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Abstract  

 

Background: The amygdala is widely implicated in both anxiety and autism spectrum disorder. 

However, no studies have investigated the relationship between co-occurring anxiety and 

longitudinal amygdala development in autism. Here, the authors characterize amygdala 

development across childhood in autistic children with and without traditional DSM forms of 

anxiety and anxieties distinctly related to autism. 

Methods: Longitudinal MRI scans were acquired at up to four timepoints for 71 autistic and 55 

typically developing (TD) children (~2.5-12 years, 411 timepoints). Traditional DSM anxiety and 

anxieties distinctly related to autism were assessed at study Time 4 (~8-12 years) using a diagnostic 

interview tailored to autism: The Anxiety Disorders Interview Schedule-IV with the Autism 

Spectrum Addendum. Mixed effects models were used to test group differences at study Time 1 

(3.18 years), Time 4 (11.36 years), and developmental differences (age-by-group interactions) in 

right and left amygdala volume between autistic children with and without DSM or autism distinct 

anxieties, and TD. 

Results: Autistic children with DSM anxiety had significantly larger right amygdala volumes 

compared to TD at both study Time 1 (5.10% increase) and Time 4 (6.11% increase). Autistic 

children with autism distinct anxieties had significantly slower right amygdala growth compared 

to TD, autism-no anxiety, and autism-DSM anxiety groups and smaller right amygdala volumes 

at Time 4 compared to the autism-no anxiety (-8.13% decrease) and autism-DSM anxiety (-12.05% 

decrease) groups.  

Conclusions: Disparate amygdala volumes and developmental trajectories between DSM and 

autism distinct forms of anxiety suggest different biological underpinnings for these common, co-

occurring conditions in autism.   
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Introduction 

 

Symptoms of autism spectrum disorder (ASD or autism) include impaired social 

interaction and communication and restricted repetitive behaviors (1). It is estimated that 42-69% 

of autistic individuals also meet diagnostic criteria for a clinical anxiety disorder (2,3). Though the 

amygdala has been widely implicated in both anxiety and autism (4), only three studies have 

investigated associations between amygdala structure and anxiety within autism (5–7). No studies 

of autism have investigated the development of the amygdala longitudinally in relation to anxiety, 

nor the associations between different forms of anxiety and the amygdala in autism.  

 

Clinical anxiety can manifest in several forms, including generalized anxiety disorder 

(GAD), separation anxiety, specific phobia, and social phobia (henceforth ‘DSM anxiety’) (1). 

However, distinguishing anxiety from ASD symptoms is challenging (2,8). Recently developed 

tools recognize classically defined symptoms of anxiety (e.g., anticipatory anxiety, fearful 

avoidance) that manifest within contexts that are somewhat unique to autism. These symptoms 

would not be captured by traditional assessments (9). Such autism-distinct anxieties (henceforth 

‘distinct anxiety') include fears related to social confusion (as opposed to fear of negative 

evaluation which is required for a DSM diagnosis of social phobia), uncommon phobias (e.g., 

specific sounds, facial features), excessive worry related to losing access to materials related to 

circumscribed interests, and fears of change (3).  

 

 Research implicates disruption of the amygdala and its network of connections with the 

emergence of anxiety (4,10). However, studies of amygdala volume in children and adolescents 

have proved inconsistent, reporting both larger (11–15) and smaller (16–20) volumes being 
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associated with anxiety. Others found no associations (21,22) or associations dependent on sex 

(23,24) or anxiety type (25). These studies utilized a range of anxiety assessments including 

dimensional measures that are non-specific to the domains of anxiety described in the DSM (e.g., 

the Child Behavior Checklist [CBCL] and Screen for Child Anxiety Related Emotional Disorders 

[SCARED]) (26,27), and grouping individuals across DSM anxiety domains according to 

diagnostic interviews (e.g., Schedule for Affective Disorders and Schizophrenia for School-Age 

Children-Present and Lifetime version [K-SADS-PL]) (28). 

 

Altered amygdala structure and function has also been proposed to underlie social deficits 

observed in ASD (29–33). MRI studies of autistic children and adolescents have reported larger 

(31,33–38), smaller (39,40), and no differences (41–43) in amygdala volumes. In developmental 

terms, converging lines of evidence using MRI and histological (44) methodologies suggest that 

the amygdala in autism exhibits an initial volumetric overgrowth during early childhood that is 

then followed by a slowed trajectory of growth into adulthood. 

 

Despite high rates of anxiety in ASD, only three studies have investigated associations of 

amygdala structure with anxiety in autism. The first found enlarged right amygdala volumes to be 

associated with increased scores on the CBCL anxious/depressed subscale in autistic children (~4-

15 years) (6). A second recent study found no association between the amygdala and CBCL 

measures in the ABIDE dataset (7). The third compared two groups of autistic children (~7.5-17.5 

years) with and without a DSM anxiety diagnosis (5,45), and found autistic children with clinical 

DSM anxiety had smaller right amygdala volumes compared to those without (5). Thus, two 

studies indicate a relationship between anxiety and right amygdala volume but taken together 
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provide contradictory evidence as to whether amygdala volume is larger, smaller, or unrelated to 

anxiety in autism. Determining the relationship of amygdala volume within autistic development, 

with and without co-occurring anxiety, may identify biological correlates specific to these 

conditions and thus provide a valuable prodromal biological marker of anxiety in autism.  

 

In the current study, we characterize and test for anxiety associated differences in the 

trajectories of volumetric development of the amygdala across childhood (~2.5-12 years), as well 

as amygdala volumes during early (~3 years) and late (~11 years) childhood in autistic children 

with and without anxiety disorders. We utilized clinical interviews for both DSM and distinct 

anxiety to test if these forms of anxiety had different associations with amygdala volume and 

development in autism. We hypothesize that DSM anxiety will be associated with larger right 

amygdala volumes and faster development. We further expect anxieties distinctly related to autism 

will be associated with effects on the amygdala, but since this has not been previously investigated 

have no a priori prediction as to the nature of this relationship. 

 

Methods and Materials 

Participants 

Participants were enrolled in the UC Davis MIND Institute Autism Phenome Project, a 

longitudinal study consisting of MRI scanning at four timepoints, enrollment/baseline at 24-42 

months of age (Time 1), follow-up at annual intervals for two time points (Time 2 and 3), and ~9-

12 years of age (Time 4). The current study included data from all participants who completed 

MRI and anxiety assessments at Time 4 (Table 1, Supplementary Figure 1). At Time 1, ASD 

diagnosis was confirmed using the Autism Diagnostic Observation Schedule-Generic (ADOS-G) 
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(46) or ADOS-2 (47), the Autism Diagnostic Interview-Revised (ADI-R) (48) and DSM-IV-TR 

criteria (49). At Time 1, developmental quotient (DQ) was assessed using the Mullen Scales of 

Early Learning (MSEL) (50). IQ was assessed at Time 4 using the Differential Ability Scales 

second edition (DAS-II) (51). Informed consent was obtained from the parent or guardian of each 

participant. All aspects of the study protocol were approved by the University of California Davis 

Institutional Review Board. See supplementary materials. 

 

Anxiety Assessment 

Anxiety was assessed at Time 4 using the Anxiety Disorders Interview Schedule-IV-Parent 

Interview (ADIS) (45) with the Autism Spectrum Addendum (ADIS-ASA), a semi-structured 

diagnostic interview designed to differentiate anxiety and autism symptoms (9). The ADIS 

includes modules relating to separation, social, specific phobia, and generalized anxiety disorders 

(DSM anxiety). Additionally, the ADIS-ASA assesses forms of anxiety distinctly related to autism, 

including idiosyncratic fears, fear relating to social confusion, special interest fears, and fears of 

change (distinct anxiety). For each module a clinical severity rating (CSR) ranging from 0 (no 

interference) to 8 (severe interference) is prescribed, with 4 being the cutoff for clinical 

determination of significant interference. Rates of anxiety and assessment within this cohort have 

been described in detail previously (3). Additional measures were acquired at both Time 1 and 

Time 4 including; the CBCL (27), Repetitive Behavior Scale (RBS) (52), Short Sensory Profile 

(SSP) (53), SSP 2 (54), and Social Responsiveness Scale (SRS) (55). See supplementary materials. 

 

Magnetic Resonance Imaging Acquisition and Region of Interest Approach 
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All T1-weighted structural MRI scans were acquired at the UC Davis Imaging Research 

Center on a 3T Siemens Trio. Time 1-3 scans were acquired during natural nocturnal sleep (56). 

Time 4 scans were acquired while participants were awake using previously described methods 

(57). Distortion corrected, anonymized, and defaced images were uploaded to MRICloud 

(https://mricloud.org) (58) and segmented into 289 anatomically defined regions using a multi-

atlas approach (59). Volumes from the left and right amygdala, and hemispheres, were exported 

for statistical modeling. See supplementary materials. 

 

Statistical Modeling 

Linear mixed effects modeling was performed using R v.3.6 (R Core Team, 2019). We first 

compared differences in amygdala volumes and development associated with anxiety between 

autistic children with (ADIS DSM CSR>=4) and without DSM anxiety, and with (ADIS-ASA 

distinct anxiety CSR>=4) and without distinct anxiety. Models included all autistic individuals 

with categorical factors for DSM and distinct anxiety, and sex, age in months and hemispheric 

volume as covariates, and individual as a random effect with age as a random slope. Here, 

overlapping anxieties are accounted for by separate DSM and distinct categorical variables.  

 

A secondary analysis was conducted to compare amygdala volumes and development 

between five groups of interest: ASD with 1) only DSM anxiety, 2) only distinct anxiety, 3) both 

DSM and distinct anxiety, 4) no clinical anxiety, and 5) TD without anxiety. Effects of interest for 

all analyses were mean group differences at the average age at study Time 1 (38.11 months/3.18 

years), Time 4 (136.30 months/11.36 years), and differences in developmental trajectories between 

groups (age-by-group interactions). Age was modeled by selecting from a range of polynomial 
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terms (-3,-2,-1,-0.5,0.5,1,2,3) that returned the lowest log likelihood (left=0.5, right=-0.5) (60). 

Analyses were repeated separately for the left and right amygdala. Results for each analysis were 

corrected for using false discovery rate (FDR) (61) within each hemisphere.  

 

Results 

Demographics and Anxiety 

Autistic and TD children did not significantly differ (p>0.05, two-tailed t-test) for age of 

scan at Time 4 and age of ADIS-ASA assessment. Compared to the TD sample, autistic children 

had significantly lower overall IQ scores (p<0.001) and less longitudinal timepoints per individual 

(p=0.008). Compared to TD, the ASD sample also contained a significantly higher proportion of 

males (2=4.39, p=0.03).  

 

Within the autism sample, 61% (43/71) of participants met diagnostic criteria for at least 

one form of clinical anxiety, with 45% (32/71) meeting criteria for one or more DSM anxieties, 

39% (28/71) meeting criteria for one or more distinct anxieties, and 24% (16/71) meeting criteria 

for both a DSM and distinct anxiety. In total, 39% (28/71) of autistic children did not reach clinical 

thresholds for any anxiety type (Table 1). No significant differences (ANOVA p>0.05) were found 

between ASD groups with 1) only DSM anxiety, 2) only distinct anxiety, 3) both DSM and distinct 

anxiety, and 4) no clinical anxiety in terms of Time 4 scan age, number of MRI timepoints, IQ, or 

ADOS Calibrated Severity Score (CSS). No significant differences were found for the male-to-

female ratio between the four ASD groups (2=5.10, p=0.16).  
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Differences in amygdala volumes associated with clinical DSM anxieties and autism-distinct 

anxieties 

Compared to autistic children without DSM anxieties, those with DSM anxieties (CSR>=4) 

had larger right amygdala volumes at Time 4 (4.94% mean increase, p=0.017, FDR p=0.038), no 

statistically significant differences were observed in the left amygdala. Compared to autistic 

children without distinct anxiety, those with distinct anxiety (CSR>=4) showed smaller right and 

left amygdala volumes at both Time 1 (Right, -4.02% mean decrease, p=0.019, FDR p=0.38 ; Left, 

-5.54%, p=0.006, FDR p=0.018), and Time 4 (Right, -4.91% mean decrease, p=0.001, FDR 

p=0.038 ; Left, -7.14%, p=0.002, FDR p=0.012). Autistic children with autism distinct anxiety 

also showed a statistical trend (p=0.049, FDR p=0.074) of slower right amygdala development 

compared to autistic children without distinct anxiety (Figure 1, Table 2).  

 

Differences between autistic children with: only DSM anxiety, only distinct anxiety, both DSM and 

distinct anxieties, no clinical anxiety, and TD 

The above analyses indicate differential associations of amygdala volume between autistic 

children with DSM (increased volume) and distinct (decreased volume) anxieties. Given the 

overlap within participants of DSM and distinct anxiety diagnoses, and to investigate the 

relationship of amygdala volume with TD, we conducted a secondary analysis of amygdala volume 

and development between five groups of interest; autism with 1) only DSM anxieties (n=16) 

(ASD-DSM), 2) only distinct anxieties (ASD-distinct) (n=11), 3) both DSM and distinct anxieties 

(ASD-both anxieties) (n=16), 4) no clinical anxiety (ASD-no anxiety) (n=28), and 5) TD without 

clinical anxiety (n=55) (Figure 2, Table 3, Supplementary Table 3). 
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The ASD-DSM group had significantly larger right amygdala volumes at both study Time 

1 (5.10% mean increase, p=0.008 FDR, p=0.038) and Time 4 (6.11% mean increase, p=0.009, 

FDR, p=0.038) compared to TD. No differences in amygdala developmental trajectories between 

the ASD-DSM group and ASD-no anxiety or TD groups were observed. The ASD-distinct group 

was found to have a significantly altered developmental trajectory of the right amygdala marked 

by slower growth compared to the TD (p=0.009, FDR p=0.038), ASD-no anxiety (p=0.009, FDR 

p=0.038), and ASD-DSM (p=0.006, FDR p=0.038) groups. Slower right amygdala development 

in the ASD-distinct group resulted in significantly smaller right amygdala volume at Time 4 (11.36 

years) compared to the ASD-no anxiety (-8.13% mean decrease, p=0.004, FDR p=0.038) and 

ASD-DSM (-12.05% mean decrease, p<0.001, FDR p=0.010) groups. No results for the left 

amygdala reached statistical significance after FDR correction. 

 

Effects of IQ and autism severity on anxiety group differences 

No significant differences in IQ or ADOS CSS measures were found between the four 

autism groups (ANOVA p>0.05) and inclusion of these variables within models did not change 

statistically significant differences between the groups, nor were they significantly associated with 

amygdala volumes. Compared to TD, autistic children showed non-significant increases in left 

(t=1.85, p=0.066) and right (t=1.76, p=0.079) hemispheric volumes. Utilizing the same five group 

mixed effects model structure, no significant differences between groups in either left or right 

hemisphere volumes were observed at Time 1, Time 4, or developmentally (i.e., age-by-group 

interactions), suggesting that our findings are not due to global hemispheric effects 

(Supplementary Table 1). No significant age-by-group-by-baseline amygdala volume effects 

between the distinct anxiety and other groups were found (Supplementary Table 2). 
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Post-hoc Behavioral Analyses 

To determine if differences in behaviors associated with autism could explain amygdala 

differences between DSM and distinct anxiety groups, we performed exploratory post-hoc 

analyses to investigate differences between the ASD-DSM, ASD-distinct, ASD-both anxieties, 

and ASD-no anxiety groups in measures including; the CBCL subscales (27), RBS (52), SSP 

(Time 1) and SSP 2 (Time 4) (53,54), and SRS (55). At Time 4, the ASD-DSM and both anxieties 

groups had significantly higher CBCL anxious depressed and DSM anxiety problems t-scores 

compared to the ASD-distinct and ASD-no anxiety groups (ANOVA p<0.05, Tukey-honest 

p<0.05). These results indicate concordance between CBCL and ADIS assessments of DSM 

anxiety. The ASD-DSM group also showed significantly higher CBCL internalizing behavior 

scores compared to the ASD-distinct and ASD-no anxiety groups (ANOVA p<0.05, Tukey-honest 

p<0.05). Also, at Time 4 autism groups with anxiety (of any kind) had higher measures of CBCL 

thought problems, total SSP 2, and total RBS scores compared to the ASD-no anxiety group; 

however Tukey-honest tests showed these elevated scores to only be significant for the ASD-both 

anxieties group (CBCL thought problems and RBS) or the ASD-both and ASD-DSM groups (SSP 

2) compared to the ASD-no anxiety group (ANOVA p<0.05, Tukey-honest p<0.01). These 

findings indicate that autistic children with DSM and/or distinct anxiety experience elevated levels 

of sensory sensitivities, unusual thought processes and repetitive and restricted behaviors – all 

potential indications of elevated distress in anxious autistic children (62). The ASD-both group 

also had significantly higher Time 4 SRS scores compared to the ASD-no anxiety group (ANOVA 

p=0.02, Tukey-honest p<0.01). No significant differences between groups in CBCL subscales, 

total SRS, RBS, or SSP were observed at Time 1 (Supplementary Tables 3-6).  
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Discussion 

The primary aim of this study was to characterize amygdala volume and development 

across childhood in relation to different types of anxiety in autistic children. We examine two 

categories of problematic anxiety in ASD: traditional DSM anxieties and anxieties distinct to 

autism contexts (2,3). Initial analyses comparing autistic children with and without these anxieties 

revealed DSM anxiety to be associated with enlarged amygdala volumes and distinct anxieties to 

be associated with smaller amygdala volumes. A second analysis comparing TD children and four 

subgroups of autistic children (only DSM anxiety, only distinct anxiety, those with both anxieties, 

and no anxiety) found DSM anxiety to be associated with larger right amygdala volumes compared 

to TD at both ~3 (Time 1) and ~11 (Time 4) years-of-age but no differences in developmental 

trajectory. Autistic children with distinct anxiety had slower development of the right amygdala 

from the ages of ~3-11 compared to TD and other autistic children, and smaller right amygdala 

volumes at ~11 years of age compared to other autistic children. These results support an 

association, albeit a complex one, between amygdala volume, ASD, and co-occurring anxiety. Our 

results also identify a novel association between the development of amygdala volume and 

anxieties distinctly related to autism.  

 

The only three previous studies of amygdala volumes and anxiety in ASD report conflicting 

results: finding both larger (6) and smaller (5) right amygdala to be related to anxiety, or no 

associations (7). The current results support traditional DSM anxieties being associated with larger 

amygdala volumes. Autism distinct anxieties are estimated to occur at relatively high frequencies 

in autistic children (3) and have not been previously accounted for in imaging research. 
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Accordingly, associations of smaller amygdala volumes in autistic children with these distinct 

anxieties may partially explain inconsistent findings in ASD.  

 

We found that autistic children with anxiety have elevated sensory sensitivities (SSP), 

repetitive behaviors (RBS), and ‘thought problems’ (CBCL) which may be indicative of elevated 

levels of distress. We also noted that autistic children with DSM anxiety had higher CBCL 

internalizing behavior scores compared to those with distinct anxiety or no anxieties. However, no 

differences in CBCL internalizing behaviors were observed between the distinct anxiety and no-

anxiety groups. Despite finding no differences in measures of core autism features (e.g., ADOS-

CSS) between children with and without distinct anxieties, we hypothesize that a latent variable 

related to the autism phenotype contributes to both autism distinct anxieties and smaller amygdala 

volumes. Others have reported smaller amygdala volumes in ASD to be associated with decreased 

joint attention, eye fixation, and emotional face processing speeds (31,42). Emergence of smaller 

right amygdala volumes due to slower development is indicative of a brain-behavior relationship 

between amygdala development and onset of distinct anxieties. Replication and future studies are 

needed to further examine the phenomenology of distinct anxieties and the ways in which their 

behavioral as well as neurobiological profiles relate to autism and vary from those of DSM anxiety.  

 

We found that autistic children with DSM anxiety had the largest amygdala volumes 

compared to other groups, with significantly larger right amygdala volumes compared to TD at 

both ~3 and ~11 years of age. It is important to emphasize that amygdala enlargement in autistic 

children with DSM anxiety was already present at 3 years-of-age, before clinical anxiety is 

typically diagnosed. This, and the finding that there were no differences in the trajectory of 
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amygdala development between ~2.5-12 years would suggest that the process responsible for 

enlarged amygdala related to DSM anxiety occurred either prenatally or during an early postnatal 

period. This indicates that enlarged amygdala may be a potential prodromal marker of anxiety in 

autism. Amygdala enlargement also predating elevated CBCL measures of anxiety in the ASD-

DSM group, however this may be attributable to low sensitivity of the CBCL within a sample of 

autistic children who were likely to be developmentally below the cognitive start age of the CBCL 

(1.5 years) at study enrollment (3).  

 

Autistic children without anxiety also showed statistical trends toward having larger 

amygdala volumes compared to TD children while the group of autistic children with both DSM 

and distinct anxieties had marginally smaller amygdala volumes than autistic children without 

anxiety. Opposing associations of amygdala volume with DSM (larger) and distinct (smaller) 

anxieties is also supported by autistic children with both forms of anxiety having amygdala 

volumes between those of the DSM and distinct anxiety groups. Further studies with larger 

samples will be needed to confirm these trends. While the underlying mechanisms contributing to 

smaller and larger amygdala volumes are unclear, larger volumes could be a product of atypical 

amygdala neurogenesis, which has been noted in ASD (44), while both biological mechanisms 

(e.g. excitotoxicity) (63) and environmental factors (e.g. poorer quality social interaction) (64) 

could contribute to stunted amygdala development. The process of untangling these various factors 

may be difficult since we suspect that neurophenotypic differences between autistic individuals 

with and without anxiety arise from complex interactions between biological and environmental 

variables that likely differ on an individual basis.  
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Significant differences in amygdala volume between autistic individuals with and without 

autism distinct anxiety were found bilaterally. However, effects between TD and different autism 

anxiety groups (DSM only, distinct only, both DSM and distinct, and no anxiety) were only 

significant within the right hemisphere. This is consistent with the two previous studies that have 

reported relationships between anxiety and amygdala volume in autism (5,6). However, positive 

associations between both left and right amygdala activation and anxiety have been reported in 

autism (65,66). Meta analyses have reported predominately leftward lateralization of amygdala 

activation in response to various emotional processing tasks, which has been postulated to result 

from increased right amygdala habituation (67,68). Indeed emotional processing functional 

imaging studies suggest the right amygdala to be more engaged in rapid processing of potentially 

threatening stimuli, and the left in prolonged stimulus evaluation (67,69,70). Thus, while the 

amygdala is likely to be affected bilaterally in autistic children with anxiety, a failure of the right 

amygdala to habituate to anxiolytic stimuli may contribute to the current lateralized findings.   

 

Consistent with the Research Domain Criteria (RDoC) framework (30,66), previous 

findings suggest that effects of DSM forms of anxiety on the amygdala may cut across diagnostic 

boundaries. For example, functional MRI studies report increased amygdala activation in response 

to facial processing tasks and resting state amygdala-prefrontal decoupling to be related to anxiety 

both in ASD (65,66,71,72) and other populations (4,10,73,74). Furthermore, a recent longitudinal 

study found positive associations of amygdala volume with anxiety levels from 4-18 years of age 

in TD (13). The current study was limited by a lack of a control group comprised of non-autistic 

individuals with clinically significant DSM anxiety. However, we would hypothesize such 

amygdala enlargement in non-autistic anxious individuals based on our findings of larger 
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amygdala volumes being associated with DSM anxieties in ASD. In this view, divergent findings 

of smaller amygdala volumes associated with distinct anxieties may indicate that these 

manifestations of anxiety are not only distinctly related to autism but are also distinct from 

traditional DSM classification of anxieties. However, given that distinct anxieties are intrinsically 

linked to autism and less commonly reach clinical levels in non-autistic individuals, direct 

comparison of distinct anxieties between autistic and non-autistic groups will be challenging.  

 

This study benefited from a longitudinal design that allowed for the characterization of 

amygdala growth across early to mid-childhood as well as clinician-based assessments of both 

traditional DSM and autism distinct anxieties. However, it is important to note limitations. The 

individual anxiety groups had relatively small sample sizes. Both DSM and distinct anxieties 

incorporate multiple anxiety subtypes which may, in themselves, have different developmental 

effects on amygdala volume (25); our sample sizes precluded investigating differences between 

individual forms of anxiety. Complicating this further is multiple co-occurring anxiety diagnoses. 

For example, of the 32 autistic children in our sample with a DSM anxiety diagnosis, 37.5% (n=12) 

meet ADIS criteria for two or more DSM anxiety diagnoses. We assessed autism distinct anxiety 

using the ADIS-ASA, a diagnostic clinical interview. However, future studies could utilize autism 

specific parental and patient anxiety reports which may provide more dimensional assessments of 

anxiety and be easier to widely implement across large samples (75,76). We focused solely on the 

amygdala due to the structure’s broad implications in both anxiety and ASD. However, the 

amygdala is highly interconnected with other brain regions and thus investigating a broader neural 

network critical for social and emotional processing in a multimodal fashion would undoubtedly 

be informative. Higher resolution imaging would afford the ability to investigate individual 
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contributions of the 13 subnuclei which are exceedingly challenging to segment given the standard 

~1mm3 resolution of current structural MRI scans. Finally, consistent with previous findings in 

TD (77) and autism (37,78), we found a significant effect of sex, with males having larger 

amygdala volumes than females. The current study included an insufficient number of autistic 

females to investigate sex-by-anxiety interactions in amygdala volumes, which is critically 

important given findings by our group indicating sex specific relationships of amygdala volumes 

with psychopathology (79), and in the amygdala resting-state connectome (80) in larger samples 

at younger ages.  

 

In conclusion, the current study aimed to investigate the effect of different forms of anxiety 

on amygdala volume and development in autistic children. Traditional DSM forms of anxiety were 

found to be associated with larger right amygdala volumes while anxieties distinctly related to 

autism were associated with smaller right amygdala volumes and slower right amygdala 

development. While additional studies are needed to clarify amygdala-anxiety relationships, 

considering previous findings these results support DSM anxiety having common effects on 

amygdala volume across diagnostic classifications. Opposing amygdala volumetric relationships 

between autism distinct anxieties compared to DSM anxieties suggest that these autism related 

anxiety presentations may be associated with a distinct syndrome of anxiety closely related to the 

autistic phenotype. Collectively these results indicate that the amygdala is an important brain 

region for future efforts to identify and stratify those autistic individuals who endure debilitating 

co-occurring anxiety.   
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Table 1: Time Four Participant Demographics 

  

 
ASD (n=71) TD (n=55) 

Male / Female 57 / 14 34 / 21 
Age 11.18 (1.39) 11.34 (0.67) 

IQ  80.54 (28.77) 111.58 (12.82) 
ADOS CSS 7.5 (1.96) - 

ADOS social CSS 7.3 (1.73) - 
ADOS repetitive restricted behavior CSS 7.8 (1.92) - 

     

ADIS-DSM Anxiety 32 45% - - 

General Anxiety Disorder 12 17% - - 
Separation Anxiety 7 10% - - 

Social Phobia 5 7% - - 
Specific Phobia 27 38% - - 

ADIS-DIST Anxiety 28 39% - - 
Other Social Fear 5 7% - - 

Atypical Phobia 10 14% - - 
Special Interest Fear 4 6% - - 

Fear of Change 15 21% - - 
     

Only ADIS-DSM Anxiety 15 21% - - 

Only ADIS-DIST Anxiety 11 15% - - 

Both DSM and DIST Anxiety 17 24% - - 

Neither DSM or DIST Anxiety 28 39% 55 100% 
     

Scans per participant 3.08 (0.90) 3.49 (0.74) 

Scans at Time 1 67 53 
Scans at Time 2 47 45 

Scans at Time 3 34 39 
Scans at Time 4 71 55 

Total number of Scans 219 192 
Number of participants with four scans 32 35 

Number of participants with three scans 13 12 
Number of participants with two scans 26 8 

Note: IQ and autism diagnostic observation schedule (ADOS) calibrated severity scores (CCS) are given for study 
time four. ASD=autism spectrum disorder, TD= typically developing, ADIS-DSM = Anxiety Disorders Interview 
Schedule DSM anxieties, ADIS-DIST = autism spectrum addendum autism distinct anxieties.  

Jo
urn

al 
Pre-

pro
of



 27 

Note: Regression table for models of left and right amygdala volume between children autism spectrum disorder (ASD) with and 
without DSM anxiety (ASD-DSM, ASD-noDSM) and with and without autism distinct anxiety anxiety (ASD-DIST, ASD-
noDIST). Effects of interest are shown for mean age of study Time 1 (T1, 38.11 months/3.18 years) and Time 4 (T4, 136.30 
months/11.36 years) as well as developmental differences (age-by-group interactions). Note that here some individuals within the 
DSM/DIST ANX groups have duel DSM and distinct anxiety diagnoses, also individuals within the no DSM group may have 
distinct CSR scores >=4 (and vice versa for the no DIST group). These overlapping anxieties are accounted for by modeling 
separate DSM and distinct categorical variables. Reference group is always indicated first. Coef=coefficient, SE=standard error, 
DF=degrees of freedom, p=uncorrected p value, FDR p= false discovery rate adjusted p value. % Diff. = percent difference in 
amygdala volume between groups at Time 1 and Time 4 including (95% confidence range of percent differences). *effects of 
interest p<0.05, **effects of interest FDR p<0.05 
  

Table 2: Amygdala associations with autism distinct and DSM anxiety in autism     
       

 

Left Amygdala Coef. SE DF t p FDR 

p 

% Diff. 

intercept 1649.86 22.99 144.00 71.77 <0.001 - - 
scan age^0.5 35.03 5.22 144.00 6.71 <0.001 - - 
sex (male reference) -47.14 40.28 67.00 -1.17 0.246 - - 
hemisphere 0.00 0.00 144.00 4.64 <0.001 - - 
**T1: ASD-noDSM v ASD-DSM -92.05 32.31 67.00 -2.85 0.006 0.018 5.54 (-0.03 to 10.82) 
T1: ASD-noDIST v ASD-DIST 26.69 31.18 67.00 0.86 0.395 0.474 -1.66 (3.86 to -7.48) 
**T4: ASD-noDSM v ASD-DSM -132.67 40.60 67.00 -3.27 0.002 0.012 7.14 (0.91 to 13.02) 
T4: ASD-noDIST v ASD-DIST 36.18 39.54 67.00 0.91 0.363 0.474 -2.03 (4.25 to -8.70) 
Age-by-Group: ASD-noDIST v ASD-DIST  -7.38 6.02 144.00 -1.23 0.222 0.444 - 
Age-by-Group: ASD-noDSM v ASD-DSM  1.72 5.90 144.00 0.29 0.771 0.771 -  

       

Right Amygdala Coef. SE DF t p FDR 

p 
% Diff. 

intercept 1811.58 22.13 144.00 81.88 <0.001 - - 
scan age^-0.5 -2171.38 379.38 144.00 -5.72 <0.001 - - 
sex (male reference) -19.84 39.23 67.00 -0.51 0.615 - - 
hemisphere 0.00 0.00 144.00 5.89 <0.001 - - 
**T1: ASD-noDSM v ASD-DSM -74.47 31.08 67.00 -2.40 0.019 0.038 4.02 (-0.92 to 8.73) 
T1: ASD-noDIST v ASD-DIST 37.26 29.96 67.00 1.24 0.218 0.218 -2.07 (2.80 to -7.19) 
**T4: ASD-noDSM v ASD-DSM -140.37 40.03 67.00 -3.51 0.001 0.006 6.91 (1.33 to 12.22) 
**T4: ASD-noDIST v ASD-DIST 95.25 39.02 67.00 2.44 0.017 0.038 -4.94 (0.86 to -11.09) 
*Age-by-Group: ASD-noDIST v ASD-DIST  863.31 434.14 144.00 1.99 0.049 0.074 - 
Age-by-Group: ASD-noDSM v ASD-DSM  -759.75 425.12 144.00 -1.79 0.076 0.091 - Jo
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Table 3: Amygdala associations between ASD groups with different anxiety types and TD  

        

Left Amygdala Coef. SE DF t p 
FDR 

p 

% Diff. 

(Intercept) 1625.44 19.27 277 84.33 <0.001 - - 
scan age^0.5 26.95 3.63 277 7.42 <0.001 - - 
sex (male reference) -83.57 26.05 122 -3.21 0.002 - - 
hemisphere 0.00 0.00 277 7.29 <0.001 - - 
T1:TD v ASD-no ANX 35.58 29.37 122 1.21 0.228 0.474 -2.22 (2.85 to -7.52) 
T1:TD v ASD-DIST ANX -63.53 41.79 122 -1.52 0.131 0.393 3.97 (-2.94 to 10.59) 
T1:TD v ASD-DSM ANX 40.29 34.77 277 1.16 0.248 0.474 -2.52 (3.31 to -8.60) 
T1: TD v ASD-DSM & DIST ANX -12.22 33.21 277 -0.37 0.713 0.832 0.76 (-5.07 to 6.35) 
*T1: ASD-no ANX v ASD-DIST ANX -99.11 44.87 122 -2.21 0.029 0.164 6.05 (-1.52 to 13.20) 
T1: ASD-no ANX v ASD-DSM ANX 4.71 38.10 277 0.12 0.902 0.933 -0.29 (6.13 to -7.10) 
T1: ASD-no ANX v ASD-DSM & DIST ANX -47.80 37.49 277 -1.28 0.203 0.469 2.92 (-3.62 to 9.09) 
*T1: ASD-DIST ANX v ASD-DSM ANX 103.82 48.40 277 2.15 0.033 0.164 -6.75 (1.96 to -16.36) 
T1: ASD-DIST ANX v ASD-DSM & DIST ANX 51.31 47.85 277 1.07 0.285 0.474 -3.34 (5.05 to -12.58) 
T1: ASD-DSM ANX v ASD-DSM & DIST ANX -52.51 39.31 278 -1.34 0.183 0.457 3.20 (-4.11 to 9.99) 
T4:TD v ASD-no ANX 66.48 36.17 122 1.84 0.069 0.294 -3.80 (2.00 to -9.89) 
T4:TD v ASD-DIST ANX -55.01 51.06 122 -1.08 0.283 0.474 3.14 (-4.70 to 10.61) 
*T4:TD v ASD-DSM ANX 96.46 44.39 277 2.17 0.031 0.164 -5.51 (1.34 to -12.71) 
T4: TD v ASD-DSM & DIST ANX -15.00 41.96 277 -0.36 0.721 0.832 0.86 (-5.91 to 7.30) 
*T4: ASD-no ANX v ASD-DIST ANX -121.49 54.75 122 -2.22 0.028 0.164 6.69 (-1.71 to 14.56) 
T4: ASD-no ANX v ASD-DSM ANX 29.98 48.39 277 0.62 0.536 0.699 -1.65 (5.69 to -9.49) 
T4: ASD-no ANX v ASD-DSM & DIST ANX -81.48 46.76 277 -1.74 0.083 0.310 4.49 (-2.89 to 11.40) 
*T4: ASD-DIST ANX v ASD-DSM ANX 151.47 60.34 277 2.51 0.013 0.164 -8.94 (1.02 to -17.97) 
T4: ASD-DIST ANX v ASD-DSM & DIST ANX 40.01 59.05 277 0.68 0.499 0.699 -2.36 (7.01 to -12.81) 
*T4: ASD-DSM ANX v ASD-DSM & DIST ANX -111.46 51.43 278 -2.17 0.031 0.164 6.04 (-2.21 to 13.62) 
Age-by-group: TD v ASD-no ANX 5.61 5.22 277 1.08 0.283 0.474 - 
Age-by-group: TD v ASD-DIST ANX 1.55 7.45 277 0.21 0.835 0.895 - 
Age-by-group: TD v ASD-DSM ANX 10.21 6.51 277 1.57 0.118 0.393 - 
Age-by-group: TD v ASD-DSM & DIST ANX -0.51 6.30 277 -0.08 0.936 0.936 - 
Age-by-group: ASD-no ANX v ASD-DIST ANX -4.07 8.05 277 -0.51 0.614 0.767 - 
Age-by-group: ASD-no ANX v ASD-DSM ANX 4.59 7.18 277 0.64 0.523 0.699 - 
Age-by-group: ASD-no ANX v ASD-DSM & DIST ANX -6.12 6.99 277 -0.88 0.382 0.573 - 
Age-by-group: ASD-DIST ANX v ASD-DSM ANX 8.66 8.94 277 0.97 0.333 0.526 - 
Age-by-group: ASD-DIST ANX v ASD-DSM & DIST ANX -2.05 8.79 277 -0.23 0.815 0.895 - 
Age-by-group: ASD-DSM ANX v ASD-DSM & DIST ANX -10.72 8.01 278 -1.34 0.182 0.457 - 
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Right Amygdala Coef. SE DF t p FDR 

p 
% Diff 

(Intercept) 1763.83 18.38 277 95.96 <0.001 - - 
Scan age^-0.5 -2219.73 273.45 277 -8.12 <0.001 - - 
sex (male reference) -83.95 25.18 122 -3.33 0.001 - - 
hemisphere 0.00 0.00 277 8.10 <0.001 - - 
T1:TD v ASD-no ANX 49.78 27.90 122 1.78 0.077 0.210 -2.86 (1.66 to -7.56) 
T1:TD v ASD-DIST ANX 11.06 39.92 122 0.28 0.782 0.835 -0.64 (5.34 to -6.85) 
**T1:TD v ASD-DSM ANX 88.78 33.17 277 2.68 0.008 0.038 -5.10 (0.13 to -10.54) 
T1: TD v ASD-DSM & DIST ANX 34.09 31.79 277 1.07 0.284 0.474 -1.96 (3.11 to -7.22) 
T1: ASD-no ANX v ASD-DIST ANX -38.71 42.90 122 -0.90 0.369 0.553 2.16 (-4.57 to 8.55) 
T1: ASD-no ANX v ASD-DSM ANX 39.00 36.36 277 1.07 0.284 0.474 -2.18 (3.52 to -8.18) 
T1: ASD-no ANX v ASD-DSM & DIST ANX -15.68 35.96 277 -0.44 0.663 0.796 0.88 (-4.93 to 6.40) 
T1: ASD-DIST ANX v ASD-DSM ANX 77.72 46.33 277 1.68 0.095 0.236 -4.44 (2.88 to -12.38) 
T1: ASD-DIST ANX v ASD-DSM & DIST ANX 23.03 45.94 277 0.50 0.616 0.796 -1.31 (5.77 to -9.01) 
T1: ASD-DSM ANX v ASD-DSM & DIST ANX -54.68 38.51 278 -1.42 0.157 0.313 2.99 (-3.32 to 8.92) 
T4:TD v ASD-no ANX 58.92 35.88 122 1.64 0.103 0.238 -3.09 (2.19 to -8.61) 
*T4:TD v ASD-DIST ANX -101.14 50.72 122 -1.99 0.048 0.145 5.30 (-1.78 to 12.06) 
**T4:TD v ASD-DSM ANX 116.74 44.11 277 2.65 0.009 0.038 -6.11 (0.15 to -12.66) 
T4: TD v ASD-DSM & DIST ANX 42.66 41.50 277 1.03 0.305 0.481 -2.23 (3.68 to -8.42) 
**T4: ASD-no ANX v ASD-DIST ANX -160.07 54.42 122 -2.94 0.004 0.038 8.13 (0.47 to 15.34) 
T4: ASD-no ANX v ASD-DSM ANX 57.82 48.13 277 1.20 0.231 0.433 -2.94 (3.87 to -10.17) 
T4: ASD-no ANX v ASD-DSM & DIST ANX -16.26 46.34 277 -0.35 0.726 0.835 0.83 (-6.02 to 7.28) 
**T4: ASD-DIST ANX v ASD-DSM ANX 217.88 60.02 277 3.63 <0.001 0.010 -12.05 (-2.58 to -20.36) 
**T4: ASD-DIST ANX v ASD-DSM & DIST ANX 143.80 58.60 277 2.45 0.015 0.053 -7.95 (1.05 to -17.92) 
T4: ASD-DSM ANX v ASD-DSM & DIST ANX -74.08 51.22 278 -1.45 0.149 0.313 3.66 (-3.85 to 10.61) 
Age-by-group: TD v ASD-no ANX -119.80 386.05 277 -0.31 0.757 0.835 - 
**Age-by-group: TD v ASD-DIST ANX 1469.87 557.89 277 2.63 0.009 0.038 - 
Age-by-group: TD v ASD-DSM ANX -366.28 475.37 277 -0.77 0.442 0.631 - 
Age-by-group: TD v ASD-DSM & DIST ANX -112.22 459.27 277 -0.24 0.807 0.835 - 
**Age-by-group: ASD-no ANX v ASD-DIST ANX 1589.67 603.15 277 2.64 0.009 0.038 - 
Age-by-group: ASD-no ANX v ASD-DSM ANX -246.48 527.62 277 -0.47 0.641 0.796 - 
Age-by-group: ASD-no ANX v ASD-DSM & DIST ANX 7.58 513.01 277 0.01 0.988 0.988 - 
**Age-by-group: ASD-DIST ANX v ASD-DSM ANX -1836.15 663.74 277 -2.77 0.006 0.038 - 
*Age-by-group: ASD-DIST ANX v ASD-DSM & DIST ANX -1582.09 652.28 277 -2.43 0.016 0.053 - 
Age-by-group: ASD-DSM ANX v ASD-DSM & DIST ANX 254.07 583.68 278 0.44 0.664 0.796 - 

Note: Regression results for models of left and right amygdala volume between children autism spectrum disorder 
with only DSM anxiety (ASD-DSM ANX), only autism distinct anxiety (ASD-DIST ANX), both anxieties (ASD-
DSM & DIST ANX), without anxiety (ASD-no ANX), and typical development (TD). Effects of interest are shown 
for mean age of study Time 1 (T1, 38.11 months/3.18 years) and Time 4 (T4, 136.30 months/11.36 years) as well as 
developmental differences (age-by-group interactions). Reference group is always indicated first. Regressions were 
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repeated switching reference group to provide all group comparisons. Coef=coefficient, SE=standard error, 
DF=degrees of freedom, p=uncorrected p value, FDR p=false discovery rate adjusted p value, % Diff. = percent 
difference in amygdala volume between groups at Time 1 and Time 4 including (95% confidence range of percent 
differences). *effects of interest p<0.05, **effects of interest FDR p<0.05 
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Figure 1: Associations between amygdala volume and DSM and autism distinct 

anxieties Longitudinal development of left (A) and right (B) amygdala volumes are plotted for 

autistic children with and without DSM anxiety (ASD-DSM ANX, ASD-no DSM ANX). 

Compared to autistic children without DSM anxiety, those with DSM anxiety showed larger right 

amygdala volumes at both Time 1 (5.87% larger, p=0.005, FDR p=0.048) and Time 4 (6.15% 

larger, p=0.005, FDR p=0.048). Compared to autistic children without autism distinct anxieties, 

those with distinct anxieties (ASD-DIST ANX, ASD-no DIST ANX) showed statistical trends 

(p<0.05, FDR p>0.05) of (C) toward smaller left amygdala volumes at both Time 1 (-5.44% 

smaller, p=0.024) and Time 4 (-6.75% smaller, p=0.011) and (D) right amygdala volumes at Time 

4 (-5.75% mean decrease, p=0.020) compared to ASD-noANX. Vertical dotted lines indicate mean 

ages at study Time 1 (38.11 months/3.18 years) and 4 (136.30 months/11.36 years). *Note that 

here some individuals within the DSM/DIST ANX groups have duel DSM and distinct anxiety 

diagnoses, also individuals within the no DSM group may have distinct CSR scores >=4 (and vice 

versa for the no DIST group). These overlapping anxieties are accounted for by modeling separate 

DSM and distinct categorical variables.  

 

Figure 2: Associations between amygdala volume and different forms of anxiety in autism 

spectrum disorder Longitudinal development of left (A) and right (B) amygdala volumes are 

plotted for autistic children with only DSM anxiety (ASD-DSM ANX), with only autism distinct 

anxiety (ASD-DIST ANX), with both DSM and distinct anxieties (ASD-BOTH ANX), without 

anxiety (ASD-noANX), and typically developing children without anxiety (TD). Vertical dotted 

lines indicate mean ages at study Time 1 (38.11 months/3.18 years) and Time 4 (136.30 

months/11.36 years). ASD-DSM ANX was found to have significantly larger right amygdala 
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volumes at both study Time 1 (4.59% larger, p=0.012 FDR, p=0.044) and Time 4 (5.19% larger, 

p=0.01l, FDR, p=0.044) compared to TD. ASD-DIST ANX had a significantly altered 

developmental trajectory of the right amygdala marked by slower growth compared to the TD 

(p=0.009, FDR p=0.044), ASD-noANX (p=0.009, FDR p=0.044), and ASD-DSM ANX (p=0.007, 

FDR p=0.044) groups which resulted in significantly smaller right amygdala volumes at Time 4 

compared to the ASD-no anxiety (-8.85% smaller, p=0.004, FDR p=0.044), ASD-DSM (-11.04% 

smaller, p<0.001, FDR p=0.013), and ASD-both anxieties (-8.26% smaller, p=0.011, FDR 

p=0.044) groups.  
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