
Energy and AI 8 (2022) 100147

Available online 2 March 2022
2666-5468/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Review 

Implementation of artificial intelligence techniques in microgrid control 
environment: Current progress and future scopes 

Rohit Trivedi *, Shafi Khadem 
International Energy Research Centre, Tyndall National Institute, UCC, Cork, Ireland   

A R T I C L E  I N F O   

Keywords: 
Artificial intelligence 
Microgrid control architectures 
Hierarchical control 
Networked microgrids 
Machine learning 
Distributed energy resources 

A B S T R A C T   

Microgrids are gaining popularity by facilitating distributed energy resources (DERs) and forming essential 
consumer/prosumer centric integrated energy systems. Integration, coordination and control of multiple DERs 
and managing the energy transition in this environment is a strenuous task. Classical control techniques are not 
enough to support dynamic microgrid environments. Implementation of Artificial Intelligence (AI) techniques 
seems to be a promising solution to enhance the control and operation of microgrids in future smart grid net-
works. Therefore, this paper briefly reviews the control architectures, existing conventional controlling tech-
niques, their drawbacks, the need for intelligent controllers and then extensively reviews the possibility of AI 
implementation in different control structures with a special focus on the hierarchical control layers. This paper 
also investigates the AI-based control strategies in networked/interconnected/multi-microgrids environments. It 
concludes with the summary and future scopes of AI implementation in hierarchical control layers and structures 
including single and networked microgrids environments.   

1. Introduction 

Microgrids can be distinguished from any distribution network 
containing DERs by two distinct features. First, their capabilities to 
operate in an islanded mode confirms the resiliency and reliability of the 
network. Second, to appear as controlled and coordinated units viewing 
from the upstream network [1]. Microgrids provide noteworthy benefits 
to consumers as well as utilities, the majority of which include; higher 
reliability by incorporating flexibility at the community layer distribu-
tion network, improved power quality by managing flexible loads, 
reduced carbon emission by the diverse DERs, lowering transmission & 
distribution losses, cheap energy supply utilising more renewable re-
sources, and the possibility of active participation in the energy markets 
[2], and must fully satisfy the network and load requirements at islanded 
mode [3]. 

Taking into consideration the large share of stochastic natured DERs 
comes with lots of uncertainty and a range of instances where effective 
controlling of the microgrid network becomes very critical. Inter-
connecting multiple microgrids as a network of microgrids can be an 
effective solution to accommodate and improve the operation quality of 
the large number of DERs. It has also been recognised that when mul-
tiple microgrids, geographically close to each other, are tied together 

through the distribution line to form a networked microgrid, the reli-
ability and resilience of the interconnected microgrid can be signifi-
cantly increased [4, 5]. 

Artificial Intelligence (AI) is a branch of computer science that has 
become popular in recent years. In the context of microgrids, AI has 
significant applications that can make efficient use of available data and 
helps in making decisions in complex practical circumstances for a safer 
and more reliable control and operation of the microgrids. The ad-
vancements in AI-based algorithms and computational capacity with a 
large amount of data processing abilities are well enough to exploit the 
single to multi-microgrid network controlling environment. Machine 
learning (ML) and deep learning (DL) are important subsets of AI. In 
general, ML and DL models can be supervised or unsupervised 
depending upon the input training data. In the context of microgrids, the 
system control and analysis need an advanced approach that not only 
depends on the physical model but also integrates the data-driven 
modelling to better address the observability and controllability issues 
[6]. Considering the level of control, communication requirements and 
energy resources, the microgrid hierarchical control scheme have mul-
tiple control layers depending upon the functionality to be addressed 
[7]. Adjoining AI techniques with these existing schemes can bring 
higher accuracy, speed and better effectiveness for control and opera-
tion in a microgrid environment [8]. Conventional control methods are 
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also model-based which require sufficient information and under-
standing of system dynamics. ML algorithms particularly Deep Rein-
forcement Learning (DRL) is considered a promising means to develop a 
model-free design where DRL focuses on the physical model learning 
from the environment and maps inputs to the actions [9]. 

Rapid advancement in microgrids research, demonstration, and 
deployment (RDD) in the past and recent years reflect the value of 
microgrids in the future development of decarbonised smart grid net-
works. Over the last decade, plenty of literature reviews has been done 
on different areas of microgrids to find out the RDD status, challenges, 
progress and future scopes. A summary of some of the most important 
review papers that have been published in high-impact factor peer- 
reviewed journals and transactions is presented in Table 1. It shows 
that microgrid controls have been reviewed most which are followed by 
the protections, architecture and topology, energy management and 
integration of energy storage (ES). Implementation of AI techniques in 
microgrid controls is also gaining importance these days. A review on 
the progress of AI implementation appears in [89] which focuses more 
on the microgrid stability issues. Authors in [30] also have reviewed the 
progress on ANN implementation but were limited to a single microgrid 
only. By this time, a large number of researches have been conducted on 
different AI techniques to demonstrate their applicability in power 
systems, microgrids control, operation and management areas. This in-
cludes single to networked microgrids environment. Hence, we have 
reviewed the current progress on the implementation of AI techniques 
with a special focus on the control and functionality at different hier-
archical control layers. The review has also been extended to networked 
microgrids environments. 

The highlights of this paper are:  

• The conventional microgrid control architecture is not suitable for a 
dynamic microgrid environment  

• Implementation of AI techniques can adapt and enhance the smooth 
control and operation of microgrids in various control environments.  

• AI techniques empower the hierarchical control layers. Key features 
where specific AI techniques can further be implemented are 
outlined.  

• Multi/Networked/Interconnected microgrids structure have a wide 
range of controlling objectives where AI can efficiently facilitate the 
complex control objectives. 

The rest of the paper is organised as follow: Section 2 summarises the 
review study on control architectures along with their control and 
operational features. In section 3, an overview of AI techniques has been 
presented, followed by the implementation of AI in hierarchical control 
in section 4 with detailed reviews and possible improvements. Section 5 
comprises networked microgrids architecture and section 6 reviews the 
implementation of AI in that environments. Section 7 discusses the 
findings and future scopes on AI-based microgrids control followed by 
the conclusion in section 8. 

2. Microgrid Control 

2.1. Conventional control 

The key control and operational features of the conventional control 
architecture are recapped in Table 2. It can be summarised from the 
comparisons that with the increasing penetration of DERs in the distri-
bution network, distributed control approach will play an important role 
in decarbonising the future distribution or island grid. From the control 
features point of view, it is highly effective but the complexity to achieve 
is also high. 

2.2. Hierarchical control 

The primary layer is generally responsible for droop control to make 
the system stable and damped by emulating the physical behaviour of 
the system which can be realised by adding a virtual impedance control 
loop. The complex controlling is achieved by local controllers and hence 
this layer has a very fast or real-time response. A master-slave control is 
also proposed in [51] where one of the converters acts as master and 

Abbreviations 

Controller type 
Proportional integral controller PI 
Model predictive control MPC 

AI Technique 
Neural network NN 
Support Vector Machine SVM 
Artificial neural network ANN 
Deep reinforcement learning DRL 
Multi-layer perceptron MLP 
Back propagation neural network BPNN 
Long short-term memory LSTM 
Feed forward Neural network FFNN 
Adaptive neuro-fuzzy inference system ANFIS 
Single hidden layer feedforward neural network SLFN 
Fully connected network FCN 
Recurrent neural network RNN 
Support vector regression SVR 
Elman neural network ELN 
Deep neural network DNN  

Table 1 
Existing review papers on different areas of microgrids  

Ref Review area Published year 
[10, 2] Challenges, and research needs 2010, 2015 
[11, 12] AC versus DC: Resources and technology 2013, 2014 
[22, 6, 

13-40], 
AC: Control strategies 2014 - 2018, 

2021 
[16–17] Architecture and topology 2013, 2015, 2017 
[23-28, 17, 

18], 
AC, DC, Hybrid: Control techniques 2011, 2013 - 

2015, 2017 
[19, 20] DC: Hierarchical control 2015, 2020 
[21] Building microgrids: Hierarchical control 2019 
[45,24] Protection schemes 2014 - 2016, 

2018, 2020 
[25] Adaptive protection based on communication 2021 
[26, 27] DC: Protection 2018, 2019 
[28] Modeling uncertainties 2017 
[29–30] EMS 2015, 2018 - 

2020 
[31] DC: Architectures, Applications, and 

Standardization 
2016 

[32, 33] Power sharing 2016, 2017 
[34] Islanded: EMS and planning 2019 
[35] Operation, applications, modeling, and control 2021 
[36] Generation, demand forecasting 2018 
[37, 38] Experimental microgrids and example cases 2010, 2011 
[39] DC: Planning, operation and control 2021 
[40, 41] DC: Control, power sharing and stabilization 

techniques 
2016, 2019 

[42] Stability improvement 2017 
[43] Reactive power compensation 2018 
[44] Value streams 2016 
[89, 6] Implementation of AI and ANN in control 2017, 2020 
[45–47] Hybrid/Energy storage/Flywheel application 2017, 2019 
[48] Technologies, key drivers, and outstanding 

issues 
2018 

[49] Transactive Energy Market 2020 
[50] Guidelines for practical implementations and 

operation 
2020 

This paper Implementation of AI techniques in control 
(single and networked microgrids) 

2021  
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others as slaves. There must be a communication channel established for 
coordinated control of master and slave controllers itself which could be 
a possible hurdle for local controllers. Hence, a secondary control layer 
is mainly responsible for managing and compensating the voltage and 
frequency deviations caused at the primary layer. In addition, it also 
facilitates the synchronised control loop for efficient and flawless 
connection and disconnection from the main grid. Tertiary control is the 
highest layer of control in a hierarchical scheme. It ensures the optimal 

power flow and energy management between the microgrid and the 
main grid. 

Extensive reviews have already been done on the hierarchical con-
trols. Authors of this paper have drawn, as shown in Fig. 1, a summary of 
the functionalities and the control methods in the hierarchical structure 
that have been well researched and reviewed by the researchers in ref-
erences as shown in Tables 1 and 3. Review contributions from the au-
thors of this paper are also outlined in Table 3. When it comes to AI 
implementation, authors in [52] reviewed mainly NN-based controlling 
in microgrids which appears as shallow research. Researchers in [6] 
have considered only MPPT as the major primary control objective 
whereas our work considers real-time power-sharing and inertia esti-
mation as crucial primary control objectives that are missing in most of 
the research work. Moreover, the networked microgrid is not thoroughly 
explored in any of the previous review papers. We have considered 
nearly all the missing gaps in existing research work and future di-
rections required for efficient control in networked microgrids. Thus, 
this paper presents a whole extensive review of AI techniques imple-
mented in hierarchical and networked microgrid control. 

3. Overview of AI framework for microgrid control 

Machine learning is one of the subsets of AI, has the potential to 
improve the operation and control of microgrids. ML can be broadly 
categorized into four types according to the method of learning namely: 
supervised, unsupervised, semi-supervised and reinforcement learning. 
An overview of these categories including some examples of research 
work on their implementation in the smart grid areas are briefly sum-
marised below. The authors also reviewed that these could easily be 
incorporated in microgrid control research which has been reviewed and 
explained in detail in the following sections. 

3.1. Supervised learning (SL) 

Supervised learning is defined as a process where the labelled 
datasets are used to train the algorithms to either classify or predict the 
continuous value target feature(s) [60] [61]. Classification and regres-
sion are two major categories in this learning. For control in microgrids, 
the classification problem can be applied to detect the disturbances due 
to load change [62], transient conditions [63] and can further be 

Table 2 
Comparison of conventional control methods concerning control & operational 
features  

Control Features Centralised Decentralised Distributed 
Voltage stability Less effective 

in multiple 
DER units 

Effective and 
realisable 

Highly effective 
but complex to 
achieve 

Frequency 
regulation 

Less effective 
in multiple 
DER units 

Effective and 
realisable 

Highly effective 
but complex to 
achieve 

Load-frequency 
control and error 
minimisation 

Effective and 
realisable 

Less effective, no 
global 
controllability is 
possible 

Highly effective 
but complex to 
achieve 

Power-sharing Less effective 
in multiple 
DER units 

Effective and 
realisable 

Highly effective 
but complex to 
achieve 

Optimal power flow Effective but 
complex to 
achieve 

Less effective, no 
global 
controllability is 
possible 

Highly effective 
but complex to 
achieve 

Energy management Effective but 
complex to 
achieve 

Less effective, no 
global 
controllability is 
possible 

Highly effective 
but complex to 
achieve 

Other Operational Features 
Control layer Single control Multiple multiple 
Implementation Easy Moderate Complex 
Goals An explicit 

single task 
Multiple tasks Variable and 

uncertain 
Flexibility Low Moderate High 
Communication High Low Medium 
Reliability Single point 

failure 
Multiple points Multiple points 

Scalability Low moderate high 
Plug-and-play Hard to 

achieve 
Achievable Achievable  

Fig. 1. Hierarchical control functionality and control methods  

R. Trivedi and S. Khadem                                                                                                                                                                                                                     



Energy and AI 8 (2022) 100147

4

extended to power quality [64], voltage stability assessment [65] and 
fault detection and classification [66]. Forecasting problems can include 
prediction of PV generation [67], electricity demand [68], electricity 
market pricing [69] etc. 

3.2. Unsupervised learning (UL) 

This type of algorithm works well for analysing and clustering 
unlabelled datasets. It is defined as the algorithm that can learn the 
patterns and trends available in the untagged dataset without the need 
for human supervision and predict for all unseen values [60]. It makes 
learning faster and easier. Clustering is a class where the entity seg-
mentation and various patterns in the data are discovered automatically. 
From the microgrid point of view, load profile clustering [70, 71], 
consumer/prosumer segmentation [72], network topology identifica-
tion [73] fall under unsupervised learning. 

3.3. Semi-supervised learning (SSL) 

In recent years, both labelled and unlabelled data has been used to 
train machine learning models. The technique of making the model to 
learn from labelled and unlabeled datasets and predicting for all future 
points is defined as semisupervised learning[60]. One of the most pop-
ular algorithms for this method is called Generative adversarial net-
works (GAN) [74, 75]. In the microgrid context, SSL such as GAN 
architecture has the potential to generate the trained data from noise 
and minimise the gaps between trained and real data to generate 
time-series power generation profiles of DERs [76], schedule the energy 
storage for solar PV microgrid [77]. GAN can also be integrated with RL 
and DNN to provide real-time control in microgrids [78]. 

3.4. Reinforcement learning (RL) 

Reinforcement learning (RL) is a unique algorithm that consists of 
environment, agent, reward and action. RL is defined as the learning 
process in which, the agent actively interact within the environment to 

gather the information and sometimes affect the environment as well, 
and receives a reward for each action[60]. Collectively, it aims to 
maximise the total reward after following through a continuous process 
of obtaining rewards and punishments on different actions. RL has the 
potential to enhance the decision-driven control and operation of the 
microgrid. Optimal energy management [79], autonomous electricity 
market participation [80], multi-microgrid interaction and management 
[81] are the key areas where RL has been exploited. The schematic 
representation of AI techniques that can be implemented in microgrid 
control is shown in Fig. 2. 

The overview of AI-based techniques for various parts of the 
microgrid research is shown in Fig. 3. From the core element and control 
point of view, the five categories have been defined namely, DERs, load, 
weather forecast, energy market and main grid with each category 
having a specific set of objectives and the AI techniques associated with 
each objective are shown there. It comprises classical control infused 
with hierarchical control functionalities. Primary and secondary control 
mainly include MPPT control, voltage and frequency control, power- 
sharing, protection, fault restoration and high-speed communication. 
Tertiary control at the high level includes energy management, power 
flow management within microgrid and with the external grid, pro-
sumer autonomous market participation, customer segmentation and 
forecasting (load, generation and market prices). NN-based algorithms 
have been implemented mostly in all three hierarchical control layers. 
Apart from it, for classification and clustering purposes, CNN and K-NN 
techniques also have been studied in some of the works. The use of RL 
has emerged as a potential technique in power-sharing and the energy 
market in microgrid control applications. Some review progresses have 
already been made on forecasting of load demand [82–83], energy 
generation [84–85], and market prices [86–87] and hence considered 
the out of scope of this paper. 

4. AI in Hierarchical control – review and possible improvement 

This section is significantly reviewed the research work where the AI 
techniques have been implemented in the hierarchical control layers. 

Table 3 
Comparison of proposed work with existing methods  

Ref Conventional 
control 

Hierarchical 
control 

AI-based Hierarchical control AI-based networked -microgrids control 
Primary Secondary Tertiary 

[35] ✓ ✓ ⨯ ⨯ ⨯ ⨯ 
[53] ✓ ✓ ⨯ ⨯ ⨯ ⨯ 
[54] ✓ ✓ ⨯ ⨯ ⨯ ⨯ 
[55] ✓ ✓ ⨯ ⨯ ⨯ ⨯ 
[56] ✓ ✓ ⨯ ⨯ ⨯ ⨯ 
[57] ✓ ✓ ⨯ ⨯ ⨯ ⨯ 
[58] ⨯ ⨯ ⨯ ⨯ ✓ ⨯ 
[21]*, [59]* ✓ ✓ ⨯ ⨯ ✓ ⨯ 
[6]*, [52]* ⨯ ⨯ ✓ ✓ ✓ ⨯ 
This paper ✓ ✓ ✓ ✓ ✓ ✓  

* Not comprehensively reviewed 

Fig. 2. AI techniques that can be implemented in microgrid control  
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Authors also have taken the opportunities to recommend the possible 
improvements that can be considered as future scopes. The findings are 
also summarised in section 7. 

4.1. Primary Control 

Conventional droop control methods lack accuracy, speed and 
robustness [88]. Embedding AI to the existing control techniques can 
enhance the control functionality in the microgrid environment [7]. 
Under the hierarchical control structure, the primary control layer 
mostly focuses on (i) real-time power-sharing, (ii) MPPT control and (iii) 
inertia control. Energy storage (ES) brings the benefit of dealing with 
uncertainties associated with the stochastic natured DERs but the 
power-sharing mechanism can be a complex task. The droop control 
with power-sharing should deal with this issue and AI has again, plenty 
of opportunities to enhance the controlling in microgrids which have 
been discussed in this paper. Research findings show that the MPPT 
systems with conventional control methods suffer from slow tracking 
speed and complex system-based design [89]. The NN-based AI tech-
nique can track the MPP more accurately with an error of less than 0.1% 
[89]. AI in primary control is improving the inertia level in rotation-less 
DERs in microgrids. Existing control methods in this area are based on 
complex model-based design and can not provide optimal control and 
hence affect the primary control operation. Bringing AI techniques to 
estimate and forecast the inertia in real-time can be an interesting area 
of future research and has been discussed in respective sections. 

4.1.1. Real-time power-sharing and ES: coordination and control 
It is already identified that NN-based solutions have widely been 

implemented in all control layers. ANN-based droop control is proposed 
in [90] to improve the accuracy of active/reactive power-sharing and 
simultaneously control the voltage and frequency in the microgrid. The 
proposed ANN technique follows the feed-forward NN (FFNN) which is 
trained by a Levenberg-Marquardt (LM) algorithm. The solution shows 
that the current sharing error can be reduced to 0.3A, compare to 1.5A in 
the case of a conventional controller. The ANN-based framework with 
droop control to control the parallel-connected units in a standalone DC 
microgrid [91]. This strategy works very well to maintain the voltage 
and coordinated power-sharing in sudden load disturbance events. 
However, it doesn’t consider the SoC balance of multiple storage units. 
Authors in [92] have presented a virtual energy-based droop control 

mechanism considering SoC and power-sharing powered by an intelli-
gent adaptive control strategy wherein the virtual resistance and refer-
ence voltage are generated by time-dependent parameters of the storage 
system itself. A coordinated control is provided in [93] for Grid-PV-ESS 
integrated system through a Bus-Signalling primary control in which 
control modes of the individual units are designed according to the 
virtual reference parameters of the ESS. It promises significant advan-
tages over traditional droop control like maximising the PV utilisation, 
effective power-sharing and voltage stability. In multiple case scenarios 
that include control actions for transient due to loads switching, DC fault 
performance of a system is analysed in which it is shown that the control 
system is capable enough to maintain the bus voltage within the range 
0.975 pu to 1.025 pu in all cases. Another ANN-based dynamic power 
management strategy is proposed in [94] where the NN algorithm 
considers the reference current and the SoC value to control the voltage 
at DC bus in case of load and generation fluctuations. An adaptive 
control scheme integrating fuzzy logic and the neural network has been 
presented in [95] to improve the reactive power sharing in case of a 
mismatch of line impedance. The accurate response can be achieved 
within 0.01 seconds. A DRL based control method has also been pro-
posed in [96] to coordinate the current sharing and effective voltage 
restoration for an islanded microgrid. In multiple case studies, consid-
ering overloading, communication line switching, and DER unplugging, 
the proposed system converges to equal current sharing for all DERs 
within 10ms and voltage is restored quickly. 

Since the centralised primary control requires high bandwidth con-
trol loops, thus makes it infeasible for distantly located sources [15]. A 
microgrid with multiple ESs can also be controlled at a primary layer 
considering the definite SoC layer of all the ESs. For microgrid inte-
grated with HEVs, the control system needs to acquire the charge effi-
ciency/charge acceptance close to 100% though it varies with respect to 
SoC [97]. At a low SoC, the charge acceptance is near 100% but it gets 
progressively poor when SoC is above 80% [98]. To coordinate and 
manage multiple units there will be a requirement of monitoring the SoC 
layer by using appropriate sensors and the communication infrastruc-
ture so that the output power of the batteries can be regulated. Specif-
ically focussed on the DC side of the microgrids, the SoC-based 
power-sharing strategy has been developed by connecting all the energy 
cells to a common bus with power electronics-based interfacing con-
verters and the virtual impedance value depends upon the value of SoC 
raised by an exponent [99]. However, there is a trade-off between the 

Fig. 3. Overview of AI techniques in various microgrid control and functionalities  
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accuracy and the voltage deviation with this approach which is tried to 
alleviate in [100] by introducing fuzzy logic control but analysed only 
on a single system. Fuzzy logic based mechanism fine-tunes the droop 
coefficients of local controllers in the primary layer to maintain the SoC 
level among all the storage devices. It improves the primary control but 
the steady-state error can not be eliminated by this method. In the 
continuation, authors in [101, 102] proposed a similar fuzzy logic-based 
decentralised control for balancing the SoC of multiple energy storage 
units and since all the units are self-controlled and managed oneself 
without the need of any communication system, the approach promises 
the high scalability in microgrid environment. Fuzzy logic seems a good 
alternative for droop control but sudden charging and discharging for 
power-sharing can impact the energy life and its overall performance 
[20]. Furthermore, it can also result in reduced power handling capa-
bility of the complete system. Keeping this in mind, a constant bus 
voltage scheme has been proposed in [103] based on 
energy-ultracapacitor hybrid storage system where fuzzy logic 
controller is designed in such a way that it will maintain the bus voltage 
stable with the help of ultracapacitor and control the power flow from 
hybrid system to the rest of the microgrid. The peak to peak DC voltage 
deviation in case of undershoot improves from 45.7 V to 47.2 V and it 
improves from 51.3 V to 49.2 V in case of overshoot. 

Online estimation and prediction of SoC by AI-inspired techniques 
can improve accuracy. For example, the NN-based estimation model can 
improve the SoC estimation with an average accuracy of 3.8% [104] and 
their integration with individual local controllers can improve the 
overall control structure in microgrids. The efficient learning capability 
from the historical data and prediction with high accuracy leads to 
better controllability [105]. State-of-the-art approaches using neural 
networks for SoC estimation have been developed in [106–107]. Au-
thors in [108] have estimated the SoC using data-driven FFNN based 
method by establishing the relationships among the energy character-
istics like current, voltage, SoC, temperature and polarisation state. 
Considering all the characteristics, the FFNN based SoC estimation 
method keeps the error to the lowest and within 2%. 

4.1.2. MPPT control 
The MPPT controller enabled with the NN based framework can give 

improved and reliable results [109]. Recent research in [110, 111] have 
adopted a radial basis function network consisting of a single neuron 
(SN-RBFN) integrated with a PI controller. The single neuron approach 
has also been implemented in [112] considering the weight initialisation 
for the backpropagation algorithm. RBFNN controller provides an esti-
mated tracking error MSE (mean square error) of 0.0004 and takes only 
4 ms to reach steady-state with negligible fluctuations[110]. In the case 
of variable irradiance and wind speed, the SN-RBFN algorithm achieves 
MPP within 38 ms compared to the standard incremental conductance 
algorithm that takes 92 ms[111]. Integral Absolute Error (IAE) and the 
Integral Time Absolute Error (ITAE) with direct neural control method 
are 0.216 and 0.0157 respectively compared to 2.593 and 0.3321 
respectively in the case of the P&O algorithm [112]. Authors in [113] 
have proposed a similar approach with an increased number of layers 
and inputs as panel temperature, output voltage and current of PV. 
Further, step changes in irradiance, temperature and load have been 
applied to the model to present the advantages of adopting RBFN over 
traditional fuzzy logic controllers. For example, improvement in average 
output power by 14.89% has been achieved with RBFN compared to 
perturb and observe (P&O) method. A general regression neural 
network (GRNN) model is devised in [114] to find the MPP using the 
modified P&O method and particle swarm optimization (PSO) algo-
rithm. It brings advantages like execution time reduced to 10.68s 
compared to 38.28s in the P&O method and increment in average power 
output by 15% compared to the P&O method. The above-discussed 
techniques are still partially driven by the model-based designing 
approach. There is still enough scope for researchers to explore and 
develop the data driven models that will reduce the need of exact system 

information and help in achieving the improved performance. 

4.1.3. Inertia estimation and control 
Decreasing inertia in microgrids is one of the major concerns to 

maintain system stability [115]. Various studies [116–117] have been 
done to introduce virtual inertia control but they lack model-free 
optimal control. Reinforcement learning (RL) techniques have been 
emerged in recent years to address the above-mentioned issues. An 
NN-based heuristic dynamic programming for virtual inertia control is 
proposed in [118] for grid-tied inverters. For non-inductive grids, the 
NN adapts variable impedance angle and the dynamic programming 
with actor-critic framework facilitates the self-control to different 
changing conditions in the systems. Comparative study shows that 
conventional PI controller doesn’t function properly as it requires 
reactive power to regulate the magnitude of inverter output whereas NN 
based controller updates the network weights during online training and 
regulates the inverter output with minimum fluctuations. Authors in 
[119] have presented a dual heuristic dynamic programming that in-
cludes the neural network, actor and critic network. The former network 
improves the performance against uncertainties like changing rotor 
angles etc. and the later network optimise the cost function associated 
with it. The simulation shows that the proposed approach improves the 
tracking ability of inverter output to control active, reactive power and 
frequency stabilisation compared to the traditional PI-based controller. 
Researchers in [120] suggest the NN-based adaptive controller that fa-
cilitates the online training to automatically adjust the setting of the 
controller according to the instantaneous system’s parameter values. 
The RL-based heuristic dynamic programming then provides the optimal 
control of power and frequency regulation in the grid-tied microgrid 
system. In contrast to the DHP method, authors in [121] present an RL 
based deep deterministic policy gradient (DPG) optimisation algorithm 
to provide the frequency stability in the system. The proposed virtual 
inertia controller works better compared to H∞ and PI controllers. The 
integral absolute error with inertia and no inertia control case in 
NN-based controller is 28.4136 (lowest) compare to 28.4461 and 
28.7557 in H and PI controller respectively. A recent work [124] in a 
similar area follows a model-free faster convergence decentralised DPG 
algorithm that finds the optimal control policy needed to control the 
active power, frequency stabilisation during the transient process. The 
observed frequency disturbance is less after fault transients and load 
disturbance compared to the grid following and droop converter control. 

4.2. Secondary control 

The secondary layer mainly controls the deviations that occurred in 
voltage and frequency caused by the primary control. In general, the 
secondary control with conventional methods has a lagging response, 
inaccurate controlling issues and requires extensive communication 
infrastructure [123]. Improper communication can affect the synchro-
nisation of all the units in the microgrid and system reliability will be at 
risk which must be alleviated. Network-level protection and microgrid 
stability during faults is also a challenging task at this layer of control 
[124] and therefore intelligent control techniques must be implemented 
to deal with these issues. The following sub-sections provide the review 
on classical and AI implemented techniques with future prospective. 

4.2.1. Voltage and Frequency deviation control 
At this layer, the controller must maintain the fluctuations that are 

not controlled at the primary layer, within the acceptable limits for any 
change in load or generation [125]. Authors in [126] propose a solution 
to mitigate the voltage unbalance for the islanded microgrid, realised by 
sending the control signals to local controllers connected at the primary 
layer. Centralised secondary control for islanded microgrid has also 
been presented in [127] where voltage and frequency deviations are 
restored while maintaining the appropriate sharing of reactive power. 
However, these control measures are effective but the increase in ES 
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assets in the microgrids bring complexity in controlling and thus raises 
concern. Considering the contribution from ES, novel works have been 
presented for secondary stage control examining the SoC and minimis-
ing the deviations under this control layer. In this trend, an SoC based 
droop control has been employed in [128–129], where ES with higher 
SoC delivers more active power and the unit with lower SoC generates 
less. The conventional droop control is promising but often suffers from 
small-signal instability problems [130]. Going on with the latest tech-
nology, the ML inspired models can solve the system dynamics 
complexity effectively even with no or partial dynamics information 
being available in advance [131]. 

To overcome the issues of voltage and frequency disturbances, NN- 
based model has been deployed in [131]. The developed multilayer 
perceptron (MLP) model considers the parameters based on system dy-
namics, including linearity and non-linearity aspects of the controller. 
Results demonstrate good overall system stability, however, the system 
considering a synchronous generator with multiple DERs and loads, is 
yet to be examined. The MSE of voltage and frequency deviation is 
approximately 50% and 40% less respectively compared to the PID 
based controllers. Authors in [132] used ANN and Genetic Algorithm 
(GA) to control the voltage and frequency deviations at the secondary 
layer. The inclusion of GA optimization at this stage allows parameter 
initialisation and ANN facilitates the online tuning of parameters and 
faster prediction of changing system dynamics. The work here considers 
the islanded microgrids with limited DERs and loads, thus scalability 
and operation in grid-tied connection mode will remain the area of 
exploration. Authors in [133] have proposed a novel reinforcement 
learning (RL) algorithm to compensate for the reactive power, unbal-
anced load currents and harmonics. RL provides an online learning 
environment where the secondary controller can take instantaneous 
possible actions based on parameters crossing the safe operational 
limits. Furthermore, the developed system has been tested on different 
scenarios such as load change, unbalanced load conditions, non-linear 
load switching and the three-phase fault condition. However, the val-
idity of the RL based approach while including impacts of ES is not 
explored. Researchers in [134] have proposed a novel DRL based in-
terval type 2 (IT2) fuzzy system especially focusing on load frequency 
regulation. IT2 fuzzy logic controller (IT2-FLC) was designed since 
conventional FLCs cannot handle linguistic uncertainties in unstruc-
tured environments. Thus, the self-tuning and adaptive learning capa-
bility with improved controller action make the overall system effective 
against frequency regulation in the microgrid. However, it is developed 
only for islanded microgrids. The frequency deviation in case of load 
disturbance with a conventional controller is 0.0249 Hz while the same 
with the proposed controller is 0.0163 Hz. 

A distributed ML technique has been proposed in [135] at the sec-
ondary layer voltage control for islanded microgrid without the need for 
a communication channel. A cluster-based unsupervised model has been 
developed considering the data availability from PV, wind, load, and the 
sudden load change events. Researchers in [136] have proposed a noise 
resilient cooperative secondary control for a multi-agent system. It 
considers the complete non-linear model of the system and noisy mea-
surements. These techniques can also be validated for DC and/or hybrid 
microgrid structures. In case of small and large-signal disturbances, the 
proposed control scheme restores the voltage and frequency fluctuations 
to maintain stability. NN based secondary control for voltage regulation 
and current sharing in DC microgrid is proposed in [137] that utilises 
game theory and adaptive dynamic programming to manage current 
sharing and regulates the DC voltage without the need of an accurate 
model of a microgrid. An RL is introduced in [138] for controlling 
voltage and frequency deviations at the secondary layer control with 
penetration of wind generators. Q-learning (referred to as RL) is adopted 
here to develop a model-free mechanism that efficiently captures the 
system non-linearities and controls the frequency and voltage fluctua-
tions by agents assigned to them. NN-based short term LSTM forecasting 
technique has also been adopted in [139] that forecast the generation 

and demand in near real-time and the controllers. It helps to maintain 
the DC link voltage balancing the SoC level instantaneously. 

An extreme learning machine (ELM) [140] is another interesting and 
emerging NN algorithm. This algorithm resolves the slow learning speed 
problem of FFNN by enabling a single-hidden layer FFNN that randomly 
initialises the input weights of neurons and determines output weights 
analytically. It provides the best generalisation at a very fast speed for 
NN-based models. Results show that SVM takes about 12 hrs for training 
the model on given input samples, whereas ELM does this only in 1.5 
minutes. An ELM embedded technique is proposed in [141] where a 
consensus-based secondary control regulates the voltage through a 
communication network for effective power-sharing. The loss of data in 
the transmission is handled by ELM that predicts the lost voltage and the 
control unit is activated to bring the operating point to that forecasted 
voltage and thus the voltage regulation is achieved. An adaptive 
DRL-based secondary frequency control has been proposed in [134] 
considering the tidal and vehicle to grid unit in an isolated microgrid. 
The suggested method controls any power fluctuation and load distur-
bance and regulates the frequency. A data-driven and distributed heu-
ristic dynamic programming based secondary controller is also 
presented in [142] that does not require accurate model parameters. The 
proposed framework is well adaptive to load disturbances and regulates 
frequency quickly maintaining the accurate active power sharing among 
all DERs. 

4.2.2. Mitigate communication delay 
Reducing communication delay is an important requirement in a 

hierarchical control structure. A robust communication featured sec-
ondary control is proposed in [143] in which a communication 
compensation block has been developed to deal with time delays and 
non-idealities in the communication network. An RL approach has been 
presented in [144] which is based on a resource allocation scheme, 
namely, delay minimisation Q-Learning (DMQ) that learns from the 
macro and small cell base stations at every time-to-transmit interval 
(TTI). The latency in communication is reduced by 66% and 33% 
compared to proportional fairness (PF) and Distributed Iterative 
Resource Allocation (DIRA) algorithms respectively. 

A regression model for communication compensation is discussed in 
[143] that can guarantee the fast frequency and effective voltage 
restoration in any communication impairment environment. Due to 
more accurate prediction capability, this solution can restore the voltage 
in worse cases even with 60% data loss condition, which is also not 
possible by any conventional controller. A deep learning-based secured 
communication network is proposed in [145]. Emphasis has been given 
to cyber resilient communication networks by enabling detection and 
classification of unusual signals through Fast Fourier Transform (FFT) 
and training the deep learning model with extracted coefficients. The 
results have shown 99.35% accuracy in detecting the false injected 
signals and the operation of the microgrid was unaffected in these cir-
cumstances. The summary of different communication-based controllers 
with their main contribution is plotted in Table 4. 

4.2.3. Protection & effective fault restoration 
Post fault system stability is a crucial technical problem in the 

microgrids embedded with low inertia systems. The stochastic and 
intermittent nature of DERs further advances this stability issue. Any 
short circuit fault during contingency can introduce oscillations in the 
power system which would ultimately result in voltage fluctuations. 
Corrective Voltage Control (CVC) must be placed to maintain stability 
by controlling active and reactive power dispatch from the DERs and 
preserving sufficient load margin. Authors in [151] present an ML-based 
secondary layer CVC framework wherein a feature selection technique 
follows an online-offline data analysis that contains the fault location, 
stochastic cluster and sensitivity feature and is then fed to the ANFIS 
model. The model predicts the optimised active and reactive power from 
each of the DERs to further restore the voltage. This work considers the 
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induction generator based wind turbine in a grid-connected microgrid 
system. In future, the performance of AI-based CVC could be done in 
presence of ES in microgrids. An SVM based fault detection method has 
been described in this method that measures the voltage and current at 
each of the selected. If a fault exists, then the DG nearest to the fault 
injects harmonic at a correctly selected frequency and the impedance 
seen at this point is measured and sent to the SVM classifier to detect the 
accurate location of the fault section. A similar approach has been dis-
cussed in [152] that concludes the FFT and SVM for effective classifi-
cation and detection to control the system stability in an islanded 
microgrid. The minimum average error in fault localisation for the 
longest line in IEEE 34 bus system was found 0.0012 and 0.0021 for 
clean and noisy data respectively. Another tree-based ML model has 
been proposed in [153] that follows the principle of measuring voltage 
and current signals at each feeder and FFT identifies the sensitive fea-
tures followed by the ML model that extracts the faulty events and in-
forms the control system to take necessary actions.Recently, NN-based 
adaptive protection of microgrid is also presented in [154] that com-
bines basic features of ANN and SVM both. For the fault identification, 
ANN shows almost no error whereas SVM shows errors within 0.25% for 
faults on different buses. 

A multi-agent-based ML model has been developed in [155] for the 
protection of AC microgrids in both grid-tied and islanded modes. After 
training the ML model from the collected fault data, the KNN algorithm 
is used to classify the particular fault and on the occurrence of a fault, 
multiple agents start communicating to coordinate and segregate the 
fault. Results show that the proposed work can provide primary and 
backup protection in grid-connected and autonomous microgrids. A 
summary of AI-based primary and secondary control methods in DC and 

AC microgrids is tabulated in Tables 5 and 6 respectively. Both tables 
summarise the finding based on some other important aspects, such as 
(i) system control strategy, (ii) grid connectivity and (iii) validation 
level. Table 5 shows that the DC microgrid researches are mainly for 
off-grid conditions, more focus has been given to voltage stability and 
power-sharing controls in a distributed control architecture. NN based 
solutions have been mostly practisedfor control in DC microgrids out of 
which two solutions are validated in real-time experiment environment. 

Table 6 shows the findings for AC microgrids. Centralised and 
distributed architectures are mostly considered. NN based solutions 
have been mostly practised and only one solution is validated in real- 
time experiment. Similar to DC, AC microgrids are also considered 
mainly in off-grid conditions. Hence, grid-connected conditions and 
implementing AI in islanding detection and reconnection mechanism 
should be focused on. 

4.3. Tertiary control 

The top layer in the hierarchical control scheme, tertiary control 
operates for the tasks associated at the distribution/networked level. 
The tertiary layer manages the optimal power flow within microgrid 
units and also the power import/export from the external grid. There-
fore, it is an essential control layer to coordinate and ensure the 
economical and optimal power dispatch from each DER unit minimising 
the operational cost [158]. Further, energy market-related operations 
also come under this control which allows the DER units to participate in 
the energy market and also provide grid support services to other 
microgrids/ external grids in the vicinity. The implementation of 
AI-based techniques can accelerate the research to find solutions to deal 
with control issues associated with this layer which have been discussed 
in the following sub-sections. 

4.3.1. Optimal economical operation and power flow management 
The optimal power flow (OPF) problem solves the optimum objective 

function value for the electrical network with given constraints like 
network power quality requirements, asset operational limits. For a 
simple DC power flow based objective function, OPF can be a convex 
optimization problem. For the AC power flow, OPF is a non-convex 
problem making it computationally challenging and approximate or 

Table 4 
Research work related to communication infrastructure control in microgrid  

Main contribution Controller 
type 

Complexity Implementation 
of AI 

Ref 

Delay margin 
calculation 

Gain 
scheduling 

Low ⨯ [146] 

State estimation Non-linear High ⨯ [147] 
Stability analysis PI Low ⨯ [148] 
Stability 

enhancement 
PI High ⨯ [148] 

Time delay model MPC Low - [149] 
Optimisation 

information 
sharing 

Adaptive High ⨯ [150] 

Communication 
compensation 

Regression- 
based 

High ✓ [143] 

Low latency 
communication 

RL based High ✓ [144] 

Cyber resilient 
communication 

FFT & NN 
based 

High ✓ [145]  

Table 5 
AI-based Primary & Secondary control in DC microgrids  

Control 
strategy 

AI 
Technique 

Objective  Grid connect 
(Off/On) 

Ref 

Centralised ANN* Power sharing, Voltage 
regulation 

Off [94] 

Decentralised ANN Voltage stability, Power 
sharing 

Off [91] 

Distributed DRL Voltage restoration, 
Load sharing 

Off [96] 

MLP Frequency and voltage 
stabilisation 

On [131] 

BPNN Current sharing, 
voltage regulation 

Off [137] 

LSTM* Maintain SoC level and 
voltage stabilisation 

Off [139] 

NN Classify and detect 
cyber attacks 

Off [145] 

All are validated in simulation mode. * validated in real-time experiment 

Table 6 
AI-based Primary & Secondary control in AC microgrids  

Control 
strategy 

AI 
Technique 

Objective Grid connect 
(Off/On/ 
Both) 

Ref 

Centralised FFNN Power-sharing 
Droop control 

Off [90] 

ANFIS Reactive power- 
sharing 

Off [95] 

MLP Frequency response Off (multi- 
microgrid) 

[156] 

ANN V/f regulation Off [132] 
ANN* Frequency regulation Off [134] 

Decentralised SLFN Power sharing Off [141] 
- Communication 

delay 
On [144] 

RL V/f regulation On [138] 
Distributed  ANN V/f regulation Off [135] 

ANN Frequency regulation Off [142] 
ANFIS V/f regulation On [151] 
— Frequency 

regulation, power- 
sharing 

Off [157]  

Data prediction Off [143] 
Not 

mentioned 
ANN V/f regulation Off [118] 
ANN Optimalcontrol On [119] 
ANN Frequency regulation On [121] 
ANN Optimal control On [122] 
— Power quality On [133] 

All are validated in simulation mode. * validated in real-time experiment 
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heuristic methods cannot guarantee a globally optimal solution [159]. 
The OPF is generally solved for the steady-state network conditions. 
However, a dynamic OPF (DOPF) [160] can be implemented at the 
tertiary layer control in a microgrid setting with ESS such that the power 
output of DERs can be optimally coordinated for a given time horizon. 
Despite some optimization relaxation, studies in [161, 162] have not 
considered the line losses, voltage and reactive power flow limits. 
Non-convex optimization problems for the power system considering 
the microgrid enabled with ES is presented in [163] mainly responsible 
for dispatchable (on/off) decisions for DERs. Further to its extension, a 
stochastic optimization approach has been adopted [164] for model 
convergence and feasibility guarantee. Recursive dynamic programming 
[160] can also be used for the same. 

A dynamic programming based predictive control approach is pre-
sented in [165] for the power flow management in a grid-connected PV 
with ES for peak shaving as an objective function to maximise the 
owner’s profit. A similar approach has been considered in [166] with 
added market participation feature but the forecasted PV profile has not 
been compared with actual values and the errors (RMSE, MAPE) are not 
calculated to see the accumulated impact on overall revenue. Also, the 
focus should be given to reactive power management which is of great 
importance during power exchanges with the main grid. A 
multi-objective optimization problem for an isolated microgrid con-
taining diesel generators, wind turbines and an energy storage system is 
proposed in [167] to maximise the power flow balance capability and 
minimise the fuel cost related to diesel generators and energy life. To 
solve the multi-objective function, a weighted sum method is chosen 
where the weight for the individual function is chosen arbitrarily. The 
DOPF strategy for a microgrid with a single storage system or aggregated 
storage has been presented in [168, 169, 170] focusing only on the 
power exchanges between the microgrid and the main grid. Authors in 
[171] have presented an optimal power exchange operation in a net-
worked microgrid environment with an emphasis on minimising the 
power purchase from the main grid. This operation with the centralised 
control scheme will require robust and reliable communication 
infrastructure. 

Data-driven methods with emphasis on ML techniques to solve 
optimal power flow have been presented in [172, 173] and has proved to 
be efficient enough to address the technical challenges associated with 
DER uncertainties and voltage regulation. A data-driven based OPF so-
lution for multiple DERs is presented in [174] that learns the control 
policies associated with each DER to impersonate the solution to a 
centralised OPF from exclusively local information. This approach re-
quires no manual controller tuning and little or no real-time commu-
nication. Authors in [173] have proposed a decentralised, real-time 
method for optimal dispatch of DERs that avoids the extensive remote 
monitoring and communication infrastructure. This decentralised con-
trol can manage very well the short-term voltage violations as compared 
to the existing local control schemes. Further to its extension, an opti-
misation control scheme for a network operation featuring active power 
curtailment, reactive power control, controllable loads and storage 
systems is presented in [172]. It considers a data-driven local control 
design for multiple DERs and an offline centralised control algorithm for 
solving the optimal power flow problem. Compared to the conventional 
control scheme, the proposed method increases the power flow effi-
ciency by 4.45%. Voltage and current limits are also within the 
acceptable grid codes. A DRL based decentralized optimal control 
strategy for a hybrid storage system in a hybrid AC-DC microgrid has 
been devised in [175] that efficiently deals with the power quality dis-
turbances due to the charging and discharging of the ES and manages the 
complete system in both grid-connected and islanded modes. It allows a 
smooth charging process and negligible disturbance to the bus voltage. 
Moreover, the RL based method efficiently deals with the system 
mismatch error between hardware experiments and software 
simulation. 

A cooperative RL is proposed in [176] that coordinates the multiple 

agent actions for optimising the economic dispatch from DERs. The 
solution is applied in a residential microgrid with a 33-bus distribution 
feeder and demonstrates a guaranteed lowest cost solution for load 
dispatch among participating DERs. It reduces the dispatch cost by at 
least 10% lower than the scenario-based algorithm. Researchers in [177] 
have presented an NN-based EMS for a grid-connected microgrid using a 
multi-agent system to reflect and adapt the dynamic characteristics of 
various generation units in the microgrid. Agents have been assigned to 
the wind, controller, load, storage units and main grid to coordinate and 
reduce the amount of power imported from the grid to minimise the cost 
and maximise the benefit. Especially the proposed algorithm gives the 
lowest MSE of 0.70826 for predicting wind speed, The predicted data 
then is utilised to control ESS and balance the cost and benefit in a 
microgrid. Supervisory control for wind farms integrated with an ESS 
has been proposed in [178] where an NN-based controller stabilises the 
power fluctuations in the system and also it can support the frequency 
response services on the whole system. An energy flow scheduling in the 
grid structure with active prosumers has been discussed [179] in which 
the reference of NN and optimisation algorithms are implemented at the 
local layer to fast calculate the scheduling of units. The results show that 
the scheduling with NN and local optimisation is faster than the tradi-
tional genetic algorithm. A real-time EMS and control strategy in 
microgrid with deep learning-based adaptive dynamic programming is 
presented in [180]. The NN based training results show that the pro-
posed method converges quickly taking only 16.533s and the conver-
gence is close to actual values with an almost zero MSE. Thereby faster 
optimisation and real-time accurate control can be obtained. The 
researcher in [181] considers an NN-based architecture for an online 
EMS strategy to extend the storage lifetime and improve the efficiency of 
a hybrid storage system. The proposed controller improves the storage 
state of health and reduces the peak current demand by 15% and 60% 
respectively compared to the battery-only method. The hybrid solution 
and control help to improve the storage lifetime by 64.8% more 
compared to the battery-only solution. The multi-objective problem is 
solved by dynamic programming (DP) and the results are utilised to 
design the framework for training the NN so that the online control is 
made possible in real-time. An ANN-based decision-making algorithm is 
proposed [182] for real-time energy management in a vehicle to grid 
(V2G) connected system. Charging and discharging schedule classifica-
tion is accurately predicted by ANN such that the cross-entropy and 
error percentage for the test data is only 0.012% and 0.69% respectively. 
It shows that the proposed method is very accurate and capable enough 
to schedule EV charging and discharging. A frequency control method is 
proposed in [183] using RNN enabled controller with optimisation 
achieved by the PSO algorithm. This method effectively controls the 
frequency deviations while maintaining the SoC level . With the ANN 
based controller, the maximum frequency deviation is 0.025 Hz while it 
is 0.028 Hz when simple low pass filter based controller is used. 

A whole set of NN controllers is presented in [184] for different 
microgrid components that include grid power tracking, energy power 
tracking, PV and wind power tracking. The optimal power management 
for the entire microgrid is managed by linear programming which tracks 
the reference power from all the neural controllers. However, different 
variable conditions like wind speed, SoC etc. are not analysed in the 
paper. A power management strategy in a large scale power grid model 
with a wind-solar type energy system using the RNN approach is dis-
cussed in [185]. The proposed method works very well over the different 
number of nodes and randomness in the topologies. In the 1000 node 
system, there is an improvement of 61.86% occurs in the number of 
power shortages considering no rewiring probability. Researchers in 
[186] have described RNN based optimisation solution for a 
grid-connected microgrid to minimise the power import from the main 
grid and maximise the utilisation of DERs. The RNN determines the 
optimal power flow to manage the power required by EV, wind, solar, 
energy systems and loads. An extended Kalman filter-based neural 
network is trained to predict power demand, wind and solar power. The 
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average mean square for predicting power demand, wind and solar 
power is 0.00065, 0.00186 and 0.0065 respectively. The forecasted data 
is then used to optimise the power flow. A similar control strategy based 
on RNN is discussed in [187]. The methodology utilises RNN to model 
and control ES considering SoC to manage the power flow among load, 
wind, solar and storage system. Despite fluctuations in DER output and 
power demand, the RNN based method accurately determines the bat-
tery size and reliably maintains the SoC level. 

4.3.2. Autonomous market participation 
Towards the decarbonisation of the power system network, the 

active participation of DERs in the energy market is very important. To 
do this, a systematic approach has to be adopted considering the layer of 
complexity associated with different microgrid units. Researchers in 
[188] have proposed two energy management algorithms for a micro-
grid to enable automatic energy transaction with the main grid. The first 
algorithm involves MPC with linear programming to efficiently predict 
the energy generation, demand and prices. The second algorithm in-
tegrates the RL to optimize the transaction decision based on instanta-
neous information available in the system. MPC based algorithm gives a 
$65.74 daily average monetary benefit while Risk Seeking RL algorithm 
provides a benefit of $77.14. An NN-based forecasting model is devel-
oped and an optimisation algorithm is proposed[189] to prioritise the 
scheduling of assets in the microgrids. The proposed ML-based algo-
rithm has better results compared to the bin-packing algorithm. This 
area is still at the early stage of research and can be exploited better with 
ML-based algorithms. 

Similar to Tables 5 and 6, AI-based control methods at the tertiary 
control layer have been summarised in Table 7. Considering the findings 
as shown in Tables 5, 6 and 7, it is clear that till now a good amount of 
research has been performed at tertiary control. AI-based solutions are 
getting more importance in analysing optimal power flow, energy 
management, market participation etc. Centralised and decentralised 
architectures have been mostly practised. Similar to primary and sec-
ondary controls, findings show that only one solution at the tertiary level 
has been validated in real-time experimental mode. 

5. Networked microgrid 

Increasing installations of DERs at the low voltage distribution 
network, of course, bring the advantages like lower energy cost, reduced 
emissions etc but in exchange for degrading grid stability and resiliency 
[191]. One of the effective ways to manage this would be connecting 
multiple microgrids and coordinating each element through a robust 
control mechanism [192]. Interconnected microgrids can provide sup-
port to each other and the external grid during contingency events. 
Interconnected microgrids exhibit a complexity to design the network as 
it contains several different units with a different set of objectives. On 
the broader perspective, based on interconnection architecture, micro-
grids can be divided into three categories [193]: 

5.1. Parallel Connected Microgrids (PCM) 

This architecture consists of a topology such that all the microgrids 
are connected to the same external grid, with each microgrid having its 
own PCC. This structure can work better in grid-connected mode and 
can facilitate ancillary services to the external grid. In case of main grid 
failure, the individual microgrid can go in islanded mode and there is a 
possibility of uncontrolled voltage and frequency deviations. So, a 
robust islanded control mode is essential. Research on this architecture 
is mainly found for MV distribution networks [194–195]. 

5.2. Grid Series Interconnected Microgrids (GSIM) 

GSIM topology comprises several microgrids that are connected 
directly without the presence of any external grid. This structure should 
have strong coordination to control voltage and frequency deviations 
throughout to have resilient and reliable operation. However, any 
occurrence of disconnection will make the system to be split into sub- 
clusters and microgrids within the smaller clusters will still have some 
external support. In this way, the overall system can have better per-
formance without external grid support. Authors in [196, 197] have 
studied this architecture but the potential benefits are still to be 
explored. 

5.3. Mixed Parallel-Series Connection (MPSC) 

Taking advantage of PCM and GSIM architectures, MPSC have the 
ability where microgrids can be connected to the external grid directly 
or can form a cluster of interconnected microgrids. Each of the clusters 
will have at least one interconnection with the external grid. Through 
this arrangement, microgrids can provide services to the external grid 
and looking at another way, the individual microgrid can also get sup-
port from the external grid [193]. The layout for the networked 
microgrids is shown in Fig. 4 and the comparison of these layouts with 
their advantages and disadvantages is summarized in Table 8. 

5.3.1. AI in networked microgrid 
The resilience support during the power system outages can be 

expanded by interconnecting/networked microgrids to provide the 
services to the main grid when it is not available for an extended period 
[191, 198]. The multiple microgrids can be connected to the network at 
the distribution level through one or more switches. However, the 
switching operations to connect/disconnect individual microgrids can 
cause uncontrolled frequency and voltage deviations that ultimately 
could lead to system collapse [199, 200]. Therefore, control measures 
are necessary to ensure safe and reliable operation, especially in tran-
sient periods. Primary layer control for frequency stabilisation is pro-
posed in many works [201, 202, 199] that follows the manually tuned PI 
controllers, but can’t be a good solution for networked microgrids to 
manage multiple controllers [156]. Their stagnant control response to 
abrupt system disturbances and oscillatory behaviour are some other 
factors that motivate to find some innovative solutions. 

Table 7 
AI-based Tertiary control  

Control 
strategy 

AI 
Technique 

Objective Grid 
connect 
(Off/On) 

Ref. 

Centralised  SVM Economic dispatch On [172] 
ANN Energy 

management 
On [178, 179] 

FCN Economic dispatch On [190] 
DL Energy 

management 
On [180] 

RNN Energy 
management 

On [185, 186, 
189] 

RNN Energy 
management 

Off [187] 

RL Energy trading On [188] 
Decentralised SVR Power flow 

management 
On [173] 

ANN* Power flow 
management 

Both [175] 

LR power flow 
management 

On [174] 

FFNN Energy 
management 

On [177, 182] 

FFNN Energy 
management 

Off [181] 

Elman NN Energy 
management 

On [183] 

RNN Energy 
management 

On [184] 

Distributed ANN Economic dispatch On [176] 

All are validated in simulation mode. * validated in a real-time experiment 
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An NN-based tuner can be deployed as a supplementary control 
system that will adapt the dynamic system state and take control actions 
accordingly [203, 204]. It improves the performance, however, it in-
creases the controller’s response time which should be addressed 
properly to achieve the fast-acting control system. To mitigate these 
issues, an RL-based policy approximation algorithm utilising the deep 
NN-based system model to perform efficiently in various switching 
possibilities in a multi/networked microgrid environment is proposed in 
[156]. RL based controller improves the performance with almost zero 
overshoot and steady-state error. This model works on the conservative 
voltage reduction (CVR) method wherein the frequency is tracked by the 
RL algorithm. 

A distributed secondary control of interconnected microgrids using 
multi-agent systems and the RL algorithm is proposed in [205]. This 
methodology can achieve global coordination in interconnected 
microgrids in a distributed manner and the voltage and frequency can be 
controlled effectively. 

A concept of voltage and frequency control for islanded multi- 
microgrids using adaptive NN and distributed cooperative control has 
been discussed in [206]. Model-based controllers were designed using 
Lyapunov theory and the ANN predicts the system dynamics to control 
the parameters. A generation capacity optimisation using ANN is also 
proposed for the islanded operation of an incoming microgrid in a 
multi-microgrid [207]. 

The ANN-based EMS is presented in [208] where the ANN-based 
forecasted electricity demand and renewable generation from each 

microgrid are collected and the EMS schedules the storage duty cycles 
and facilitates the energy transactions among different interconnected 
microgrids. Operation and control of networked microgrids are experi-
mentally demonstrated in [209] where the Gaussian process-based 
regression model forecasts the energy supply and demand for each 
microgrid followed by an MPC to optimise the grid operation consid-
ering the constraints. 

Authors in [210] have presented a multi-agent-based transactive 
energy trading platform in an interconnected microgrid system focusing 
on ESS market models at the local and global layers. RL algorithm de-
velops the bidding strategies. Multi agents are assigned to different units 
within each inter and intra-microgrid market and found that the ESS can 
trade energy and earn more benefits at local layer participation, how-
ever, ESS can be used to balance the energy mismatches effectively in a 
pool of microgrids. 

The resiliency of interconnected microgrids has been studied in 
[211] by examining the real and predicted dynamic states of the system. 
Various factors like time-shifting, magnitude deviations and other data 
averaging effects were considered individually and later collectively to 
determine the power imbalances at a unit time step. The uncertainties 
are quantified and eliminated in the proposed power-sharing algorithm 
to develop an efficient EMS. In future, AI-based solutions may be 
considered to understand more realistic extreme weather conditions, 
develop forecasting algorithms, and implement other control strategies 
The AI techniques for interconnected microgrids are summarized in 
Table 9. 

6. Discussion and future scopes 

While it has been a common notion that microgrids are preferable to 
solve local problems and can support the pathway to decarbonise and 
self-healing grid of the future, control and management of DERs will 
remain the area of exploration. Previous sections review the progress on 
implementation of AI techniques in the control architectures with the 

Fig. 4. Networked microgrid architectures, (left-to-right) a) PCM b) GSIM c) MPSC  

Table 8 
Advantages and disadvantages of microgrid clusters  

Interconnection 
type 

Control 
architecture 

Advantages Disadvantages 

PCM Centralised Effective operation & 
control 

High 
communication 
requirement 

Distributed Lower 
communication 
requirement 

Comparatively, less 
optimum control 

GSIM Centralised Optimum operation 
possible, post- 
contingency event 
forms sub-clusters for 
isolated mode 

High 
communication 
requirements 

Distributed Comparatively lower 
communication 
infrastructure than 
centralised 

Operation may not 
be optimum 
compared to central 

MPSC Centralised/ 
Distributed 

External main grid 
support services 
possible 

Extensive 
communication 
requirements and 
less effective 
optimal control 

PCM/GSIM/ 
MPSC 

Decentralized N/A Not recommended  
[54]  

Table 9 
AI techniques for networked microgrid functionality  

Networked microgrid 
functionality 

AI technique Validation 
level 

Ref 

Frequency support 
services 

Multilayer perceptron 
(MLP)-driven RL 

Simulation [156] 

Voltage & frequency 
regulation 

Multi agent & RL Simulation [205] 
ANN & cooperative control Simulation [206] 

Generation capacity 
optimisation 

ANN Simulation [207] 

Energy management 
system  

- Real-time exp [211] 
Distributed ANN Simulation [208] 

Cost-effective energy 
transaction 

Gaussian process-based 
regression model 

Simulation [209] 

Transactive energy 
trading 

Multi agent & RL Simulation [210]  
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existing strategies in microgrids. 
In this review work, we have considered more than 200 published 

papers where 40 papers deal with conventional control and mostly re-
view papers, 124 papers on hierarchical control in total and 23 papers 
where AI have been implemented in networked microgrids. Details 
breaking are shown in Fig. 5. 

Fig. 6 depicts the control schemes in hierarchical and networked 
microgrids that have implemented AI techniques. The techniques are 
categorised in ANN, DRL, DNN and classical ML. ANN includes shallow 
NN with mostly feed-forward networks including MLP. DNN on the 
other hand includes deep NN where the number of layers is high. 
Classical ML includes traditional ML techniques such as SVM, SVR and 
tree-based networks. Some areas are least exploited in terms of utilizing 
AI techniques like energy trading, energy management in networked 
microgrids, inertia estimation in primary control, communication delay 
mitigation in secondary control and autonomous market participation in 
tertiary control. Deep learning is still missing for control applications in 
networked microgrids. 

The key takeaway points along with the future scopes from the 
previous reviews are presented as follows: 

6.1. Primary control 

Voltage and frequency regulation, real-time power-sharing, MPPT 
control, inertia control are the fundamental tasks at the primary layer. 
The traditional methods of control lack accuracy, speed, robustness and 
model complexity, therefore. The AI has emerged as a supporting tool 
that enhances the existing control operation and brings the model-free 
system design with higher speed, accuracy and lower computational 
cost. Local controllers can work efficiently if they are provided with 
some intelligence. NN and RL-based models at this layer have shown 
better performance for MPPT control, SoC estimation and voltage 
regulation over traditional methods. NN-based machine learning tech-
niques have been implemented for voltage & frequency regulation and 
MPPT control. Key points:  

1 Data-driven approaches are still at an early stage and should be 
further explored for MPPT control schemes, SoC estimation, battery 
health monitoring and ESS modelling especially for Li-ion batteries 

rather than just depending on their equivalent circuit and physics- 
based models [212]  

2 For control at the primary layer, there are plenty of open datasets 
[212, 213] available to train the ML models but the quality of data is 
very crucial. Generalised data pre-processing techniques like initial 
data identification, consistency examination, invalid and missing 
data identification, data imputation and resampling, data verifica-
tion, aggregation and statistics must be applied to improve the value 
of the dataset.  

3 There is a lack of data available for the inertia estimation at the 
distribution network level. Especially regarding community-based 
microgrid solutions, inertia becomes very important to provide fre-
quency response services and other islanding conditions. Inertia in-
formation available at low voltage microgrids will enable 
distribution system operator (DSO)/aggregator to better facilitate 
services within the low voltage network zone.  

4 Traditional model-based droop control, PID based MPPT control and 
master-slave power sharing control have been deployed extensively 
so far but lacks accuracy and cannot adapt the uncertainties in a 
dynamic microgrid environment. 

5 However, most of the research work done so far is limited to com-
puter simulations. Real-time experimental validation and demon-
stration in a real-life environment are still the stringent requirements 
for enabling the technology to be fully commercially viable and 
transferring the advantages of technology to the real world. 

6.2. Secondary control 

Voltage and frequency deviation compensation and synchronisation 
of various units in the microgrid are essential tasks at this layer of 
control. PI-based control has been implemented in many research work 
to compensate for the deviation, power-sharing and harmonics. Real- 
time management of deviations requires automatic online controller 
tuning that learns from the dynamic system environment. Traditional 
methods are not efficient enough to control multiple DERs in the 
microgrid environment. Key points:  

1 Too much lag in the communication channel at the secondary control 
can result in a rise in voltage and system oscillation which 

Fig. 5. Total number of papers published  
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consequently leads to degradation in power quality [214]. To coor-
dinate multiple units, it is essential to have a robust communication 
infrastructure that comes with additional cost and complexity.  

2 Multi-agent based RL solutions have shown positive results in 
reducing communication complexity. A little research has been done 
in this area and more investigations are needed in the real-time/real- 
life demonstration setup. 

3 ML-based unsupervised learning also contains enormous opportu-
nities to address the control issues at this layer. Classification and 
clustering, which fall under unsupervised learning can efficiently 
deal with the issues like power quality disturbance detection, fault 
detection and classification. 

6.3. Tertiary control 

Network and external grid-level interactions are controlled and 
managed at this layer. Economic load dispatch and power flow man-
agement within the microgrid and with the external grid are the 
essential tasks that must be performed reliably at all times. This layer 
requires extensive information on all the assets involved in the micro-
grid operation to ensure the safe and reliable operation of the system. 
Traditional controllers use complex programming which makes the 
execution time longer and faster convergence is not easily realisable. 
Key points:  

1 Data-driven ML techniques can efficiently deal with the convergence 
problem by eliminating manual controller tuning and negligible 
communication infrastructure.  

2 Cooperative agent-based DRL has shown good results to coordinate 
the multiple agent actions and availing the economical load dispatch. 
Moreover, it is easy to model variable DERs by assigning them 
unique agents based on their characteristics and cost-effective energy 
transaction can be achieved.  

3 For continuous action and decision process especially in energy 
management with market participation, value-based RL may not be 
suitable and policy-based actor-critic framework method could be 
explored [215, 188].  

4 Autonomous market participation is very much less investigated area 
and in the era of high uptake of DERs at the distribution level, 
implementation of AI-based techniques (ANN and DRL) can ease the 
seamless market participation.  

5 While most of the research focuses on making the microgrid self- 
reliable, the benefits of providing grid services should not be 
neglected and the appropriate control using AI must be developed. 

The future opportunities of implementing AI techniques in the spe-
cific hierarchical control layers and their link with the conventional 
control methods are recapped in Fig. 7. 

6.4. Networked microgrids 

Interconnected microgrids can effectively support each other and the 
main grid in the event of contingencies. Three networked microgrid 
architectures have been studied in this paper namely, PCM, GSIM, and 
MPSC. Despite, these architectures are bringing a level of reliability in 
the system, the control and coordination in the networked microgrids 
are difficult as each of these contains more microgrids and each unit has 
different requirements. There has not been plenty of research done in 
this area yet some AI-enabled techniques have been reviewed in this 
paper and key points are: 

1 Because of the diverse entities involved in multiple microgrids, Co-
ordination among them is a cumbersome task. To deal with this 
issue, hierarchical RL solutions could be explored which autono-
mously decomposes the complex decision-making tasks into simpler 
tasks [176].  

2 For the data generated in local microgrid and/or global network of 
microgrids, a common decentralised or distributed framework will 
be required to utilise the data along with data privacy and the lowest 
latency in communication.  

3 DNN is not explored in networked microgrids. One of the reasons 
could be the complexity in tuning the hyperparameters. To deal with 
this issue, hyperparameters auto-tuning algorithms like Gaussian 

Fig. 6. Overview of the number of publications that implemented AI techniques in different microgrid control segments  
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process-based bayesian optimisation and tree parzen estimator could 
be used.  

4 RL is implemented for voltage and frequency control but with very 
limited functionalities for market-based energy transactions in net-
worked microgrids. This area should further be explored for trans-
active energy markets with respect to ancillary services provision in 
networked microgrids.  

5 Future research work in networked microgrids should focus on 
effective and intelligent power-sharing services, optimal power 
management, and autonomous market trading considering AI-based 
techniques. 

6.5. Trustworthiness of AI 

These days implementation of AI is getting more importance in 
almost all sectors. Extensive researches are being carried out on different 
AI techniques. In most cases, AI-based solutions are not yet demon-
strated in real-life environments. Hence, the authors would like to draw 
attention to the trustworthiness of AI. Autonomous systems based on AI 
comprise complex algorithms and models. These models are built in a 
way so that they continuously learn from the new data coming into the 
input pipeline. Large dependency on data, algorithm complexities and 
the likelihood of unexpected behaviour of these AI-based systems 
necessitate the methodologies and framework that can guarantee 
explainability, transparency, technical robustness, nondiscrimination 
and fairness, privacy and accountability. These characteristics are 
crucial to understanding and establishing trust in AI-based systems 
[216]. 

For AI explainability, two types of approaches can be classified. First, 
explainable modelling or model interpretability, where the model itself 
is designed in such a way that the user can easily understand the 
mechanism of how the model is working internally. Second, Post-hoc 
explanation, which follows the model and can provide insights 
without knowing much about the internal mechanism of model working 
(e.g. by showing feature importance) [217]. More researches are needed 
to properly investigate the black-box behaviour of AI-based systems and 
make them transferable and explainable. The development of 

data-driven and knowledge-driven hybrid models for feature engineer-
ing is another promising research area to enhance interpretability. It is 
evident that the usefulness of AI explainability is still missing in practice 
and supporting measures must be taken to create the trustworthiness of 
AI models (e.g. reporting and improving data quality, analyzing exten-
sive validation and performance). 

7. Conclusion 

This paper provides an overall review of AI-based control in micro-
grid environments. An overview of existing traditional control methods, 
their drawbacks, the need for AI techniques and their implementation at 
the different levels have been reviewed and future scopes have been 
presented. Despite system model complexities and challenges, it is found 
that AI can certainly be an important tool to enable the seamless inte-
gration and control of DERs at the local and networked levels. NN-based 
models are getting more focus on all levels. Most of the implemented AI 
techniques are physical model-based, whereas data-driven techniques 
should also gain more interest. Since a data-driven model doesn’t 
require extensive physical system information, the design becomes less 
complex. However, in some specific applications like inertia estimation 
in the primary control, there is a lack of data available at the low voltage 
distribution network level. As ESS is becoming a core part of decar-
bonising the smart and microgrid networks, the datasets for ESS SoC 
levels which are accessible and open to the public require extensive 
preprocessing to improve the data quality and better predictability. 
Semi-supervised learning is not currently in practice for the microgrid 
domain and can be utilised where the available dataset is not totally 
labelled. In the secondary layer, communication infrastructure is 
another hurdle for smooth control. The existing research on AI-based 
communication focuses on RL based techniques that have been imple-
mented to mitigate the communication requirement but more research 
should be done to reduce the complexity of model development. In the 
tertiary layer, autonomous market participation is also a less researched 
area and multi-agent-based RL can be implemented in future work. 
DNN-based solution has not yet been considered in networked micro-
grids. Validation of the developed/proposed solutions for single or 

Fig. 7. Conventional and prospective AI-based control in the hierarchical control architecture  
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networked microgrids environments in the real-time or real-life envi-
ronment should also be focused on. 
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