

Secure Web development using OWASP Guidelines
Shubham Kumar Lala

III Year CSE, School of Computer

Science and Engineering, VIT

University Chennai, Tamil Nadu, India

shubhamkumarlala.skl@gmail.com

Akshat Kumar

III Year CSE, School of Computer

Science and Engineering, VIT

University Chennai, Tamil Nadu, India

akshatkumar.dev@gmail.com

Dr. Subbulakshmi T.

Professor, School of Computer Science

and Engineering, VIT University

Chennai, Tamil Nadu, India

research.subbulakshmi@gmail.com

Abstract— Website security is a major concern for large

organizations as well as individual developers, the rarer the

technology used the harder it becomes to come up with secure

practices for developing a website. Vulnerabilities that are not

fixed during development, and are deployed as such become
easy targets for hackers. This could cause the company or the

individual to lose a lot of money. It is not just the developers

who are affected, end users who end up on vulnerable websites

may get exposed to XSS attack which could compromise their

system or an unsecured configuration of database system could
lead to a potential data leak and hence the password of every

registered user on the website is compromised, users who use

the same password on multiple websites are affected the most.

The motivation for this paper comes from the fact that there is

an overwhelming number of vulnerabilities in any application
under development and every developer, experienced or not

needs a starting point to patch these vulnerabilities that might

have occurred in their application, this research provides the

most common vulnerabilities which should be taken care of in

any application and thus provide the much-needed starting
point for developers. The objective of this paper is to design

and develop a secure web application according to Open Web

Application Security Project (OWASP) guidelines. This paper

highlights the mitigation of vulnerabilities in the web

application using configuration changes, coding and applying
patches. The vulnerabilities SQL injection, Broken

authentication, Sensitive data exposure, Broken Access

Control, and XML external entities discussed in this paper are

listed under the OWASP top 10 vulnerabilities. The security of

the web application is tested and proved to have defense

mechanism implemented for the mentioned vulnerabilities.

Keywords—Vulnerabilities, OWASP, SQL injection,
Session Management, Broken authentication, Password

Hashing, Sensitive data exposure, and Server verification.

I. INTRODUCTION

A Web application (Web app) is an application program

that is stored on a remote server and delivered over the
Internet through a browser interface. A web application

generally consists of three main parts –

 Front – End,

 Back – End and

 Database.

There are many providers for the above three components.
Some examples are –

 Front – End - Angular, ReactJS, Vue.js, etc.

 Back – End - NodeJS, php, Laravel, etc.
 Database – MySQL, MongoDB, Cassandra, Redis,

etc.

For this paper, the front-end has been made using

HTML with ejs, for back-end NodeJS has been used

and for the database MySQL has been used.

A. The Frontend:

The front end is used to display the main content of
the webpage, it is usually the only thing that the client
sees once the site is v isited. If the website is static then

only the front end is required.

HTML is used to form the layout of the whole
page, CSS is used to give styling to the page, and

JavaScript is used to give logic to the page. Websites
having only the frontend are prone to Cross-Site

Scripting (XSS) injection attacks.

Advanced technologies like Angular and ReactJS

have a built-in mechanism to prevent XSS injection

however while building a website using the primit ive
technologies various steps have to be taken care of to

successfully prevent XSS injection.

B. The Backend:

Backend is required for dynamic website, it is
usually responsible for communicating with the
database and providing data to the front end to display.

Any sensitive information is usually kept in the
backend and never sent to the frontend because the

client can see the frontend data however, it is
extremely hard to access the data at the backend. The

frontend languages can only run in the browser

however the backend languages can be used to
communicate with the system they are compiled on.

C. The Database:

The database is the place to store any data which
has to be retained and should not be accessible by the

client. There are mainly two types of database – SQL
database and NoSQL database.

1) SQL database:
These types of databases are used when the data to

be stored is structured and the structure is not expected

to change.

2) NoSQL database:
When the data has no structure and could vary

from user to user then a NoSQL database is used.

II. OBJECTIVE

The main objective of this paper is to provide methods

to build a secure web application using NodeJS. This paper
focuses on the various vulnerabilities and the methods to

secure the web application from these vulnerabilities. This
paper also provides the code that can be used to secure the

web application.

This paper also explains the levels of security that a
developer should maintain to ensure that the user data is

Proceedings of the Fifth International Conference on Intelligent Computing and Control Systems (ICICCS 2021)
IEEE Xplore Part Number: CFP21K74-ART; ISBN: 978-0-7381-1327-2

978-0-7381-1327-2/21/$31.00 ©2021 IEEE 323

20
21

 5
th

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 In

te
lli

ge
nt

 C
om

pu
tin

g
an

d
Co

nt
ro

l S
ys

te
m

s (
IC

IC
CS

) |
 9

78
-1

-6
65

4-
12

72
-8

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
IC

CS
51

14
1.

20
21

.9
43

21
79

Authorized licensed use limited to: San Francisco State Univ. Downloaded on June 30,2021 at 19:10:17 UTC from IEEE Xplore. Restrictions apply.

always protected. These levels are discussed first in this

paper and then the methods to make the web application
secure follow.

III. PROPOSED IDEA

The task at hand revolves around eliminating the

OWASP vulnerabilities for a self-tailored site that consists
of most of the vulnerabilities highlighted by OWASP has

been used for testing. In the given figure (Fig. 1) of the
proposed idea, the “OWASP Vulnerabilities” column

highlights the vulnerabilities that have been considered for
this paper. The “Vulnerability Location” column points out

the features in the web application where there is a

possibility of an attack and which should be implemented
keeping in mind the possible attacks. The column

“Vulnerability Prevention” describes the steps that can be
taken for the elimination of the vulnerability from the web

application.

The website is an MCQ test-taking website that

generates a certificate of either participation or merit, based

upon the result of the test. The objective of this paper is to
use this website to show how to eliminate all the possible

vulnerabilities. SQL in jection attack is eliminated during
the login and registration by hashing the password and

sanitizing the code.

Sensitive data exposure is prevented by not sending any

sensitive data to the client-side and using only the server to
verify the details as well as the answers. Also, the database is

hashed using SHA256 with salt to provide maximum

security for the registered users.

Broken Authentication is prevented by using sessions to

store the login details of the currently active users. This
redirects the users to the home page if they access a domain

they are not supposed to. Sessions also help to log-out a
particular user successfully. Also, XML External Entit ies

can be prevented by using a JavaScipt Object Notation

(JSON) Object in which malicious codes could not be
passed.

Broken access control is prevented by password-
protecting pages that are not supposed to be visited by the

client.

Fig. 1 – The proposed idea.

IV. RELATED WORKS

 As the technology becomes better and complex

with the increase in vulnerability for a cyber threat.

Different testing techniques help to find a loophole in the

security. Following a standard procedure and defined policy

can reduce these loopholes. To mitigate the threats, it is

necessary to install security patches. [1] Patel. K in his paper

includes a survey on the current vulnerabilities and the

detection of those vulnerabilities.

 Network threats often come from mult iple sources

and affect a variety of domains. Collaborative sharing and

analysis of Cyber Threat In formation (CTI) can greatly

improve the predict ion and prevention of cyber-attacks. [2]

However, CTI data containing sensitive and confidential

informat ion can cause privacy exposure and disclos ure of

security risks, which will deter organizations from sharing

their CTI data. Th is concern can be handled by creating API

Gateway, which provides a bridge between end-users and

their data sources. Through this, users can select which data

is sharable with privacy-preserving means.

 Cross-site scripting (XSS) refers to an

unintentional client-side code in jection attack. It makes use

of un-validated or un-encoded user input and returns the

malicious output. [3] In type 1 XSS, malicious code or script

is embedded in a Web request. It is usually done through an

email that encourages the user to click on a provided

malicious link or a website with a malicious link. This can

be greatly avoided by not following the malicious links.

This vulnerability is one of the most widespread security

problems for web applicat ions. Various approaches to

defending against attacks that use XSS vulnerabilities are

available today but no single approach solves all the

loopholes. [4] An efficient approach discussed by I. Yusof

and A. K. Pathan to prevent persistent XSS attacks is by

applying the pattern filtering method.

 XSS attack takes the user to a webpage designed to

steal user’s sessions and cookies. Nearly 68 percent of

websites are vulnerable to XSS attacks. [5] G. Habib i and N.

Surantha suggest equipment of machine learning methods

namely Support Vector Machine (SVM), K-Nearest

Neighbour (KNN), and Naïve Bayes. Machine learning

algorithm equipped with the n-gram method improve the

detection performance of XSS attacks.

 SQL in jection could be easily implemented using

some set of special characters. The PHP framework

implemented a method of Magic Quotes that adds ‘\’ in

front of the special characters such as \,’ and ” which is

transformed to \\, \’ and \”. [6]

 Penetration testing is an important part of any

application deployment. Penetration testing can help to

identify potential vulnerabilit ies and insight on how those

vulnerabilities could be mitigated. [7] A. Goutam and V.

Tiwari in their paper have come up with a framework to test

the vulnerability of a financial application.

Proceedings of the Fifth International Conference on Intelligent Computing and Control Systems (ICICCS 2021)
IEEE Xplore Part Number: CFP21K74-ART; ISBN: 978-0-7381-1327-2

978-0-7381-1327-2/21/$31.00 ©2021 IEEE 324

Authorized licensed use limited to: San Francisco State Univ. Downloaded on June 30,2021 at 19:10:17 UTC from IEEE Xplore. Restrictions apply.

 SQL injection is a very basic yet extremely

powerful method of gaining access to any system. In

applications where the user details are verified during the

login process are highly susceptible to this form of attack.

[8] P. N. Joshi, N. Ravishankar, M. B. Raju, and N. C.

Ravi developed a secure system for authentication access

and applied SQL injection attacks to check the security.

 M. Dua and H. Singh [9] discuss the various

attacks possible attacks on a website like SQL in jection and

XSS attacks. Their idea uses a XAMPP server for client and

server communication.

 R. A. Katole, S. S. Sherekar and V. M. Thakare [10]

discuss the importance of SQL in jection attacks in modern-

day websites. They have also proposed an idea to detect

SQL in jection attacks by removing the parameter values of

the SQL query.

 Session management is an important area to

consider while developing any web application. Sessions

that are not handled properly could lead to the leakage of

informat ion. R. Lukanta, Y. Asnar and A. I. Kistijantoro

[11] developed a tool to detect session vulnerability, this

tool adds more features on top of currently existing tools

like Nikto.

 Registering different users without checking the

validity of every user could easily lead to a serious

vulnerability that could later be used to perform a DOS

attack on the system. A good way of checking the valid ity of

the emails and the user is through the Time-Based One-

Time Password proposed by H. Seta, T. Wati, and I. C.

Kusuma [12]. Th is way a token will be generated which

could validate the user and hence prevent DOS attacks on a

smaller scale. The authors decided to use hashing for an

extra layer of security. This paper however uses session

management to keep the OTP confidential. Therefore, there

is no need to apply hash on an OTP which could potentially

slow down the process.

 Just the knowledge of different vulnerab ilities and

the ways to mitigate them does not ensure that one could

develop a secure system. A. Anis, M. Zulkern ine, S. Iqbal,

C. Liem and, C. Chambers [13] in their paper d iscuss the

various secure coding practices which could help developers

develop secure code on the client-side. The approach is built

on JavaScript which is the language used by the majority of

web applications.

 K. Vijayalakshmi and A. A. Leema [14] point out

that most of the XSS prevention mechanism use simple

filtering that cleans the malicious code, however, this

filtering process does not work for some cases and hence

they have proposed an approach in their paper which takes

care of few of the edge cases where simple XSS might fail.

 Different technologies used for developing web

applications might have different types of vulnerabilities

that should be taken care of. Therefore, the implementation

of detection and prevention mechanisms vary from language

to language. H. AL-Amro and E. El-Qawas meh [15] discuss

various ways to detect vulnerabilit ies on websites made with

ASP.NET.

 When a new vulnerability is detected, it has to be

recorded in Common Vulnerabilities and Exposures (CVE)

and it also has to be scored by Common Vulnerab ilities

Scoring System (CVSS), however, this takes a lot of time.

D. Iorga, D. Corlătescu, O. Grigorescu, C. Săndescu, M.

Dascălu and R. Rughiniş [16] proposed the idea of using

machine learn ing models to detect vulnerability in news

website. Various models were trained and their

performances were recorded.

 There are various ways to detect XSS attacks, it

quickly becomes a mammoth task to choose which would

work the best for the g iven website. M. Liu, B. Zhang, W.

Chen and X. Zhang [17] in their paper have analyzed

various XSS detection mechanis ms, classified them into 3

different categories, and performed a survey on their

performance.

 A vulnerable website could indirectly affect the

end-users as well. A phishing website is created when a

vulnerable website is scanned and its counterfeit website is

hosted without the knowledge of the server owner. B.

Wardman, G. Shukla, and G. Warner [18] have discussed

the common vulnerabilities which allow such phishing sites

to show up, and also their idea informs the owner if their

website has been compromised.

 It’s not just the website that could host an

enormous number of vulnerabilities, some technology used

inside the website could also be the cause for a breach. For

example, a website using a QR code to send documents. The

website may not be vulnerable however QR code in itself

has several vulnerabilit ies which might not be known to the

developer. A. Averin and N. Zyulyarkina [19] d iscuss the

threats in using QR codes in blockchain applications.

 F. Yu and Y. Tung [20] have developed an online

service where developers could detect view and patch the

various vulnerabilit ies on their websites. It is done using

static string analysis.

 J. Zhao and R. Gong [21] and H. AL-Amro and E. El-

Qawas meh [22] have discussed SQL injection, Cross-Site

Script ing session hijacking, and other vulnerabilities in PHP

and ASP.NET respectively. They have shown the ways to

fix the vulnerab ility but not the consequences of not fixing

the vulnerability.

V. LEVELS OF USER AUTHENTICATION AND

SECURING USER DATA

A. Level - 1

Usage of username and password to login to a specific
user’s portal. This i s ess e nt ial so th at no othe r us er c an

intrude on the privacy of any other user by accessing their
profile.

Proceedings of the Fifth International Conference on Intelligent Computing and Control Systems (ICICCS 2021)
IEEE Xplore Part Number: CFP21K74-ART; ISBN: 978-0-7381-1327-2

978-0-7381-1327-2/21/$31.00 ©2021 IEEE 325

Authorized licensed use limited to: San Francisco State Univ. Downloaded on June 30,2021 at 19:10:17 UTC from IEEE Xplore. Restrictions apply.

B. Level – 2

Authenticating the user by sending a mail with a One-

Time-Password (OTP) to their email ID and verify ing the
OTP at the time of registration. This will validate that the

user is a valid one.

C. Level – 3

The user’s password should be hashed using hashing

algorithms such as SHA-256. This ensures that in the case of

a data breach the user data is safe from the attacker, it is safe

because decryption of a string hashed with SHA 256 using a

computer takes approximately 4 trillion years.

D. Level – 4

To ensure that the user's password is safe the password

can be salted (salting adds some extra string to the user’s

password and then hashes it). This results in an even longer

string and will take an even longer time to decrypt.

E. Level – 5

Enabling Two-Factor Authentication. Letting the user

set up the number and verify it. This allows the user to log-

in only if they provide the correct OTP sent to their mobile

number at the time of login.

VI. ARCHITECTURE

A. Insecure Web Application (Environment and Detection) -

The initial environment for the research was taken to be

an insecure web application having no layer of security.
This app was tested for OWASP vulnerabilities. Following

are the conclusions drawn from the testing –

1) SQL Injection –
On entering the SQL commands to drop the user’s

table in the login form, the table was dropped from the

database. This occurred because the form was not able
to process whether this was a normal insertion in the

table or a command to do some manipulation.

2) Brute Force Login Attack –
A vulnerability testing tool such as Burp-Suit can

implement multiple login attempts by using techniques
such as permutation to predict the correct login

credentials. The tool checks for the “route” to which

the individual credentials lead to.

The credentials leading to pages such as “Home”,

etc. are the correct login credentials and could be used
to access the personal information of the user. On

implementing this , the tool did give the credentials
that were leading to the “Home” route.

Also, a higher value was given for those

credentials whose password might be right.

3) Password Sniffing –
A password that is not encrypted before storing has

a high chance of getting sniffed and used by hackers.
The hackers can use SQL injection methods to read

the passwords of users.

The website did not store the passwords in the

encrypted format in the database and could be easily

used by the hackers to extract sensitive information
related to the users.

4) External XML Entities –
XML is used to transfer data between client and

the server. For example, the questions are sent in XML
format to display to the users. For easy management of

XML data from the client-side vulnerable XML
parsers are used as external libraries on the server-

side. This causes the system to become insecure.

5) Broken Authentication –
If the user logs out i.e., clicks the “Log Out”

button, the user should be taken to the root page of the

website and under no circumstances the user should be
able to view the contents of his profile without logging

in.

The website did take the user to the root page i.e.,

the login page of this website, but once the back
button was pressed, the user could easily get back to

his profile and view the contents as if they were

logged in.

B. Secure Web Application (Prevention) –

 After the init ial tests, the web application was made

secure using the steps that follow this section but the results

that were brought out are as follows –

1) SQL Injection –
The web application no longer processed any type

of SQL commands and just pointed out that the

credentials were wrong.

2) Brute Force Login Attack –
Providing an additional Completely Automated

Public Turing test to tell Computers and Humans

Apart (CAPTCHA) field increased the number of
permutations one must need to have, also this

CAPTCHA code refreshes on a new login attempt, so
there is less probability that the attacking tool could

guess the correct credentials.

This method did solve the problem for the Brute

Force Login Attack for the web application.

3) Password Sniffing –
The passwords were encrypted using Data

Encryption Standard (DES) hashing algorithm. In this

case even if one gets successful at extracting the
encrypted passwords from the database, it would take

years for them to decrypt one password.

The encryption was successfully done for the

passwords for the considered web application and the

login was also successful after the encryption.

4) External XML Entities –
All XML transfers between the client and the

server are removed and replaced with JSON transfer.
All the XML parser dependencies from the server file

code have been removed. Changed the HTTP request
header to JSON type. (Content-type/JSON).

For backend languages that require additional

libraries to process Json their dependencies should be
added. Changed the client side code to receive and

send JSON objects. JavaScript has a built-in JSON
parser.

5) Broken Authentication –

Proceedings of the Fifth International Conference on Intelligent Computing and Control Systems (ICICCS 2021)
IEEE Xplore Part Number: CFP21K74-ART; ISBN: 978-0-7381-1327-2

978-0-7381-1327-2/21/$31.00 ©2021 IEEE 326

Authorized licensed use limited to: San Francisco State Univ. Downloaded on June 30,2021 at 19:10:17 UTC from IEEE Xplore. Restrictions apply.

This issue was tackled by implementing sessions

in the web application. As soon as a user clicks the
“Log Out” button the session corresponding to that

individual user is destroyed. So in this scenario, unless
the session is started for the user using the correct

credentials the user cannot return to their profile. This

prevention technique was successfully implemented

for the web application.

VII. METHODS TO SECURE THE WEB APPLICATION

A. Architecture Diagram –

Fig. 2 – The steps that are followed to develop a secure web application.

1) Environment –

The “Environment” in the above architecture diagram shows the insecure web application.

2) Detection –

The “Detection” column shows the hints and errors one can check to ensure if the website is vulnerable to attacks.

3) Prevention –
The “Prevention” column shows the steps one can follow to make the web application secure.

Proceedings of the Fifth International Conference on Intelligent Computing and Control Systems (ICICCS 2021)
IEEE Xplore Part Number: CFP21K74-ART; ISBN: 978-0-7381-1327-2

978-0-7381-1327-2/21/$31.00 ©2021 IEEE 327

Authorized licensed use limited to: San Francisco State Univ. Downloaded on June 30,2021 at 19:10:17 UTC from IEEE Xplore. Restrictions apply.

VIII. IMPLEMENTATION

A. SQL Injection –

Using SQL injection attacker can gain access to
the entire database using reverse shell connection. It is

an extremely dangerous attack that should be taken
care of in any web application.

The attacker sends a malformed query in the

input text, the query is formed such that the query

results to true even if the password or username is
wrong. This way the attacker gets access to the

database.[1][3]

The major reason why it occurs is that the input

from the user is not parsed before using the input in
the search query.[7]

To avoid SQL injection 2 things can be done in
NodeJs –

1) Instead of appending the queries with the query

string, use a binding function to bind it to the string.[8]

2) Always turn off mult iple SQL statements in the SQL

 connection, this way the attacker cannot use the

 multip le statements to evaluate an expression to true.

 The attacker can gain root access using SQL injection

 vulnerability.

 Example –
a. Multiple Statements –

i. Malformed Code –
var mysql = require("mysql");

var connection = mysql.createConnection({

host:"localhost",user: "root", password: "root",

database: "vlab_check", multipleStatements: true

});
module.exports = connection;

If this statement is used, then the attacker will be

able to send queries through the forms which will be
processed by the backend.

ii. Corrected Code –
var mysql = require("mysql");

var connection = mysql.createConnection({ host:

"host",

user: "username", password:

"password", database:

"database_name",

multipleStatements: false

});
module.exports = connection;

b. Binding the query-

i. Malformed Code –

sql.query("select * from users where

rollno=’"+rollno+"’ and

passw ord =’"+p assw o rd+" ’",fu nct ion(err ,resul t){

if(err) { console.log(err); } else {

if(result.length != 0)

{

 req.session.userId = rollno;

 res.redirect("/home");

 }

 }

 });

 If this statement is used then the queries that are

entered in the login forms will be placed in the '?' as it is.

This format of insertion may lead to some serious issues

like dropping of table etc.

ii. Corrected Code-

sql.query("select * from users where

rollno=?",[rollno],function(err,result){

 if(err) { console.log(err); }

 else {

 if(result.length != 0)

 {

 if(x == result[0].password)

 {

 req.session.userId = rollno;

 res.redirect("/home");

 }

 }

 }

}

B. Broken Authentication –

It usually occurs when the users can brute force
and find the password, or when the user can go back

to the login page after logging in.

Using this the attacker can access the data of

another user. Or in shared computers when a person
logs out and still another person using the same PC

can access the account of the other person due to poor

session management. Usually, intruder attacks like
Battering Ram and cluster bomb attacks are used to

exploit broken authentication.

Avoiding broken authentication –

1) To prevent a brute force attack on the log-

in page, the easiest and safest method is to use

CAPTCHA. Since CAPTCHA cannot be filled by

the automation tool, user intervention is required

and the automation of attack cannot be done.

2) To prevent automation tools from finding

other passwords once a password has already

been found, use sessions and cookies to avoid

going back to the login page again after log in has

been done and the user did not log-out. This way

the user has to manually run the attack every t ime

a password has been found.[9]

Since HTTP requests are stateless, session

management is important to identify different users
and also to identify which user has logged out and a

password should be entered if the user logs in again.

The following code snippet is a middle-ware that
is, it is run after the request from the user and before

the response from the server, hence it becomes the
perfect place to check for a session. If the user has

Proceedings of the Fifth International Conference on Intelligent Computing and Control Systems (ICICCS 2021)
IEEE Xplore Part Number: CFP21K74-ART; ISBN: 978-0-7381-1327-2

978-0-7381-1327-2/21/$31.00 ©2021 IEEE 328

Authorized licensed use limited to: San Francisco State Univ. Downloaded on June 30,2021 at 19:10:17 UTC from IEEE Xplore. Restrictions apply.

logged in then the user id of the session should be set,

therefore if the user tries to access the route without
logging in with an undefined user id, this middleware

will redirect the user to the login page.

Similarly, if the user is giving a test and goes

back to the log-in page due to an internet issue,
then after logging in the user is redirected to the

test from where he left.

 Example –
Cookies and Sessions –

var middleware = function(){

// In the login page

return function(req,res,next){

if(req.session.userId === undefined){

// checks if user has already logged in

next();

}

else if(req.session.test){

// checks if the user is giving test

res.redirect("/test/review/"

+req.session.subject);

}

else{ res.redirect("/home") }

}

}

C. Sensitive Data Exposure –

This attack varies from application to application
as well as from person to person. It depends upon the

application and the person to classify a piece of

information as sensitive.

This vulnerability is extremely important to fix in
high-profile web pages like banking sites. If the

account details of one person are exposed to the
attacker this could be a huge problem for both the

bank and the victim.

Sensitive data exposure could be done without
on e ’̂s kno wl ed g e, as d ata th at do es not seem as

sensitive to a person may be seen sensitive in the eyes

of the other person.

Ways to handle sensitive data –

1) Always use the server to handle sensitive

data. Like in our case the answers to the questions

are never sent to the client-side and all the

verification is always done at the server-side, this

is because the data on the client-side can easily be

viewed by the client, this is not the case with

server-side code.

2) Data related to passwords must always be

hashed and stored, this is because in the future if

there is any breach the passwords of the users are

safe as it can be extremely d ifficu lt and time -

consuming to crack encryptions like SHA256

with salt.

 Example –
Hashing –

i. Malformed Code –
var rollno = req.body.regno.toUpperCase();

 var password = req.body.password;

Password is stored in the database the way user

types without any encryption.

iii. Corrected Code –
var crypto = require("crypto-js");

password = crypto.SHA256(password).toString();

Password is changed to the updated encrypted

password and store in the database. Password is the
input gotten from the user.

D. Server Verification –

 To client –

 Test of subject, question index, Number o f

questions, the question with 4 options, the button status (

flagged, answered, unvisited), the time.

 As it can be seen the answer is not sent to the

client, only the question and option.

 Example –

res.render("test.ejs",{subject: currentUser.subject,

questionIndex:

currentUser.questionIndex,numOfQuestions:

NUM_OF_QUESTIONS,

 question: currentUser.questionMatrix

[currentUser.questionIndex],

buttonStatus: currentUser.buttonStatus,

timeValue: currentUser.time});

E. XML External Entities –

This vulnerability is mainly due to the data

exchange using XML. XML External Entities is the
vulnerability that is caused when a malicious XML

script that contains a reference to an external entity

is parsed by the web application and runs the
malformed code that is inside that script. XML is

used as a data object for sending data through API
calls. If malicious data is sent via the API call an

attack can be easily executed and this attack may
result in denial of service, disclosure of confidential

data, server-side request forgery, port scanning, etc.
A simple approach to eliminate this vulnerability is

to change the data object that is used to send the

data via the API calls. The web application being
discussed uses JavaScript Object Notation (JSON)

object for transferring data via the API calls. This
data object eliminates the possibility of an XML

External Entit ies attack. This attack occurs when
XML input containing a reference to an external

entity is processed by a weakly configured XML

parser.[4][6]

This is perhaps the easiest vulnerability to fix. Just
use JSON (JavaScript Object Notation) to pass the

data between client and server, in single-page
applications using REST Application Programming

Interface (API).

Proceedings of the Fifth International Conference on Intelligent Computing and Control Systems (ICICCS 2021)
IEEE Xplore Part Number: CFP21K74-ART; ISBN: 978-0-7381-1327-2

978-0-7381-1327-2/21/$31.00 ©2021 IEEE 329

Authorized licensed use limited to: San Francisco State Univ. Downloaded on June 30,2021 at 19:10:17 UTC from IEEE Xplore. Restrictions apply.

Most the major backend services now provide

native support for JSON data transfer.

 Example –

res.render("home.ejs",{isLoggedIn: isLoggedIn});

Rendering the home page, with login informat ion

sent as a JSON object to the ejs viewer.

In this example, isLoggedIn on the left side is the

key and isLoggedIn variable on the right is the value.
It is a common convention to name both the key-value

pairs as the same variable name while sending data to

ejs.

IX. RESULTS

A. SQL –

NodeJS is a relatively new backend language therefore

automated vulnerability scanners don’t work well with most

of the NodeJS applications. Manual testing of vulnerabilities

is one of the ways to validate the security of the application.

Fig. 3 – Users in the database

Fig. 4 – Standard SQL injection

1'or'1'='1, is a standard SQL injection statement.

The SQL query to retrieve a user based on username and

password is

Select * from user_table where username = ‘username’ and

password = ‘password’

The underlined variables are replaced by the text user types,

in the case of SQL in jection, both username and password

are: 1'or'1'='1.

Therefore, the statement now becomes,

Select * from user_table where username = ‘1'or'1'='1’ and

password = ‘1'or'1'='1’

‘1’ = ‘1’ is always true and hence the whole query valid.

Therefore, all the details present in the database are listed.

Fig. 5 – Execution of malicious SQL query

Hence the attacker can gain entry into the site without being

a legitimate user.

However, when the security measures are applied in the

code such as binding the query instead of writ ing the

variable names appended with quotation marks the resulting

query becomes:

Select * from user_table where username = 1'or'1'='1 and

password = 1'or'1'='1

When this statement is entered as a query the result is an

error therefore the attacker does not gain access to the site.

Fig. 6 – Handling malicious query

Therefore, SQL in jection is handled correctly by binding

query.

B. Broken Authentication –

 HTTP is a stateless protocol, that is there is no connection

between the current request and previous request, all of the

requests are anonymous. Therefore, to identify different

users the developers usually store temporary data in the

session storage of the browser. Session storage is deleted

once the browser is closed or after the time limit for the data

is elapsed.

 In practice a misconfigured session management could

result in the fo llowing scenario, A user logs into the site,

then logs out and does not close the browser, another user

could just press the back button on the browser and the

previous user’s page is shown to the attacker, this happens

because once the previous user logs out the session is not

destroyed, and once the back button is pressed the session is

restored.

Proceedings of the Fifth International Conference on Intelligent Computing and Control Systems (ICICCS 2021)
IEEE Xplore Part Number: CFP21K74-ART; ISBN: 978-0-7381-1327-2

978-0-7381-1327-2/21/$31.00 ©2021 IEEE 330

Authorized licensed use limited to: San Francisco State Univ. Downloaded on June 30,2021 at 19:10:17 UTC from IEEE Xplore. Restrictions apply.

Fig. 7 – Misconfigured session

 It can be seen in the logs that the user logged in, then

logged out, however upon pressing the back button the user

is once again inside the website and it does not show up in

the logs because browsers cache the previously visited pages

for faster retrieval o f visited pages. However, this poses a

security threat as can be seen in this example. The way to

patch this is to tell the browser to load the backend script o f

the page again and not display the page from the cache.

Fig. 8 – Session configuration

 After fixing the vulnerability it can be seen that when the

back button is pressed the user is taken to the registration

page instead of the home page of the previous user.

X. NOVELTY

 Th is is research is done using NodeJS as a backend

language. NodeJS uses JavaScript to handle the backend

process of the web applicat ion. It is a relatively new

technology that is gaining popularity very quickly however

there aren’t many works that focus on the security aspect

while using NodeJS. This paper introduces the common

vulnerabilities in a language-independent form and the patch

for those vulnerabilit ies using NodeJS. There are numerous

papers and articles which provide implementation detail of

vulnerabilities using PHP for instance [21] provides the

vulnerability patch details of SQL in jection, Cross -Site

Script ing and various other vulnerabilit ies using PHP. [22]

provides the patch details in ASP.NET applicat ions.

However, not many papers provide the details in NodeJS.

Therefore, the novelty of the research work lies in the

implementation of security features using NodeJS.

XI. CONCLUSION

 The purpose of this research was to find all the weak

points in a web application corresponding to the OWASP

guidelines. Based on the analysis, it can be concluded that a

simple web applicat ion with no security is highly prone to

attacks and can be easily taken down. Basic SQL queries fo r

deleting the database will be executed with no checks in a

simple web application, and this alone is enough to bring

down the web application. After the implementation of the

security guidelines provided by OWASP, the web

application taken for consideration showed no negative

results for the attacks that were performed on the web

application earlier. The attacks such as SQL in jection, XSS

did not do any negative effect on the application. The

limitat ion of this research is that it is implemented for the

web application that had backend as NodeJs. Other backend

service providers such as php, Java, etc. may not be able to

deal with the implementation idea provided in th is research

paper. Another limitation of this research paper was that the

testing of the mentioned vulnerabilities was performed with

some specific tools and with certain levels of testing. The

web application may behave differently if the levels of the

testing are changed.

REFERENCES

[1] K. Patel, "A Survey on Vulnerability Assessment & Penetration
Testing for Secure Communication," 2019 3rd International
Conference on Trends in Electronics and Informatics (ICOEI),
T irunelveli, India, 2019.

[2] W. Fan et al., "Enabling Privacy-Preserving Sharing of Cyber Threat
Information in the Cloud," 2019 6th IEEE International Conference
on Cyber Security and Cloud Computing (CSCloud)/ 2019 5th IEEE
International Conference on Edge Computing and Scalable Cloud
(EdgeCom), Paris, France, 2019.

[3] S. N. Bukhari, M. Ahmad Dar and U. Iqbal, "Reducing attack surface
corresponding to Type 1 cross-site scripting attacks using secure
development life cycle practices," 2018 Fourth International
Conference on Advances in Electrical, Electronics, Information,
Communication and Bio-Informatics (AEEICB), Chennai, India,
2018.

[4] I. Yusof and A. K. Pathan, "Preventing persistent Cross-Site Scripting
(XSS) attack by applying pattern filtering approach," The 5th
International Conference on Information and Communication
Technology for The Muslim World (ICT4M), Kuching, Malaysia,
2014.

[5] G. Habibi and N. Surantha, "XSS Attack Detection With Machine
Learning and n-Gram Methods," 2020 International Conference on
Information Management and Technology (ICIMTech), Bandung,
Indonesia, 2020.

[6] J. Kim, "Injection Attack Detection Using the Removal of SQL Query
Attribute Values," 2011 International Conference on Information
Science and Applications, Jeju, Korea (South), 2011.

[7] A. Goutam and V. T iwari, "Vulnerability Assessment and Penetration
Testing to Enhance the Security of Web Application," 2019 4th
International Conference on Information Systems and Computer
Networks (ISCON), Mathura, India, 2019.

[8] P. N. Joshi, N. Ravishankar, M. B. Raju and N. C. Ravi,
”Contemplating Security of Http From SQL Injection and Cross
Script,” 2017 IEEE International Conference on Computat ional

Proceedings of the Fifth International Conference on Intelligent Computing and Control Systems (ICICCS 2021)
IEEE Xplore Part Number: CFP21K74-ART; ISBN: 978-0-7381-1327-2

978-0-7381-1327-2/21/$31.00 ©2021 IEEE 331

Authorized licensed use limited to: San Francisco State Univ. Downloaded on June 30,2021 at 19:10:17 UTC from IEEE Xplore. Restrictions apply.

Intelligence and Computing Research (ICCIC), Coimbatore, India,
2017.

[9] M. Dua and H. Singh, ”Detection prevention of website
vulnerabilities: Current scenario and future trends,” 2017 2nd
International Conference on Communication and Electronics Systems
(ICCES), Coimbatore, India, 2017.

[10] R. A. Katole, S. S. Sherekar and V. M. Thakare, ”Detection of SQL
injection attacks by removing the parameter values of SQL query,”
2018 2nd International Conference on Inventive Systems and Control
(ICISC), Coimbatore, India, 2018.

[11] R. Lukanta, Y. Asnar and A. I. Kistijantoro, ”A vulnerability
scanning tool for session management vulnerabilities,” 2014
International Conference on Data and Software Engineering
(ICODSE), Bandung, Indonesia, 2014.

[12] H. Seta, T. Wati and I. C. Kusuma, ”Implement Time Based One
Time Password and Secure Hash Algorithm 1 for Security of Website
Login Authentication,” 2019 International Conference on Informatics,
Multimedia, Cyber and Information System (ICIMCIS), Jakarta,
Indonesia, 2019.

[13] A. Anis, M. Zulkernine, S. Iqbal, C. Liem and C. Chambers,
"Securing Web Applications with Secure Coding Practices and
Integrity Verification," 2018 IEEE 16th Intl Conf on Dependable,
Autonomic and Secure Computing, 16th Intl Conf on Pervasive
Intelligence and Computing, 4th Intl Conf on Big Data Intelligence
and Computing and Cyber Science and Technology
Congress(DASC/PiCom/DataCom/CyberSciTech), Athens, Greece,
2018.

[14] K. Vijayalakshmi and A. A. Leema, "Extenuating web vulnerability
with a detection and protection mechanism for a secure web access,"
2017 Fourth International Conference on Signal Processing,
Communication and Networking (ICSCN), Chennai, India, 2017.

[15] H. AL-Amro and E. El-Qawasmeh, "Discovering security
vulnerabilities and leaks in ASP.NET websites," Proceedings Title:
2012 International Conference on Cyber Security, Cyber Warfare and
Digital Forensic (CyberSec), Kuala Lumpur, Malaysia, 2012.

[16] D. Iorga, D. Corlătescu, O. Grigorescu, C. Săndescu, M. Dascălu and
R. Rughiniş, "Early Detection of Vulnerabilities from News Websites
using Machine Learning Models," 2020 19th RoEduNet Conference:
Networking in Education and Research (RoEduNet), Bucharest,
Romania, 2020.

[17] M. Liu, B. Zhang, W. Chen and X. Zhang, "A Survey of Exploitation
and Detection Methods of XSS Vulnerabilities," in IEEE Access, vol.
7.

[18] B. Wardman, G. Shukla and G. Warner, "Identifying vulnerable
websites by analysis of common strings in phishing URLs," 2009
eCrime Researchers Summit, Tacoma, WA, USA, 2009.

[19] A. Averin and N. Zyulyarkina, "Malicious Qr-Code Threats and
Vulnerability of Blockchain," 2020 Global Smart Industry Conference
(GloSIC), Chelyabinsk, Russia, 2020.

[20] F. Yu and Y. Tung, "Patcher: An Online Service for Detecting,
Viewing and Patching Web Application Vulnerabilities," 2014 47th
Hawaii International Conference on System Sciences, Waikoloa, HI,
USA, 2014.

[21] J. Zhao and R. Gong, "A New Framework of Security Vulnerabilities
Detection in PHP Web Application," 2015 9th International
Conference on Innovative Mobile and Internet Services in Ubiquitous
Computing, Santa Catarina, Brazil, 2015.

[22] H. AL-Amro and E. El-Qawasmeh, "Discovering security
vulnerabilities and leaks in ASP.NET websites," Proceedings Title:
2012 International Conference on Cyber Security, Cyber Warfare and
Digital Forensic (CyberSec), Kuala Lumpur, Malaysia, 2012.

Proceedings of the Fifth International Conference on Intelligent Computing and Control Systems (ICICCS 2021)
IEEE Xplore Part Number: CFP21K74-ART; ISBN: 978-0-7381-1327-2

978-0-7381-1327-2/21/$31.00 ©2021 IEEE 332

Authorized licensed use limited to: San Francisco State Univ. Downloaded on June 30,2021 at 19:10:17 UTC from IEEE Xplore. Restrictions apply.

