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Dynamic traffic in a software-defined network (SDN) causes explosive data to flow from one system to
another. The explosive data affects the functionality of system parameters, network-level configuration, routing
parameters, network characteristics, and system load factors. Adapting to the traffic flow is a key research area
in SDN in today’s big data world. Load balance vehicular sensor accessibility reduces delays, lowers energy
consumption, and decreases the execution time. This paper combines the entropy-based active learning model
to identify intrusion patterns efficiently, which is a packet-level intrusion detection model. The developed
afterload balancing model can track the attack on the network. We then proposed a load balancing algorithm
that optimizes the vehicular sensor usability by using sensor computing capability and source needs. We make
use of a convergence-based mechanism to achieve high resource utilization. We then perform experiments
on the state-of-the-art intrusion detection dataset. Our experimental results show that the load balancing
mechanism can achieve 2x in performance improvements compared to traditional approaches. Thus, we can see
that the designed model can help improve the decision boundary by increasing the training instance through
pooling strategy and entropy uncertainty measure.

1. Introduction that are distributed geographically. Fog computing-based application

services are handled at the network’s edge. The application can deliver

The application of the Internet of things (IoT) and distributed com-
puting has enabled a massive growth of heterogeneous applications.
The future of IoT will connect many heterogeneous devices with the
ability to communicate with the network directly [1]. Billions of objects
(i.e., sensors network) will be connected to the Internet in the next
generation of networks. This will result in extensive amounts of data
that give rise to data delivery issues. Objects may include home applica-
tion, traffic flow analysis, irrigation systems—these objects are usually
equipped with several sensors or nodes. The role of these sensors/nodes
is to gather and analyze real-time environments.

Connected sensors with autonomous vehicles will also grow and
become the future of intelligent transportation systems. Travel comfort,
road security and safety will depend upon high data rates and reliable
connectivity among autonomous vehicles. Such a transformation will
increase the need for a safe and convenient network environment from
transportation and transport infrastructure. These sensors are designed
to acquire real-time data, and efficient processing is required for better
performance. The gathered data is then being used by cloud computing-
based applications [2]. The applications can store, process, and update
the data in real-time. The applications have centralized data centers
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high efficiency and throughput in a distributed environment. The inte-
gration of IoT with cloud and fog computing has the potential to make
the IoT more efficient to operate at the distributed level and provide
increased uptime and cost-efficiency. These factors help improve the
functionality of computing, storage and networking resources [1,3].
Thus, enabling fast interaction of data resulting in low latency. Both fog
and cloud computing will be connected to billions of smart things and
IoT gateways. IoT gateways consist of several small gateways through
wireless sensor networks.

Software define networks (SDN) are expected to be a key component
of the next-generation (5th generation wireless network) that integrates
IoT with human-based services. SDN help to organize heterogeneous
networks by following tasks.

1. Transport: a massive amount of data generated by terminals,
sensors, and nodes.

2. Allocation: of computing resource and storage sources in dis-
tributed data centers.

3. Processing: as well as collection of data efficiently.
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SDN can be reconfigurable wireless networks that gather the re-
quired data efficiently [4]. SDN is designed to enable the authentication
of users and sensors to define accessibility rules. Current issues with IoT
networks are associated with data collection and security and privacy
of the collection’s pertaining data. Efficient data collection and analysis
remain an open research question; however, with the control over the
network by SDN use. This makes the network faster, as well as easier to
manage. SDN can redirect traffic (number of packets) when needed [5].
This redirection helps IoT applications deal with data latency tasks.
Due to network reconfiguration, networks are required to be more
responsive, efficient, and secure. Artificial Intelligence (AI) enables
SDN to provide massive advantages regarding security. SDN can answer
both networking and security issues often encountered in IoT networks.
SDN is a networking framework used to overcome IP networks’ issues,
which are hard to manage due to reconfiguration. The reconfigurable
wireless networks (RWNs) are composed of nodes that can perform the
task defined by the software. The task includes the reconfiguration of
nodes, control of hardware as well as protocol associated with them.
The reconfiguration is achieved by including and excluding the node
task and node reconfiguration, which also includes updating routing
protocols.

1.1. Motivation

Different scenarios based on network configurations have been pro-
posed in many works [6]. However, many networks are not compatible
with one another due to the nature of application and type of data
and protocols used. The vehicular network and its application have
different requirements from the networking of sensors [7]. For example,
an emergency application requires low network latency. Sometimes the
application may demand dynamic bandwidth for traffic flows between
users. Other IoT ecosystems issues include efficient data transportation
from data sources (i.e., sensors) to data processing and storage centers.

For this reason, the purpose of this paper is to address the scalability
of sensors nodes as well as the operational cost of network services
for deploying the infrastructure [8]. The proposed model balances
the load among heterogeneous nodes. The task distribution among
different nodes is done in a load-balancing manner. In this way, a
massive amount of data will be transported from nodes to process-
ing centers smoothly. This enables the SDN to instantly deliver the
analysis tasks and improving resource utilization, throughputs, and
tasking executions [9]. The reconfigurable network’s security is also
being investigated by deploying an active learning-based algorithm
that expands its knowledge over time. The learning algorithm detects
nodes’ activity and performs the task to defend against different types
of attacks. Deep learning-based active learning methods optimize and
efficiently expand their knowledge by learning from the instances asso-
ciated with it. In this way, the user-centric learning-based mechanism
can deliver data from resource to source and autonomously learn to
adapt to reconfigurable environments while maximizing the available
resources’ utility.

1.2. Contribution

In a reconfigurable SDN, a vast number of the papers discuss the
node routing problem. The various authors used heuristic-based solu-
tions by using the network structure. However, heterogeneous applica-
tions require low data latency and an increase in resource utilization.
Therefore, this paper proposes the load balance sensor task execution
in a vehicular network connected to an SDN. Our model uses the
current node states and balance the sensors load to improve resource
utilization, throughput, and execution time. Our goal is to optimize the
resource utilization of sensor data defined by the SDN in the cluster of
interconnected sensors. The acceleration is enabled by gathering data
from sensors in a distributed manner; they minimize the requested data
from the heterogeneous application and increasing resource utilization.
To summarize, the main contributions of this paper are:
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1. Development of an SDN load balancing algorithm to increase
data delivery and maximize resource utilization.

2. Development of packet-level intrusion detection using deep ac-
tive learning.

3. An empirical analysis of the proposed algorithm and its compar-
ison with the state-of-the-art algorithms.

We organize the paper as follows. In Section 2, we represent a differ-
ent load balancing algorithm. Section 3 presents the system architecture
and performance evaluation for the proposed load balancing heuris-
tic. Section 4 presents the experimental setup and results. Section 5
discussion of future direction and conclude the research work.

2. Related work

We presented a few types of research concerning the scheduling
and load balancing problem. The effect of load balancing methods
helps device suitability. The load balancer was able to distribute the
device’s loads. The selected algorithms have a specific effect: load
balancing and optimization for specific application needs. Like another
load balancing, SDN also needs to find the best load balancing method.
Various methods are proposed that achieve load balancing among the
different device, edge nodes, controller and server [2].

The controller-based load balancer can increase the control plane
that results in the SDN controller’s decentralization. In [4], the au-
thors proposed the RLMD method to balance traffic load in the multi-
controller SDN network. The authors proposed the multi-partition-
based algorithm to balance communication of controller, switches and
node [10]. The model is then compared with the typical methods and
manages to better resource allocations in dynamic traffic load. The
algorithm can work under multiple controllers.

Lin et al. [11] addressed the traffic congestion in the mobile vehicu-
lar network and analyzed its impact. The work was further extended by
Yi et al. for the route identification in the traffic jams scenarios [12].
Yi et al. used the graph-based approach to reach charging stations.
The optimization algorithm’s weakness is that it used all nodes with
an unlimited supply of energy. Hence, this unrealistic hypothesis was
removed by Yi et al. [13] by using the minimum cost flow algo-
rithms for multi-users. Another vehicular sensor optimization model
was proposed that finds the energy consumption and charging solution
concerning the road paths. The model can be incorporated with the
current transportation system [14]. Another model was proposed for
the vehicular network for sensors, and energy-efficient processing [15].

The scheduling method is also analyzed based on the storage strat-
egy for the data flow [16]. The analysis is done based on the data
flow scheduling and hierarchical storage algorithms to detect the edge
data flow [16]. The edge computing method combined with scheduling
measures is used to define the uplink data flow. Another method
proposed is the software defines resource allocation based on the
security and location of the services [17]. The method utilized the
software resource demands to schedule the tasks among different sen-
sors [18]. The learning-based method is also proposed that uses the
heterogeneous arrangement and recovery model [18]. Then, optimize
the scheme based on the heterogeneous prior functions via supervised
learning. The method used prior learning, and signal recoveries are also
completed [18].

A migration-based ElasticCon method is proposed in [7]. A pool
is balance incrementally, and the performance of the networks is im-
proved in dynamic traffics. However, the model has a high over-
head [19]. The proposed model search for the optimized switch to
migrate the load balancing task. The resultant mapping helps to re-
duce controller load and avoids degrading the performance of the
network [20]. The authors are also done a load balancing task on
multi-controller architecture in the network. The oscillation problem is
resolved with the proposed network—the controller partition control
traffic among the different available controllers.
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Fig. 1. Overview of the software define networks.

The authors also proposed the server-based load balancing [21].
Then model distributes the clients among multiple servers. The least
server is used as a migrating server—the author’s performance with
round-robin and random-based model. The author’s model can achieve
good network performance. The GA-based model proposed by [22]. The
model selects multiple clients with multiple requests to balance a load.
GA'’s application uses a roulette wheel as the selection method, single-
point crossover, and single point mutation. The coefficient-based server
model is used as fitness values. The model was compared with random
and round-robin methods.

The model is optimized to balance the cloud consumer applica-
tion [23]. The particle swarm optimization (PSO), the average ap-
plication response time, maximized throughput and improve resource
utilization. The online traffic analysis maps load dynamically. The
pool-based servers balancing achieve high performance. Researcher
in [9,24-28] implemented similar allocating requests to the server.
The SDN based load balancer mainly focus to balance resource and
application task efficiently. The SDN ability is to map the distribution
dynamically. The congestion-aware multi-meter load balancing also has
been achieved during the dynamic increase of the network users.

3. Methodology

In this section, we describe the proposed load-balancing model. The
common framework is depicted clearly in Fig. 1. The architecture is
composed of three different planes, i.e., Application plane, Control
plane and Data plane, respectively. The Application plane provides the
user interface for the application-oriented task. In the Control plane,
all the decisions are made intelligently and controlled by the SDN. The
Control plane implements the security policies, i.e., packet forwarding
and controlled rules [2]. The northbound Application Programming
Interface’s (API) role is to provide the communication interface be-
tween the application and control plane. The communication APIs are
mostly open-source since we can make easy modifications to fulfilled
the application needs. The last plane is a Data plane, also called the in-
frastructure plane, and it is comprised of devices, i.e., routers, switches
and bridges, etc. The OpenFlow (southbound API) is mostly adopted for
the communication of control and data plane. The OpenFlow protocol
makes communication between the SDN controller and device very
easy.

Fig. 2 shows the SDN structure that provides application-oriented
flexibility such as load balancing. The SDN structure helps in the

58

Computer Communications 184 (2022) 56-63

SDN Controller

Load Balancer

OpenFlow
_ Switch

~
OpenFlow
Switch

Destination

Source

Fig. 2. Proposed SDN load-balancing algorithm framework.

customization of applications, which leads to fulfilling the demand
for any heterogeneous services. Because of the increased volume of
data, intelligent load balancing is one of the main demands of het-
erogeneous applications. The balancing helps to optimize the network
in terms of resource utilization, throughputs while also minimizing
congestion. The load balancing method also helps in the application’s
predictive analyses and provides useful insight into the network and
its application. We mention the framework in Fig. 2, describing the
load balancing flow. The SDN controller can access all of the network
information intelligently at a lower level and communicate with the
upper network layers, as can be seen in Fig. 1. The information includes
the infrastructure layout, applications, devices connected with them.
The SDN controller takes advantage of the global view of the network
to optimize load balancing tasks. The network topology and connected
devices information help in the application’s execution-oriented task.
The architecture shows the SDN approach in Fig. 2.

We attempt to clearly show the proposed algorithm flow in Fig. 3.
The algorithm takes the input of sensors, heterogeneous application
data, as well as the topology of the network at execution time. Then, the
application requested is mapped according to the minimum completion
of each sensor’s task. The balancer has a two-parts, resource selector
and a load balancer. The SDN controller provides the load of the sensors
for the requested data. We select the maximum loaded sensor. Then,
data gathering required by the minimum time to complete is selected
as a migrating task. Next, it is moved to the sensors that have loaded
less than (total load/number of the sensor) and have the minimum time
requirement for completing critical application data. If the SDN con-
troller does not find any machines, then the end minimum completion
time sensor is selected, and the loop continues until it migrates the
data. After the migration, then the required data request is removed
from the selected sensor. In this way, we remove selected sensor data
from the load balancing task. This process continues until we distribute
data among all the machines after that resource utilization ratio is
calculated and compared. We propose a convergence-based mechanism.
If the resource utilization improves, then the new resource utilization
value is set to old resource utilization and sensor data mapping is saved,
and we set the convergence point to zero. If there is no improvement in
resource utilization, the convergence value is incremented. We set the
value of the convergence to half of the requested data from the source
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Table 1
Preliminary notations used in the proposed system.
Notations Description
E Application execution time on each sensor.
M;task Application assigned to each sensor.
Eppsim,) Set of application execution time on the ith sensor.
Total - E Set of sensors total execution time
Loadcalculation Set of sensors load
Total .y Sensors total load
Application,,,, Set of sensors job mapping
convergencepoint Criteria to stop: Convergence value is repeated to the Mwmberefapplication
ARURyld meantreadyy,. ~Sensors) pefore Updation
makespan
ARU Ry ew 7'"5“"(":3 ';’;;;:m””) after Updation
selected ,ricarion A application (having minimum execution time for the selected,,,,,.)
that migration needed
selected A sensor which is overloaded

sensor

mig — sensor

A sensor which have load less than

Total gy
numbero sensors

and minimum

completion time for the application

M, job ith sensor jobs

application during the empirical analysis. The convergence value shows
we achieve maximum resource utilization. The proposed algorithm has
modules, i.e., the resource allocator (lines 4 to 19, Algorithm 1) and
load balancer (lines 6 to 13, Algorithm 2). The symbol table mentioned
in Table 1 explains the algorithm variables.

In Algorithm 1, the input is the execution time of all applications
requested by sensors and output is load-balanced mapping of appli-
cation on all sensors. The minimum execution time based mapped is
performed initially. Then, the convergence point is set to zero (Line 2,
Algorithm 1). Afterwards, the average resource utilization of the mini-
mum execution time mapping is calculated. Then the convergence loop
runs on the sensors regarding load (Line 3, Algorithm 1). The resource
allocator produces the load balance application mapping (Lines 4 to 19,
Algorithm 1). The execution time of all applications is the sum of each
sensor. The sensor’s execution is the sum to get the total execution
time. A load for each sensor is calculated by taking the fraction of
sensors from execution time to total execution time (Lines 4 to 19,
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Algorithm 1). We select the maximum load of sensors. Then selected
sensor minimum execution time application is migrated to other sensors
(Lines 6 to 13, Algorithm 2). The loop continues with the remaining
application until the sensor’s load is equal to the total execution time
divided by the number of the sensor. After migrating the applications,
the loop selects another sensor and starts migrating the new selected
sensors application (Lines 6 to 13, Algorithm 2). In this way, we attain
new mapping for the network. Then, the resource utilization ratio is
calculated by using formula i.e., W (Lines 20 to 27,
Algorithm 1). If the values improved, then the convergence point is set
to zero (Line 8 of Algorithm 1), and mapping is saved. If there is no
improvement, then the convergence is incremented.

4. Evaluation

We compare the proposed model with MCT, Min-Min and Max—
min resource allocation algorithms, current well-known state-of-the-art
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Table 2

Dataset samples.

Application Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Suitable
1 0.18 0.60 0.18 0.60 0.62 0.49 Sensor 2
2 0.99 0.15 0.99 0.15 1.39 0.16 Sensor 3
3 2.62 2.14 2.62 2.14 3.99 1.96 Sensor 4
4 1.27 1.62 1.27 1.62 0.35 2.79 Sensor 5
5 4.08 3.83 4.08 3.83 4.70 3.08 Sensor 6
6 0.55 0.34 0.55 0.34 0.76 0.25 Sensor 6
7 0.55 0.34 0.55 0.34 0.76 0.25 Sensor 6
8 0.56 0.31 0.56 0.31 0.82 0.21 Sensor 6
9 0.56 0.31 0.56 0.31 0.88 0.18 Sensor 6
10 0.24 0.17 0.24 0.17 0.30 0.24 Sensor 1

Algorithm 1 Proposed Algorithm

INPUT: Execution time of all sensor per application data.
OUTPUT: Load Balanced mapping of application on the sensor

1: SelectM CT();
2: convergencepoint < 0;
3: ARUR,;0;
4: while convergence < Con,,;, do
5: for i < 0 do number of sensors
6: Eoppsimg) < Ear + -+ Ejp;
7: end for
8  Totalp « Y E;
9: for i < 0 do number of sensors
10: Loadcalculation();
11: Totaly ,,40;
12: end for
13: t < 0;
14: while /ength[sensor] do
15: selected g, ors
16: Application,, [ 1 < Loadyqancer();
17: Remove S;;
18: t++;
19: end while
20: ARUR,,,,0;
21: if ARUR,,, > ARUR,,; then
22: convergencepoint < 0;
23: ARUR,; < ARUR,,,;
24: Writeapplicution—set;
25: else
26: convergence + +;
27: end if

28: end while

Algorithm 2 Load Balancer

INPUT: (1) execution time of all application through on every sensor;
(2) selected sensor application and total Load on it; and (3) total
load on the selected sensors.

OUTPUT: Application mapping of the selected sensors.

: while Total,,,;() do
Selected .3

for i < 0 do number of machines

new «— mig — sensor,

< Total pr
sensor number of sensors
neWgepsor < mapAppselectedlob;
Remove selected from Sensors;

else

1

2

3

4' sensor
5: if new then
6-

7

8

9

application

: Remove new from selected
10: end if
11: end for
12: end while

13: Return App,,,,[].

application sensors>

algorithms [29,30]. The performances are compared on several tests
by varying the application and number of sensors. The makespan,
throughput and resource utilization metric are used as performance
metrics [29,30]. The makespan is the last finish time of any sensors
in SDN networks. The better algorithm gives the lowest values of
makespan. The average resource utilization ratio is measure in terms
of the resource utilization status of the network for the given set of
tasks. The excellent algorithm has closer to 1. The throughput is the
number of tasks per unit time. The better algorithm has a higher value.

The sample dataset is mentioned in Table 2. It contains 6 sensors
that executes the application in seconds. The sensors with the lowest
values of execution time are selected as suitable sensors. However, the
energy and other factors depend upon the mapping. If the sensor is
closer to the switch, it will produce less energy to send the application
data resulting in slower execution. If the sensor is away from the
switch, then it will take more time. Moreover, if we map all the
required application gather data, then the sensor closer to the network
will be overload, and the resources will be underutilized. Therefore,
the proposed algorithm balances the load in terms of execution time.
We consider two datasets, i.e., synthetic 1 and synthetic 2. The first
dataset, i.e., synthetic 1, has the six sensors’ application execution
time. We evaluated it under a different set of the application. In the
second dataset, we have 50 sensors and applications to execute different
categories, i.e., tiny, small, medium, large and extra-large.

In the comparison of synthetic dataset 1, the proposed algorithm
is compared with the different algorithms, as mentioned in Table 3.
The results are compared in terms of execution time, throughput and
resource utilization ratio. The proposed heuristic method can reduce
execution time, increase resource utilization ratio and throughput. The
model can achieve 12% decrease executions compared to Max-min and
17% improved ARUR compared to Min—-min. The dataset includes the
smaller jobs and proposed model is able to map the sensors in load
balancer by considering the execution time. The convergence factor
helps to improve performance. The model has proven efficient under
different conditions, but we find its performance significantly more
effective with increasing network sizes (see Table 4).

Synthetic dataset 2 has 10% longer jobs. This is because that the
execution time for the proposed model is increased with the increase
of the ARUR and throughput, as seen in Table 3. On each iteration,
the proposed model can check convergence on each mapping. If the
resource utilization improves then convergence is set 0; otherwise,
it increments the convergence point. The mapping of the previous
ARUR is saved and used if there is no further improvement. The load
balancing for each node in the network of the over utilizes node. The
mapping is optimal as able to converge after a few iterations.

The computational complexity is also mentioned in Table 5. The
complexity of the model increases with the increase of the application
data. However, it remains linear when we have an increase in the
number of sensors.

4.1. A case study — Intrusion detection using Deep active learning

In this section, we present the experimental planning to detect a
DDOS attack on SDN. As the network is a heterogeneous application,
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Table 3
Synthetic dataset 1 (number of sensors (6)) results on different algorithms.
Application  Proposed Max-min Min-min
Size Makespan ARUR  Throughput Makespan ARUR Throughput Makespan ARUR Throughput
200 24.22 0.9965 8.26 26.64 0.88 7.27 29.01 0.83 7.17
300 36.05 0.9986 8.32 39.66 0.88 7.32 43.59 0.86 6.93
400 45.98 0.9988 8.70 50.58 0.89 7.66 55.09 0.85 7.24
500 56.48 0.9992 8.85 62.13 0.90 7.88 65.18 0.85 7.43
600 67.48 0.9993 8.89 74.23 0.88 7.82 82.32 0.85 7.72
700 80.86 0.9993 8.66 90.57 0.90 7.79 93.54 0.84 7.33
800 99.31 0.9997 8.06 110.24 0.89 7.17 115.85 0.86 6.62
900 105.86 0.9997 8.50 117.51 0.88 7.48 129.36 0.83 7.01
1000 119.97 0.9997 8.34 131.97 0.89 7.42 143.72 0.87 7.22
Table 4
Synthetic dataset 2 (number of sensors (50)) results on different algorithms.
Application  Proposed Max—min Min-min
Size Makespan ARUR  Throughput Makespan ARUR Throughput Makespan ARUR Throughput
400 742.46 0.93 0.54 831.55 0.82 0.47 858.87 0.80 0.46
450 780.35 0.96 0.58 866.19 0.85 0.51 927.61 0.82 0.48
500 913.80 0.94 0.55 1023.45 0.85 0.49 1098.02 0.78 0.46
550 963.14 0.97 0.57 1059.45 0.86 0.50 1132.65 0.82 0.48
600 1094.18 0.98 0.55 1225.48 0.86 0.49 1265.74 0.81 0.48
650 1148.05 0.98 0.57 1285.81 0.87 0.51 1379.49 0.85 0.47
700 1269.16 0.98 0.55 1408.77 0.86 0.50 1536.82 0.85 0.48
750 1328.82 0.98 0.56 1461.71 0.87 0.50 1591.93 0.80 0.49
800 1473.67 0.97 0.54 1621.04 0.87 0.49 1716.83 0.82 0.46
850 1516.02 0.98 0.56 1697.94 0.88 0.50 1821.65 0.82 0.47
Table 5 Table 7
Computational complexity : M= Number of sensors Network.
in the network and N= Number of application in the Layer type Output Param
network.
— - Dense 1 1,024 43,008
Heuristic Complexity Dropout 1.024 0
Min Min, Max Min O(MN?) Dense 2 768 787,200
Propose O(MN?) Dropout 768 0
Dense 3 512 3,937,378
Dropout 512 0
Table 6 Dense 4 256 131,328
Dataset used for active learning. Dropout 256 0
Traffic label N ‘ . 9 N : 9 Dense 5 256 32,896
raffic labe o. of training records o. of test records Dropout 128 0
Normal 67,343 9,711 Dense 6 1 129
U2R 52 67 Activation 1 0
R2L 995 2,887
Probe 11,656 2,421
DOS 45,927 7,548

there is a chance of a DDOS attack after reconfiguration of the wireless
network. The model uses the learning to learn a self-training method
to examine and expand knowledge.

The major challenge in machine learning applications is to structure
high-quality and meaningful data. This task is costly and laborious.
The active learning mechanism helps to learn from the low number of
instances and chose the data distribution to the label by the users and
made machine learning more applicable. Various real-life applications
are thus demanded to mine interesting and meaningful patterns from
the data [31].

In this paper, we classify different data packets with different types
of attacks, i.e., DoS, U2R, R2L and Probing attacks [32]. In this paper,
the feedforward network is used to classifies the attacks into five differ-
ent categories of attacks, as mentioned in Table 7. The entropy-based
method is utilized to select the data distribution from the unlabeled
dataset. The model takes advantage of the deep learning mechanism to
learn from a limited set of examples for pattern identification. The ini-
tial training set contains a small amount of data and an entropy-based
model to decide which points to select for inclusion in the training set.
The entropy-based model in this paper selects the number of a point
depending upon the pool size. The pool point is the separate set that is

61

updated each cycle. It includes the selected point in the training set,
and we train an alternative model on the new points mentioned in
Fig. 4. The future wireless network method helps in the selection of
instances that directly affect the infrastructure. The repetition of the
steps helps to increase with training-set and meaningful points over
time. The infrastructure-aware instance selection can help to reduce
load balancing tasks. The developed method can help reduce data
annotation tasks and generalize the machine learning system [31].

The dataset we use to train the model is the KDD dataset [32].
We were initially developed by the MIT lincoln labs to test intrusion
detection methods. We use the upgraded KDD dataset — NSL-KDD
mentioned in Table 6. The dataset contains different attacks regarding
the flow of the traffic. Each record in the dataset is assigned to collect
packets information under different network traffic flow. The attacks
include Denial of service attack: intrusion where flooding happens to
disrupt the services hence overloading the host. User to root attack is
used to access the User pre-exciting access and exploit them. Remote
Local (R2L): The intrusion attacker tries to access a user account
that tries to explore the vulnerability to obtain access to local access.
Probing attack: the type in which the intruder tries to get the networks
access.

We first transfer the item’s features through the dense 1024 dense
units. We then pass the developed model through more 1024 [33,34].
The last layer was sigmoid, and we use Adam optimizer for the
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Fig. 4. Entropy based active learning for intrusion detection.

learning rate. We train the network for 100 epochs on each pool. The
dataset distribution is the training set (40%), validation set (20%) and
unlabeled pooling set (40%).

This paper takes into account self-learning by using the mechanism
of deep learning with entropy-based selection. The model is compared
with [32]. The model is also compared with traditional models. The
model is trained and tested on a public dataset. The deep learning
models have also compared with interns of the hidden layer, and it
is concluded that the three-layer network is not accurate and efficient.
Precision tells about the exactness of the prediction. In this case, the
precision value tells about the correct prediction of the fusion suitabil-
ity classifier. Therefore, the higher value of precision (which is 96% in
this case as shown in Table 8) indicates it shows that an active learning
classifier can, mostly, correctly predict whether an application possess
any attack. If the value of precision is lower, it would be an indication
that the classifier is not exact and is unable to identify attacks.

Similarly, recall tells about the completeness of the prediction.
In this case, the recall value tells about the correct identification of
attacks that belong to a suitable class. Therefore, the higher value of
recall (which is 98% in this case as shown in Table 8) indicates that
the classifier can, mostly, correctly predict applications that belong to
the same class. If the value of precision were lower, it would be an
indication that the classifier is not complete and is unable to identify
applications that belongs to the same class.

Precision measures the relevant results (exactness of the prediction)
rather than irrelevant results and recall measures sensitivity of the
most relevant results (completeness of the prediction). According to
the recommendation of Geron [35], precision and recall are convenient
to combine into a single metric called F1 score. The F1 score is the
harmonic mean of precision and recall. The harmonic means gives more
weight to lower values as compared to the regular mean. The F1 —
the measure is a widely known metric that estimates the entire system
performance by combining the precision and recall [36]. The scale of
the F1 measure is 1.0: perfect prediction, 0.9: excellent prediction,
0.8: good prediction, 0.7: mediocre prediction, 0.6: poor prediction,
0.5: random prediction and less than 0.5: poor prediction [36]. If the
percentage values of precision and recall were lower for the classifier,
then applications attacks remain undetected. The fusion suitability
classifier will only get a high F1 score if both precision and recall are
high. Therefore, in our case, recall is 0.98 and precision is 0.98, but
our F1 score is 0.96.
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Table 8

Results comparison with deep active learning.
Algorithm Accuracy Precision Recall fl-score
DNN-1 0.929 0.998 0.915 0.954
DNN-2 0.929 0.998 0.914 0.954
DNN-3 0.930 0.997 0.915 0.955
DNN-4 0.929 0.999 0.913 0.954
DNN-5 0.927 0.998 0.911 0.953
Ada Boost 0.925 0.995 0.911 0.951
Decision tree 0.928 0.999 0.912 0.953
K-nearest neighbor 0.929 0.998 0.913 0.954
Linear regression 0.848 0.989 0.821 0.897
Navic Bayes 0.929 0.988 0.923 0.955
Random forest 0.927 0.999 0.910 0.953
SVM*-Lincar 0.811 0.994 0.770 0.868
SVM*-rbf 0.811 0.992 0.772 0.868
Active learning 0.94 0.96 0.98 0.96

5. Conclusion

This study presented a novel load balancing algorithm to balance
the load of SDN among different vehicular sensors by using network
and application information. The proposed model can balance the batch
of applications among the vehicular sensor connected over the SDN.
We tested our approach on different datasets, and the outcome of the
proposed model has been compared with well-known heuristic-based
models. Moreover, we used an entropy-based active learning approach
to classify intrusion attacks. The developed model can achieve high
accuracy to identify the patterns in terms of sparse and dense datasets.
The entropy-based active learning-based method significantly increases
training instances for the deep feedforward model. In the future, the
network will be optimized tuned to apply the active learning mech-
anism. A weighted-based method for each class sub-sample selection
can also be considered as a further extension.
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