a study as development social sustainability if it concerned basic needs based
on resources and infrastructures. This also can be divided into two parts, tangible and
intangible. Studies on economic sustainability can be identified as tangible development
social sustainability because economic sustainability encompasses financial costs and ben-
efits, which are directly related to tangible necessities. On the other hand, a study can
be identified as having intangible development social sustainability if less tangible needs
such as education, employment, equity, and justice are considered. I classified a study as
having bridge social sustainability if it included necessary social conditions that sustain
ecology or promote attitudes and behaviors that meet the conditions. This can be divided
into transformative bridge social sustainability and nontransformative bridge social sus-
tainability. Last, a paper was categorized in maintenance social sustainability if dealt with
the ways in which social and cultural preferences and characteristics and the environment
are maintained over time to sustain quality of life. Table 2 shows an example of social
sustainability type categorization.

To measure the diversity of social sustainability types in artificial intelligence in prod-
uct design, I use the Shannon diversity index, which is based on Shannon entropy. Let pi be
the proportion of the ith social sustainability type in a document. Then, the diversity of the
document, H, is computed using the following equation. For example, if a paper contains
tangible development social sustainability, transformative bridge social sustainability, and
maintenance social sustainability, then the social sustain inability diversity is –(1/3)log(1/3)
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–(1/3)log(1/3) –(1/3)log(1/3). When the value of this index is high, it means highly diverse
social sustainability types exist in the paper.

H = −
k

∑
i=1

pi log(pi).

Table 1. Summary of social sustainability types [18].

Social sustainability: “Social sustainability occurs when the formal and informal
processes/systems/structures/relationships actively support the capacity of current and future generations
to create healthy and liveable communities.” [76]

1. Development

To meet the basic needs, ways to
develop infrastructures that secure
physical and non-physical
requirements

Tangible: basic physical
requirements

Intangible: basic nonphysical
requirements

2. Bridge
To support ecological sustainability,
ways to promote eco-friendly behavior
or stronger environmental ethics

Transformative: fundamental
changes by socially
constructed environment

Nontransformative: provision
of information for changes

3. Maintenance To sustain quality of life, ways of preferences, characteristics, and
environments to be maintained over time.

Table 2. An example of social sustainability type categorization.

P
ID

Development
(Tangible)

Development
(Intangible)

Bridge
(Transformative)

Bridge
(Non-Transformative) Maintenance

1 1 0 0 0 0

. . .

K 1 1 1 1 1

The sixth step is presentation and interpretation. I started by delineating the context of
artificial intelligence used and scientific communities involved. Next, based on the statistics
of social sustainability types of all papers, I determined the major social sustainability type,
how the social sustainability types change over time, and social sustainability diversity
over time and among journals. This enabled me to understand the heterogeneity of the
studies included. I identified example papers that contributed different types of social
sustainability to read their full texts and distill features of artificial intelligence, product
design, and the forms of contributions made to social sustainability. Then, I performed a
content analysis on the articles according to their component social sustainability type. For
example, to see the characteristics of bridge social sustainability in product design using
artificial intelligence, the content analysis only focused on the articles that contain bridge
social sustainability.

4. Results

I retrieved bibliographic data that contained “product design” and “artificial intel-
ligence” at the same time in the title, abstract, or keywords from the Scopus database,
a major scientific research search engine developed by Elsevier. Here, keywords can be
either author or indexed keywords. Author keywords are the representative words that
the author inputs, whereas indexed keywords are the representative words that the search
engine identifies. Additionally, the retrieved data were from English articles in SCI-indexed
journals in the JCR list.
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Subsequently, I derived the distribution of the number of citations of the articles, as
shown in Figure 4. I confirmed that the majority of the papers had fewer than 26 citation
counts. Therefore, I set 26 citations as my threshold for choosing the highly impactful papers,
which are shown with an orange box in Figure 4. Figure 5 shows the citation distribution
of the selected papers. The most cited paper had more than 600 citations. The number of
papers was 68. The number of highly cited papers over time fluctuated (Figure 6). It increased
dramatically from 1994 to 2000 and rose until 2007. It then declined in 2007. Since 2007, it
has stayed stable, between 10 and 15.
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Among 68 selected papers, 16 papers were dropped. For every year, the number of
publications on artificial intelligence used in product design was stable at two (Figure 7).
The 16 papers were excluded because they did not contain either artificial intelligence or
product design in the full texts. Ceres et al. (1998) was not about using artificial intelligence
in product design but rather the design and implantation of an aided fruit-harvesting
robot [77]. Onuh and Yusuf (1999) did not address artificial intelligence but reviewed
rapid prototyping technology [78]. Ohashi and Tsujimoto (1999) did not address artificial
intelligence but pump research and development review in Japan [79]. Murphy (2001)
discussed robot design competition and education [80]. Cavallucci and Weill (2001) focused
on how the theory of inventive problem solving can be embedded in design processes [81].
Ahmed and Wallace (2004) developed a method that supports designers and can decrease
the frequency of inappropriate questions raised by new designers [82]. Mondada et al.
(2004) was about designing swarm intelligent robots, not using swarm intelligence for
product design [83]. Far and Elamy (2005) explained functional reasoning theories in
engineering design but had no application of functional reasoning to a product design case,
so it was hard to find sustainability implications [84]. Whitby (2008) studied designing
artificially intelligent robots [85]. Qiu and Benbasat (2014) discussed anthropomorphic
information systems design, not product design [86]. Renzi et al. (2014) used artificial
intelligence for reconfigurable manufacturing system design, instead of product design [87].
Zhang et al. (2016) was about sustainable supply chain network design optimization rather
than product design [88]. Nakandala et al. (2016) used artificial intelligence for the cost-
optimization problem of fresh food transportation [89]. Zhang et al. (2017) utilized artificial
intelligence to design a supply chain network that maximizes profit [90]. Sanderman et al.
(2018) used a random forest model for program design [91]. Liu et al. (2018) used neural
networks for a clinical decision support system [92]. Finally, 52 papers were chosen to
examine development, bridge, and maintenance social sustainability.
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4.1. Contexts
4.1.1. Thematic Context of Social Sustainability in Artificial Intelligence in Product Design

First, by reading the titles of the list in Table 3, I determined that the majority of
the papers on artificial intelligence in product design were in the context of assembly
manufacturing. Assembly manufacturing considers not only how to design and assemble
parts but also how to design and disassemble a product. This allows people to include
environment sustainability easily along with economic sustainability. However, recently,
additive manufacturing is another context [93,94]. In additive manufacturing, materials
and the way of manufacturing a product are different than assembly manufacturing. For
instance, we do not have to consider product parts to assemble, but a total product and
powder materials to be used.
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Table 3. The 52 articles selected with their publication years, source titles, titles, and number of citations.

Paper ID Year Source Title Title Cited by Paper ID Year Source Title Title Cited by

1 2003
International Journal of

Machine Tools and
Manufacture

Predicting surface roughness
in machining: A review [95] 622 33 1999

Research in Engineering
Design—Theory,

Applications, and
Concurrent Engineering

CADOM: A Component
Agent-based

Design-Oriented Model for
collaborative design [96]

51

2 2018 International Journal of
Production Research Smart manufacturing [94] 245 35 1999 Journal of Intelligent

Manufacturing

Web-based morphological
charts for concept design in

collaborative product
development [97]

50

5 2003 Research in
Engineering Design

Towards an ontology of
generic engineering design

activities [98]
160 37 2002 Journal of Materials

Processing Technology

Case-based reasoning
approach to concurrent

design of low power
transformers [99]

47

6 2002

Artificial Intelligence
for Engineering Design,

Analysis and
Manufacturing:

AIEDAM

Function and behavior
representation in conceptual

mechanical design [100]
140 39 2004

IEEE Transactions on
Systems, Man, and
Cybernetics, Part B:

Cybernetics

Development of Hybrid
Genetic Algorithms for

Product Line Designs [101]
46

7 2006 Communications of the
ACM

Automated analysis of
feature models: Challenges

ahead [102]
128 40 1999

Research in Engineering
Design—Theory,

Applications, and
Concurrent Engineering

Design support using
distributed web-based AI

tools [103]
45

8 2004 International Journal of
Production Economics

Configuring products to
address the customization-
responsiveness squeeze: A

survey of management issues
and opportunities [104]

121 45 2000 International Journal of
Production Research

Assembly/disassembly
task planning and

simulation using expert
Petri nets [105]

39

9 2008 Journal of Operations
Management

Toward a theory of
competencies for the

management of product
complexity: Six case

studies [106]

120 46 1995
Journal of Materials

Engineering and
Performance

Design for machining using
expert system and fuzzy

logic approach [107]
38
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Table 3. Cont.

Paper ID Year Source Title Title Cited by Paper ID Year Source Title Title Cited by

10 2007 Journal of Intelligent
Manufacturing

Applying data mining to
manufacturing: The nature

and implications [108]
95 48 2016 Engineering Applications

of Artificial Intelligence

AI-based methodology of
integrating affective design,
engineering, and marketing

for defining design
specifications of new

products [109]

36

11 1995
Journal of Vibration and
Acoustics, Transactions

of the ASME

Life-cycle engineering
design [110] 86 47 1999 Journal of Intelligent

Manufacturing

Artificial intelligence and
expert systems applications

in new product
development—a

survey [22]

36

12 2003
Engineering

Applications of
Artificial Intelligence

Application of Bayesian
decision networks to life

cycle engineering in Green
design and manufacturing [9]

80 49 2001 Computers in Industry

CLOVER: An agent-based
approach to systems

interoperability in
cooperative design

systems [111]

35

13 1990 AI Magazine Assembly sequence
planning [112] 78 50 2015 Decision Support

Systems

A Decision Support System
for market-driven product

positioning and
design [113]

35

17 2011 Decision Support
Systems

A dynamic decision support
system to predict the value of

customer for new product
development [114]

72 53 2006 Advanced Engineering
Informatics

Intelligent evaluation
approach for electronic
product recycling via

case-based reasoning [115]

34

18 2012 Advanced Engineering
Informatics

Disassembly sequence
structure graphs: An optimal
approach for multiple-target

selective disassembly
sequence planning [116]

69 51 1996

Artificial Intelligence for
Engineering Design,

Analysis and
Manufacturing: AIEDAM

Feature modeling based on
design catalogues for
principle conceptual

design [117]

34
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Table 3. Cont.

Paper ID Year Source Title Title Cited by Paper ID Year Source Title Title Cited by

19 2001
Engineering

Applications of
Artificial Intelligence

Knowledge-based approach
and system for assembly

oriented design, Part I: The
approach [118]

68 54 2008 Chemical Engineering
Research and Design

Case-based reasoning for
chemical engineering

design [119]
34

21 1992 International Journal of
Production Research

An artificial
intelligence-based constraint

network system for
concurrent engineering [120]

65 52 1998 IEEE Intelligent Systems
and Their Applications

A configuration tool to
increase product

competitiveness [121]
34

22 2003

Artificial Intelligence
for Engineering Design,

Analysis and
Manufacturing:

AIEDAM

Intelligent selective
disassembly using the ant

colony algorithm [122]
63 55 2015 Waste Management

An investigation of used
electronics return flows: A
data-driven approach to

capture and predict
consumers storage and

utilization behavior [123]

34

23 2012 Decision Support
Systems

A decision support system
for integrating

manufacturing and product
design into the

reconfiguration of the supply
chain networks [124]

63 56 1999 Annual Review of Fluid
Mechanics

Computational fluid
dynamics of whole-body

aircraft [125]
33

24 2014

International Journal of
Advanced

Manufacturing
Technology

A review on artificial
intelligence applications to

the optimal design of
dedicated and reconfigurable
manufacturing systems [87]

63 59 2015 IEEE Robotics and
Automation Magazine

Grasping the
performance [126] 32

25 2016
Engineering

Applications of
Artificial Intelligence

A fuzzy TOPSIS and Rough
Set based approach for
mechanism analysis of

product infant failure [127]

62 57 1988 Materials and Design Planning of expert systems
for materials selection [7] 32
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Table 3. Cont.

Paper ID Year Source Title Title Cited by Paper ID Year Source Title Title Cited by

27 1998

International Journal of
Advanced

Manufacturing
Technology

Integrated intelligent design
and assembly planning: A

survey [128]
61 61 1993 IEEE Transactions on

Engineering Management

Fuzzy Logic Applications:
Technological and Strategic

Issues [129]
30

29 2008 Expert Systems with
Applications

A data mining approach to
dynamic multiple responses

in Taguchi experimental
design [130]

59 62 2007

Artificial Intelligence for
Engineering Design,

Analysis and
Manufacturing: AIEDAM

A framework for the
automatic annotation of car

aesthetics [131]
29

28 1999 International Journal of
Production Research

Object oriented
manufacturing resource
modelling for adaptive
process planning [132]

59 63 1999
International Journal of
Computer Integrated

Manufacturing

Integrated
knowledge-based approach

and system for product
design for assembly [133]

28

30 2007 IEEE Transactions on
Neural Networks

An approach to estimating
product design time based on

fuzzy ν-support vector
machine [134]

57 64 2003 AI Magazine

Model-Based Computing
for Design and Control of

Reconfigurable
Systems [135]

27

31 2013 International Journal of
Production Research

Decarbonising product
supply chains: Design and

development of an integrated
evidence-based decision

support system-the supply
chain environmental analysis

tool (SCEnAT) [136]

54 65 2012 Journal of Manufacturing
Systems

Intelligent evaluation of
supplier bids using a
hybrid technique in
distributed supply

chains [137]

27

32 2000 Journal of Materials
Processing Technology

Designing cable harness
assemblies in virtual
environments [138]

53 68 2016 Industrial Management
and Data Systems

Simulation based method
considering design for

additive manufacturing
and supply chain An

empirical study of lamp
industry [93]

26

34 1999 Decision Sciences

Linking IT applications with
manufacturing strategy: An
intelligent decision support

system approach [139]

51 67 2005
International Journal of

Advanced Manufacturing
Technology

A graph and matrix
representation scheme for

functional design of
mechanical products [140]

26
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Second, the algorithms of artificial intelligence used in product design include but are
not limited to case-based reasoning, genetic algorithms, simulated annealing, ant colony
optimization, decision tree, association rule mining, Bayesian network, and fuzzy set theory.
Case-based reasoning induces a solution by retrieving the solutions to the cases already
stored in a database and reusing or revising the solutions to fit new case needs. Decision
tree algorithms generate if–then rules based on information entropy. Association rule
mining can also generate rules based on frequent item sets.

Genetic algorithm and its variants are categorized as evolutionary algorithms and
imitate a natural selection process including mutation, crossover, and selection to generate
combinatoric solutions highly suitable to a certain objective. Simulated annealing is also
a kind of evolutionary algorithm that uses a probabilistic technique for deriving globally
optimal solutions. Ant colony optimization is a distributed evolutionary algorithm that
uses multiple artificial agents search for the global optimal solution. A Bayesian network
is a probabilistic graphical model whose nodes are variables and edges are conditional
dependencies between nodes. Last, fuzzy logic based on fuzzy set theory helps model
human judgement. Basically, artificial intelligence in product design is used to discover the
optimal combination of product attributes and parts that maximizes profit and customer’s
satisfaction while minimizing environmental costs throughout the life of a product.

Third, this artificial intelligence is utilized to not only select attributes and parts of a
product but also provide decision supports and cooperative works. A decision support
system is an information system that supports design decision-making activities. In this
case, the last decision is made by a designer, and the system supplies a list of recommen-
dations that may help the designer narrow the solution search space and determine the
optimal solution. In designing a product, sometimes a collaborative product development
and concurrent engineering process is necessary. More than one designer work together
to make a new product, and creating a team collaboration and cooperation environment
is necessary. Additionally, artificial intelligence is used to improve communication and
facilitate collaboration.

4.1.2. Scientific Contexts of Social Sustainability in Artificial Intelligence in Product Design

The 52 papers were published in 31 journals (Table 4). The journals that published
highly cited papers subject to product design and artificial intelligence include but are not
limited to International Journal of Production Research, Artificial Intelligence for Engineering De-
sign, Analysis and Manufacturing (AIEDAM), Engineering Applications of Artificial Intelligence,
International Journal of Advanced Manufacturing Technology, Journal of Intelligent Manufac-
turing, Decision Support Systems, and Research in Engineering Design. Each journal can be
characterized by its subject areas and categories by Scopus through Scimago. For instance,
International Journal of Production Research is in the subject area of business, management,
and accounting and its category of strategy and management, in the subject area of decision
science and its category of management science and operations research, and in the subject
area of engineering and its category of industrial and manufacturing engineering.

According to Scimago’s classification system, the 31 journals have 15 subject areas:
arts and humanities; business, management, and accounting; decision sciences; engineer-
ing; computer science; material science; mathematics; physics and astronomy; chemical
engineering; chemistry; psychology; medicine; economics; econometrics and finance; and
environmental science. The top three salient subject areas are engineering (19 articles),
computer science (18 articles), and business, management, and accounting (seven arti-
cles). In engineering, the frequent categories are industrial and manufacturing engineering
(12 articles), mechanical engineering (seven articles), and control and systems engineering
(five articles). In computer science, the frequent categories are computer science applica-
tions (nine articles) and artificial intelligence (eight articles). In business, management,
and accounting, the frequent categories are strategy and management (five articles) and
management information systems (three articles).
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Table 4. The frequency of each journal’s published article(s) among the selected 52 articles.

Journal Name #Articles

International Journal of Production Research 5

Artificial Intelligence for Engineering Design, Analysis and Manufacturing:
AIEDAM 4

Engineering Applications of Artificial Intelligence 4

International Journal of Advanced Manufacturing Technology 3

Journal of Intelligent Manufacturing 3

Decision Support Systems 3

Research in Engineering Design—Theory, Applications, and Concurrent
Engineering 3

Advanced Engineering Informatics 2

AI Magazine 2

Journal of Materials Processing Technology 2

Annual Review of Fluid Mechanics 1

Chemical Engineering Research and Design 1

Communications of the ACM 1

Computers in Industry 1

Decision Sciences 1

Expert Systems with Applications 1

IEEE Intelligent Systems and Their Applications 1

IEEE Robotics and Automation Magazine 1

IEEE Transactions on Engineering Management 1

IEEE Transactions on Neural Networks 1

IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 1

Industrial Management and Data Systems 1

International Journal of Computer Integrated Manufacturing 1

International Journal of Machine Tools and Manufacture 1

International Journal of Production Economics 1

Journal of Manufacturing Systems 1

Journal of Materials Engineering and Performance 1

Journal of Operations Management 1

Journal of Vibration and Acoustics, Transactions of the ASME 1

Materials and Design 1

Waste Management 1

Total 52

4.2. Social Sustainablity Categorization
4.2.1. Skewness to the Development Social Sustainability

I confirmed that development social sustainability, especially the tangible form, is the
main sustainability type (Table 5). All the papers collected and identified as addressing
artificial intelligence applied in product design considered the elements of tangible devel-
opment social sustainability. However, only 11 of the 52 papers (i.e., 21.15%) considered
bridge social sustainability. Eight of the 52 papers (i.e., 15.38%) considered maintenance
social sustainability. It seems that scholars care more about developmental social sus-
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tainability than bridge social sustainability, and bridge social sustainability more than
maintenance social sustainability. That is, in artificial intelligence used in product design,
meeting physical needs is considered first. The concerns about behavioral changes to
achieve environmental goals comes next. Keeping up values during economic and social
changes is the last thing to consider.

In addition, tangible development social sustainability was found far more frequently
than intangible development social sustainability. Whereas all 52 studies were related to
tangible development social sustainability, just one study was related to intangible develop-
ment social sustainability. Tangible basic needs were counted more than less tangible needs
such as education, employment, equity, and justice. Transformative bridge social sustain-
ability was discovered more frequently than nontransformative bridge social sustainability.
Eleven studies on bridge social sustainability were all transformative. Among them, only
one was relevant to nontransformative bridge social sustainability. Namely, in product
design, artificial intelligence is changing fundamental ways to make an eco-friendlier
product. Last, maintenance social sustainability was the least common form of social
sustainability found. As Vallance et al. (2009) indicated, preserving sociocultural values
in the environment of social and economic changes seem to be overlooked in artificial
intelligence used in product design [18].

4.2.2. The Small Rise of Social Sustainability

Scholars have been considering social sustainability effect of artificial intelligence in
product design more, although the extent of their consideration seems to be insufficient
(Table 6). Over the years, development social sustainability has been included constantly.
Development social sustainability was considered more after 1995, indicated by its upward
trend. However, the trend is slightly incremental. Additionally, the majority of devel-
opment social sustainability was tangible rather than intangible. Furthermore, bridge
social sustainability was considered from time to time and transformative was included
only rarely. Like bridge social sustainability, maintenance social sustainability has been
considered occasionally. The year 2013 seems to be when diverse social sustainability
was addressed.

Across journals, development social sustainability is also the main type. Ten of the
31 journals that published these 52 papers only contained the other social sustainability
types. International Journal of Production Research is a good example that contained all
types of social sustainability. Waste Management contained tangible development social
sustainability, transformative bridge social sustainability, and maintenance social sustain-
ability. The other eight journals included either transformative bridge social sustainability
or maintenance with tangible development social sustainability. The remaining 21 journals
only considered tangible development social sustainability.

In sum, either explicitly or implicitly, social sustainability was considered in the
literature of product design using artificial intelligence constantly but to a small extent.
However, in terms of social sustainability types, development social sustainability has been
the main incremental attention over time and among journals. Subsequently, various types
of social sustainability should be dealt with more in studies of artificial intelligence used in
product design. To examine the necessity of social sustainability heterogeneity, I looked at
the diversity of social sustainability among the 52 papers with respect to time and venues
of publication.
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Table 5. Social sustainability type categorization results.

Paper ID Development-
Tangible

Development-
Intangible

Bridge-
Transformative

Bridge-
NonTransformative Maintenance Paper ID Development-

Tangible
Development-

Intangible
Bridge-

Transformative
Bridge-

NonTransformative Maintenance

1 1 0 0 0 0 33 1 0 0 0 0

2 1 0 1 0 1 35 1 0 0 0 0

5 1 0 0 0 0 37 1 0 1 0 0

6 1 0 0 0 0 39 1 0 0 0 1

7 1 0 0 0 0 40 1 0 0 0 0

8 1 0 0 0 0 45 1 0 0 0 0

9 1 0 0 0 0 46 1 0 0 0 0

10 1 0 0 0 0 48 1 0 0 0 0

11 1 0 1 0 0 47 1 0 0 0 1

12 1 0 1 0 0 49 1 0 0 0 0

13 1 0 0 0 0 50 1 0 0 0 1

17 1 0 0 0 0 53 1 0 1 0 0

18 1 0 1 0 0 51 1 0 0 0 0

19 1 0 0 0 0 54 1 0 0 0 0

21 1 0 1 0 0 52 1 0 0 0 1

22 1 0 1 0 0 55 1 0 1 0 1

23 1 0 0 0 0 56 1 0 0 0 0

24 1 0 0 0 0 59 1 0 0 0 0

25 1 0 0 0 0 57 1 0 0 0 0

27 1 0 0 0 0 61 1 0 0 0 0

29 1 0 0 0 0 62 1 0 0 0 0

28 1 0 0 0 0 63 1 0 0 0 0

30 1 0 0 0 0 64 1 0 0 0 0

31 1 1 1 1 1 65 1 0 0 0 0

32 1 0 0 0 1 68 1 0 1 0 0

34 1 0 0 0 0 67 1 0 0 0 0

Total 52 1 11 1 8
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Table 6. The types of social sustainability over both time and by venue of publication.

Journal Name. 1988 1990 1992 1993 1995 1996 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2011 2012 2013 2014 2015 2016 2018 Total

International Journal of
Production Research 1,0,1,0,0 1,0,0,0,0 1,0,0,0,0 1,1,1,1,1 1,0,1,0,1 5,1,3,1,1

Artificial Intelligence
for Engineering Design,

Analysis and
Manufacturing:

AIEDAM

1,0,0,0,0 1,0,0,0,0 1,0,1,0,0 1,0,0,0,0 4,0,1,0,0

Engineering
Applications of

Artificial Intelligence
1,0,0,0,0 1,0,1,0,0 2,0,0,0,0 4,0,1,0,0

International Journal of
Advanced

Manufacturing
Technology

1,0,0,0,0 1,0,0,0,0 1,0,0,0,0 3,0,0,0,0

Journal of Intelligent
Manufacturing 2,0,0,0,1 1,0,0,0,0 3,0,0,0,1

Decision Support
Systems 1,0,0,0,0 1,0,0,0,0 1,0,0,0,1 3,0,0,0,1

Advanced Engineering
Informatics 1,0,1,0,0 1,0,1,0,0 2,0,2,0,0

AI Magazine 1,0,0,0,0 1,0,0,0,0 2,0,0,0,0

Journal of Materials
Processing Technology 1,0,0,0,1 1,0,1,0,0 2,0,1,0,1

Research in Engineering
Design—Theory,

Applications, and
Concurrent Engineering

2,0,0,0,0 1,0,0,0,0 3,0,0,0,0

Annual Review of Fluid
Mechanics 1,0,0,0,0 1,0,0,0,0

Chemical Engineering
Research and Design 1,0,0,0,0 1,0,0,0,0

Communications of
the ACM 1,0,0,0,0 1,0,0,0,0

Computers in Industry 1,0,0,0,0 1,0,0,0,0

Decision Sciences 1,0,0,0,0 1,0,0,0,0

Expert Systems with
Applications 1,0,0,0,0 1,0,0,0,0

IEEE Intelligent Systems
and Their Applications 1,0,0,0,1 1,0,0,0,1

IEEE Robotics and
Automation Magazine 1,0,0,0,0 1,0,0,0,0
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Table 6. Cont.

Journal Name. 1988 1990 1992 1993 1995 1996 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2011 2012 2013 2014 2015 2016 2018 Total

IEEE Transactions on
Engineering
Management

1,0,0,0,0 1,0,0,0,0

IEEE Transactions on
Neural Networks 1,0,0,0,0 1,0,0,0,0

IEEE Transactions on
Systems, Man, and
Cybernetics, Part B:

Cybernetics

1,0,0,0,1 1,0,0,0,1

Industrial Management
and Data Systems 1,0,0,0,0 1,0,0,0,0

International Journal of
Computer Integrated

Manufacturing
1,0,0,0,0 1,0,0,0,0

International Journal of
Machine Tools and

Manufacture
1,0,0,0,0 1,0,0,0,0

International Journal of
Production Economics 1,0,0,0,0 1,0,0,0,0

Journal of
Manufacturing Systems 1,0,0,0,0 1,0,0,0,0

Journal of Materials
Engineering and

Performance
1,0,0,0,0 1,0,0,0,0

Journal of Operations
Management 1,0,0,0,0 1,0,0,0,0

Journal of Vibration and
Acoustics, Transactions

of the ASME
1,0,1,0,0 1,0,0,0,0

Materials and Design 1,0,0,0,0 1,0,0,0,0

Waste Management 1,0,1,0,1 1,0,1,0,1

Total 1,0,0,
0,0

1,0,0,
0,0

1,0,1,
0,0

1,0,0,
0,0

2,0,1,
0,0

1,0,0,
0,0

2,0,0,
0,1

8,0,0,
0,1

2,0,0,
0,1

2,0,0,
0,0

2,0,1,
0,0

5,0,2,
0,0

2,0,0,
0,1

1,0,0,
0,0

2,0,1,
0,0

3,0,0,
0,0

3,0,0,
0,0

1,0,0,
0,0

3,0,1,
0,0

1,1,1,
1,1

1,0,0,
0,0

3,0,1,
0,2

3,0,0,
0,0

1,0,1,
0,1

52,1,11,
1,8
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4.2.3. Necessary Social Sustainability Diversity

When applying Shannon diversity to the numbers in Table 6, the overall Shannon
diversity index of the five types of social sustainability was 0.887. The Shannon diversity
index is high when the heterogeneous types are distributed evenly and low otherwise.
As 0.887 is not that high of a value, this shows the low and imbalanced diversity of
social sustainability in the literature on product design using artificial intelligence. I also
considered the diversity of social sustainability types over time and among journals.

Over the years, the average and standard deviation of the Shannon diversity index
values of all journals were 0.406 and 0.446, respectively. The diversity of social sustainability
types has been low. The maximum was 1.609 in 2013. The trend of social sustainability
type diversity is going up slightly (Figure 8). My guess is that the period between 2007
and 2011 seems to a change point. There seems to be a discontinuity before and after this
period. It may be that awareness of social sustainability and the balance among different
types of sustainability grew prominently after the 2008 financial crisis.
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Among journals, the average and standard deviation of the Shannon diversity index
values of all journals were 0.249 and 0.401, respectively. The diversity of social sustainability
types has been low across the journals. The maximum was 1.367 in International Journal of
Production Research, which is one of the leading journals in production research (Figure 9).
Only three journals that published the included papers were found to be saliently diverse
and balanced in terms of social sustainability types.

4.3. Content Analysis
4.3.1. Big Data and Artificial Intelligence

Big data and artificial intelligence can make product design not only smarter but also
more sustainable. According to my results, three publications contributed to development,
bridge, and maintenance social sustainability [93,94,136]. Kusiak (2018) emphasized sus-
tainability as one of six pillars of smart manufacturing [94]. It is not what we make but how
we make it that can contribute to sustainability. Additionally, artificial intelligence mostly
involves the process of product design. In case of a smart vehicle, the sustainable design
of e-vehicles results in autonomous, personal, shared, and sustainable transportation that
may improve economic, environmental, and social sustainability.

Additionally, the environment of additive manufacturing gives more flexibility to
product design, using artificial intelligence based on big data. In the six pillars of smart
factory that Kusiak (2018) suggested, manufacturing technology and processes change
in accordance with the emergence of new materials, components, and products [94]. In
the case of biomanufacturing, using artificial intelligence to generate possible bioprinting
scenarios and select parameters in bioprinted product design enables high-throughput
biofabrication [141].
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4.3.2. Bridge Social Sustainability by Considering Product Life Cycle

Bridge social sustainability was mainly achieved by considering product life cycle.
Young et al., (1992) used artificial intelligence constraint networks to support designers in
concurrent engineering, which help designers handle life-cycle information requirements
in printed wiring board manufacturing [120]. Ishii (1995) considered product life-cycle
values such as functional performance, manufacturability, serviceability, and environmental
impact in life-cycle engineering design [110]. One scholar applied semantic networks [142]
to manufacturing for automated reasoning about product design. He specifically stated
that “Life-cycle engineering seeks to maximize a product’s contribution to the society while
minimizing its cost to the manufacturer, the user and the environment.” Kwong and Tam
(2002) utilized case-based reasoning in the concurrent product and process design of low-
power transformers to aid designers in improving the lead time and quality of product and
process design [99]. Zhu and Deshmukh (2003) used Bayesian decision networks, which
are helpful to represent and reason about decision problems under uncertainty, in green
design and manufacturing [9]. Wang et al. (2003) used ant colony algorithms to intelligently
generate disassembly sequences for the chosen components, which also minimized the
reorientation of assemblies and removal of components [122]. Shih et al. (2006) used case-
based reasoning to select a recycling strategy and evaluate the performance of disassembly
operations [115]. Smith et al. (2012) introduced a disassembly sequence structure graph
model for multiple-target selective disassembly sequence planning to improve solution
quality, reduce model complexity, and minimize search time [116].

4.3.3. Maintenance Social Sustainability by Supporting Meeting Demand Preference

Maintenance social sustainability mostly was achieved by supporting designers to
meet demand preferences when designing a product. Yu and Skovgaard (1998) introduced
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SalesPLUS, a product-configuration tool based on artificial intelligence, enabling designers
to effectively make configurations that meet customer demands and reduce costs [121]. Ng
et al. (2000) developed a cable harness design and planning using artificial intelligence and
tested usability [138]. Balakrishnan et al. (2004) used hybrid genetic algorithms for product
line designs [101]. According to their implications, it is necessary not only to maximize
market share but also to minimize undesirable organizational conflicts and inequity. Lei
and Moon (2015) applied principal component analysis, k-means clustering, and AdaBoost
classification to determine new product design and positioning in market segments and
support designers by providing recommended scenarios of product development [113].

5. Discussion
5.1. More Than Economic and Environmental Sustainability

The slowly growing number of the articles including social sustainability consideration
among the highly cited articles on product design using artificial intelligence implies that
social sustainability is not considered as often as economic and environmental sustainability,
as many scholars have indicated. Even the articles considering social sustainability were
mostly rooted in economic and environmental sustainability. In particular, the articles on
product design included but were not limited to using artificial intelligence tend to regard
economic sustainability in default and increasingly study environmental sustainability.
It seems this is because the definition of social sustainability is unclear. Even if there
is a certain framework or definition for social sustainability, it is not well known and
recognized by people. A similar phenomenon is shown with social sustainability as well.
Social sustainability related to infrastructure supporting tangible and intangible needs, i.e.,
development social sustainability, has been more often included than social sustainability
regarding transformative and less transformative eco-friendly actions, i.e., bridge social
sustainability. Additionally, bridge social sustainability is more incorporated than social
sustainability regarding maintaining values when changes occur, i.e., maintenance social
sustainability. In sum, even in product design using artificial intelligence, materials and
tangible environment come first rather than intangible values. This may lead our society to
become more materialistically prosperous than ever but mentally devastated.

5.2. Diversity and Harmony

When promoting social sustainability, which is less tangible than economic and envi-
ronmental sustainability, we need to be aware of the existence of an insufficiently balanced
social sustainability in social sustainability types. Otherwise, it may lead to poor social
sustainability in designing a new product using artificial intelligence. Diversity in social
sustainability can be achieved by showing the state of the poor social sustainability in
our research—product design using artificial intelligence in this case—and developing
appropriate indicators for insufficient social sustainability types such as maintenance social
sustainability in every step where artificial intelligence is used in product design.

Not only balance among development, environmental, and maintenance social sus-
tainability but also harmony among them is required. We do not know the golden ratio of
how to combine different social sustainability types. Additionally, equal attention is not
needed to the social sustainability types, but equitable attention is required. Development
social sustainability is well understood, but maintenance social sustainability is not. One
way to improve this is to encourage researchers in scientific communities who write papers
in the journals listed in this study to consider maintenance and bridge social sustainability.

We can promote diverse social sustainability in harmony by first identifying the
stages of product design where artificial intelligence is utilized and a certain type of social
sustainability is achieved. Once we clarify the relationship among a product design stage,
artificial intelligence algorithm, and social sustainability type, we can concentrate on a
specific product design and artificial intelligence algorithm to contribute to the growth of a
target social sustainability type.
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6. Conclusions

Artificial intelligence can help operations management be more economically, en-
vironmentally, and socially sustainable. However, as many scholars indicated, socially
sustainable operations management has received less attention than economically and
environmentally sustainable operations management. At the same time, social sustainabil-
ity is now getting more attention because it is the basis of economic and environmental
sustainability. In this circumstance, I consider that product design in sustainable operations
management should be highlighted more because it determines the following operations
in the supply chain of a product. In fact, product design has evolved with the help of
computers. Thus, artificial intelligence is expected to improve the performance of product
design economically, environmentally, and socially.

Unlike economic sustainability and environmental sustainability, social sustainability
has not been foregrounded in considering the effect of artificial intelligence in product
design. Therefore, in this study, I systematically reviewed the literature on product design
using artificial intelligence to appraise the contributions of artificial intelligence in product
design to social sustainability. This review was done by following PRISMA [75] and an
effective systematic review framework [17] tuned to my settings. Social sustainability can
be categorized into development, bridge, and maintenance social sustainability, based
on [18], so a coder can check if a certain study contains the elements of the three different
types of social sustainability.

As a result, I first found the contexts of social sustainability generated by artificial
intelligence in product design. Assembly manufactured products, rather than additive
manufactured products, are more often considered. Algorithms in artificial intelligence are
various, but many are based on the previous cases and generate combinatoric solutions,
including product attributes and rules. They are applied not only in product design itself
but also in supporting decisions in product design. Next, I discovered the major scientific
communities that contribute to product design using artificial intelligence. According to
Scimago’s classification system, the top three communities were engineering, computer
science, and business.

The second finding is based on the statistics derived from the classification of social
sustainability types of each article. Not surprisingly, the social sustainability associated
with physical and nonphysical infrastructure to support basic needs, which is development
social sustainability, was dominant. This leads to an imbalance among kinds of social
sustainability over time and by venue of publication. Social sustainability diversity seems
to be necessary, but one good sign is that the consideration of social sustainability has
increased, although its extent is small.

Based on knowledge of the contexts and contributions of the papers to different types
of social sustainability, I confirmed that big data and artificial intelligence contribute to
making product design not only smart but also sustainable. I also verified that bridge social
sustainability is often achieved when considering the life cycle of a product. Achieving
maintenance social sustainability is somewhat blurry, but it mostly involves meeting
demand preference. As our economy is more digitized and globalized, servitization
becomes important and artificial intelligence can help product design integrate product
and service to improve social sustainability.

This study had limitations. I used one major database in this study, but there are
several other resources for information retrieval on a certain topic. Additionally, I only
considered papers that are highly cited by scholars. In addition, the classification and
annotation of the types of social sustainability were done by a coder manually. This can be
performed by machine learning algorithms for classification. Moreover, the types of social
sustainability are not mutually exclusive.

The future directions are five folds. First, databases such as Web of Science can
be considered in addition to Scopus. Second, digital product design can be included
in addition to physical product design. For example, AI chatbot design in COVID-19
pandemic can be incorporated to cover health in social sustainability [143]. Third, all the
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papers can be included instead of highly cited papers. Fourth, multiple coders or automatic
coders can be used in classification of social sustainability types. Fifth, the relationships
among social sustainability types can be studied more.

Funding: This research was funded by the Korean Ministry of Education through National Research
Foundation of Korea, grant number NRF-2017R1C1B1010094; by Yonsei University through Yonsei
Future-leading Research Initiative, grant number 2017-22-0067; by AI-Factory Research Center, Urban
Communication Center, and Design Thinking Research Center in ICONS (Institute of Convergence
Science), Yonsei University.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The raw data can be retrieved from Scopus DB.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gimenez, C.; Sierra, V.; Rodon, J. Sustainable operations: Their impact on the triple bottom line. Int. J. Prod. Econ. 2012, 140, 149–159.

[CrossRef]
2. Elkington, J. Cannibals with Forks: The Triple Bottom Line of the 21st Century; New Society Publishers: Hamilton, ON, Canada, 1998.
3. Kleindorfer, P.R.; Singhal, K.; Van Wassenhove, L.N. Sustainable Operations Management. Prod. Oper. Manag. 2009, 14, 482–492.

[CrossRef]
4. Cruz, J.M. Wakolbinger, Multiperiod effects of corporate social responsibility on supply chain networks, transaction costs,

emissions, and risk. Int. J. Prod. Econ. 2008, 116, 61–74. [CrossRef]
5. Bae, J.K.; Kim, J. Product development with data mining techniques: A case on design of digital camera. Exp. Syst. Appl.

2011, 38, 9274–9280. [CrossRef]
6. Zhan, Y.; Tan, K.H.; Huo, B. Bridging customer knowledge to innovative product development: A data mining approach. Int. J.

Prod. Res. 2019, 57, 6335–6350. [CrossRef]
7. Chiner, M. Planning of expert systems for materials selection. Mater. Des. 1988, 9, 195–203. [CrossRef]
8. Wang, X.; Chan, H.K.; White, L. A comprehensive decision support model for the evaluation of eco-designs. J. Oper. Res. Soc.

2014, 65, 917–934. [CrossRef]
9. Zhu, J.; Deshmukh, A. Application of Bayesian decision networks to life cycle engineering in Green design and manufacturing.

Eng. Appl. Artif. Intell. 2003, 16, 91–103. [CrossRef]
10. Wang, X.; Chan, H.K.; Li, D. A case study of an integrated fuzzy methodology for green product development. Eur. J. Oper. Res.

2015, 241, 212–223. [CrossRef]
11. Corsini, L.; Moultrie, J. Design for Social Sustainability: Using Digital Fabrication in the Humanitarian and Development Sector.

Sustainability 2019, 11, 3562. [CrossRef]
12. Er, Ö.; Kaya, Ç. Problems or Opportunities?: Overcoming the Mental Barrier for Socially Responsible Design in Turkey. Des. J.

2008, 11, 159–181. [CrossRef]
13. Sklar, A.; Madsen, S. Global Ergonomics: Design for Social Impact. Ergon. Des. Q. Hum. Factors Appl. 2010, 18, 4–31. [CrossRef]
14. Remmen, A. Life Cycle Management: A Business Guide to Sustainability; Technical Report; UNEP/Earthprint: Paris, France, 2007.
15. Hutchins, M.J.; Sutherland, J.W. An exploration of measures of social sustainability and their application to supply chain decisions.

J. Clean. Prod. 2008, 16, 1688–1698. [CrossRef]
16. Zhou, Z.; Cheng, S.; Hua, B. Supply chain optimization of continuous process industries with sustainability consid-erations.

Comput. Chem. Eng. 2000, 24, 1151–1158. [CrossRef]
17. Koutsos, T.M.; Menexes, G.C.; Dordas, C.A.; Thomas, K.M.; Georgios, M.C. An efficient framework for conducting systematic

literature reviews in agricultural sciences. Sci. Total. Environ. 2019, 682, 106–117. [CrossRef] [PubMed]
18. Vallance, S.; Perkins, H.C.; Dixon, J.E. What is social sustainability? A clarification of concepts. Geoforum 2011, 42, 342–348.

[CrossRef]
19. Minsky, M. Steps toward Artificial Intelligence. Proc. IRE 1961, 49, 8–30. [CrossRef]
20. Marr, D. Artificial intelligence—A personal view. Artificial Intell. 1977, 9, 37–48. [CrossRef]
21. Dwivedi, Y.K.; Hughes, L.; Ismagilova, E.; Aarts, G.; Coombs, C.; Crick, T.; Duan, Y.; Dwivedi, R.; Edwards, J.; Eirug, A.;

et al. Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research,
practice and policy. Int. J. Inf. Manag. 2021, 57, 101994. [CrossRef]

22. Rao, S.S.; Nahm, A.; Shi, Z.; Deng, X. Artificial intelligence and expert systems applications in new product development—A
survey. J. Intell. Manuf. 1999, 10, 231–244. [CrossRef]

23. Santillan-Gutierrez, S.D.; Wright, I.C. Solution Clustering with Genetic Algorithms and DFA: An Experimental Approach. In AI
System Support for Conceptual Design; Springer: London, UK, 1996; pp. 37–53.

http://doi.org/10.1016/j.ijpe.2012.01.035
http://doi.org/10.1111/j.1937-5956.2005.tb00235.x
http://doi.org/10.1016/j.ijpe.2008.07.011
http://doi.org/10.1016/j.eswa.2011.01.030
http://doi.org/10.1080/00207543.2019.1566662
http://doi.org/10.1016/0261-3069(88)90031-3
http://doi.org/10.1057/jors.2013.23
http://doi.org/10.1016/S0952-1976(03)00057-5
http://doi.org/10.1016/j.ejor.2014.08.007
http://doi.org/10.3390/su11133562
http://doi.org/10.2752/175630608x329235
http://doi.org/10.1518/106480410X12737888532921
http://doi.org/10.1016/j.jclepro.2008.06.001
http://doi.org/10.1016/S0098-1354(00)00496-8
http://doi.org/10.1016/j.scitotenv.2019.04.354
http://www.ncbi.nlm.nih.gov/pubmed/31108265
http://doi.org/10.1016/j.geoforum.2011.01.002
http://doi.org/10.1109/JRPROC.1961.287775
http://doi.org/10.1016/0004-3702(77)90013-3
http://doi.org/10.1016/j.ijinfomgt.2019.08.002
http://doi.org/10.1023/A:1008943723141


Sustainability 2021, 13, 2668 26 of 29

24. Hewitt, C.; Planner, A. Language for proving theorems in robots. In Proceedings of the IJCAI, London, UK, 1–3 September 1971;
Volume 2.

25. Newell, A.; Simon, H.A. Computer science as empirical inquiry: Symbols and search. ACM Turing Award Lect. 2011, 19, 1975.
[CrossRef]

26. David, J.-M.; Krivine, J.-P.; Simmons, R. Second Generation Expert Systems: A Step Forward in Knowledge Engineering. In
Second Generation Expert Systems; Springer International Publishing: Berlin, Germany, 1993; pp. 3–23.

27. Hayes-Roth, F.; Lesser, V. Focus of Attention in the Hearsay-II Speech Understanding System; Defense Technical Information Center
(DTIC): Fort Belvoir, VA, USA, 1977.

28. Engelberger, J.F. Robotics in Practice; Kogan Page: London, UK, 1983.
29. Minsky, M. A Framework for Representing Knowledge; Reprinted in The Psychology of Computer Vision; Winston, P., Ed.; McGraw

Hill: New York, NY, USA, 1975.
30. Smith, R.G.; Mitchell, T.M.; Chestek, R.A.; Buchanan, B.G. A Model for Learning Systems; Defense Technical Information Center

(DTIC): Fort Belvoir, VI, USA, 1977.
31. Holland, J. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Application to Biology, Control and Artificial

Intelligence; MIT Press: Cambridge, MA, USA, 1975.
32. Selfridge, O. Pandemonium: A Paradigm for Learning. In Proceedings of the Mechanization of Thought Processes, National

Physics Laboratory, Teddington, UK, 24–27 November 1959.
33. Hammond, K.J. CHEF: A model of case-based planning. In Proceedings of the AAAI, Philadelphia, PA, USA, 11–15 August 1986;

pp. 267–271.
34. Pawlak, Z.; Grzymala-Busse, J.; Slowinski, R.; Ziarko, W. Rough sets. Commun. ACM 1995, 38, 88–95. [CrossRef]
35. Maes, P. Artificial life meets entertainment: Lifelike autonomous agents. Commun. ACM 1995, 38, 108–114. [CrossRef]
36. Saridakis, K.M.; Dentsoras, A.J. Soft computing in engineering design–A review. Adv. Eng. Inf. 2008, 22, 202–221. [CrossRef]
37. Nishant, R.; Kennedy, M.; Corbett, J. Artificial intelligence for sustainability: Challenges, opportunities, and a research agenda.

Int. J. Inf. Manag. 2020, 53, 102104. [CrossRef]
38. Sachs, J.D.; Schmidt-Traub, G.; Mazzucato, M.; Messner, D.; Nakicenovic, N.; Rockström, J. Six Transformations to achieve the

Sustainable Development Goals. Nat. Sustain. 2019, 2, 805–814. [CrossRef]
39. Vinuesa, R.; Azizpour, H.; Leite, I.; Balaam, M.; Dignum, V.; Domisch, S.; Nerini, F.F. The role of artificial intelligence in achieving

the Sustainable Development Goals. Nat. Commun. 2020, 11, 1–10. [CrossRef]
40. Acemoglu, D.; Restrepo, P. Artificial Intelligence, Automation and Work; National Bureau of Economic Research: Cambridge, MA,

USA, 2018. [CrossRef]
41. Anthony, L.F.W.; Kanding, B.; Selvan, R. Carbontracker: Tracking and predicting the carbon footprint of training deep learning

models. arXiv 2020, arXiv:2007.03051.
42. Norouzzadeh, M.S.; Nguyen, A.; Kosmala, M.; Swanson, A.; Palmer, M.S.; Packer, C.; Clune, J. Automatically identifying, counting,

and describing wild animals in camera-trap images with deep learning. Proc. Natl. Acad. Sci. USA 2018, 115, E5716–E5725.
[CrossRef] [PubMed]

43. Bolukbasi, T.; Chang, K.W.; Zou, J.Y.; Saligrama, V.; Kalai, A.T. Man is to computer programmer as woman is to homemaker?
debiasing word embeddings. Adv. Neural Inf. Process. Syst. 2016, 29, 4349–4357.

44. Nissim, M.; van Noord, R.; van der Goot, R. Fair is better than sensational: Man is to doctor as woman is to doctor. Comput.
Linguist. 2020. [CrossRef]

45. Khakurel, J.; Penzenstadler, B.; Porras, J.; Knutas, A.; Zhang, W. The Rise of Artificial Intelligence under the Lens of Sustainability.
Technol. 2018, 6, 100. [CrossRef]

46. Lahsen, M. Should AI be Designed to Save Us From Ourselves?: Artificial Intelligence for Sustainability. IEEE Technol. Soc. Mag.
2020, 39, 60–67. [CrossRef]

47. Khakurel, J.; Melkas, H.; Porras, J. Tapping into the wearable device revolution in the work environment: A systematic review.
Information Technol. People 2018. [CrossRef]

48. Serholt, S.; Barendregt, W.; Vasalou, A.; Alves-Oliveira, P.; Jones, A.; Petisca, S.; Paiva, A. The case of classroom robots: Teachers’
deliberations on the ethical tensions. AI Soc. 2017, 32, 613–631. [CrossRef]

49. Wisskirchen, G.; Biacabe, B.T.; Bormann, U.; Muntz, A.; Niehaus, G.; Soler, G.J.; von Brauchitsch, B. Artificial Intelligence and
Robotics and Their Impact on the Workplace; IBA Global Employment Institute: London, UK, 2017; Volume 11, pp. 49–67.

50. Zhao, R.; Liao, W.; Zou, B.; Chen, Z.; Li, S. Weakly-supervised simultaneous evidence identification and seg-mentation for
automated glaucoma diagnosis. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, Hawaii, 27 January–1
February 2019; Volume 33, pp. 809–816.

51. Wang, K.; Su, Z. Automated geometry theorem proving for human-readable proofs. In Proceedings of the Twenty-Fourth
International Joint Conference on Artificial Intelligence, Buenos Aires, Argentina, 15–25 August 2015.

52. Yano, K. How artificial intelligence will change HR. People Strategy 2017, 40, 42–47.
53. Kirkpatrick, K. AI in contact centers. Commun. ACM 2017, 60, 18–19. [CrossRef]
54. Lebeuf, C.; Storey, M.-A.; Zagalsky, A. Software Bots. IEEE Softw. 2018, 35, 18–23. [CrossRef]
55. Borenstein, J.; Arkin, R.C. Nudging for good: Robots and the ethical appropriateness of nurturing empathy and charitable

behavior. AI Soc. 2017, 32, 499–507. [CrossRef]

http://doi.org/10.1145/360018.360022
http://doi.org/10.1145/219717.219791
http://doi.org/10.1145/219717.219808
http://doi.org/10.1016/j.aei.2007.10.001
http://doi.org/10.1016/j.ijinfomgt.2020.102104
http://doi.org/10.1038/s41893-019-0352-9
http://doi.org/10.1038/s41467-019-14108-y
http://doi.org/10.2139/ssrn.3098384
http://doi.org/10.1073/pnas.1719367115
http://www.ncbi.nlm.nih.gov/pubmed/29871948
http://doi.org/10.1162/coli_a_00379
http://doi.org/10.3390/technologies6040100
http://doi.org/10.1109/MTS.2020.2991502
http://doi.org/10.1108/ITP-03-2017-0076
http://doi.org/10.1007/s00146-016-0667-2
http://doi.org/10.1145/3105442
http://doi.org/10.1109/MS.2017.4541027
http://doi.org/10.1007/s00146-016-0684-1


Sustainability 2021, 13, 2668 27 of 29

56. Blei, D.M. Probabilistic topic models. Commun. ACM 2012, 55, 77–84. [CrossRef]
57. Blei, D.M.; Ng, A.Y.; Jordan, M.I. Latent Dirichlet allocation. J. Mach. Learn. Res. 2003, 3, 993–1022.
58. Amado, A.; Cortez, P.; Rita, P.; Moro, S. Research trends on Big Data in Marketing: A text mining and topic modeling based

literature analysis. Eur. Res. Manag. Bus. Econ. 2018, 24, 1–7. [CrossRef]
59. Moro, S.; Cortez, P.; Rita, P. Business intelligence in banking: A literature analysis from 2002 to 2013 using text mining and latent

Dirichlet allocation. Expert Syst. Appl. 2015, 42, 1314–1324. [CrossRef]
60. Lee, K.; Jung, H.; Song, M. Subject–method topic network analysis in communication studies. Science 2016, 109, 1761–1787.

[CrossRef]
61. Song, M.; Kim, S.; Lee, K. Ensemble analysis of topical journal ranking in bioinformatics. J. Assoc. Inf. Sci. Technol. 2017, 68, 1564–1583.

[CrossRef]
62. Fortunato, S.; Bergstrom, C.T.; Börner, K.; Evans, J.A.; Helbing, D.; Milojević, S.; Barabási, A.L. Science of science. Science 2018, 359.
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