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The precise detection of epileptic seizure helps to prevent the serious consequences of seizures. As the electroencephalogram
(EEG) reflects the brain activity of patients effectively, it has been widely used in epileptic seizure detection in the past decades.
Recently, deep learning-based detection methods which automatically learn features from the EEG signals have attracted much
attention. However, with deep learning-based detection methods, different input formats of EEG signals will lead to different
detection performances. In this paper, we propose a deep learning-based epileptic seizure detection method with hybrid input
formats of EEG signals, i.e., original EEG, Fourier transform of EEG, short-time Fourier transform of EEG, and wavelet
transform of EEG. Convolutional neural networks (CNNs) are designed for extracting latent features from these inputs. A
feature fusion mechanism is applied to integrate the learned features to generate a more stable syncretic feature for seizure
detection. The experimental results show that our proposed hybrid method is effective to improve the seizure detection
performance in few-shot scenarios.

1. Introduction

Approximately one percent of the world’s population, 65
million people, suffer from epilepsy, more than Parkinson’s
disease, Alzheimer’s disease, and multiple sclerosis com-
bined [1]. About two-thirds of people with epilepsy can be
treated with medication, and the rest may require surgical
intervention. Epilepsy has the characteristics of sudden and
recurrent seizures, which may lead to falls, asphyxia, and
even death. Therefore, seizure detection is very important
for early warning and treatment of epilepsy.

Epileptic seizure detection is mainly based on electroen-
cephalogram (EEG) [2–4]. Single-channel EEG acquisition
equipment improves the practicability of EEG in epileptic
detection due to its simplicity in implementation. However,

the provided information by signal-channel EEG signal is
limited because of the small number of channels. Therefore,
it is worth studying to establish a model with high accuracy
and high robustness for single-channel EEG epileptic
detection.

The traditional methods are mainly based on feature
engineering techniques which extract the corresponding fea-
tures from EEG signals and then complete the detection
based on the extracted features [5–9]. These features include
time-domain features [10–12], frequency-domain features
[8, 9], and time-frequency-domain features [13–15]. Once
the features are extracted, EEG signals can be classified using
a variety of classifiers. No matter what classifier is used, the
quality of designed features will greatly affect the perfor-
mance of epilepsy detection. In recent years, with the
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development of deep learning technology, many works have
applied deep learning to perform epilepsy detection [16, 17].
Different from traditional feature engineering, deep learning
methods automatically learn features from EEG signals and
further complete detection tasks with an end-to-end manner
without complicated manual feature design process and can
achieve better performance than traditional methods in
many scenarios.

The EEG signal input forms used by these deep learning
methods are varied, including time-domain input,
frequency-domain input, and time-frequency-domain input
(including short-time Fourier transform (STFT) and wavelet
transform).

Specifically, as for time-domain input, in [18], the
authors applied convolutional neural network (CNN) to
design an autoencoding framework in order to learn unsu-
pervised features from EEG signals. This unsupervised
learning method automatically transforms the time-domain
EEG sequences into low-dimensional features which facili-
tates the classification of EEG signals. Long short-term
memory (LSTM) network was used in [19] for seizure detec-
tion without transforming the EEG data into other forms. It
directly discovered discriminative temporal patterns from
the raw EEG data.

In addition to the time series, the input format in fre-
quency domain has also been explored. The frequency spec-
trogram obtained by fast Fourier transform (FFT) was
treated as the input of CNN for the purpose of epileptic
detection in [20]. The subband mean amplitude of spectrum
map (MAS) obtained from different EEG rhythms was
adopted for EEG representation in [21], and stacked CNNs
were used for feature extraction and seizure detection. It
proved that the MAS has the ability to characterize the dif-
ferent rhythms of EEG signals.

Recently, it has appeared growing interest in using time-
frequency image to implement seizure detection since the
time-frequency image can provide more detailed contextual
information compared with the time-domain input. In [22],
the authors adopted STFT to transform the segmented EEG
signals into 2-D spectrogram fragments and designed a deep
learning framework to extract latent features for performing
seizure detection. It showed that the performance using
time-frequency image is better than that using time-
domain input because the clear energy distribution in the
time-frequency distribution helps the classifier to capture
more useful information.

Wavelet transform can also be used to obtain the time-
frequency properties. Different from the fixed length of win-
dow function used in STFT, the wavelet transform uses
short-time window at high frequency while using long-time
window at low frequency, which is helpful to obtain good
localization characteristics in both time domain and frequency
domain. In [23], the authors used CNN to learn quantitative
signatures from the wavelet transform of EEG signals for dis-
tinguishing the preictal, ictal, and interictal states.

Although deep learning can automatically learn features
from the input signals, however, different input formats will
still affect the final epilepsy detection performance. For
example, it has been pointed out in [20, 22] that the detec-

tion performance of time-domain input is worse than that
of frequency-domain input. In [24], the authors focused on
deep multiview feature extraction from Fourier transform
and wavelet packet decomposition of EEG signal as well as
the time-domain signal for seizure detection. However, from
these works, we are not sure which EEG input format is the
best for deep learning-based seizure classification. To solve
this problem, a hybrid method is proposed in this paper.
We explore to take various formats of EEG signals as input
and hand them to a deep neural network for feature extrac-
tion, which will help to classify epilepsy. Different from the
method in [24], which firstly trained independent neural
networks to construct deep multiview feature from the initial
multiview features and then learned a multiview classifier for
recognizing the EGG signal based on the aforementioned
deep multiview feature, our proposed network jointly opti-
mize subnetworks used for processing different domain
inputs and the whole network can be regarded as a classifier;
it thereby does not require to train an additional classifier
anymore. On the other hand, the process of joint training
allows the network to adaptively adjust each subnetwork
for learning corresponding dependence among subnetworks.
In addition, most prior works assumed there are adequate
samples for training. However, the labeled EEG samples
with seizures are difficult to acquire in real-life. Different
from prior works, we will consider few-shot scenarios in this
paper where there are only a small number of samples avail-
able for training the deep learning model for epilepsy detec-
tion. A large number of experiments are conducted to verify
the performance of the proposed method. Specifically, the
main contributions of this paper are as follows:

(i) We propose an epilepsy detection method based on
deep learning with hybrid input formats of EEG sig-
nals, i.e., original EEG, DFT, STFT, and DWT of
EEG. In the proposed framework, we use four indi-
vidual CNNs to extract features from the multiple-
domain input. A feature fusion mechanism is
adopted to integrate the learned features to generate
a syncretic feature, which is considered to be more
stable and superior for epilepsy classification than
the features extracted from single-domain input

(ii) We focus on epilepsy diagnosis using the deep
learning method in few-shot scenario where ade-
quate epileptic ictal EEG is not available. To allevi-
ate the tendency of overfitting to the data, we
design lightweight CNNs which are based on depth-
wise separable convolution and add a regularization
term for decreasing the complexity of the deep
learning model

(iii) We conduct experiments to verify the performance
of our proposed method. Benefited from the com-
plementarity of the properties of EEG signal in time
domain and frequency domain, our proposed
method achieves higher-accuracy performance of
epilepsy classification compared with the methods
using single input
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2. Materials and Methods

In this section, firstly, we briefly introduce the four represen-
tations of EEG signal in time domain, frequency domain,
and time-frequency domain: raw EEG signal, Fourier trans-
form, short-time Fourier transform, and wavelet transform
of EEG signal. Then, we describe our proposed deep learning
model based on lightweight network for epilepsy
classification.

2.1. Raw EEG Signal. As discussed before, EEG is an effective
technology for epilepsy diagnosis. EEG can reveal complex
brain functions, such as cognition, emotion, attention, and
memory through capturing voltage changes generated by
neuronal activity in the brain. In reality, the EEG signals col-
lected by EEG equipment need to be processed by analog-to-
digital converters, so the EEG signals are sampled at discrete
time points, which can be represented as

x nð Þ = x tð ÞδT tð Þ, ð1Þ

where xðtÞ is the EEG signal in analog domain, δTðtÞ is the
impulse function, T = 1/Fs is the sampling period, and Fs
is the sampling frequency. The EEG signals may be dis-
turbed by other physiological signals and spatial electromag-
netic noise. The information contained in EEG signals is
complicated. Therefore, we try to analyze it from a different
perspective other than single time domain, for instance, in
frequency domain or time-frequency domain as discussed
in the following.

2.2. Fourier Transform of EEG Signal. Fourier transform has
been widely adopted for analyzing the spectrum of various
signals in the field of signal processing. As the EEG signal
contains complex frequency information during seizures, it
is feasible to perform Fourier transform on EEG signals for
obtaining information in frequency domain. For a discrete
EEG signal xðnÞ, the definition of discrete Fourier transform
(DFT) [25] is

X kð Þ = 〠
N−1

n=0
x nð Þe−j2πkn/N , k = 0, 1,⋯,N − 1, ð2Þ

where N represents the sampling points of EEG signal
and XðkÞ is the obtained sequence in frequency domain after
DFT. The Fourier transform has its limitation on processing
nonstationary signal, whose frequency is varying with time.
The Fourier transform can only tell the contained frequency
components of the signal; however, the corresponding fre-
quency at each time moment is not available. Time-
frequency transform is needed to obtain such information.

2.3. Short-Time Fourier Transform of EEG Signal. In spec-
trum analysis, we assume that the spectrum of the EEG sig-
nal is not varying with time. Apparently, this assumption
simplifies the nonstationary and dynamic characteristics of
EEG signals. In fact, the EEG signals are highly nonstation-
ary, which means that the statistical properties and spectral
density of EEG signals change over time. The STFT can be

sued for analyzing nonstationary signal and transform the
time sequence into time-frequency domain. The main idea
of STFT is regarding a nonstationary signal as a stack of sev-
eral truncated short-time stationary signals. This process is
achieved by windowing the original signal and segmenting
the signal into several fixed-length signals in time domain.
For each truncated signal, it can be approximately regarded
as a stationary signal, and thus, Fourier transform can then
be used. The discrete STFT [21] can be expressed by

Xn kð Þ = 〠
+∞

m=−∞
x mð Þw n −mð Þe−j2πkm/N , k = 0, 1,⋯,N − 1,

ð3Þ

where wðn −mÞ is the window function. The result of STFT
is a 2-D spectrogram. In general, the latent features in the
time-frequency domain of EEG signals are easier to be
learned for deep learning than the features of EEG signals
in time domain.

2.4. Wavelet Transform of EEG Signal. The fixed-length win-
dow in STFT will induce the fixed time-frequency resolution
and cannot adapt to diversified signal components. In gen-
eral, the EEG signal is composed of short-duration high-
frequency components and long-duration low-frequency
components. Therefore, the time-frequency analysis of
EEG signal requires a more adaptive time-frequency resolu-
tion. The wavelet transform is a popular time-frequency
analysis method, which adopts an optimized strategy of win-
dow choosing: using short-time window at high frequency
while using long-time window at low frequency. An impor-
tant property of wavelet transform is that it has good local-
ization characteristics in both time domain and frequency
domain. The wavelet transform obtains the time informa-
tion of the signal by shifting the mother wavelet and obtains
the frequency characteristics of the signal by scaling the
wavelet. For the discrete wavelet transform (DWT), given a
discrete signal xðnÞ with length N , a pair of wavelet decom-
position filters related to a specific mother wavelet is used to
perform wavelet analysis. The one-level DWT [26] is
expressed by the following equations:

cA1 = XLoD ∗ x nð Þδ t − 2nð Þ, ð4Þ

cD1 = XHiD ∗ x nð Þδ t − 2nð Þ, ð5Þ

where cA1 is the approximation coefficients of one-level
DWT, cD1 is the returned detail coefficients, XLoD is the low-
pass filter, XHiD is the high-pass filter, ∗ represents the con-
volution operation, and δðt − 2nÞ is the pulse function, and
it means the results of a filter are downsampled with factor
2. For multilevel DWT, the coefficients cAj and cDj are pro-
duced through replacing the input xðnÞ by cAj−1. In general,
the compositions of DWT analyzed at level j contain the fol-
lowing coefficients: ½cAj, cDj,⋯, cD1�.
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3. Proposed Epilepsy Classification Method

Different from the aforementioned methods that only use a
single representation of the EEG signal, we are interested
in combining the information in time domain with informa-
tion in frequency domain to benefit from the complementar-
ity of both. Meanwhile, considering the general deep
learning models in few-shot scenario will induce the unde-
sirable tendency to extremely overfit the data, we try to build
our model based on lightweight network to alleviate this
tendency.

3.1. Designed Deep Learning Framework for Epilepsy
Classification. The block diagram relationship of our
designed deep learning model is shown in Figure 1, which
can be decomposed into four parts, namely, hybrid input
acquisition, feature extraction, feature fusion, and softmax
output. The details of our proposed algorithm will be intro-
duced in these four parts.

3.1.1. Hybrid Input Acquisition. In this part, the raw EEG
signal was used to calculate the hybrid input format, con-
taining the aforementioned DFT, STFT, and DWT of EEG.
In general, signal-domain representation of signal is too lim-
ited to distinguish different signals. The main purpose of this
part is to transform the time-domain EEG signal to
frequency-domain and time-frequency-domain representa-
tion, obtaining a rich representative format of EEG signal
in different domains. Equations (2)–(5) show the mathemat-
ical calculation of hybrid input.

3.1.2. Feature Extraction. Feature extraction is a critical part
of the DL-based detection algorithm as the quality of
extracted feature will determine the performance of detec-
tion. In this paper, CNN is chosen as a feasible scheme for
extracting features from the hybrid inputs for two reasons.
On the one hand, the scale structure and regional interaction
characteristics of CNN are relatively consistent with signals
with local characteristics, time-varying character of EEG sig-
nal for example. On the other hand, after STFT, the gener-
ated two-dimensional spectrogram can be regarded as
image actually, motivated by the superior performance of
CNN in the field of image recognition; it is proper to adopt
CNN to learn the adjacent relation in the two-dimensional
image.

In this paper, we provide a feasible framework for feature
extraction, as shown in Figure 2, where four individual
CNNs are used to extract features from their own corre-
sponding input. After several layers of lightweight CNN, fea-
ture maps corresponding to each input are generated,
followed by global average pooling layers, whose function
is transforming the feature maps into feature vectors. It
should be noted that the adopted feature extractor can be
replaced by other superior neural networks, depending on
the selected hybrid input.

3.1.3. Feature Fusion. The aim of feature fusion is to generate
more discriminate feature representation from several indi-
vidual feature vectors. In Figure 2, the feature vectors origi-
nated from four different inputs are integrated together to

produce a syncretic feature vector. This process is called fea-
ture fusion, which vertically appends the features and can be
represented as

F = F1 ⊕ F2 ⊕ F3 ⊕ F4, ð6Þ

where F is the syncretic feature, F1, F2, F3, and F4 are fea-
ture vectors corresponding to the four inputs, and ⊕ is the
connection function, which stacks the corresponding fea-
tures. The syncretic feature vector is considered to be more
stable than a single feature vector because this structure
can make full use of the advantages of each input informa-
tion. Furthermore, when some of the feature vectors among
F1, F2, F3, and F4 performs wore than the rest, then, their
allocated weights will have the tendency to be smaller for
avoiding bringing too much damage to the final
performance.

3.1.4. Softmax Output. The decision about epilepsy seizure is
modeled as a binary classification problem where label “0”
represents the result is normal and label “1” represents the
result is epileptic. A fully connected layer with two neurons
which are normalized by softmax activation function is then
served as giving the probabilities belonging to each category:

p̂i =
exi

∑2
j=1e

xj
, i = 0, 1, ð7Þ

where p̂i is the normalized probability belonging to
category i. In the binary classification problem, when p̂0 >
p̂1, it means that the predicted result is normal; otherwise,
the predicted result is epileptic.

In order to alleviate the tendency of overfitting to the
data, l2 regularization is applied, whose function is decreas-
ing the complexity of the model. The regularization term is
actually treated as a penalty, and it is used to limit the
parameters specified by loss function for preventing large
values of the parameters. When l2 regularization is added,
the model with simultaneous low prediction loss and low
complexity will be chosen as the optimal model, and it can
be represented as

w∗ = arg min
w

〠
c

i=1
p xið Þ log q xið Þð Þ + λ〠

k

i=1
w2

i , ð8Þ

where λ defines the degree of penalty, which is set to be 10-4

in this paper, w∗ is the chosen optimal parameters in the
deep learning model, ∑c

i=1pðxiÞ log ðqðxiÞÞ is the commonly
used cross-entropy loss for classification problem, pðxiÞ rep-
resents the true probability belonging to the ith class, qðxiÞ
represents the predicted probability belonging to the ith
class, and c is the number of classes which is equal to 2 for
epilepsy classification problem in this paper.

3.2. Lightweight CNN. Recently, lots of superior CNN struc-
tures have been proposed, such as ResNet and DenseNet.
These models have achieved remarkable performance in
image classification, which is benefited from the models’
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strong ability to supervise learning. However, these deep
learning models require a large number of labeled samples
to construct an effective classification model. When the
labeled samples are insufficient, which is known as few-
shot scenario, these models will suffer from severe perfor-
mance loss. The imbalance between large number of param-
eters of the model and few labeled training samples is the
crucial problem to be handled for few-shot classification.
In our designed deep learning framework, we adopt light-
weight convolution to replace the traditional convolution
for reducing the parameters of the model. The lightweight
convolution is often referred to as depthwise separable con-
volution, which is a combination of depthwise convolution
and pointwise convolution. In the process of depthwise con-
volution, the number of kernels is identical to the number of
the channels of input, and each kernel is convoluted with its
feature map (one channel is regarded as one feature map).
The depthwise convolution is a special situation of group
convolution where each channel of input is regarded as
one group. Figure 3 shows the depthwise convolution with
3 groups. We can see that the relation among feature maps
is neglected and the convolutions in groups are independent
during depthwise convolution. For remedying this shortcom-
ing, the second stage of depthwise separable convolution,
pointwise convolution, uses the traditional convolution to

ensure the interchange among feature maps. For reducing
the parameters of convolution, it usually uses a convolution
kernel with a size of 1 × 1. The depthwise separable convolu-
tion can be expressed as

Di = Ii ⊗Gi, ð9Þ

Pm =〠
i

Di ⊗ Km,i, ð10Þ

where Di ∈ℝm×n represents the ith depthwise features after
depthwise convolution, Ii is the ith channel of input, Gi is
the convolution kernel of the ith group in depthwise convolu-
tion, ⊗ denotes the operation of convolution, Km,i represents
the kernel with a size of 1 × 1, and Pm is themth pointwise fea-
tures after pointwise convolution.

As the EEG signal is 1-D time sequence while the result
of STFT is 2-D time-frequency image, two different struc-
tures of CNNs for feature extraction are built, which are
shown in Figure 4. “Conv, 16, 31 × 1” indicates this convolu-
tion layer is the traditional convolution with 16 kernels and
the kernel size is 31 × 1 while “DConv” represents the depth-
wise separable convolution. Note that the “Conv” layer
shown in the figure corresponds to the sequence Conv-BN-
(batch normalization-) ReLu. “Max_pool” denotes the

Hybrid input
acquisition 

Raw
EEG Feature

extraction
Feature
fusion

Softmax
output

Detection
result 

Figure 1: The block diagram of the proposed method for epilepsy classification.
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Figure 2: The designed deep learning framework for epilepsy classification.
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maximum pooling layer with stride 2, and “Global_Avg
pool” is the global average pooling layer which has no
parameter to optimize. We can see that the most obvious
distinction between the two structures for feature extraction
from Figures 4(a) and 4(b) is the kernel size used in each
convolution layer. For 1-D input, the kernel size is shaped
as N × 1 while for 2-D input, the kernel size is shaped as N
×M ðM ≠ 1Þ.

4. Results and Discussion

We focus on epilepsy classification using multiple time-
domain and frequency-domain information in order to
improve the performance of seizure detection. In this sec-
tion, we first discuss the used EEG dataset, and then, we dis-
cuss the performance of our proposed method in few-shot
scenario.

4.1. Dataset and Parameter Settings. In this paper, the
adopted dataset is acquired online, which is published by
Andrzejak et al. [27]. The dataset is composed of five catego-
ries, expressed by A, B, C, D, and E. Each category contains
100 recorded EEG signals using a standard 10-20 electrode
placement system. The length of each EEG signal is 4097.
The samples in category A and category B are collected from
five healthy volunteers, and the discrimination between the
two categories depends on whether the volunteer is eye
opened (A) or eye closed (B). Category C and category D
contain the interictal epileptic signals, which are measured
on five epilepsy patients. The samples in category C are
taken from the hippocampal formation of the opposite
hemisphere of the brain while the samples in category D
are taken from the epileptogenic zone. Category E records
epileptic ictal EEG in the intracranial epileptogenic zone.

In the process of STFT, Hamming window is used to
divide the signal into segments, and the length of window
is set to be 128. It uses 128 sampling points to calculate the
discrete Fourier transform and 120 sampling points for its
overlap between adjoining segments. Besides, we perform
two-level DWT on EEG signal using the “db1” wavelet,
whose results have the following structure: ½cA2, cD2, cA1�.
We choose one sample from category A and category E,
respectively, as an example to show the results of the four
representations of EEG signals. Figures 5(a) and 5(b) show
the normal EEG signal (A) and epileptic ictal EEG signal
(E), respectively. The normal EEG signal is a transient wave-
form, and it has distinct peaks. Figures 5(c)–5(h) illustrate
the amplitude of the FFT, STFT, and DWT of the EEG sig-
nals. Comparing Figures 5(c) and 5(d), we can see that the
maximum amplitude of spectrum appears in θ rhythm for
normal EEG and in δ rhythm for epileptic ictal EEG. The
peak value corresponding to epileptic ictal EEG is much big-
ger than the normal EEG’s. As for the results of STFT, it can
be seen from Figures 5(e) and 5(f) that the power in δ, α,
and β rhythm of epileptic ictal EEG is obviously larger than
that of normal EEG. The results of DWT are concatenated
together as the input of CNN, which are shown in
Figures 5(g) and 5(h).

4.2. Configuration Details. In this paper, our proposed neural
network has four branch networks, which are used to pro-
cess and extract features from inputs of different domains,
deleting or adding branch network to adapt to the variety

Depthwise feature Pointwise feature

Σ

Group 1

Group 2

Group 3

Figure 3: The process of depthwise separable convolution.
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Figure 4: Structures of CNNs for feature extraction: (a) CNN with
1-D input and (b) CNN with 2-D input.
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Figure 5: Continued.
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of inputs according to the number of input types. Each
branch network contains five convolution layers, every one
of which is followed by BN layer and ReLu layer. The
momentum in each BN layer is set to 0.9. It is not wise to
use too many kernels in our proposed network, which will
result in a highly parameterized network and overfitting
problem. It can be seen that we only use 16 and 32 kernels

in each layer for alleviating overfitting. Except that the first
convolution uses a large receptive field (31 × 1, 15 × 7) in
order to obtain a long-distance relationship, the receptive
field in the rest of convolution is 3 × 1. In each branch net-
work, after the operation of global average pooling, it will
generate a 32-dimensional feature vector corresponding
with input of each domain. As a result, the concatenate of
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Figure 5: The EEG signal and the amplitude of complex-valued STFT and DWT of the EEG signal: (e) STFT of A, (f) STFT of E, (g) DWT
of A, and (h) DWT of E.
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four feature vectors generate a 128-dimensional feature vec-
tor for the final decision. Furthermore, our experiments are
conducted with Keras 2.3.1 and the neural network is trained

on NVIDIA GeForce RTX 2080. During training, the batch
size is set 6 and the maximum number of epochs is set
100. The initial learning rate is 0.005, and after every 20

Table 1: Performance of normal vs. seizure case (A vs. E) with 5-fold cross-validation.

Methods K1 K2 K3 K4 K5 Mean Variance

EEG 0.9563 0.9563 0.9688 0.9937 0.9937 0.9738 0.0189

DWT 0.96875 0.9875 1.0 0.9812 0.9750 0.9825 0.0120

FFT 0.9312 0.9312 0.8438 0.9812 0.9500 0.9275 0.0510

STFT 0.9875 1.0 0.95 0.9875 1.0 0.9850 0.0205

Hybrid 0.9875 0.9937 0.9937 0.9937 0.9875 0.9912 0.0034

Table 2: Performance of normal vs. seizure case (A vs. E) with 10-fold cross-validation.

Methods K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 Mean Variance

EEG 0.9556 0.9667 0.9778 0.9278 0.9611 0.9167 0.9667 0.9556 0.9444 0.9611 0.9534 0.0187

DWT 0.9278 0.9389 0.9833 0.9611 0.9889 0.9833 0.9667 0.9833 0.9444 0.9667 0.9644 0.0213

FFT 0.9222 0.9889 0.9889 0.9722 0.9667 1.0 0.9833 0.8944 0.8556 0.9944 0.9567 0.0491

STFT 0.9222 0.9778 0.95 0.9222 1.0 0.9889 0.9389 1.0 0.9778 0.9667 0.9644 0.0297

Hybrid 0.9667 0.9667 0.9944 0.9722 0.9778 0.9611 0.9833 0.9944 0.9944 0.9833 0.9794 0.0125

Table 3: Performance of normal vs. seizure case (A vs. E) with 20-fold cross-validation.

Methods K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12

EEG 0.9556 0.9667 0.9778 0.9278 0.9611 0.9167 0.9667 0.9556 0.9444 0.9611 0.9536 0.9737

DWT 0.9278 0.9389 0.9833 0.9611 0.9889 0.9833 0.9667 0.9833 0.9444 0.9667 0.9579 0.9579

FFT 0.9222 0.9889 0.9889 0.9722 0.9667 1.0 0.9833 0.8944 0.8556 0.9944 0.9895 0.9895

STFT 0.9222 0.9778 0.95 0.9222 1.0 0.9889 0.9389 1.0 0.9778 0.9667 0.9158 0.9789

Hybrid 0.9667 0.9667 0.9944 0.9722 0.9778 0.9611 0.9833 0.9944 0.9944 0.9833 0.9579 0.9579

Methods K13 K14 K15 K16 K17 K18 K19 K20 Mean Variance

EEG 0.9737 0.9684 0.9474 0.9947 0.8842 0.9684 0.9474 0.9895 0.9498 0.0297

DWT 0.9947 0.9368 0.9895 0.9579 0.9474 0.9947 0.9579 0.9895 0.9595 0.0292

FFT 0.9895 0.9947 0.9947 0.9789 0.9947 1.0 0.9947 0.9842 0.9371 0.12

STFT 0.8368 0.7895 0.9632 1.0 0.9053 0.8947 0.9947 0.9684 0.9431 0.0564

Hybrid 0.9895 0.9789 0.9526 0.9947 0.9421 0.9736 0.9684 0.9789 0.9639 0.0267

Table 4: Performance of hybrid input using LSTM.

Methods EEG DWT FFT STFT Hybrid EEG_LSTM Hybrid_LSTM

Accuracy 0.9498 0.9595 0.9371 0.9431 0.9639 0.9787 0.9908

Variance 0.0297 0.0292 0.12 0.0564 0.0276 0.0266 0.0051

Time (s) 0.001 0.001 0.0011 0.0024 0.0087 0.0018 0.0063

Table 5: Performance of normal vs. nonseizure case (AB vs. CD) with 10-fold cross-validation.

Methods K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 Mean Variance

EEG 0.9806 0.9667 0.9667 0.9722 0.9667 0.9806 0.9861 0.9556 0.9861 0.9417 0.9703 0.0141

DWT 0.9694 0.9750 0.9639 0.9722 0.9528 0.9806 0.9833 0.9167 0.9306 0.9472 0.9592 0.0221

FFT 0.8556 0.8556 0.8444 0.8361 0.7222 0.8167 0.8583 0.8694 0.8444 0.6 0.8103 0.0849

STFT 0.9917 0.9778 0.9861 0.9611 0.9417 0.9833 0.9917 0.9750 0.95 0.9417 0.97 0.0198

Hybrid 0.9917 0.9778 0.9833 0.9778 0.9722 0.9889 0.9889 0.9556 0.9833 0.9694 0.9789 0.011
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epochs, the learning rate drops to 1/2 of the previous learn-
ing rate. Adam optimizer is adopted for optimizing the loss
function.

4.3. Results. For validating the effectiveness of our proposed
method, we compare the classification performance of the
proposed method with four methods using single input,
EEG, FFT, STFT, and DWT, respectively. In this paper, we
focus on binary classification problem for distinguishing
the normal EEG signals and epileptic EEG signals. Cross-
validation is performed on the dataset for ensuring the reli-
ability of validation. For fair comparison, two metrics are
adopted to measure the performance in different scenarios,
average accuracy, and variance. Average accuracy is calcu-
lated by averaging the results of N-fold cross-validation.
Variance is adopted to reflect the stability of classification
for N-fold cross-validation. We know that the large fluctua-
tion of classification accuracy of N-fold cross-validation will
induce large variance.

We first verify the performance of classifying normal
and seizure EEGs (A vs. E). Table 1 shows the results of dif-
ferent methods with 5-fold cross-validation, in which a total
of 40 samples (20 samples for each category) are used for
training and 160 samples for validation. It can be seen from
the simulation results that among the four methods with sin-
gle input, the classification accuracy of DWT input and
STFT input is close and is higher than that of original EEG
input, while the accuracy of FFT input is the lowest. Among
the four scenarios with single input, the variance of DWT is
the smallest, which means that the fluctuation of diagnosis
accuracy of 5-fold cross-validation is the smallest and the
performance of the method with DWT input is the most sta-
ble. From the performance comparison of the four methods
with single input, we can conclude that the time-frequency-
domain information is more discriminative for seizure
detection compared with the frequency-domain information
and time-domain information. When hybrid input is con-
sidered, the classification accuracy is further improved to
0.9912, which has almost 1% improvement in diagnosis
accuracy compared with the method with the DWT method,
and the variance is further decreased to 0.0034. The obtained
simulation results in Table 1 validate the superiority of our
proposed method.

In order to evaluate the effect of the number of training
samples on the classification accuracy, we train the network
with 10-fold cross-validation (the total number of training
samples is 20) and 20-fold cross-validation (the total num-
ber of training samples is 10), respectively. The validation
results are shown in Tables 2 and 3. Similarly, we can see
that the performance of the method with single DWT input
and single STFT input is still better than that of the method
with single time-domain EEG input, and the proposed
method with hybrid input obtains the best classification
accuracy and the smallest variance. From another perspec-
tive, when the number of training samples decreases from
40 to 20, the classification accuracy of the method with sin-
gle EEG input has 2% performance loss, decreased from
0.9738 to 0.9534, while the performance loss for the pro-
posed method with hybrid input is 1.2%, decreased from

0.9912 to 0.9794. Furthermore, when the number of training
sample decreases to 10, it only has slight performance loss
for the method with EEG input and the method with
DWT input; however, the performance of the method with
STFT input has a huge decrease. Overall, our proposed
method performs the best in terms of average classification
accuracy and variance in the two experiments (10-fold
cross-validation and 20-fold cross-validation) which further
validates the superiority of our proposed method.

In order to further verify the effectiveness of the hybrid
input for the epilepsy detection, we compare the perfor-
mance of signal-domain input with that of hybrid input. In
addition to the feature extractor that we designed in this
paper, we have also considered another feature extractor
proposed in [28], where LSTM was used to extract seizure-
associated features. We consider the combination of raw
EEG data, DFT sequence, and the DWT sequence as the
hybrid input when the LSTM is adopted. The accuracy in
Table 4 is obtained through 20-fold cross-validation.
According to the performance comparison, we can see that
the LSTM obtains better detection performance compared
with the CNN, which illustrates that the LSTM is more suit-
able for processing the temporal sequence. Furthermore,
when the hybrid input was used as the input of LSTM, the
detection performance can be further improved, which
proves that the hybrid input is helpful to improve the perfor-
mance of epilepsy detection. Moreover, we give the detection
time for each signal, which has 23.6-second duration. From
the simulation results, we can see that the detection time is
much smaller than the duration of the EEG signal.

In the last experiment, we verify the performance of the
proposed method in distinguishing the normal and nonsei-
zure (AB vs. CD) with 10-fold cross-validation. Table 5 pro-
vides the results. Similarly, in Table 5, the first four rows give
out the diagnosis accuracy of 10-fold cross-validation, the
average diagnosis accuracy, and the variance of diagnosis
accuracy of 10-fold cross-validation for four methods with
single input. It can be seen from the obtained experimental
data of the first four rows in Table 5, different from the case
of A vs. E, where among the three methods with single input,
the DWT and STFT achieve higher classification accuracy
than the EEG input; the EEG input gets the highest classifi-
cation accuracy in the case of AB vs. CD. Once combining
the four input formats as the hybrid input of our proposed
network, the diagnosis accuracy is obviously improved,
about 0.86% increase in average diagnosis accuracy com-
pared with that of the method using time-domain input
solely, about 16% increase in average diagnosis accuracy
compared with that of the method using frequency-
domain input solely. Furthermore, the method with hybrid
input gets the smallest variance among the five methods,
which means that the fluctuation of diagnosis accuracy
of 10-fold cross-validation is the smallest and therefore
demonstrates the performance of our proposed method is
stable. Thus, simulation results can demonstrate that our
proposed method with hybrid input has strong advantages
whether in average accuracy or variance, which proves the
effectiveness of the proposed method in epileptic
classification.
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5. Conclusions

In this paper, we focus on epileptic classification in few-shot
scenarios. In order to make the classification accuracy higher
and more stable, we propose a deep learning method with
hybrid input, i.e., original EEG signal, FFT, STFT, and
DWT of EEG signal. In order to alleviate the tendency of
overfitting, two means are applied. The first is that we
replace the traditional convolution by depthwise separable
convolution for reducing the parameters in network and
then l2 regularization is applied, whose function is decreas-
ing the complexity of the model. We conduct several exper-
iments to distinguish normal and epileptic EEG, and the
results show the proposed method with hybrid input has
strong advantages in epileptic classification. It benefits from
the complementarity of time-domain properties, frequency-
domain properties, and time-frequency-domain properties.
Our proposed method provides a new perspective to enrich
the input information to make improvements for deep
learning-based epileptic diagnosis.

Data Availability

The adopted EEG dataset is acquired online, which is pub-
lished by Andrzejak et al. [27]. Other data used to support
the findings of this study are available from the author upon
request (jianxiangwu991230@126.com).
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