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A B S T R A C T

DC microgrids are considered as the next generation of power systems because of the possibility of connecting
various renewable energy sources to different types of loads based on distributed networks. However, due
to the strong reliance on communication networks, DC microgrids are vulnerable to intentional cyber-attacks.
Therefore, in this paper, a robust cyber-attack detection scheme is proposed for DC microgrid systems. Utilizing
the parity-based method, a multi-objective optimization problem is formulated to achieve robust detection
against electrical parameter perturbations and unknown disturbances. An analytical solution is then provided
using the singular value decomposition approach. With the disturbance decoupling scheme, the presented
detection strategy can monitor the system with only local knowledge of the DC microgrid. The proposed
method is easy to design and with less computation complexity. The performances of the provided scheme are
validated by simulation tests and experimental results.
1. Introduction

DC microgrids (MGs), known as next-generation power systems,
have received significant attention in recent years because of their
ability to transmit power from renewable energy sources and energy
storage devices to various loads with greater efficiency and reliability
than the AC grid. As a distributed power supply, the DC MG can be op-
erated independently or connected to the utility grid. Such applications
can be found in power generations [1], smart houses [2], transportation
systems [3], etc.

Due to the rapid developments of the Industry 4.0 paradigm, in-
formation technology-based solutions have been widely used in indus-
trial processes. The revolutionary changes have seen the emergence
of cyber–physical systems where large amounts of data are exchanged
between multiple devices in real time [4]. Accordingly, the framework
of DC MG tends to be more distributed, intelligent and tightly inte-
grated with the network. However, due to the strong reliance on the
communication technologies, DC MGs are more vulnerable to security
threats [5] and have a higher risk of being compromised by malicious
attackers.

In general, the functionality of a potential microgrid controller relies
heavily on the reliability of the data received by the measurement
devices or sensors. For example, if the sensors or communication links
are compromised by an attacker, the controllers may receive faulty
data and therefore make inappropriate control decisions [6], leading
to the undesirable power-sharing [7], frequency oscillating [8] and
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stability issues [9]. As a result, renewable energy generating units may
not be able to produce the maximum amount of available power from
nature or meet the appropriate power sharing between microgrids,
and energy storage devices may not be able to provide the required
amount of power or operate with optimal economic dispatch [10].
More seriously, attackers may be able to disrupt the system without
adequate security protection in terms of hardware or software policies,
leading to significant social losses. Examples include the nuclear facility
struck by Stuxnet malware [11], power outage event [12,13] and
nuclear plant blackout accident [14]. Considering the huge impact of
attacks on microgrid systems, it is vital to provide an effective detection
scheme to counter cyber attacks.

1.1. State of the art

Taking the cyber-security issues into consideration, the design and
analysis of attack detection methods for microgrids can be deployed at
both the cyber-layer and the physical layer [15]. Third-party detection
methods, also known as data authentication, watermarking and key
management methods, are typical defense mechanisms implemented
in the cyber-layer. External messages are generated normally through
various protocols or low-cost hardware, that can provide characteristics
for security signals. Data without relevant characteristics is considered
as a malicious attack. However, the disadvantage of this approach is
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Table 1
Summary of attack detection approaches.

Detection Methodologies Principles and limitations

Signal-based detection Anomaly detection
1. Monitoring the real-time measurements
2. Do not investigate the relations of system model

Model-based detection

State estimation
1. Estimate the system state
2. Cannot detect intelligent attacks

Observer-based detection
1. Compare the residual with a fix or adaptive threshold
2. Uneasy to design

Statistical method
1. Capture the statistical behaviors of measurements
2. Cannot detect intelligent attacks

Data-based detection Machine learning
1. Compare the system with a model build by historical data
2. Face a heavy computation burden to train a system model

Distributed attack detection
Model decomposition method

1. Portion the system into several subsystems
2. Undesirable in large-scale system

Perturbation Decoupling
1. Eliminate the effect of disturbance to the residuals
2. Cannot achieve robust detection against modeling uncertainties
that it introduces an additional computational burden and can incur
delayed performance, as external information needs to be encoded
and decoded before and after data communication [5]. Therefore,
there is a trade-off between communication security and computational
efficiency.

Research into the attack detection in physical layer of microgrid
can be divided into three categories, namely signal-based detection,
model-based detection and data-based detection methods [16]. Table 1
lists the summary of common attack detection approaches employed in
physical layer. The signal-based attack detection method implemented
in microgrids is achieved by monitoring the signals in the communi-
cation links in real-time [17]. For example, the attack detection was
achieved by checking the data transmission frequency in [18]. If the fre-
quency of certain links is not consistent with the defined transmission
frequency, these links are detected as being compromised. Furthermore,
a signal temporal logic detection has been proposed in [19], where the
voltages and currents of DC microgrids are monitored for comparison
with pre-defined operational bounds. Moreover, the attack detection
in [20,21] was performed by a consensus check between the local and
neighboring measurements. An anomaly detection has been developed
based on the use of software-defined networking [22]. If abnormal be-
havior is detected in a local generation unit, it will be considered under
attack and isolated from the system. However, the disadvantage of this
approach is that it does not sufficiently investigate the relationship
between the control signal and the measurement, which is a useful tool
for achieving reliable detection.

Model-based detection schemes are alternative detection methods
by utilizing the mathematical model of the system. The most common
approach to achieve model-based attack detection is the implemen-
tation of state estimation [6,23]. Although such methods can detect
basic attacks, they may fail when the false data is introduced in a
coordinated manner that makes it appear to be consistent with the
detection mechanism, thereby bypassing it [24]. To cope with this
problem, observer-based detection approaches have been given full
consideration by studying the dynamic model of the system [25,26].
Typically, a residual signal is carefully generated and compared to
a fixed or adaptive threshold to determine if an attack is present.
Moreover, statistical methods are widely used to detect attacks by mon-
itoring the statistical behavior of the measurements. For example, the
Kullback–Leibler distance was adopted in [24,27] to detect attacks by
calculating the probability distributions of measurements. Furthermore,
a 𝜒2 detector was developed in [28] for detecting attacks by checking
the statistical behavior of estimation errors. The disadvantage of these
methods, however, is that they may fail when tackling attacks with
unchanged distribution and therefore deserve further research.
2

In addition, data-based detection methods are now accepted as a
powerful tool for detecting attacks on smart grid systems [29]. These
solutions typically rely on machine learning or statistical mechanisms
to infer a model of the system from historical data and measurement
signals. For example, a deep learning-based mechanism has been devel-
oped in [30] to recognize the behavior features of False Data Injection
(FDI) attacks with historical measurements, the features of which can
be employed to detect attacks. In addition, two machine learning-
based techniques were proposed in [31] to detect the deviation in
measurements. In [32], the artificial neural network and support vec-
tor machine were trained with 5 days data to predict cyber-attacks.
Furthermore, the DC voltages and currents were estimated in [33]
with a nonlinear auto-regressive exogenous model neural network. The
cyber-attack can be then detected by checking the estimation errors.
However, these data-based detection approaches usually face a heavy
computational burden to train a fully connected network and therefore
suffer from higher system costs [34].

Although significant progress has been made in the past decade
in detecting attacks, these methods are not always practical due to
the complexity induced by large-scale distributed DC MG systems.
Moreover, traditional state estimation and observer-based methods
may not achieve reliable state estimation due to the presence of un-
known system disturbances (load variations, voltage oscillations, neigh-
boring voltage variations, etc.) [35]. The design of attack detection
for distributed DC MG systems should therefore lie in exploiting the
relationships between the interconnected subsystems [16].

Recently, a set of distributed attack detection schemes have been
proposed to deal with the coupling effects of the system in different
ways through a model decomposition approach [36,37]. However,
it requires a significant computational complexity in the decomposi-
tion process. Disturbance decoupling is an alternative method to deal
with unknown disturbances in the attack detection for distributed DC
microgrid, where the coupling effects are treated as external distur-
bances [38]. However, as the electrical parameters may fluctuate with
the device temperature, the modeling uncertainties have introduced
new challenges for the design of cyber-attack detection strategy. Al-
though it is possible to represent the modeling errors as unknown
disturbances with an approximate distribution matrix [39], it may lead
to an increase in the number of disturbances and therefore makes
the design of robust detection schemes for distributed DC MGs more
challenging.

1.2. Objectives and contributions

The model-based attack detection approach depends strictly on the
use of a mathematical model of the system. Therefore, the better
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the model that represents the dynamics of the system, the better the
detection performance. Although a number of attack detection methods
have been developed in recent years, very little research has taken into
account the modeling uncertainty when designing detection strategies.
Due to the presence of parameter variations, traditional observer-based
methods may fail to achieve reliable detection performance.

To the best of our knowledge, no research has been done to explain
how to design and apply robust detection techniques for distributed DC
microgrids. Robust cyber-attack detection is therefore still a worthwhile
research topic. To address the above challenges, this paper proposes a
parity-based cyber-attack detection scheme for a DC MG cluster. The
main contributions of this work are listed as follows.

1.2.1. Attack detection framework for DC microgrids
A real-time cyber-attack detection framework capable of large scale

implementation is provided in this paper in terms of residual generation
and threshold calculation. The limitation of observer-based detection
methods is discussed when considering modeling uncertainties of DC
microgrids. The proposed attack detection method is able to monitor
the system effectively even under unknown load and voltage change
conditions.

1.2.2. Robust detection design
Different from existing detection approaches, the proposed residual

generation enables reliable attack detection even in the presence of pa-
rameter variations. In addition, the sensitivity to attacks is improved by
formulating a new multi-objective optimization problem. An analytical
solution is also provided with singular value decomposition approach.

1.2.3. Suitable for multiple applications
Because the proposed attack detection method is based on the

converter model, therefore, it can be applied both in the grid-feeding
converters and grid-forming converters. In addition, considering that in
a microgrid cluster, converters also play the role of energy interaction
and conversion between individual microgrids. Therefore, the attack
detection method proposed in this paper can also be applied in a
multiple DC microgrid cluster.

1.3. Paper organization

The outline of this paper is given as follows. The research problem
is presented in Section 2, which includes a description of the mod-
eling and detection strategy for DC microgrids with cyber-attacks. In
Section 3, the proposed detection framework is constructed, where a
parity-based detection scheme is illustrated, taking into account the
presence of unknown disturbances and modeling uncertainties. Exper-
imental results are provided in Section 5, and concluding remarks are
given in the last section.

2. Cyber–physical DC microgrids

This section explains the distributed control and proposed robust
detection framework for a DC microgrid.

2.1. Electrical model of DC microgrids

Considering a microgrid composed of a renewable energy source
(RES), a Buck converter and loads, the DC MG cluster can be obtained
by interconnecting 𝑁 microgird through power lines, as shown in
Fig. 1.

Normally, for each microgird, a ZIP load is always assumed in-
cluding a constant impedance load (Z), a constant current load (I)
and a constant power load (P). While, as mentioned in [40], after
linearization of the constant power load around the rated voltage point,
the ZIP load can be represented by an equivalent impedance load 𝑅𝐿𝑖
3

and an equivalent current load 𝐼𝐿𝑖. The structure of the local generation
unit is also depicted in Fig. 1. Indeed, the linearization of constant
power load does not influence the presented detector, because the
proposed detection approach is robust to the unknown loads.

The dynamic of single microgrid 𝑖 can be expressed as:

⎧
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⎪
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(1)

where variables 𝑉𝑖, 𝐼𝑖 are 𝑖th point of common coupling (PCC) bus
voltage, filter current respectively; 𝑉𝑡𝑖 generated by the controller, is
the voltage command of the converter; 𝑅𝑖, 𝐿𝑖 and 𝐶𝑖 are the resistance,
inductance and capacitor of LC filter; 𝜂𝑐 , 𝜂𝑙 are unknown values, which
refer to the degree of parameter variations of the capacitor and induc-
tance; Moreover, 𝑉𝑗 is the voltage at the PCC of each neighboring MGs,
where 𝑗 ∈ 𝑖; The set 𝑖 is neighbors of MG 𝑖; 𝑅𝑖𝑗 are the resistances
of the power lines; 𝑇𝑠 is the sample time of the system.

2.2. Description of system model

Consider a DC microgrid with an attack on the communication line
between the converter and controller. The discrete model of MG 𝑖 can
be described in state space as:
{

𝑥𝑖(𝑘 + 1) = 𝐴𝑡[𝑖]𝑥𝑖(𝑘) + 𝐵𝑡[𝑖][𝑢𝑖(𝑘) + 𝑎1𝑖(𝑘)] + 𝐸𝑡[𝑖]𝑑𝑖(𝑘)
𝑦𝑖(𝑘) = 𝐶𝑡[𝑖]𝑥𝑖(𝑘) + 𝑎2𝑖(𝑘)

(2)

where 𝑥[𝑖](𝑘) = [𝑉𝑖(𝑘), 𝐼𝑖(𝑘)]𝑇 ∈ R𝑛 is system state; 𝑢[𝑖](𝑘) = [𝑉𝑡𝑖(𝑘)] ∈ R𝑢

is the control input; 𝑦[𝑖](𝑘) ∈ R𝑚 is the system measurement; 𝑑[𝑖](𝑘) =
∑

𝑗∈𝑖
𝑉𝑖(𝑘)∕𝑅𝐿𝑖 + 𝐼𝐿𝑖(𝑘) − (𝑉𝑗 (𝑘) − 𝑉𝑖(𝑘))∕𝑅𝑖𝑗 ∈ R𝑑 accounts for the

unknown disturbance, which is the combination of load conditions and
coupling effect (neighboring voltage); 𝑎1𝑖(𝑘) ∈ R𝑢 and 𝑎2𝑖(𝑘) ∈ R𝑚

are the actuator attack and sensor attack, respectively. The false data
injection attack is considered in this paper. If there is no attack on
the system, then 𝑎1𝑖(𝑘), 𝑎2𝑖(𝑘) = 0, otherwise they can be arbitrary
values. {𝐴𝑡[𝑖], 𝐵𝑡[𝑖], 𝐶𝑡[𝑖], 𝐸𝑡[𝑖]} are proper system matrices which are not
known precisely due to the modeling uncertainties and the subscript
t denotes variations. These matrices have nominal value denoted as
{𝐴𝑖, 𝐵𝑖, 𝐶𝑖, 𝐸𝑖}, which can be defined when 𝜂𝑐 = 𝜂𝑙 = 1 as:
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⎣

−
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0

⎤

⎥

⎥

⎦

,

(3)

2.3. Limitations of traditional observer-based approach

This section discusses the main reason why the traditional observer-
based detection approach fails to achieve a reliable detection per-
formance in the presence of modeling uncertainties. Commonly, the
principle of the observer-based detection approach is first to construct
a residual which is only sensitive to cyber-attacks by making use
of the information from measurements and control input. Then the
system can be monitored by comparing the real-time residual signals
with a predefined threshold. Without considering the modeling errors,
the residual responses of observer-based detection approach for DC
microgrid system can be formulated as:

𝑟𝑖(𝑘) = 𝐺𝑟𝑎𝑎𝑖(𝑘) + 𝐺𝑟𝑑𝑑𝑖(𝑘) + 𝐺𝑟𝑢𝑢𝑖(𝑘) + 𝐺𝑟𝑦𝑦𝑖(𝑘) (4)

where 𝑟(𝑘) ∈ R𝑟 is the residual; 𝐺𝑟×, determined by the structure of

observer, are the transfer functions from each input to the residual. To
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Fig. 1. DC microgrid control system.
reduce the impact of these inputs, especially the disturbances, on the
observer, the residual should be designed to be decoupled from these
inputs, which requires:

𝐺𝑟𝑑 = 𝐺𝑟𝑢 = 𝐺𝑟𝑦 = 0 (5)

With the designed observer satisfying the requirement (5), the
residual will be only affected by the attack signals. Therefore, attack
detection can be achieved. Specifically, the transfer function of the
observer from disturbances to the residuals can be expressed as:

𝐺𝑟𝑑 = 𝐺𝐸𝑖 (6)

where 𝐺 ∈ R𝑟×𝑚 is a nonzero matrix determined by the observer. To
make sure the requirement (6) is solvable, the matrix 𝐸𝑖 should be
full column rank, which asks the number of independent disturbances
should be less than the number of system measurements. This condition
can be fulfilled without difficulty by e.g. Luenberger-like observer [41]
or unknown input observer [42], when there is a limited number of dis-
turbances in the system. However, because the modeling uncertainties
are an additive disturbance on the system, there will be an increase in
the number of disturbances, which makes it difficult or even impossible
to satisfy the requirement (5). Therefore, the traditional observer-based
detection approach may fail to achieve a robust cyber-attack detection
for the DC microgrids when considering the modeling uncertainties.

2.4. Detector architecture

As discussed above, the limitation of robust cyber-attack detection
against model uncertainties is the lack of measurements. Considering
the fact that it will increase the cost of the system and sometimes
is unfeasible to increase the number of measurements/sensors, the
traditional observer-based detection approach may not be implemented
in real applications.

Taking this issue into consideration, the parity-based detection ap-
proach is proposed in this paper to achieve a robust detection for DC
microgrids against both unknown disturbances and modeling uncer-
tainties. The structure of the DC microgrid cluster under consideration
and the proposed detection approach are shown in Figs. 1 and 2.
Each MG is equipped with a local controller and detector, where
the controller is designed to meet the general objectives, i.e. current
sharing and voltage regulation. The detector is adopted to monitor the
system by exploiting the relation between input and measurements, and
can trigger an alarm in the presence of cyber-attacks.

Noticed that mostly the measurement 𝐼𝑗 is utilized by the local
controller to achieve the power-sharing. While the detector can monitor
the system only using the model information and variables appearing
in (2) without any information from the neighboring states. Therefore,
it can be implemented in a large scale DC microgrid. The design of
the controller is omitted as it goes beyond the scope of this article.
The detailed design process of the proposed detector is explained in
Section 3.
4

3. Attack detection design

This section describes the design process for a detection method
for DC microgrids. The structure of the proposed detection scheme
is shown in Fig. 2. For each MG, the proposed detector is composed
of residual generation 𝑟𝑖(𝑘) based on parity relations and a proper
threshold 𝑟̄𝑖(𝑘). If 𝑟𝑖(𝑘) > 𝑟̄𝑖(𝑘), then an attack is assumed. It will be
shown that the proposed attack detection is robust to both unknown
disturbances and parameter variations. The subscript ([i]) is omitted
for brevity, because it does not influence the discussion of detection
design.

3.1. Parity relation of DC microgrid

As pointed, it is not reliable to design an attack detection that is
robust against both the unknown disturbances and parameter variations
because of the lack of enough measurements. To achieve a perfect
robust detection design, the parity relations of the DC MG are studied
where the historical measurements of past 𝑠 steps are kept.

The parity relation of the DC MG system (2) under consideration
can be constructed by collecting a collection of data with a window
length of s. The simplified parity relation can be obtained as:

𝑌 (𝑘) = 𝐻𝑡𝑈 (𝑘) +𝑊𝑡𝑥(𝑘 − 𝑠) + 𝐿𝑡𝐷(𝑘) +𝑀1𝑡𝐴1(𝑘) +𝑀2𝑡𝐴2(𝑘) (7)

where 𝑌 (𝑘), 𝑈 (𝑘), 𝐷(𝑘), 𝐴1(𝑘) and 𝐴2(𝑘) are a batch of data of 𝑦(𝑘), 𝑢(𝑘),
𝑑(𝑘), 𝑎1(𝑘) and 𝑎2(𝑘). The detailed definition of (7) and 𝐻𝑡, 𝑊𝑡, 𝐿𝑡, 𝑀1𝑡,
𝑀2𝑡 are defined in Appendix. To detect the cyber-attacks, the residual
is designed as:

𝑟(𝑘) = 𝑣𝑇 [𝑌 (𝑘) −𝐻𝑈 (𝑘)] (8)

where 𝑣𝑇 ∈ R𝑟×(𝑠+1)𝑚 is the residual generating vector needed to be
designed.

As noticed from (8) that the proposed detection scheme can monitor
the system with only local measurements and the control input of each
MG. The attack detection scheme can be implemented by comparing
the residuals with a threshold value. If the residual is above the
threshold, an attack is assumed to exist.

3.2. Robust detection design

This section shows how the robust detection of DC microgrid can
be achieved based on the parity relation provided in (7). Eq. (8) shows
the computational form of the residual as a function of control input
and MG measurements. Substituting (7) into (8) yields:

𝑟(𝑘) = 𝑣𝑇 [𝑊𝑡𝑥(𝑘 − 𝑠) + (𝐻𝑡 −𝐻)𝑈 (𝑘) + 𝐿𝑡𝐷(𝑘)
+𝑀1𝑡𝐴1(𝑘) +𝑀2𝑡𝐴2(𝑘)]
𝑇 𝑇

(9)

= 𝑣 𝑍𝑡𝑋(𝑘) + 𝑣 𝑀𝑡𝐴(𝑘)
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Fig. 2. Proposed parity-based attack detection approach.
where
𝑍𝑡 =

[

𝑊𝑡 (𝐻𝑡 −𝐻) 𝐿𝑡
]

∈ R(𝑠+1)𝑚×[𝑛+(𝑠+1)(𝑢+𝑑)]

𝑀𝑡 =
[

𝑀1𝑡 𝑀2𝑡
]

∈ R(𝑠+1)𝑚×(𝑠+1)(𝑢+𝑚)

𝑋(𝑘) =
⎡

⎢

⎢

⎣

𝑥(𝑘 − 𝑠)
𝑈 (𝑘)
𝐷(𝑘)

⎤

⎥

⎥

⎦

𝐴(𝑘) =
[

𝐴1(𝑘)
𝐴2(𝑘)

]

(10)

To make the residual only sensitive to cyber-attacks, the residual
signal 𝑟(𝑘) should be zero when there is no attack and non-zero when
there is an attack, which requires:

𝑣𝑇𝑍𝑡 = 0 (11a)

𝑣𝑇𝑀𝑡 ≠ 0 (11b)

Indeed, the vector 𝑣 which satisfies requirement (11) can only guar-
antee the robustness against unknown disturbances, not the parameter
variations. There is still a need for a robust detection design against
modeling uncertainties.

Before devising a robust detection strategy, it is first assumed that
the parameter variations are bounded, i.e., 𝐿 − 𝛥𝐿 ≤ 𝐿𝑡 ≤ 𝐿 + 𝛥𝐿,
𝐶 − 𝛥𝐶 ≤ 𝐶𝑡 ≤ 𝐶 + 𝛥𝐶. This is reasonable from a practical perspective
because the maximum variations of LC filters are usually around ±10%
of their nominal value. Therefore, the parameter variations can be
contained within a pre-defined bound. To achieve a realistic design, the
matrices set {𝐴𝑡, 𝐵𝑡, 𝐶𝑡, 𝐸𝑡} are extended to a finite set of possibilities,
i.e., {𝐴𝑝, 𝐵𝑝, 𝐶𝑝, 𝐸𝑝}(𝑝 = 1, 2,… , 𝑃 ) within their bounds. A number of
representative parameter values can be chosen to reflect a particular set
of parameters. Based on this idea, a corresponding set of matrices 𝑍𝑝
and 𝑀𝑝 can be obtained. The design of the detection method therefore
becomes a search for a satisfying residual generation vector 𝑣 satisfying:

𝑣𝑇𝑍𝑝 = 0; 𝑝 = 1, 2,… , 𝑃 (12a)

𝑣𝑇𝑀𝑝 ≠ 0; 𝑝 = 1, 2,… , 𝑃 (12b)

The above requirements can be rewritten as:

𝑣𝑇𝑍 = 0; (13a)

𝑣𝑇𝑀 ≠ 0; (13b)

where
𝑍 = [𝑍1, 𝑍2,… , 𝑍𝑃 ] ∈ R(𝑠+1)𝑚×(𝑠+1)(2𝑢+𝑑)𝑃

(𝑠+1)𝑚×(𝑠+1)(𝑢+𝑚)𝑃 (14)
5

𝑀 = [𝑀1,𝑀2,… ,𝑀𝑃 ] ∈ R
It can be obtained that the solution (13a) exists under the condition
that.

𝑟𝑎𝑛𝑘(𝑍) ≤ (𝑠 + 1)𝑚 − 1 (15)

In fact, this condition cannot be satisfied in general and it is chal-
lenging to find an ideal solution provided by a multi-matrix set 𝑃 , espe-
cially in the case of highly variable parameters. In order to implement
a robust detection method for this case, the following multi-objective
optimization problem is formulated:

min 𝐽1 = min

{ 𝑃
∑

𝑝=1
‖𝑣𝑇𝑍𝑝‖

}

(16a)

max 𝐽2 = max

{ 𝑃
∑

𝑝=1
‖𝑣𝑇𝑀𝑝‖

}

(16b)

It is then practical to find the optimal solution to (16), which can be
used to generate robust residuals that are insensitive to both unknown
disturbances and parameter variations.

3.3. Optimal robust detection design via singular value decomposition ap-
proach

This section provides the analytical solution to the optimal robust
detection design problem (16) based on a two-stage procedure, where
the solution to (16a) is determined first before the searching of the
solution to (16b). Before providing an illustration of the design process,
the following lemma is provided.

Lemma 1 ([39]). Let the singular value decomposition of 𝑍 be:

𝑍 = 𝛤𝑍 [𝑑𝑖𝑎𝑔{𝜎1, 𝜎2,… , 𝜎𝑧},… , 0]𝛷𝑇
𝑍 (17)

where 𝛤𝑍 and 𝛷𝑍 are called left and right singular matrices of 𝑍; 𝜎1 ≤
𝜎2 ≤ ⋯ ≤ 𝜎𝑧 are singular values of 𝑍. Then, the vector 𝑣 which minimized
𝐽1 lies in a subspace spanned by matrix 𝛤𝑍(𝑙). Similarly, the vector 𝑣 which
maximizes 𝐽1 lies in a subspace spanned by matrix 𝛤𝑍(−𝑙). The matrix 𝛤𝑍(𝑙)
and 𝛤𝑍(−𝑙) are the first and last 𝑙 column of matrix 𝛤𝑍 .

By Lemma 1, the optimal solution for minimizing 𝐽1 lies in the
subspace that is spanned by 𝛤𝑍𝑝(𝑙), therefore, the typical solution can
be written as:

𝑣 = 𝛤 𝑣 (18)
𝑍𝑝(𝑙) 1
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𝑟

Table 2
Performance indices.

Window length 𝑙 𝐽1 𝐽2

𝑠 = 0
𝑙 = 1 1 1
𝑙 = 2 2 2

𝑠 = 1
𝑙 = 1 0.04 × 10−3 1.0
𝑙 = 2 1.30 × 10−3 2.0
𝑙 = 3 25.7 × 10−3 3.0

𝑠 = 2

𝑙 = 1 0.01 × 10−3 1.0
𝑙 = 2 0.12 × 10−3 2.0
𝑙 = 3 1.00 × 10−3 3.0
𝑙 = 4 2.00 × 10−3 4.0

𝑠 = 3

𝑙 = 1 0.01 × 10−3 1.0
𝑙 = 2 0.03 × 10−3 2.0
𝑙 = 3 0.29 × 10−3 3.0
𝑙 = 4 1.00 × 10−3 4.0

Table 3
Electrical parameters.

Modules Parameters Values

DC microgrid
MG nominal voltage 48 V
Switching frequency 10 kHz
Control frequency 10 kHz

DC/DC converter
Inductor resistance 0.1 Ω
Inductor inductance 1.8 mH
DC bus capacitance 2.2 mF

where 𝑣1 ∈ R𝑙 is an arbitrary nonzero vector. Substitute 𝑣1 into 𝐽2, the
problem (16b) becomes:

max 𝐽2 = max

{ 𝑃
∑

𝑝=1
‖𝑣𝑇1 𝛤

𝑇
𝑍𝑝(𝑙)

𝑀𝑝‖

}

(19)

Accordingly, the 𝑣1 that maximizes 𝐽2 can be found in the space
spanned by the matrix 𝛤𝑀̄(−𝑙) where 𝑀̄ = 𝛤 𝑇

𝑍𝑝(𝑙)
𝑀𝑝, which finished the

robust detection design.
Notice that it is undesirable to solve the problem (16a) and (16b)

simultaneously or perform the two-stage design procedure reversely
because it is crucial to eliminate the influence of disturbances on the
residual than to improve the sensitivity to attacks, which requires a
priority of requirement (11a) than (11b).

Furthermore, the performance indices 𝐽1 and 𝐽2 are dependent on
the choice of step 𝑠 and constant 𝑙. Table 2 lists the performance
indices for different 𝑙 values and design procedures based on the DC
microgrid parameters shown in Table 3. As seen from Table 2 that the
robust detection cannot be achieved given only real-time measurements
(𝑠 = 0), because the 𝐽1 and 𝐽2 are always the same. It can also be
found that the more the window length, the smaller the 𝐽1, the more
robust the detection system is. However, the computational effort of
the system also increases. Therefore, there is a tradeoff between the
robustness of detection performance and the computational burden of
the system.

In addition, the constant 𝑙 determines the extent of the matrix
approximation. Table 2 shows that both the performance indices 𝐽1 and
𝐽2 rise with the increase of 𝑙. Considering the fact that the desirable
solution to the problem (16) is to minimize 𝐽1 on one hand and
maximize 𝐽2 on the other hand, therefore, there is also a tradeoff in
the choice of 𝑙.

3.4. Threshold calculation

As illustrated, the system’s detector can trigger an alarm when the
residual is greater than a potential threshold. In order to complete
the design of the DC MGs for attack detection, the thresholds need
to be appropriately designed. The generation of the threshold can be
achieved by considering the residual dynamics (9) in the no-attack
condition, denoted as:

𝑇

6

𝑟(𝑘) = 𝑣 𝑍𝑡𝑋(𝑘) (20)
Fig. 3. Microgrid system response.

Fig. 4. Residual response.

Therefore, the threshold value 𝑟̄(𝑘) can be determined by:

̄(𝑘) = 𝑣𝑇 𝑍̄𝑡𝑋̄(𝑘) (21)

where 𝑍̄𝑡 and 𝑋̄(𝑘) are the upper boundaries of 𝑍𝑡 and 𝑋(𝑘). Because
the 𝑍𝑡 and 𝑋(𝑘) are formulated by the electrical parameters and
measurements, it is possible to find their boundaries.

4. Performance validation

The proposed parity-based attack detection strategy is tested on a
cyber–physical DC microgrid cluster with MGs, as shown in Fig. 1(b).
The parameters of each MG and the system are listed in Table 3. First,
a sensitivity analysis is provided to investigate the robust detection
performance of the proposed strategy against unknown disturbances.
Next, the robustness to parameter variations is addressed. Finally,
performance validation for each scenario is performed on a dSPACE-
based microgrid platform to validate the robustness of the proposed
detection strategy. In addition, in order to show the sensitivity of the
proposed method, the injected attack signals are selected as only 1%
of the nominal values, which are much smaller than the attacks being
12%, 20%, and 22% of their nominal values in [17,20,28] respectively.

4.1. Robustness to unknown disturbances

In this context, the study verifies the robustness of the proposed de-
tection method to load variation conditions and to neighboring voltage
variation conditions. In this case, the DC load increases and decreases
at 0.5 and 1 s respectively, and the neighboring voltage increases and
decreases by 0.5 V at 1.5 and 2 s. A false data injection attack with
a value of 0.5 V is launched on the local voltage sensor at 2.5 s. The
bus voltage, output current, residuals and corresponding thresholds for
converter 1 are shown in Figs. 3 and 4.

As shown, there is an oscillation in the voltage dynamics and a
3 A change in the output current after a shift of load, while the
residual dynamics stay at zero. Furthermore, it can be observed that
the current fluctuates after a neighboring voltage change, while the
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Fig. 5. Detection performance comparison.

Fig. 6. Detection performance under different parameter variations.

residuals remain constant. However, the residuals increase directly
after an attack is injected into the system. It is worth noting that
although the oscillations in the voltage and current dynamics caused
by the load and neighboring voltage changes are larger than those
following a cyber-attack, the residuals are only sensitive to the attack.
Therefore, it can be concluded that the detection scheme is decoupled
from the unknown disturbance.

4.2. Robustness to parameter variations

In this context, the study verifies the robustness of the proposed
detection method to parameter perturbations. Fig. 5 shows the compar-
ison of residual response between the proposed detection approach and
traditional approach under different scenarios when the LC parameters
are selected as 90% of its nominal value. In the similar way, the load
and neighboring voltages varied at 0.5 s, 1 s, 1.5 s and 2 s respectively,
and a 0.5 V attack on the voltage sensor is launched at 2.5 s. It can
be seen from Fig. 5 that, although the conventional method shows the
same detection performance, there is a relatively large spike in the
residual response after changing the load compared to the proposed
detection method. This suggests that the proposed method has a small
risk of false alarms even with varying parameters.

The residual response of the proposed detection approach is further
shown in Fig. 6 when the LC filter parameters are selected from 90%
to 110% of their nominal value. It can be seen that the response
of the residuals at load and neighboring voltage change conditions
show little oscillations and no change compared to the residuals after
launching a cyber-attack. The test results verify that the parameter
change conditions have little impact on the detection scheme.

4.3. Experimental results

Experimental results are given in order to verify the effectiveness
of the proposed detection scheme. The control and monitoring scheme
was implemented on a dSPACE-based microgrid platform consisting
7

Fig. 7. Experimental setup.

mainly of a dSPACE controller, a DC power supply, four Danfoss
converters and a DC load, as shown in Fig. 7. Fig. 8 shows the system
response of the microgrid and the residual response of MG 1, when
the LC parameter is chosen to a different value. In this case, the load
was changed at 5 and 10 s respectively and a 0.5 V cyber-attack
was launched on the voltage measurement at 15 s. It can be seen
that the residuals remain constant under load variation and parameter
change conditions. In addition, the residuals increase rapidly after the
injection of attack. Similarly, Fig. 9 shows the microgrid response
and residual response under neighboring voltage change conditions.
It can be seen that although the effect of the attack on the system
dynamics is comparatively smaller than the effect of the disturbance,
the residuals increase rapidly. Therefore, it can be concluded that the
proposed detection method is robust to load variations, neighboring
voltage variations and parameter variation conditions.

5. Conclusion

Parity-based attack detection schemes have been proposed to ad-
dress the problem of robust detection in DC microgrids. The proposed
approach has four benefits: firstly, the proposed detection scheme is
able to detect attacks with only local information from the MG system.
Therefore, it is easy to be implemented on a large scale microgrid. Sec-
ondly, the residuals are decoupled from unknown load conditions and
neighboring voltage variations with disturbance decoupling method.
Thirdly, the detection is robust to perturbations in the electrical param-
eters of the DC MG. Fourthly, the proposed detection method can also
be applied to the DC microgrid clusters. Simulation tests and exper-
imental results illustrate the achievable performance of the proposed
detection strategy.
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Fig. 8. Microgrid system response under load change conditions.
Fig. 9. Microgrid system response under neighbor voltage change conditions.
Appendix

The complex parity relation of the DC MG system (2) is constructed
as:

⎡

⎢

⎢

⎢

⎢

⎣

𝑦(𝑘 − 𝑠)
𝑦(𝑘 − 𝑠 + 1)
⋮
𝑦(𝑘)

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑌 (𝑘)

−𝐻𝑡

⎡

⎢

⎢

⎢

⎢

⎣

𝑢(𝑘 − 𝑠)
𝑢(𝑘 − 𝑠 + 1)
⋮
𝑢(𝑘)

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑈 (𝑘)

= 𝑊𝑡𝑥(𝑘 − 𝑠)

+𝐿𝑡

⎡

⎢

⎢

⎢

⎢

⎣

𝑑(𝑘 − 𝑠)
𝑑(𝑘 − 𝑠 + 1)
⋮
𝑑(𝑘)

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐷(𝑘)

+𝑀1𝑡

⎡

⎢

⎢

⎢

⎢

⎣

𝑎1(𝑘 − 𝑠)
𝑎1(𝑘 − 𝑠 + 1)
⋮
𝑎1(𝑘)

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐴1(𝑘)

+𝑀2𝑡

⎡

⎢

⎢

⎢

⎢

⎣

𝑎2(𝑘 − 𝑠)
𝑎2(𝑘 − 𝑠 + 1)
⋮
𝑎2(𝑘)

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(22)
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𝐴2(𝑘)
where

𝐻𝑡 =

⎡

⎢

⎢

⎢

⎢

⎣

0𝑚×𝑢 0𝑚×𝑢 ⋯ 0𝑚×𝑢
𝐶𝑡𝐵𝑡 0𝑚×𝑢 ⋯ 0𝑚×𝑢
⋮ ⋮ ⋱ ⋮
𝐶𝑡𝐴𝑠−1

𝑡 𝐵𝑡 𝐶𝑡𝐴𝑠−2
𝑡 𝐵𝑡 ⋯ 0𝑚×𝑢

⎤

⎥

⎥

⎥

⎥

⎦(𝑠+1)𝑚×(𝑠+1)𝑢

𝐿𝑡 =

⎡

⎢

⎢

⎢

⎢

⎣

0𝑚×𝑑 0𝑚×𝑑 ⋯ 0𝑚×𝑑
𝐶𝑡𝐸𝑡 0𝑚×𝑑 ⋯ 0𝑚×𝑑
⋮ ⋮ ⋱ ⋮
𝐶𝑡𝐴𝑠−1

𝑡 𝐸𝑡 𝐶𝑡𝐴𝑠−2
𝑡 𝐸𝑡 ⋯ 0𝑚×𝑑

⎤

⎥

⎥

⎥

⎥

⎦(𝑠+1)𝑚×(𝑠+1)𝑑

𝑊𝑡 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐶𝑡
𝐶𝑡𝐴𝑡
⋮

𝐶𝑡𝐴𝑠
𝑡

⎤

⎥

⎥

⎥

⎥

⎦(𝑠+1)𝑚×𝑛

,𝑀1𝑡 = 𝐻𝑡 ∈ R(𝑠+1)𝑚×(𝑠+1)𝑢

𝑀2𝑡 =

⎡

⎢

⎢

⎢

⎢

𝐼𝑚 0𝑚 ⋯ 0𝑚
0𝑚 𝐼𝑚 ⋯ 0𝑚
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝐼

⎤

⎥

⎥

⎥

⎥

(23)
⎣ 𝑚 𝑚 𝑚 ⎦(𝑠+1)𝑚×(𝑠+1)𝑚
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