
����������
�������

Citation: Tsaur, W.-J.; Chang, J.-C.;

Chen, C.-L. A Highly Secure IoT

Firmware Update Mechanism Using

Blockchain. Sensors 2022, 22, 530.

https://doi.org/10.3390/s22020530

Academic Editor: Nikos Fotiou

Received: 9 December 2021

Accepted: 7 January 2022

Published: 11 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Highly Secure IoT Firmware Update Mechanism
Using Blockchain
Woei-Jiunn Tsaur 1,2,* , Jen-Chun Chang 2 and Chin-Ling Chen 3,4,5,*

1 Computer Center, National Taipei University, New Taipei City 237303, Taiwan
2 Department of Computer Science and Information Engineering, National Taipei University,

New Taipei City 237303, Taiwan; jcchang@mail.ntpu.edu.tw
3 School of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361005, China
4 School of Information Engineering, Changchun Sci-Tech University, Changchun 130600, China
5 Department of Computer Science and Information Engineering, Chaoyang University of Technology,

Taichung City 413310, Taiwan
* Correspondence: wjtsaur@mail.ntpu.edu.tw (W.-J.T.); clc@mail.cyut.edu.tw (C.-L.C.)

Abstract: Internet of Things (IoT) device security is one of the crucial topics in the field of information
security. IoT devices are often protected securely through firmware update. Traditional update
methods have their shortcomings, such as bandwidth limitation and being attackers’ easy targets.
Although many scholars proposed a variety of methods that are based on the blockchain technology
to update the firmware, there are still demerits existing in their schemes, including large storage space
and centralized stored firmware. In summary, this research proposes a highly secure and efficient
protection mechanism that is based on the blockchain technology to improve the above disadvantages.
Therefore, this study can reduce the need of storage space and improve system security. The proposed
system has good performance in some events, including firmware integrity, security of IoT device
connection, system security, and device anonymity. Furthermore, we confirm the high security and
practical feasibility of the proposed system by comparing with the existing methods.

Keywords: Internet of Things (IoT); blockchain; smart contract; information security

1. Introduction

With the popularity of Internet of Things (IoT) devices, people’s lives are gradually
inseparable from IoT devices. However, the increasing popularity of IoT devices has been
accompanied by several challenges, including security and update service availability. In
terms of security, IoT devices are mostly less secure than personal computers with many
protection mechanisms, so they often become the target of hackers [1]. Recently, several
serious IoT device attacks have occurred, such as many IoT devices that were controlled by
hackers to launch attacks of distributed denial of service (DDoS) [2,3]. Moreover, due to
the attack of unsafe ports, the company FCA US LLC (Fiat Chrysler Automobiles United
States Limited Liability Company) urgently recalled products that were equipped with car
networking systems [4]. On the other hand, hackers invaded medical devices to obtain
patient personal data [5]. Therefore, the above events repeatedly reminded us of the
importance of IoT device security.

According to “Strategy Analytics”, the number of IoT devices will exceed 50 billion
after 2020 [6]. A huge number of IoT devices bring convenience to life, but users often forget
the importance of information security, such as using default passwords, not regularly
updating firmware, etc. Using IP camera as an example, hackers can see many monitor
screens using the default password on the network [7], including many corporate offices
and commercial warehouses on the screen in the world. As a result, the protection of IoT
device security is a major issue.

Sensors 2022, 22, 530. https://doi.org/10.3390/s22020530 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22020530
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4247-914X
https://orcid.org/0000-0002-4958-2043
https://doi.org/10.3390/s22020530
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22020530?type=check_update&version=1

Sensors 2022, 22, 530 2 of 20

Traditionally, a manufacturer provides IoT devices with firmware update files, but it
has the limitations of manufacturer’s server size and bandwidth. As the number of IoT
devices has been increasing, manufacturers cannot update the device quickly and instantly,
and thus they make many devices exposed to danger. IoT devices are widely used, and
most of them are lightweight devices and lack a strong antivirus mechanism. When devices
are invaded by hackers, they will often reinstall the firmware to ensure that the devices
can operate normally [8]. With the advancement of technology, to defend against endless
attacks, a firmware update is an extremely crucial solution. Nevertheless, there are still
several shortcomings about the firmware update of IoT devices. It is hard to confirm
that the manufacturer deploys the firmware. It will be harmful to a device if the device
obtains the wrong firmware. Consequently, a secure IoT firmware update is concerned
by IoT research community. Using peer-to-peer system solves the bandwidth limitation,
but it also brings some doubts about security. Because communication protocol has some
vulnerabilities [9], it also increases the risk while transmitting firmware update files. While
the process for updating IoT devices is vital to ensure security aspects, the requirements
of IoT scenarios make it difficult to develop a comprehensive solution. The following
challenges need to be tackled for a secure firmware update process:

(1) Integrity: The firmware update process must ensure the integrity of a firmware update.
When an adversary intercepts the firmware update file transmission and replaces it
with malicious malware, the device will install the malware instead of the original
update file.

(2) Downloading firmware update: Most of the current proposals to download a firmware
update are based on a typical centralized client-server architecture. These proposals
commonly use the over-the-air (OTA) update for IoT devices because it is quick and
convenient for users. They can connect the device to a computer and download the
updates through the Internet. However, since most OTA updates adopt a centralized
way, they are vulnerable to a single point of failure and generate the latency issue.
Server failure and network latency will cause the delay of critical update. Therefore,
considering the scalability and heterogeneity of IoT devices, the use of decentralized
models can assist in this process to minimize the overall network overhead and
eliminate the single point of failure.

(3) Request for firmware update: When massive IoT devices request firmware updates at
the same time, how to cope with the update service availability of massive IoT devices
is an essential issue.

(4) Authentic firmware: The firmware update file needs to be checked to make sure it is
not malicious.

The authentication, non-repudiation, integrity, and availability are the four character-
istics in information security. In order to create a highly secure system, all major companies
have their own security protection mechanisms. Taking the IoT device manufacturer as an
example, the manufacturer will store the updated firmware file in the file server, which has
great protection to ensure the security of the file [10]. By using the blockchain technology,
it can reduce the burden on the file server, and it can also keep information of the system
secure. Therefore, there is some research about blockchain-based firmware file transmission
systems [11–13]. By combining the technology of blockchain, the advantages of blockchain
are used in file updating applications, and it can make the system more available and secure.
Although many scholars [11–13] have proposed the method of blockchain technology to
improve the demerits of traditional methods, there are still potential risks and deficiencies.
Lee and Lee [11] proposed a blockchain-based system for updating firmware. However,
in their method, IoT devices are the blockchain nodes, so the device stores too many files.
Since IoT devices are resource-constrained, it is difficult for Lee and Lee’s scheme [11] to be
achieved in a real IoT environment. Boudguiga et al. [12] combined antivirus companies
as antivirus nodes with the blockchain system for checking files to ensure that the files on
the blockchain are not installed with malware. And each antivirus nodes also store the
firmware. However, Boudguiga et al.’s method [12] has large storage problem, because

Sensors 2022, 22, 530 3 of 20

it must save all firmware in each blockchain node to maintain the integrity, which will
lead to the need of large storage. In addition, whenever firmware files are updated, they
must be sent to a few antivirus nodes for inspection. In such a way, antivirus nodes have
been overburdened. On the other hand, Yohan and Lo [13] used the smart contract in
Ethereum to keep an autonomous firmware update, and it improved Boudguiga et al.’s
method [12] by storing the uniform resource identifier instead of firmware in each node.
The IoT devices fetch firmware through the uniform resource identifier, which can reduce
the needs of storage space in each node. The above practices improve the storage but
sacrifice security. Because the uniform resource identifier is not equal to the firmware, it is
unable to guarantee the security of the firmware even if the uniform resource identifier is
difficult to be tampered.

Since the current firmware update methods for IoT devices still have shortcomings, in
this study we combine the blockchain technology with a decentralized database to improve
the deficiencies of existing methods. The proposed approach is based on the blockchain
technology to ensure the security of the firmware, including source verification, firmware
integrity, and traceability. Furthermore, the proposed approach can reduce the storage
space requirements, prevent firmware tampered after it is deployed, and lessen the burden
of the firmware manufacturers’ servers.

The rest of this paper is organized as follows. In Section 2, we first introduce the
existing methods of IoT firmware attacks, and we then discuss the well-known blockchain
development platform. Section 3 illustrates the system architecture and mechanism pro-
posed in this study. In Section 4, security analyses are conducted for the proposed system
and compared with other previous methods. In Section 5, we show the experimental
evaluation and comparison with other methods. The final section will list the contributions
made in this study.

2. Related Work

In this section, we first summarize the relevant IoT firmware attack to help understand
the vulnerabilities and risks of IoT devices, and we further survey the blockchain technology
to propose a potential solution for secure IoT firmware update.

2.1. IoT Firmware Attack

In order to improve the security of the IoT device, it is necessary to understand the
vulnerabilities and risks of IoT devices. The following describes the critical attack methods.

2.1.1. Default Password Attack

The surveillance cameras are one of the most common IoT devices in our lives. How-
ever, many people do not change camera default passwords so that Mirai, a kind of virus,
can control the devices. In 2016, a hacker attacked the website, “Krebs on Security,” by using
Mirai-infected IoT devices and successfully hacked its servers. Later, many well-known
websites were hacked, including GitHub, Twitter, and Reddit. The DDoS derived from
Mirai has reached the scale of 1 Tbps and has a worldwide influence [14]. The author
published the source code of Mirai after the attack [2], which caused many scholars in the
field of information security to study Mirai [15,16].

Mirai used the built-in dictionary file to try to gain control of the IoT device. If the
device is successfully compromised, it will be implanted with malicious programs, and
the infected device will still operate normally. However, its bandwidth consumption will
become larger due to Mirai-infected devices that still function, so many devices become
part of the botnet without their knowledge.

2.1.2. Vehicle Network Attack

The company FCA US LLC, a major car manufacturer, developed the “Uconnect
System” to launch a networked product. However, after hackers invaded the system, they
found that the system used some unsafe ports, allowing the hacker to operate the car

Sensors 2022, 22, 530 4 of 20

door, wiper operation, and brake system. Therefore, manufacturers recalled the product
for maintenance [4]. The development of technology and technology itself will bring
convenience to life, but at the same time there will be related vulnerabilities. Car networking
is one of the famous examples. The importance of a firmware update is further highlighted
by the changes in the environment.

2.1.3. Printer Attack

The printer is one of the tools used in life, but there were incidents of being controlled
by hackers and printing threatening letters. Since most connected printers use an external
physical IP, their information is exposed on the network so that an attacker can manipulate
it through the port used by the printer [17]. In order to prove that there are many loopholes
in the networked device, a white-handed hacker “Stackoverflowin” successfully used the
printer to invade 160,000 connected printers, and at the same time, the invaded printer
printed the robot’s pattern. It reminds users that the device is vulnerable and should be
processed as soon as possible.

2.2. Blockchain Technology

Blockchain technology that is applied to the cryptocurrency is called Bitcoin [18,19] at
first. Cryptocurrency is different from currency because cryptocurrency does not have a
central bank to decide the value. With the rise of Bitcoin, people have seen the technology
of blockchain, and major companies are scrambling to develop the relevant applications
of the blockchain. There are many blockchain development platforms, such as Ethereum
and Hyperledger, and each of them have different characteristics. Ethereum is a blockchain
platform developed by Vitalik Buterin. The cryptocurrency on Ethereum is Ether. The
biggest difference between Ethereum and Bitcoin is a smart contract that allows Ethereum
to be able to deploy applications on blockchain. According to different smart contracts,
Ethereum can perform many applications, such as playing games. Therefore, Ethereum has
another name, “blockchain 2.0.” Ethereum has led the application of blockchain technology
to a new generation. In the case of the remaining characteristics of blockchain, Ethereum
extends to general applications, which is called “Decentralized Applications”. Ethereum
is relatively early among a variety of platforms, and its stability and popularity are quite
high [20–23]. On the other hand, Hyperledger is a blockchain interoperability application
promoted by the Linux Foundation. It has many platforms, such as Fabric [24] led by IBM.
The system takes into account the structure of the enterprise and makes different protocol
based on different network architectures, such as “Byzantine Fault Tolerance (BFT),” to
achieve privacy protection. Because it is more private, it usually makes application in the
financial industry that is sensitive to personal privacy [25].

IOTA is a blockchain platform developed by Dominik Schiener’s team [26]. It is mainly
used on the Internet of Things, providing payment and file storage functions. The under-
lying layer uses decentralized ledger technology, called Tangle, to make transactions [27].
The speed is faster. Tangle is also the first decentralized ledger system that does not require
a fee. By distributing the work of verifying transactions to each trader, Tangle has saved
the commission, which in turn increases work efficiency. Compared with other platforms,
IOTA has a shorter time and there are still some imperfections waiting for the development
team to improve [28].

With the development of blockchain technology, more and more blockchain platforms
have come out one after another, and each platform has its own special emphasis on
service projects. According to different application scenarios, appropriate development
platforms should be selected, which are tough in the IoT. In the body update test, more
attention is paid to stability, scalability, execution efficiency, and construction cost [29].
The stability determines the availability of the system. A system with high stability not
only ensures the correct operation of the system, but also gives the user a good experience.
The highly scalable system can effectively face various emergencies. When faced with
an unknown attack method, it can have greater flexibility to deal with it. At the system

Sensors 2022, 22, 530 5 of 20

development level, it can also expand its included fields by expanding new functions.
Execution efficiency is one of the important comparison projects for any system. Efficiency
and safety are roughly inversely related. It is always the goal of researchers to increase
execution efficiency without reducing security [30]. For the IoT environment, there are
tens of thousands of users. The cost of construction affects the user’s willingness to use
the system, and the cost of construction can also effectively use the resources on the
development system [31]. In addition to efficiency considerations, the strength of the
system also includes the ability to resist attacks. The system with high system security has
the ability to maintain the service. The above-mentioned features can be compared among
different blockchain platforms, and we find Ethereum is superior to others. Therefore, we
will use Ethereum as the development platform in this study.

3. Proposed Architecture and Mechanism

This section first introduces the security goals that must be considered for a secure
firmware updating mechanism and then illustrates the architecture and mechanism of the
proposed firmware update platform based on blockchain in detail.

3.1. Security Goals

The security goals that must be considered for a secure firmware updating mechanism
are listed as follows:

(1) Firmware integrity: A secure firmware updating platform must ensure the integrity
of uploaded firmware update files.

(2) Malicious code resistance: A secure firmware update platform must be able to help
IoT devices resist a variety of malicious codes because IoT devices are lightweight
and lack a strong malicious code scanning mechanism.

(3) Distributed denial-of-service (DDoS) resistance: When massive IoT devices request a
firmware update at the same time, these requests will precipitate a DDoS problem. A
secure firmware updating platform must be able to alleviate such a DDoS problem.

3.2. System Architecture

There are three parts in the system, which contains “Blockchain Network Setup”, “File
Transmission”, and “File Downloading”. The three parts will be introduced in detail in
Section 3.3. The proposed system architecture has six roles, as shown in Figure 1.

There are six roles in the proposed system, including genesis node, smart contract,
blockchain node, manufacturer node, distributed data storage, and IoT device. They will
be explained as follows:

(1) Genesis node: The genesis node is responsible for defining the functions of the smart
contract. After the completion of the smart contract, the genesis node exits the system
or becomes a blockchain node, losing the ability of writing a smart contract.

(2) Smart contract: The smart contract contains functions that will be used in the sys-
tem, including determining which node is an uploader and whether the firmware is
authenticated and can be called by other blockchain nodes.

(3) Blockchain node: The blockchain node is responsible for verifying and uploading files,
and in order to complete the assigned tasks, the blockchain nodes must be devices
with high computing power, such as personal computers and company servers.

(4) Manufacturer node: The manufacturer node is one of the blockchain nodes. The
difference between the manufacturer node and the blockchain node is that the manu-
facturer node has the function of uploading files, and the rest of the permissions are
the same as the blockchain nodes.

(5) Distributed data storage: In order to reduce the burden on each node and improve
the security of the system, the files are stored in a decentralized database, and only
the necessary file information is stored in each node.

(6) IoT device: Because the IoT device is not one of the blockchain nodes, the device
does not need to have powerful computing power and only needs to be able to

Sensors 2022, 22, 530 6 of 20

communicate with the blockchain node. This method can increase the diversity of
the system.

Sensors 2022, 22, x FOR PEER REVIEW 6 of 22

Figure 1. System architecture of the proposed firmware update platform.

There are six roles in the proposed system, including genesis node, smart contract,
blockchain node, manufacturer node, distributed data storage, and IoT device. They will
be explained as follows:
(1) Genesis node: The genesis node is responsible for defining the functions of the smart

contract. After the completion of the smart contract, the genesis node exits the system
or becomes a blockchain node, losing the ability of writing a smart contract.

(2) Smart contract: The smart contract contains functions that will be used in the system,
including determining which node is an uploader and whether the firmware is au-
thenticated and can be called by other blockchain nodes.

(3) Blockchain node: The blockchain node is responsible for verifying and uploading
files, and in order to complete the assigned tasks, the blockchain nodes must be de-
vices with high computing power, such as personal computers and company servers.

(4) Manufacturer node: The manufacturer node is one of the blockchain nodes. The dif-
ference between the manufacturer node and the blockchain node is that the manu-
facturer node has the function of uploading files, and the rest of the permissions are
the same as the blockchain nodes.

(5) Distributed data storage: In order to reduce the burden on each node and improve
the security of the system, the files are stored in a decentralized database, and only
the necessary file information is stored in each node.

(6) IoT device: Because the IoT device is not one of the blockchain nodes, the device does
not need to have powerful computing power and only needs to be able to communi-
cate with the blockchain node. This method can increase the diversity of the system.
In addition, the process flow of the proposed firmware update mechanism is shown

in Figure 2, including the phases of the blockchain network setup, file transmission, and
file downloading. In Figure 2, each step will be explained as follows.
(1) Writing a smart contract in the blockchain system by genesis node.
(2) Blockchain node and manufacturer node fetch the smart contract address.
(3) Genesis node exits the system or turns to a general blockchain node.
(4) The manufacturer node initiates a transaction of file uploading.
(5) Obtaining files by other blockchain nodes through smart contracts.

Figure 1. System architecture of the proposed firmware update platform.

In addition, the process flow of the proposed firmware update mechanism is shown in
Figure 2, including the phases of the blockchain network setup, file transmission, and file
downloading. In Figure 2, each step will be explained as follows.

(1) Writing a smart contract in the blockchain system by genesis node.
(2) Blockchain node and manufacturer node fetch the smart contract address.
(3) Genesis node exits the system or turns to a general blockchain node.
(4) The manufacturer node initiates a transaction of file uploading.
(5) Obtaining files by other blockchain nodes through smart contracts.
(6) The node participating in the verification performs out-of-chain antivirus and returns

the result to the smart contract.
(7) The smart contract assigns one of the verification nodes to upload the file or reject the

transaction of file uploading according to the verification result.
(8) The assigned verification node uploads the file to the distributed data storage and

obtains the address.
(9) The assigned node records the file address into smart contract.
(10) The IoT device queries for a new firmware by blockchain node.
(11) The blockchain node queries through the smart contract whether there is an update

file available for download.
(12) The blockchain node returns the query result to the IoT device.
(13) The IoT device downloads the update file or does not perform the action according to

the result of the return.
(14) Steps (1) to (3) are “Blockchain Network Setup”, Steps (4) to (9) are “File Transmission”,

and Steps (10) to (13) are “File Downloading”.

Sensors 2022, 22, 530 7 of 20

Sensors 2022, 22, x FOR PEER REVIEW 7 of 22

(6) The node participating in the verification performs out-of-chain antivirus and returns
the result to the smart contract.

(7) The smart contract assigns one of the verification nodes to upload the file or reject
the transaction of file uploading according to the verification result.

(8) The assigned verification node uploads the file to the distributed data storage and
obtains the address.

(9) The assigned node records the file address into smart contract.
(10) The IoT device queries for a new firmware by blockchain node.
(11) The blockchain node queries through the smart contract whether there is an update

file available for download.
(12) The blockchain node returns the query result to the IoT device.
(13) The IoT device downloads the update file or does not perform the action according

to the result of the return.
(14) Steps (1) to (3) are “Blockchain Network Setup”, Steps (4) to (9) are “File Transmis-

sion”, and Steps (10) to (13) are “File Downloading”.

Figure 2. Process flow of the proposed firmware update mechanism.

3.3. Proposed Mechanism
The system deploys smart contracts through the genesis node and obtains contract

locations from other nodes. Then, the manufacturer node that wants to release the firm-
ware update file initiates the transaction, and the file is transmitted to other nodes for
verification. After the verification, the file is stored into the distributed database, and the
file information is saved in the ledger for other nodes to query. The IoT device sends a
query request through the blockchain node and downloads the update file according to
the query result to complete the secure updating. The following subsections will describe
the three phases of the proposed system, including the blockchain network setup, file
transmission, and file downloading.

3.3.1. Blockchain Network Setup
In the blockchain, a genesis node is required to deploy the first smart contract and

tell the other nodes the contract location. After the deployment task has been completed,
the node will leave the network or become a general node, as shown in Figure 3.

Figure 2. Process flow of the proposed firmware update mechanism.

3.3. Proposed Mechanism

The system deploys smart contracts through the genesis node and obtains contract
locations from other nodes. Then, the manufacturer node that wants to release the firmware
update file initiates the transaction, and the file is transmitted to other nodes for verification.
After the verification, the file is stored into the distributed database, and the file information
is saved in the ledger for other nodes to query. The IoT device sends a query request
through the blockchain node and downloads the update file according to the query result
to complete the secure updating. The following subsections will describe the three phases
of the proposed system, including the blockchain network setup, file transmission, and file
downloading.

3.3.1. Blockchain Network Setup

In the blockchain, a genesis node is required to deploy the first smart contract and tell
the other nodes the contract location. After the deployment task has been completed, the
node will leave the network or become a general node, as shown in Figure 3.

Step 1 The smart contract created by the genesis node, which defines the system func-
tions, can increase the usability of smart contracts and avoid the inconvenience
of writing smart contracts. When the blockchain network is setting up, the smart
contract defines the function to avoid the writing of smart contracts conflicting
with another node.

Step 2 The node that wrote the contract knows the address where the smart contract is
stored. As a result, the node that wants to join the blockchain network, including
the general blockchain node and the manufacturer node, needs to ask the genesis
node for the contract address. After informing other nodes of the contract address,
the genesis node exits the blockchain network or becomes a general node and thus
loses the authority to write a smart contract.

Sensors 2022, 22, 530 8 of 20Sensors 2022, 22, x FOR PEER REVIEW 8 of 22

Figure 3. Blockchain network setup.

Step 1 The smart contract created by the genesis node, which defines the system
functions, can increase the usability of smart contracts and avoid the
inconvenience of writing smart contracts. When the blockchain network is
setting up, the smart contract defines the function to avoid the writing of smart
contracts conflicting with another node.

Step 2 The node that wrote the contract knows the address where the smart contract
is stored. As a result, the node that wants to join the blockchain network,
including the general blockchain node and the manufacturer node, needs to
ask the genesis node for the contract address. After informing other nodes of
the contract address, the genesis node exits the blockchain network or becomes
a general node and thus loses the authority to write a smart contract.

3.3.2. Firmware Update File Transmission
In order to maintain the operation of the blockchain-based system, all nodes on the

network will have the same record, which is called a ledger. If the firmware update file is
directly stored on the ledger, it will waste resources and lower the convenience of use. To
improve the blockchain-based system, we use a decentralized database to store the file,
while the ledger only stores the address of the file. The node that wants to upload the file
sends a request to the smart contract and waits for other nodes to process it, including
checking whether the file is secure or not. After the processing, the smart contract specifies
a node participating in processing. The node uploads the file to the decentralized database
and then records the file address into the ledger to complete the file transfer, as shown in
Figure 4. Each step will be listed in detail below, and the pseudocode of the major smart
contract function in the system will be described here.

Figure 3. Blockchain network setup.

3.3.2. Firmware Update File Transmission

In order to maintain the operation of the blockchain-based system, all nodes on the
network will have the same record, which is called a ledger. If the firmware update file is
directly stored on the ledger, it will waste resources and lower the convenience of use. To
improve the blockchain-based system, we use a decentralized database to store the file,
while the ledger only stores the address of the file. The node that wants to upload the file
sends a request to the smart contract and waits for other nodes to process it, including
checking whether the file is secure or not. After the processing, the smart contract specifies
a node participating in processing. The node uploads the file to the decentralized database
and then records the file address into the ledger to complete the file transfer, as shown in
Figure 4. Each step will be listed in detail below, and the pseudocode of the major smart
contract function in the system will be described here.

Sensors 2022, 22, x FOR PEER REVIEW 9 of 22

Figure 4. Firmware update file transmission.

Step 1 The manufacturer who wants to upload the firmware update file sends the
request through the smart contract and transmits the file to other blockchain
nodes for verification. This method ensures that the manufacturer cannot
change the file after being deployed. The manufacturer needs to call the upload
file function before uploading the file and provide the update file address to
complete the upload action. In the smart contract, the address of the
manufacturer node is mapped to a column in the file information. It will
initialize the parameters in the column, including firmware original address,
download point, the number of nodes that execute firmware update validation
but pass or fail the validation, whether to complete validation, and the address
of the uploader. The file uploading is shown in Algorithm 1.

Algorithm 1: File uploading
Input: manufacturer_address, file_address
Output: True/False

N mapping (manufacturer_address)
Initialize File_information [N] //File_address file_address

 //Download_point NULL
 //Pass 0
 //Reject 0
 //Check false
 //Finish false
 //Uploader NULL

In Algorithm 1, the manufacturer needs to call the uploading function before upload-
ing the file and provide the update file address (file_address) to complete the upload action.
The manufacturer node address (manufacturer_address) will map to a column (N) of file
information. Then, the parameters in file information will be initialized, including original
location of the firmware (File_address), the address of validated firmware (Down-
load_point), the number of nodes that complete firmware update validation but pass the
validation (Pass), the number of nodes that complete firmware update validation but fail
the validation (Reject), whether to complete the validation (Check), whether to complete
the uploading (Finish), and the address of uploader (Uploader).
Step 2 When the manufacturer sends the request, the other nodes can verify the file

Figure 4. Firmware update file transmission.

Step 1 The manufacturer who wants to upload the firmware update file sends the request
through the smart contract and transmits the file to other blockchain nodes for

Sensors 2022, 22, 530 9 of 20

verification. This method ensures that the manufacturer cannot change the file after
being deployed. The manufacturer needs to call the upload file function before
uploading the file and provide the update file address to complete the upload
action. In the smart contract, the address of the manufacturer node is mapped to
a column in the file information. It will initialize the parameters in the column,
including firmware original address, download point, the number of nodes that
execute firmware update validation but pass or fail the validation, whether to
complete validation, and the address of the uploader. The file uploading is shown
in Algorithm 1.

Algorithm 1: File uploading

Input: manufacturer_address, file_address
Output: True/False

N←mapping (manufacturer_address)
Initialize File_information [N] //File_address← file_address

//Download_point← NULL
//Pass← 0
//Reject← 0
//Check← false
//Finish← false
//Uploader← NULL

In Algorithm 1, the manufacturer needs to call the uploading function before upload-
ing the file and provide the update file address (file_address) to complete the upload action.
The manufacturer node address (manufacturer_address) will map to a column (N) of file
information. Then, the parameters in file information will be initialized, including original
location of the firmware (File_address), the address of validated firmware (Download_point),
the number of nodes that complete firmware update validation but pass the validation
(Pass), the number of nodes that complete firmware update validation but fail the validation
(Reject), whether to complete the validation (Check), whether to complete the uploading
(Finish), and the address of uploader (Uploader).

Step 2 When the manufacturer sends the request, the other nodes can verify the file
provided by the manufacturer. The verification method needs to execute on a local
host, which the verification is off-chain processing in each node. The reason that
we do not verify the file on the blockchain is to enhance the varieties of virus code
detection. By comparing the virus code, off-chain processing is more reliable than
the inspection by the specific file check node. The virus scanning for firmware
files is shown in Algorithm 2.

Algorithm 2: Virus scanning for firmware files

Input: manufacturer_address
Output: True/False

N←mapping (manufacturer_address)
Get File_address by File_information [N]
Download file F by File_address
if F passes antivirus tool, then

Pass← Pass + 1 //in File_information [N]
else

Reject← Reject + 1 //in File_information [N]

end if

In Algorithm 2, nodes obtain the file (F) from the original file address in the file
information and log the result of the file validation to the contract (Pass + 1 or Reject + 1).

Sensors 2022, 22, 530 10 of 20

The nodes in the proposed system have the same permissions, so there is no node that can
influence the result by itself.

Step 3 The verified firmware update file is transmitted to the distributed file server by
the blockchain node, and the distributed file server returns the address where the
file is stored. Finally, the address returned by the distributed file server is stored
in the ledger. If the file does not pass the verification, the node participating in the
verification notifies the manufacturer that the file upload request is not successful.
The biggest weakness of blockchain is that the requirement of storage space is
too large. By storing files in the distributed file server, only the file addresses are
stored on the ledger, and therefore they can reduce the needs of system storage.
Additionally, the distributed file server is stronger to defend DoS attacks than
a single file server, so this proposed mechanism has high system security. In
this step, the smart contract decides whether to upload based on the result of
each nodes’ returns. If the file is verified, the smart contract will assign a node
participating in the verification to upload the file to the distributed data storage.
At the same time, the record information is recorded in the file information. In the
following, the procedure of the uploader assigning is first shown in Algorithm 3,
and the uploading of file download point is shown in Algorithm 4.

Algorithm 3: Uploader assigning

Input: manufacturer_address
Output: True/False

N←mapping (manufacturer_address)
Get Pass by File_information [N]
Get Reject by File_information [N]
if Pass + Reject > threshold_1 and

Pass/(Pass + Reject) > threshold_2 then
//threshold_1 and threshold_2 are defined by genesis node

Uploader← one of validation nodes’ addresses
//Uploader is in File_information [N]

else
Uploader← NULL
Check← True //Check is in File_information [N]

end if

Algorithm 4: Uploading of file download point

Input: manufacturer_address, node_address
Output: True/False

N←mapping (manufacturer_address)
Get Uploader by File_information [N]
if Uploader == node_address then

Download_point← download_point
//“Download_point” is in File_information [N]
//“download_point” is file address in distributed database

Finish← True //in File_information [N]
else

print(“Cannot Update File Information”)
end if

In Algorithm 3, the smart contract decides whether to upload firmware according to
the result of each node’s return. In order to maintain the correctness of the system, it must
be ensured that there are enough nodes to participate in the validation and the passing rate.
As a result, we need to decide two thresholds to ensure the number of nodes (threshold_1)
and passing rate (threshold_2). If the firmware passes the validation, the smart contract will
assign a validating node to upload the firmware to distributed data storage. At the same

Sensors 2022, 22, 530 11 of 20

time, the assigned node records the file address (Download_point) to the file information in
Algorithm 4.

3.3.3. Firmware Update File Downloading

Only nodes on the blockchain network can access the smart contract. The IoT device
that wants to download firmware needs to send a request to a blockchain node, then the
blockchain node finds out whether a suitable firmware is available for downloading, and it
finally sends the response to the IoT device. The IoT device downloads the file from the
distributed database according to the received response and completes the update action,
as shown in Figure 5. In order to strengthen the security of the interaction between the IoT
device and the blockchain node, the following steps will be executed before the IoT device
connects to the blockchain.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 22

Figure 5. Firmware update file downloading.

In Figure 5, the four steps for firmware update file downloading are depicted as fol-
lows.
Step 1 The IoT device that wants to execute the firmware update sends a request to a

blockchain node and transmits the corresponding device type and current
version so that the blockchain node can confirm whether an update file is
available for download. Since the blockchain node needs to have the
computing power for verification, and the IoT device does not necessarily have
sufficient computing power, it cannot become a member of the blockchain
nodes.

Step 2 After receiving the IoT device request, the node checks whether there is an
eligible update file by the smart contract. As the data on the chain will increase
over time, the system has to find the data on the chain quickly. Through the
smart contract, it is more efficient than the local search and can determine the
correctness of the results.

Step 3 The blockchain node informs the IoT device of the result of the request. If the
information of the updated file is recorded on the ledger, the result of the
return is the downloaded address of the file, and the IoT device can download
the file through the address. If the information of the update file cannot be
found, blockchain node returns the message “No update file is available for
downloading.”

Step 4 The IoT device downloads the file by using the file address obtained from the
blockchain node. The correctness of the file downloaded through the above
steps can be ensured by the blockchain features and consensus mechanism.

4. Security Analysis
SUIT (Software Updates for Internet of Things) is a new IETF (Internet Engineering

Task Force) standard for secure IoT firmware updates, and typical threats against a firm-
ware update solution are discussed in the SUIT information model [34]. Therefore, we
assess the security of the proposed blockchain-based firmware update scheme based on
these threats, focusing on the security goals of firmware integrity, malicious code re-
sistance, and DDoS mitigation. In addition, suggestions for secure smart contracts and
security comparisons among several related schemes are also discussed in this section.

Figure 5. Firmware update file downloading.

a. Hardware security module (HSM): In the proposed platform, we adopt a tamper-proof
hardware security module [32,33] in the IoT device to store the important system
parameters securely.

b. Key generation procedure: The HSM is responsible for generating the pseudo-identity
and corresponding public/private keys for its own IoT device.

In Figure 5, the four steps for firmware update file downloading are depicted as follows.

Step 1 The IoT device that wants to execute the firmware update sends a request to a
blockchain node and transmits the corresponding device type and current version
so that the blockchain node can confirm whether an update file is available for
download. Since the blockchain node needs to have the computing power for
verification, and the IoT device does not necessarily have sufficient computing
power, it cannot become a member of the blockchain nodes.

Step 2 After receiving the IoT device request, the node checks whether there is an eligible
update file by the smart contract. As the data on the chain will increase over time,
the system has to find the data on the chain quickly. Through the smart contract,
it is more efficient than the local search and can determine the correctness of the
results.

Step 3 The blockchain node informs the IoT device of the result of the request. If the infor-
mation of the updated file is recorded on the ledger, the result of the return is the
downloaded address of the file, and the IoT device can download the file through
the address. If the information of the update file cannot be found, blockchain node
returns the message “No update file is available for downloading.”

Sensors 2022, 22, 530 12 of 20

Step 4 The IoT device downloads the file by using the file address obtained from the
blockchain node. The correctness of the file downloaded through the above steps
can be ensured by the blockchain features and consensus mechanism.

4. Security Analysis

SUIT (Software Updates for Internet of Things) is a new IETF (Internet Engineering
Task Force) standard for secure IoT firmware updates, and typical threats against a firmware
update solution are discussed in the SUIT information model [34]. Therefore, we assess the
security of the proposed blockchain-based firmware update scheme based on these threats,
focusing on the security goals of firmware integrity, malicious code resistance, and DDoS
mitigation. In addition, suggestions for secure smart contracts and security comparisons
among several related schemes are also discussed in this section.

4.1. Secure IoT Firmware Update System

Property 1. With the characteristic of irreversibility in the blockchain system, the integrity of
uploaded firmware update files can be greatly strengthened.

When manufacturers require updating their firmware, they must prepare the firmware
checksum. Then, a blockchain node executes the smart contract to confirm the correctness
of the checksum with the help of off-chain programs. The firmware updating transaction
can be finished if, and only if, the checksum is valid. At last, the checksum will be recorded
in the blockchain. Based on the blockchain analysis [35], the probability of changing
information in a blockchain can be analyzed as follows. Assume that az is the probability
that an attacker will be able to catch up when he/she is currently z blocks behind. Besides,
assume that n is the number of blocks found by the honest network with probability p in
average time, and that m is the number of blocks found by the attacker in that time, where
m is more accurately a negative binomial variable. Therefore, it is the number of successes
(blocks found by the attacker) before n failures (blocks found by the honest network), with
a probability q of success. Based on Rosenfeld’s analysis result [35], it follows that the
probability of changing to succeed, when someone waits for n confirmations, is equal to:

∞
∑

m=0
P(m)an−m−1

=
n−1
∑

m=0

(
m + n− 1

m

)
pnqm(min(q/p, 1))n−m +

∞
∑

m=n

(
m + n− 1

m

)
pnqm

=

 1−
n
∑

m=0

(
m + n− 1

m

)
pnqm − pmqn if q < p

1 if q ≥ p

(1)

According to Rosenfeld’s analysis result from Equation (1) [35], the changing success
rate of two confirmations is less than 10%, four confirmations is less than 1%, and six
confirmations is less than 0.1%. As a result, the security level of the checksum increases in
strength as long as the growth of blocks continues.

On the other hand, because “Step 1” in Section 3.3.2 is executed, the manufacturer
needs to release the firmware file when uploading it, and then the file is uploaded to
distributed storage by a validating node. Afterwards, a device will download the file from
the distributed database, so the manufacturer cannot modify the updated file. This feature
prevents the device from downloading the firmware that is tampered from attacking the
manufacturer’s server.

Property 2. Based on the validation result of multi-node antivirus, the proposed scheme can prevent
IoT devices from downloading malicious updated firmware.

In 2019, a hacker was found to install the backdoor malware on the user’s computer
through Asus’s official server [36]. The hacker used a legal certificate to make it look like a

Sensors 2022, 22, 530 13 of 20

legitimate update at the time of installation and obtains device information to launch an
attack. This incident is an attack launched against the manufacturer’s server so that the
device is implanted with malicious programs.

According to “Step 2” of Section 3.3.2 in the proposed mechanism, multi-node antivirus
is performed before the firmware file is uploaded to the distributed database, ensuring
that the stored file is not implanted with malicious code. The multi-node voting method
determines the file can be uploaded if it has passed the validation of more than half of the
validation nodes. The threshold of validation passing ratio to determine whether malicious
code is present can be adjustable. The attacker needs to control more than half of the
validation nodes to affect the validation result, which is too hard to succeed. Thus, the
proposed firmware update scheme can effectively accomplish malicious code resistance.

Property 3. Based on decentralized blockchain system and smart contract execution, the DDoS
problem can be alleviated.

When massive IoT devices request a firmware update at the same time, these requests
will precipitate a DDoS problem. In the proposed scheme, the smart contract for processing
update requests is performed in a distributed way. Additionally, the firmware files are also
stored on a distributed peer-to-peer file sharing system. Therefore, such a DDoS problem
can be alleviated by the proposed decentralized blockchain system and smart contract
execution.

On the other hand, Satori botnet appeared in 2018, hijacking countless IoT devices
and infecting many routers with different IP addresses. It used the malicious software
Brickerbot to launch a PDoS (Permanent Denial of Service) attack on the device, which
attacked the IoT device through SSH (Secure Shell) Crawler, Telnet Crawler, etc., and
performed a malicious firmware update on the device [37]. According to “Step 1” of
Section 3.3.3 in the proposed mechanism, IoT devices are to connect to blockchain nodes.
By connecting to a more reliable blockchain node and avoiding direct connection to a
centralized server for updating a firmware file, the connection process of IoT devices can
have a higher security protection and reduce the probability of IoT devices suffering from
the PDoS attack.

4.2. Suggestions for a Secure Smart Contract

In the following, we will analyze and explain the smart contract’s security [38], includ-
ing some serious vulnerabilities, “The DAO Attack” and “GovernMental Attack”, and give
further suggestions for secure smart contracts.

4.2.1. The DAO Attack

The DAO (Decentralized Autonomous Organization, DAO) attack [39] used the vul-
nerabilities of the smart contract to make repeated withdrawals, and the vulnerability
exploits the characteristics of the fallback function in the smart contract. By interrupting
the execution of the smart contract, the purpose of re-depositing before the deduction is
achieved. This incident is a major attack of Ethereum, which is solved finally by using a
hard fork to restore the blockchain to the pre-attack state, while letting users pay attention
to such recursive attacks.

This type of recursive attack exploits the characteristics of a function declaration in
a smart contract, allowing an attacker to launch an attack using a smart contract with an
attacking nature. As a result, the way to prevent such attacks is to limit the use of contracts
not to be other smart contracts. In this study, based on the characteristics of the traceable
source in the blockchain, we add the “initial source of the query message” to the smart
contract and check whether the “original source of the message” and the “message source”
are the same. Therefore, we can prevent such attacks by verifying whether the contract
user has passed through a self-written contract to initiate a transaction.

Sensors 2022, 22, 530 14 of 20

4.2.2. GovernMental Attack

Ethereum can develop many applications in addition to cryptocurrency transactions.
By writing smart contracts, we can use Ethereum to play games on the platform of Ethereum.
There is a game called “GovernMental”, in which participants can continuously send
Ethercoin to the contract. Moreover, when the contract does not receive any transaction
within 12 h, all the Ethereum in the contract can be taken by the “participant who sent
the last transaction to the contract”. However, the author of the game needs a lot of gas
features to reproduce the contract status, so that all participants cannot take the Ethereum
in the contract, which is one of the famous Ponzi schemes in Ethereum [40]. An attacker
used the loophole of the contract to repeatedly consume the gas in the contract so that
the contract cannot successfully complete the transaction again after a small number of
transactions, thereby making the “re-contract status” require less than the “completed
transaction”. The gas required at the time allows the game to end normally, undermining
the author’s original purpose.

This event reminds us that the use of gas should be very careful when writing a smart
contract. When using the contract function, it can check the amount of remaining gas before
checking the transaction to avoid the unexpected situation caused by insufficient gas.

4.3. Security Comparisons among Several Related Schemes

Lee and Lee [11] proposed a blockchain-based firmware verification and update
method. Their mechanism stores firmware files into nodes in the blockchain, and IoT
devices also belong to one of the blockchain nodes, making all IoT devices need to store all
the firmware files in the chain. This design makes firmware files not easy to be tampered
with, but it is difficult to implement in reality due to resource limitations on IoT devices,
because the devices are directly connected to the Internet. It is easy to expose device-related
information to attackers. In addition, because the IoT device does not necessarily have
high-intensity computing power, it is prone to delay when the node synchronizes. In such
a way, an attacker can launch related attacks through the delay of synchronization, thereby
causing the system to be harmed.

Boudguiga et al. [12] also proposed a blockchain-based method for updating the
firmware of IoT devices by including different vendors and antivirus companies in the
blockchain system and requesting the firmware files in the system. It must be verified by
the antivirus company node before it can be synchronized by other blockchain nodes in
the system, and then IoT devices request the files from the blockchain node. This design is
submitted to the antivirus company for the verification work. The number of verification
nodes is very rare, and thus the verification node has a large burden. And the attacker only
needs to attack a few nodes to enable harm to the system.

Yohan and Lo [13] also proposed a blockchain-based network firmware update method
that requires manufacturers to upload firmware files to supervise each other. Moreover, in
order to reduce the burden on nodes, the URI (Uniform Resource Identifier) of the file is
synchronized in the node. After verification, the URI is broadcast to each node. Then, the
URI is obtained by IoT devices, and the updated file is downloaded to the corresponding
vendor database to complete the firmware update. In this method, the synchronization
is via URI, and the file is managed by each vendor. Therefore, even if the verification is
performed at the time of synchronization, there is no guarantee that the firmware file is still
the same after a certain period of time, and attacks on vendors’ databases can cause harm
to the system.

In contrast, all the nodes in this study have the authority to verify firmware files
updates, and this is performed through multiple antivirus inspections to ensure the file
is safe. Besides, after the verification is completed, the proposed mechanism uploads the
files to the decentralized database so that the firmware manufacturer cannot change the
file again. That is, regardless of whether the manufacturer is attacked, the files verified by
the proposed system cannot be changed, and the distributed database can also be used to
effectively protect the security of the files [41]. Furthermore, in this study, the blockchain

Sensors 2022, 22, 530 15 of 20

node is commissioned by devices for querying whether the system has a new version
of firmware update file, so that the devices can be protected from being exposed to a
dangerous environment.

5. Experimental Evaluation and Comparison

This section first depicts the experimental environment based on the Ethereum
blockchain and distributed storage system Swarm and then presents two evaluation proce-
dures for measuring the performance of firmware uploading and downloading. In addition,
functionality comparisons among several related schemes are also discussed in this section.

5.1. Experimental Environment

The experimental evaluation environment is shown in Figure 6. In the experimental
environment, we have constructed the system with the four servers, A, B, C, and D,
selected to be the Ethereum blockchain nodes in a private network over the TWAREN
(TaiWan Advanced Research and Education Network) SDN (Software Defined Network)
environment. Servers A, B, C, and D are deployed in different physical locations, and each
of them is equipped with 16-cores Intel Xeon E5630 @ 2.53 GHz and 16 GB RAM, running the
Ubuntu 18.04 LTS. Server D is simulated as a manufacturer node that has different sizes of
firmware update files ranging from 31.8K to 5.6M. To emulate the IoT devices environment,
we built a Raspberry Pi QEMU image running on servers E and F equipped with 16-cores
Intel Xeon E5620 @ 2.4 GHz and 72 GB RAM. We enable the docker service in QEMU for
the benchmark setup. A dockerized version of ApacheBench benchmarking tool from
“https://hub.docker.com/r/adamoss/rpi-apachebench/” (accessed on 15 October 2021) is
used to measure the performance of the proposed system, where ApacheBench is a tool for
benchmarking an Apache HTTP (HyperText Transfer Protocol) server, showing how many
requests per second the Apache installation is capable of serving. Although ApacheBench
is originally designed to test the Apache HTTP server, it is generic enough to test any web
server. Moreover, we use Swarm as our firmware storage system, where Swarm package is
a distributed storage protocol and content distribution service in Ethereum. And the smart
contracts used in the proposed mechanism are developed by Solidity program language.

Sensors 2022, 22, x FOR PEER REVIEW 16 of 22

5. Experimental Evaluation and Comparison
This section first depicts the experimental environment based on the Ethereum block-

chain and distributed storage system Swarm and then presents two evaluation procedures
for measuring the performance of firmware uploading and downloading. In addition,
functionality comparisons among several related schemes are also discussed in this sec-
tion.

5.1. Experimental Environment
The experimental evaluation environment is shown in Figure 6. In the experimental

environment, we have constructed the system with the four servers, A, B, C, and D, se-
lected to be the Ethereum blockchain nodes in a private network over the TWAREN (Tai-
Wan Advanced Research and Education Network) SDN (Software Defined Network) en-
vironment. Servers A, B, C, and D are deployed in different physical locations, and each
of them is equipped with 16-cores Intel Xeon E5630 @ 2.53 GHz and 16 GB RAM, running
the Ubuntu 18.04 LTS. Server D is simulated as a manufacturer node that has different
sizes of firmware update files ranging from 31.8K to 5.6M. To emulate the IoT devices
environment, we built a Raspberry Pi QEMU image running on servers E and F equipped
with 16-cores Intel Xeon E5620 @ 2.4 GHz and 72 GB RAM. We enable the docker service
in QEMU for the benchmark setup. A dockerized version of ApacheBench benchmarking
tool from “https://hub.docker.com/r/adamoss/rpi-apachebench/” (accessed on 15 October
2021) is used to measure the performance of the proposed system, where ApacheBench is
a tool for benchmarking an Apache HTTP (HyperText Transfer Protocol) server, showing
how many requests per second the Apache installation is capable of serving. Although
ApacheBench is originally designed to test the Apache HTTP server, it is generic enough
to test any web server. Moreover, we use Swarm as our firmware storage system, where
Swarm package is a distributed storage protocol and content distribution service in
Ethereum. And the smart contracts used in the proposed mechanism are developed by
Solidity program language.

Figure 6. The network topology of experiment for the proposed system.

5.2. Evaluation of Firmware Uploading
The following will explain and compare the experimental results with other methods

in terms of firmware uploading. In this evaluation, we compare the firmware uploading

Figure 6. The network topology of experiment for the proposed system.

https://hub.docker.com/r/adamoss/rpi-apachebench/

Sensors 2022, 22, 530 16 of 20

5.2. Evaluation of Firmware Uploading

The following will explain and compare the experimental results with other methods
in terms of firmware uploading. In this evaluation, we compare the firmware uploading
and evaluate the system efficiency by the number of uploaded firmware files received at
the same time. Since Yohan and Lo [13] have compared the efficiency of their scheme with
Lee and Lee’s [11] and Boudguiga et al.’s schemes [12] and confirmed that it is superior
to the other two in terms of efficiency, we will focus on comparing with Yohan and Lo’s
scheme [13].

When conducting an experiment, the smart contract can display the status of the
current transaction, including the block number of the transaction, the generation time of
the block, and the gas spent on the transaction. In the process of setting the blockchain
system, the time required to generate each block can be adjusted, and the number of
received file upload requests can also be set through smart contracts. Table 1 shows
the experimental result of the proposed firmware uploading with different quantities of
firmware files uploaded.

Table 1. The experimental result of the proposed firmware uploading.

Gas Cost (Gwei) Timestamp (s) Block Number Files

188,941 1,559,662,521 110 1

585,094 1,559,662,521 110 5

1,080,286 1,559,662,521 110 10

1,575,481 1,559,662,521 110 15

2,070,677 1,559,662,522 111 20

2,565,874 1,559,662,522 111 25

3,061,073 1,559,662,523 112 30

The items listed in Table 1 include gas cost, timestamp, block number, and the number
of firmware files. “Gas cost” represents the total price of the experiment, where the price
unit is Gwei and 1 Gwei is equal to 10−9 Eth. When the number of uploaded firmware files
is 30, the total price of firmware uploading is equal to 3,061,073 × 10−9 Eth. “Timestamp”
represents the timestamp of the block generation, from which the time for generating each
block can be inferred. By combining the data of each field, we can know the execution time
and gas cost, as shown in Figures 7 and 8, where the blue dotted line represents the method
of Yohan and Lo [12], and the red solid line represents the proposed method.

In Figures 7 and 8, we can see that the proposed method has better performance
when receiving multiple uploading requests at the same time. The processing time can
reach 20 milliseconds when receiving a single uploading request, and the proposed system
requires less gas cost in computing. Combined with the security analysis in Section 4.1 and
the efficiency comparison in this subsection, it can be found that the proposed system has
enhanced the security and the runtime efficiency for firmware uploading.

Sensors 2022, 22, 530 17 of 20Sensors 2022, 22, x FOR PEER REVIEW 18 of 22

Figure 7. Comparison of the time cost in firmware uploading.

Figure 8. Comparison of the gas cost in firmware uploading.

5.3. Evaluation of Firmware Downloading
In the experiment of firmware downloading, we measure the number of requests per

second that the proposed system can handle when concurrent IoT devices execute the
downloading procedure. As long as IoT devices sends the firmware updating query to the
blockchain node, the smart contract will handle this request. It checks whether the system
has a new version of firmware and then sends the downloading link to the IoT device. In
this evaluation, the ApacheBench benchmarking tool is used to simulate the requests sent
from IoT devices. We compare the proposed system with an Apache HTTP (HyperText
Transfer Protocol) server based on downloading the firmware update file whose size is
31.8 K. For the 31.8 K update file, the proposed system can support more than 1500 re-
quests per second even if the number of concurrent connections gradually increases to
5000. As shown in Figure 9, it can be found that our proposed system has much better
performance than the Apache HTTP server. Furthermore, the problem of single point of
failure does not occur in the proposed system.

Figure 7. Comparison of the time cost in firmware uploading.

Sensors 2022, 22, x FOR PEER REVIEW 18 of 22

Figure 7. Comparison of the time cost in firmware uploading.

Figure 8. Comparison of the gas cost in firmware uploading.

5.3. Evaluation of Firmware Downloading
In the experiment of firmware downloading, we measure the number of requests per

second that the proposed system can handle when concurrent IoT devices execute the
downloading procedure. As long as IoT devices sends the firmware updating query to the
blockchain node, the smart contract will handle this request. It checks whether the system
has a new version of firmware and then sends the downloading link to the IoT device. In
this evaluation, the ApacheBench benchmarking tool is used to simulate the requests sent
from IoT devices. We compare the proposed system with an Apache HTTP (HyperText
Transfer Protocol) server based on downloading the firmware update file whose size is
31.8 K. For the 31.8 K update file, the proposed system can support more than 1500 re-
quests per second even if the number of concurrent connections gradually increases to
5000. As shown in Figure 9, it can be found that our proposed system has much better
performance than the Apache HTTP server. Furthermore, the problem of single point of
failure does not occur in the proposed system.

Figure 8. Comparison of the gas cost in firmware uploading.

5.3. Evaluation of Firmware Downloading

In the experiment of firmware downloading, we measure the number of requests per
second that the proposed system can handle when concurrent IoT devices execute the
downloading procedure. As long as IoT devices sends the firmware updating query to the
blockchain node, the smart contract will handle this request. It checks whether the system
has a new version of firmware and then sends the downloading link to the IoT device. In
this evaluation, the ApacheBench benchmarking tool is used to simulate the requests sent
from IoT devices. We compare the proposed system with an Apache HTTP (HyperText
Transfer Protocol) server based on downloading the firmware update file whose size is
31.8 K. For the 31.8 K update file, the proposed system can support more than 1500 requests
per second even if the number of concurrent connections gradually increases to 5000. As
shown in Figure 9, it can be found that our proposed system has much better performance
than the Apache HTTP server. Furthermore, the problem of single point of failure does not
occur in the proposed system.

Sensors 2022, 22, 530 18 of 20

5.4. Functionality Comparisons

This paper proposes a blockchain-based IoT security update system with a distributed
database, which improves the inadequacies of the existing methods. The proposed ap-
proach is based on the technology of blockchain to ensure that IoT devices obtain their
genuine firmware. Moreover, the proposed approach can reduce the needs of node storage
due to the use of a distributed database. In the following, we will list the advantages and
disadvantages of the methods mentioned above in terms of the items required for security
analysis and comparison based on the literature [42–44], as shown in Table 2.

Sensors 2022, 22, x FOR PEER REVIEW 19 of 22

Figure 9. Comparison of the performance of firmware downloading.

5.4. Functionality Comparisons
This paper proposes a blockchain-based IoT security update system with a distrib-

uted database, which improves the inadequacies of the existing methods. The proposed
approach is based on the technology of blockchain to ensure that IoT devices obtain their
genuine firmware. Moreover, the proposed approach can reduce the needs of node stor-
age due to the use of a distributed database. In the following, we will list the advantages
and disadvantages of the methods mentioned above in terms of the items required for
security analysis and comparison based on the literature [42–44], as shown in Table 2.

Table 2. Functionality comparisons.

Method
Feature

Proposed
Method

Lee and Lee’s
Framework

[11]

Boudguiga et al.’s
Framework

[12]

Yohan and Lo’s
Framework

[13]
Firmware integrity Yes Yes Yes No

Non-disclosure of IoT device position Yes No Yes Yes
Satori botnet defending Yes No Yes Yes

No impact of manufacturer server being attacked Yes No No No
Nodes of verification participation All Partial Partial Partial

Device anonymity Yes No Yes Yes

From Table 2, we can see that the proposed method uses a distributed database to
reduce the total space requirement of the system. Besides, because the files are not man-
aged by manufacturers, it can effectively prevent the manufacturers from tempering the
files after the file stored in the database. The system allows multiple manufacturers to
operate simultaneously, so the proposed method is suitable for heterogeneous IoT device
networks.

Figure 9. Comparison of the performance of firmware downloading.

Table 2. Functionality comparisons.

Feature
Method Proposed Method Lee and Lee’s

Framework [11]
Boudguiga et al.’s
Framework [12]

Yohan and Lo’s
Framework [13]

Firmware integrity Yes Yes Yes No

Non-disclosure of IoT device position Yes No Yes Yes

Satori botnet defending Yes No Yes Yes

No impact of manufacturer server being attacked Yes No No No

Nodes of verification participation All Partial Partial Partial

Device anonymity Yes No Yes Yes

From Table 2, we can see that the proposed method uses a distributed database to
reduce the total space requirement of the system. Besides, because the files are not managed
by manufacturers, it can effectively prevent the manufacturers from tempering the files
after the file stored in the database. The system allows multiple manufacturers to operate
simultaneously, so the proposed method is suitable for heterogeneous IoT device networks.

6. Conclusions

With the increasing number of IoT devices, more sophisticated security mechanisms
are needed. This study is based on the blockchain technology to achieve multi-node
firmware verification, and therefore IoT device security can be accomplished. The contribu-
tions of this study are listed as follows:

Sensors 2022, 22, 530 19 of 20

(1) This research proposes a method of using a distributed database to reduce the storage
space by storing firmware information on a ledger, instead of storing firmware itself.

(2) After downloading the firmware in the proposed system, the correctness and integrity
of the obtained firmware of IoT devices can be ensured.

(3) IoT devices download the firmware through the download point of the distributed
database, instead of going through the manufacturer.

(4) This study does not only reduce the burden of manufacturers’ servers, but also
prevents the manufacturers from tampering the firmware after deploying it.

However, our mechanism does not implement the revocation function of expired IoT
firmware in the decentralized storage system. This is our research direction in the future.

Author Contributions: Conceptualization, W.-J.T. and J.-C.C.; methodology, W.-J.T.; software, W.-J.T.;
validation, W.-J.T., J.-C.C. and C.-L.C.; formal analysis, W.-J.T.; investigation, W.-J.T.; resources,
W.-J.T.; data curation, W.-J.T. and J.-C.C.; writing—original draft preparation, W.-J.T.; writing—review
and editing, J.-C.C. and C.-L.C.; visualization, W.-J.T.; supervision, W.-J.T.; project administration,
W.-J.T.; funding acquisition, W.-J.T. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Ministry of Science and Technology in Taiwan, grant
number MOST 110-2218-E-305-001-MBK. And the APC was funded by the Ministry of Science and
Technology in Taiwan.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used to support the findings of this study are available on
request from the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhang, Z.; Cho, M. IoT Security: Ongoing Challenges and Research Opportunities. In Proceedings of the IEEE 7th International

Conference on Service-Oriented Computing and Applications, Matsue, Japan, 17–19 November 2014.
2. Jgamblin. Mirai BotNet. 2017. Available online: https://github.com/jgamblin/Mirai-Source-Code (accessed on 25 November 2021).
3. Herzberg, B.; Bekerman, D.; Zeifman, I. Breaking Down Mirai: An IoT DDoS Botnet Analysis. 2016. Available online: https:

//www.incapsula.com/blog/malware-analysis-mirai-ddos-botnet.html (accessed on 25 November 2021).
4. FCA US LLC Wired. FCA US Responds to Wired Car Hack Story with Security Patch. 2015. Available online: http://

www.todaysmotorvehicles.com/article/automotive-design-electronics-safety-hackers-patch-wired-fca-072315/ (accessed on
15 October 2021).

5. Cui, A.; Costello, M.; Stolfo, S. When Firmware Modifications Attack: A Case Study of Embedded Exploitation. In Proceedings of
the 20th Symposium on Network and Distributed System Security, San Diego, CA, USA, 24–27 February 2013.

6. Mercer, D. Smart Home Will Drive Internet of Things Top 50 Billion Devices, Says Strategy Analytics. 2017. Available online:
https://www.strategyanalytics.com/strategy-analytics/ (accessed on 25 November 2021).

7. Insecam. Network Live IP Video Cameras Directory. 2021. Available online: https://www.insecam.org/ (accessed on
25 November 2021).

8. Cottrell, A.; Bethur, J.; Markey, T.; Srikant, M.; Srinivasan, L. Secure Firmware Update. U.S. Patent US20060143600A1, 29 June 2006.
9. Heer, T.; Garcia, O.; René, M.; Loong, H.; Sandeep, K.; Kumar, S.; Wehrle, K. Security Challenges in the IP-based Internet of

Things. Wirel. Pers. Commun. 2011, 61, 527–542. [CrossRef]
10. Zandberg, K.; Schleiser, K.; Acosta, F.; Tschofenig, H.; Baccelli, E. Secure firmware updates for constrained IoT devices using open

standards: A reality check. IEEE Access 2019, 7, 71907–71920. [CrossRef]
11. Lee, B.; Lee, J.H. Blockchain-based Secure Firmware Update for Embedded Devices in An Internet of Things Environment. J.

Supercomput. 2017, 73, 1152–1167. [CrossRef]
12. Boudguiga, A.; Bouzerna, N.; Granboulan, L.; Olivereau, A.; Quesnel, F.; Roger, A.; Sirdey, R. Towards Better Availability and

Accountability for IoT Updates by Means of a Blockchain. In Proceedings of the IEEE European Symposium on Security and
Privacy Workshops, Paris, France, 26–28 April 2017.

13. Yohan, A.; Lo, N. An Over-the-blockchain Firmware Update Framework for IoT Devices. In Proceedings of the IEEE Conference
on Dependable and Secure Computing, Kaohsiung, Taiwan, 10–13 December 2019.

14. Krebs. Mirai IoT Botnet Co-Authors Plead Guilty. 2017. Available online: https://krebsonsecurity.com/2017/12/mirai-iot-
botnet-co-authors-plead-guilty/ (accessed on 25 November 2021).

https://github.com/jgamblin/Mirai-Source-Code
https://www.incapsula.com/blog/malware-analysis-mirai-ddos-botnet.html
https://www.incapsula.com/blog/malware-analysis-mirai-ddos-botnet.html
http://www.todaysmotorvehicles.com/article/automotive-design-electronics-safety-hackers-patch-wired-fca-072315/
http://www.todaysmotorvehicles.com/article/automotive-design-electronics-safety-hackers-patch-wired-fca-072315/
https://www.strategyanalytics.com/strategy-analytics/
https://www.insecam.org/
http://doi.org/10.1007/s11277-011-0385-5
http://doi.org/10.1109/ACCESS.2019.2919760
http://doi.org/10.1007/s11227-016-1870-0
https://krebsonsecurity.com/2017/12/mirai-iot-botnet-co-authors-plead-guilty/
https://krebsonsecurity.com/2017/12/mirai-iot-botnet-co-authors-plead-guilty/

Sensors 2022, 22, 530 20 of 20

15. Kolias, C.; Kambourakis, G.; Stavrou, A.; Voas, J. DDoS in the IoT: Mirai and Other Botnets. Computer 2017, 50, 80–84. [CrossRef]
16. Sinanović, H.; Mrdovic, S. Analysis of Mirai Malicious Software. In Proceedings of the 25th International Conference on Software,

Telecommunications and Computer Networks, Split, Croatia, 21–23 September 2017.
17. Sarkar, S. Thousands of Printers Hacked across the Globe after Critical Flaw Exposed. 2017. Available online: https://www.techradar.

com/news/thousands-of-printers-hacked-across-the-globe-after-critical-flaw-exposed (accessed on 25 November 2021).
18. Tschorsch, F.; Scheuermann, B. Bitcoin and Beyond: A Technical Survey on Decentralized Digital Currencies. IEEE Commun. Surv.

Tutor. 2016, 18, 2084–2123. [CrossRef]
19. Nakamoto, S. Bitcoin: A Peer-to-peer Electronic Cash System. 2008. Available online: https://bitcoin.org/bitcoin.pdf (accessed

on 25 November 2021).
20. HOMESTEAD. Ethereum: Blockchain App Platforms. 2021. Available online: https://www.ethereum.org/ (accessed on

25 November 2021).
21. Wood, G. Ethereum: A Secure Decentralized Generalized Transaction Ledger; Ethereum Yellow Paper. 2021. Available online:

https://ethereum.github.io/yellowpaper/paper.pdf (accessed on 31 December 2021).
22. Atzei, N.; Bartoletti, M.; Cimoli, T. A Survey of Attacks on Ethereum Smart Contracts. In Proceedings of the International

Conference on Principles of Security and Trust, Uppsala, Sweden, 22–29 April 2017; pp. 164–186.
23. Bartoletti, M.; Carta, S.; Cimoli, T.; Saia, R. Dissecting Ponzi Schemes on Ethereum: Identification, Analysis, and Impact. arXiv

2017, arXiv:1703.03779. [CrossRef]
24. HOMESTEAD. Hyperledger: The Linux Foundation Projects. 2021. Available online: https://www.hyperledger.org/ (accessed

on 25 November 2021).
25. Cachin, C. Architecture of the Hyperledger Blockchain Fabric. In Proceedings of the Workshop on Distributed Cryptocurrencies

and Consensus Ledgers, Chicago, IL, USA, 25 July 2016.
26. HOMESTEAD. An Introduction to IOTA. 2018. Available online: https://iotasupport.com/whatisiota_de.shtml (accessed on

25 November 2021).
27. Popov, S. The Tangle. 2018. Available online: https://iota.org/IOTA_Whitepaper.pdf (accessed on 25 November 2021).
28. Burkhardt, D.; Werling, M.; Lasi, H. Distributed Ledger. In Proceedings of the IEEE International Conference on Engineering,

Technology and Innovation, Stuttgart, Germany, 17–20 June 2018.
29. Moubarak, J.; Filiol, E.; Chamoun, M. On Blockchain Security and Relevant Attacks. In Proceedings of the IEEE Middle East and

North Africa Communications Conference, Jounieh, Lebanon, 18–20 April 2018.
30. Saraf, C.; Sabadra, S. Blockchain Platforms: A Compendium. In Proceedings of the IEEE International Conference on Innovative

Research and Development, Bangkok, Thailand, 11–12 May 2018.
31. Moubarak, J.; Filiol, E.; Chamoun, M. Comparative Analysis of Blockchain Technologies and TOR Network: Two Faces of the

Same Reality. In Proceedings of the 1st Cyber Security in Networking Conference, Rio de Janeiro, Brazil, 18–20 October 2017.
32. Raya, M.; Hubaux, J.P. Securing Vehicular Ad Hoc Networks. J. Comput. Secur. 2007, 15, 39–68. [CrossRef]
33. Zhang, C.; Lu, R.; Lin, X.; Ho, P.; Shen, X. An Efficient Identity-based Batch Verification Scheme for Vehicular Sensor Networks. In

Proceedings of the Twenty-seventh IEEE INFOCOM, Phoenix, Arizona, 13–18 April 2008.
34. Moran, B.; Tschofenig, H.; Birkholz, H. Firmware Updates for Internet of Things Devices—An Information Model for Manifests.

IETF Internet Draft. 2019. Available online: https://tools.ietf.org/id/draft-ietf-suit-information-model-02.html (accessed on
25 November 2021).

35. Rosenfeld, M. Analysis of HashRate-based Double-spending. arXiv 2014, arXiv:1402.2009v1.
36. Whittaker, Z. Hackers Dropped a Secret Backdoor in Asus’ Update Software. 2019. Available online: https://techcrunch.com/20

19/03/25/asus-update-backdoor/ (accessed on 25 November 2021).
37. Cyborkian. Internet Chemotherapy. 2017. Available online: https://archive.fo/PQAnU (accessed on 25 November 2021).
38. Jiang, B.; Liu, Y.; Chan, W. ContractFuzzer: Fuzzing Smart Contracts for Vulnerability Detection. In Proceedings of the 33rd

ACM/IEEE International Conference on Automated Software Engineering, Montpellier, France, 3–7 September 2018.
39. Siegel, D. Understanding the DAO Attack. 2016. Available online: https://www.coindesk.com/understanding-dao-hack-

journalists (accessed on 25 November 2021).
40. Unknown Author. GovernMental. 2021. Available online: http://governmental.github.io/GovernMental/ (accessed on

25 November 2021).
41. Han, J.; Susilo, W.; Mu, Y. Identity-Based Secure Distributed Data Storage Schemes. IEEE Trans. Comput. 2014, 63, 941–953.

[CrossRef]
42. Hassija, V.; Chamola, V.; Saxena, V.; Jain, D.; Goyal, P.; Sikdar, B. A Survey on IoT Security: Application Areas, Security Threats,

and Solution Architectures. IEEE Access 2019, 7, 82721–82743. [CrossRef]
43. Jiang, P.; Guo, F.; Liang, K.; Lai, J.; Wen, Q. Searchain: Blockchain-based Private Keyword Search in Decentralized Storage. Future

Gener. Comput. Syst. 2020, 107, 781–792. [CrossRef]
44. Li, J.; Wu, J.; Chen, L. Block-Secure: Blockchain Based Scheme for Secure P2P Cloud Storage. Inf. Sci. 2018, 465, 219–231.

[CrossRef]

http://doi.org/10.1109/MC.2017.201
https://www.techradar.com/news/thousands-of-printers-hacked-across-the-globe-after-critical-flaw-exposed
https://www.techradar.com/news/thousands-of-printers-hacked-across-the-globe-after-critical-flaw-exposed
http://doi.org/10.1109/COMST.2016.2535718
https://bitcoin.org/bitcoin.pdf
https://www.ethereum.org/
https://ethereum.github.io/yellowpaper/paper.pdf
http://doi.org/10.1016/j.future.2019.08.014
https://www.hyperledger.org/
https://iotasupport.com/whatisiota_de.shtml
https://iota.org/IOTA_Whitepaper.pdf
http://doi.org/10.3233/JCS-2007-15103
https://tools.ietf.org/id/draft-ietf-suit-information-model-02.html
https://techcrunch.com/2019/03/25/asus-update-backdoor/
https://techcrunch.com/2019/03/25/asus-update-backdoor/
https://archive.fo/PQAnU
https://www.coindesk.com/understanding-dao-hack-journalists
https://www.coindesk.com/understanding-dao-hack-journalists
http://governmental.github.io/GovernMental/
http://doi.org/10.1109/TC.2013.26
http://doi.org/10.1109/ACCESS.2019.2924045
http://doi.org/10.1016/j.future.2017.08.036
http://doi.org/10.1016/j.ins.2018.06.071

	Introduction
	Related Work
	IoT Firmware Attack
	Default Password Attack
	Vehicle Network Attack
	Printer Attack

	Blockchain Technology

	Proposed Architecture and Mechanism
	Security Goals
	System Architecture
	Proposed Mechanism
	Blockchain Network Setup
	Firmware Update File Transmission
	Firmware Update File Downloading

	Security Analysis
	Secure IoT Firmware Update System
	Suggestions for a Secure Smart Contract
	The DAO Attack
	GovernMental Attack

	Security Comparisons among Several Related Schemes

	Experimental Evaluation and Comparison
	Experimental Environment
	Evaluation of Firmware Uploading
	Evaluation of Firmware Downloading
	Functionality Comparisons

	Conclusions
	References

