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Abstract Driven by the massive number of connected vehicles and the stringent requirements of

data-intensive applications, logistics transportation systems have evolved to fully comprehend its

effectiveness and quality to meet public transportation needs. As a result, to meet public transporta-

tion requirements and analyze the data efficiently at the edge of the networks, an advanced artificial

intelligent technique needs to be introduced to make the transportation system intelligent by sup-

porting efficient decision making, intelligent traffic control, and intrusion and misuse detection.

Motivated by the challenges mentioned above, in this paper, we develop a logistic agent-based

model for analyzing public transports such as cars, bus or trains in the intelligent transportation

system. The intelligent logistic framework is built on a parallel neural network structure, known

as a Swarm-Neural Network (SWNN). The proposed SWNN model analyzes the sensory data

and recognizes the public transportation at the edge of the networks. The SWNN model is con-

structed so that it fits within the intelligent logistic transportation framework, and the proposed

model shortens the transit time of every small-scale logistics delivery to its destination. The perfor-

mance of the proposed SWNN model is evaluated using a standard TMD dataset, where the

SWNN model is trained using data, retrieved multiple sensors such as accelerometer, gyroscope,

magnetometer, and audio sensors. The features of the sensory data are extracted based on a 5-s time

interval. The performance of the proposed SWNN model is studied over various standard machine

learning techniques such as Random Forest, XGBoost, and Decision Tree. As per the simulation

results, the proposed technique achieves 78–98% accuracy over a real-time dataset’s different sets

of features.
� 2022 THE AUTHORS. Published by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
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1. Introduction

Recent advancements in technology, together with the expo-
nential rise in the number of vehicles and rapid urbanization,

have paved the way to numerous developments and increased
research in Intelligent Transportation Systems (ITS) [1–4]. ITS
involves the interconnection of vehicles and infrastructures

and provides opportunities for continuous communications,
interactions, and resource sharing among vehicles with differ-
ent applications for ubiquitous data analysis and processing
and maximizes transportation infrastructure’s efficiency with

improved service quality. Recently, there has been a massive
demand in supply chain management for goods to be effi-
ciently transported from warehouses to final destinations, lead-

ing to the rapid development of ITS-enabled logistic
transportation systems [5,6].

ITS-enabled logistic transportation systems and their grad-

ual adoption of Autonomous Vehicles (AVs) are bringing mas-
sive advancements to smart cities [7]. But this has also led to
the generation of unprecedented amounts of data, posing

major challenges to the applications deploying ITS. With the
deployment of numerous sensors in vehicles for various appli-
cations, there is a sharp increase in the data produced in ITS,
rising from the Trillion-byte level to Petabyte [8,1]. Analyzing

the sensory data and recognizing the public transportation sys-
tems with minimum delay is a significant concern that requires
efficient and robust solutions to meet the ever-increasing

demand for efficiency and quality of service [9–11].

1.1. Related works

Over these years, many methods have been proposed for ana-
lyzing and processing the data for intelligent transportation
systems. Most of the methods have focused on the manage-

ment and processing of data in cloud servers. The authors in
[12] discuss a technique for real-time active, safe driving with
a three-tier cloud computing framework. The technique helps
predict and analyze the high threat of backward shock waves

using the data that has been collected from vehicles’ state
information. An intelligent technique using cloud and big data
for systematic traffic control is presented in [13]. The system

uses artificial intelligence and deep learning to predict traffic
flow and congestion. Managing different types of data, includ-
ing video, is a significant challenge in ITS, and authors in [14]

discuss an interesting technique for effective video manage-
ment with the cloud. The authors also try to solve the chal-
lenges in balancing the load and storage issues using a novel
parallel computing model. A recommendation system for vehi-

cle speed using a cloud/fog computing service infrastructure is
discussed in [15]. The system uses a game approach to satisfy
the objectives, where the drivers are the players and the vehi-

cle’s speed is their strategy.
With the advent of edge/fog computing, many applications

in ITS have tried to reduce the latency in data storage and

retrieval and processing that was a significant issue with the
cloud-based systems. A comprehensive survey on edge cloud
computing for ITS and connected vehicles is presented in

[16]. The paper presents exciting discussions and future
research perspectives on how edge cloud computing can be effi-
ciently used in ITS. In [17], a technique for identification of
traffic flows on the edge node with the help of deep learning
is discussed. The authors discuss a real-time vehicle tracking
counter that combines identification and tracking algorithms

for vehicles to detect the traffic flow. An edge-enabled dis-
tributed trustworthy storage framework with reinforcement
learning in ITS is discussed in [18]. The system adopts an intel-

ligent technique for dynamic allocation for storage using rein-
forcement learning based on trustworthiness and popularity. A
technique that uses multiple fog servers to detect the identity of

vehicles is proposed in [19]. The system uses a voting mecha-
nism to detect the most suitable fog server, determining the
real identity and the trajectory. Despite all the aforementioned
works, analysis and management of data at the edge for an

efficient public transportation system is still a significant
concern.

1.2. Motivation and contributions

Due to the increasing growth of the connected vehicles and the
long communication distance between the vehicles and cloud

servers, analyzing the vehicular data in the centralized cloud
server may increase the noise on the monitoring dataset and
deteriorate the prediction accuracy. Thus, one of the critical

challenges is to design an intelligent transportation framework
that can analyze the monitoring vehicular data locally while
meeting the resource requirements during data analytics. In
this paper, to address the challenge mentioned above, we

design a new edge-centric framework with a set of resource-
constraint edge devices and a centralized cloud server for effi-
ciently analyzing vehicular sensory data.

Another important research aspect in transportation sys-
tems is to process the vehicular sensory data with an advanced
machine learning model that can process the data on resource-

constraint edge devices and increase the prediction accuracy
with minimum delay. One of the potential solutions in this
aspect is to integrate a lightweight machine learning technique

with a set of distributed edge devices to develop an intellectual
and logistic framework for the transportation system that can
analyze the data at the edge of the network with higher accu-
racy and lower precision.

Motivated by the challenges mentioned above, in this work,
we develop a logistic agent-based intelligent transportation
framework in edge networks for identifications of public trans-

portation using an agent-based Swarm-Neural Network
(SWNN) model. In the proposed edge framework, data
scheduling and preprocessing have been performed on the dis-

tributed edge devices while analyzing the modified dataset on
the centralized cloud servers using the proposed SWNN model
with higher accuracy. Thus, the main novelty of the proposed
method is to integrate edge networks in transportation systems

for making correct decisions and introduce a new SWNN
model for analyzing vehicular data with higher prediction
accuracy.The significant contributions of the work are high-

lighted as follows.

� Design an agent-based intelligent transportation framework

to assist the delivery person of any small size logistic to find
in public transportation. Thus, if the smart logistic move-
ment framework correctly identifies the vehicle such as

bus, train, or taxi, then logistic movement is feasible for
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that vendor through those vehicles. This technique shortens

the transit time of every small-scale logistics that delivers
the products to its destination.
� Design an intelligent logistic framework using a parallel

neural network structure to analyze vehicular data, known
as the SWNN technique. The proposed strategy improves
the performance of the discussed system. The SWNNmodel
is used to recognize a vehicle, and the sensor attached to

this vehicle sends data to the distributed edge server for
detecting the vehicles. The SWNN model is constructed
so that it fits within the intelligent logistic transportation

framework and analyzes the sensory data with higher pre-
diction accuracy
� The performance of the proposed SWNN model in the

intelligent logistic transport framework is evaluated using
the TMD dataset, on which the SWNN model is trained
using data from multiple sensors. The sensors data used
in this experiment include accelerometer, gyroscope, mag-

netometer, and audio sensors. Further, the sensor data
are analyzed to choose the best characteristics of the pro-
posed model. The same characteristics are then taken from

additional sensor data and utilized to build the patterns.
The features of the sensory data are extracted based on a
5-s time interval. The performance of the proposed SWNN

model is studied over various simulation matrices with var-
ious standard machine learning techniques.

The remaining sections of the paper are organized as fol-
lows. The system model of the proposed logistic transportation
system and the proposed SWNN model for analyzing the sen-
sory data of the public transportation system in edge networks

are described in Section 2. The empirical analysis of the work
over various standard machine learning algorithms is
described in Section 3. Finally, the conclusion and future direc-

tion of the work are highlighted in Section 4.

2. Swarm-neural network for intelligent transportation system

This section describes various components of the proposed
logistic transportation system followed by the proposed
SWNN model with a suitable algorithm.

2.1. System model of logistic transportation system

The intelligent transport system framework incorporates intel-

ligent agent-based swarm-neural network approaches to give
the capacity to recognize the logistic carrying vehicle. This
method is meant to be easily compatible with the edge-
enabled transport framework. This component of the system

is implemented in the edge server to handle data processing
and analysis. Different components of the proposed SWNN
model of the logistic transportation system are shown in

Fig. 1. As per Fig. 1, the sensory vehicular data is collected
by the set of distributed edge devices, and the data is temporar-
ily held in the data-gathering phase in the resource-constrained

edge devices before being transmitted to the data processing
phase. Data is sampled in this method, and the collected data
is then provided to the feature selection algorithm, which cal-

culates features from the sampled data. The selected feature is
now ready to be sent into the SWNN for logistic type
categorization.
The proposed technique considers the input from the vehi-
cle’s various sensors as well as a large number of vehicles sub-
mitting data to the system at the same time. This massive work

of gathering data and processing it before feeding it to SWNN
is broken down into four stages. The data scheduler is intro-
duced into the system in the first phase to schedule the raw

data from the sensor for data processing. The scheduler takes
each sensor’s data and places it in a queue to be processed by
the data processing phase. The second phase is data process-

ing, which is used to process the sensor signal using window-
based sampling techniques. The features are extracted from
each sample data in the third phase. The fourth phase is where
the created sample is classified based on previous experience.

The fifth phase’s final step incorporates a rule-based decision
support system to determine SWNN performance and govern
overall system confidence based on that performance. The data

is then stored in clod servers for any further processing and
analysis in the future.

2.2. Data scheduler

In the proposed approach, the data scheduler is responsible
for managing the incoming data from remote IoT devices

deployed in the logistic vehicle. The scheduler is connected
to several watchdogs to receive data from various IoT
devices, and when the data is received, the lightweight
watchdog procedures send it to the scheduler for first-

come, first-served processing. In the data processing step,
the data is then scheduled for processing. The data sched-
uler assists the system in receiving sensor data in parallel

from multiple IoT devices in a single time quantum and
so plays a critical role in network traffic management for
the proposed method.

2.3. Data processing technique

The data processing component initially assembled the data by

temporarily processing the data for each vehicle. One of the
first jobs in this section is to check the correctness of each
incoming data from various sensors, and only legitimate data
may be sent on to the next phase. For each vehicle, sensor data

is pooled over a defined time period. Following that, each vehi-
cle’s data is evaluated for feature extraction. The extraction of
significant features is one of the most crucial things in sensor

data processing. The data collected from numerous sensors
are frequently complex and non-linear. Because of the chang-
ing traffic environment, these sensor signals with different fre-

quencies may be seen, making them unpredictable. The sensor
signals collected from various IoT devices are not stationary.
As a result, the signal’s enormous array is separated into N

portions, with each window containing a predetermined win-
dow of size S for extracting features. The following are the fea-
tures retrieved from the various windows in the proposed
technique.

Correlation: This process of feature selection incorporates
Correlation-based selection. The correlation between two fea-
tures X1 and X2 is calculated

COðX1;X2Þ ¼
Pm

r¼1ðX1 � lX1
ÞðX2 � lX2

ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
r¼1ðX1 � lX1

Þ
q

:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

r¼1ðX2 � lX2
Þ

q ð1Þ
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where the mean values of X1and X2 signal is performed as

lX1
¼Pm

m¼1X1 and lX2
¼Pm

m¼1X2 . The output value of

COðX1;X2Þ 2 ðþ1;�1Þ where the output value close to + 1
indicates that X1 and X2 are similar and then one considered
in the pattern and if it is close �1 proves the uniqueness in

between X1and X2. Each signal’s characteristic is retrieved by
examining a five-second window on it. The mean, minimum,
maximum, and standard deviation values are derived from
the signals of several sensors. The formula for calculating these

is given below.
Mean: The means of the five seconds signal data is calcu-

lated as MeanðSIÞti ¼ ð1n
Pi

i¼0SIiÞ, where ith signal value and t

represent the window of the current current iteration and N
is the total number of signal values in the current window.

Minimum Value: The minimum value of each windows of

signal is calculated as MinimumðSIÞit ¼MinimumfSIt1;SIt2;
SIt3; . . . ;SI

t
ig.

Maximum Value: The maximum value of each symptom is

defined as follows. MaximumðSIÞit ¼MaximumfSIt1;SIt2;
SIt3; . . . ;SI

t
ig. In the obtained features from the vehicle sensor

data, the fundamental statistical characteristics are used. These
are mean, standard deviation, skewness, kurtosis, and correla-

tion computed across a small time window of signals.

2.4. Intelligent agent-based model

The intelligent critic in the suggested system maximizes the
SWNN classification method’s confidence by continually train-
ing the system with newly observed data. This is what the logis-

tics system’s pre-trained SWNN-based detection is built on.
This intelligent critic aids SWNN classification systems in con-
tinuous assessment and switches between training and testing
phases using a rule-based mechanism.

Rule 1: SNNbest
accuracy P h) Detectionready
Rule 2: SNNbest
accuracy < h) Learningreadywhere 8ðNNbest

accuracyÞ
2 BoNNaccuracy,

SNNbest
accuracy is the best accuracy produced by neurons in the

SWNN population, h is the threshold value. Thus, when Rule

1 of the intelligent critic is met, the test data is provided to
SWNN as an input. In the instance of Rule 2, the intelligent
critic guarantees that the SWNN classifier is allowed to con-

tinue training.The intelligent critic notifies the gateway and
edge servers if any reply is observed in the test data.

2.5. Proposed Swarm-Neural Network (SWNN) model

The SWNN classification approach is used in this proposed
strategy of the intelligent logistic transportation system for

the detection of different types of logistic models. The SWNN
classification method is used here to detect the transport mode
efficiently. This approach is empirical, making the SWNN
more fit for testing different sensor data, which varies due to

dynamic traffic conditions. The SWNN is designed to com-
plete its detection task through three different phases. In the
first phase, a pre-defined set of neural networks of the same

architecture is generated to create the population. The initial
rounds of weights and bias matrix are also generated during
this phase. In the second phase, the training is started initially,

and this training phase is started for the first time; then, the
switching between the training and testing cycle depends on
the intelligent critic. The weight and bias matrix of the neural
networks in the populations is performed two times during the

training phase. In the training phase, the weight and bias
change based on the backpropagation algorithm, and then
lastly, it is modified based on the population’s best performing

neural network structure.
In the proposed method, the neural network for the popu-

lation is created and stored in the queue. The creation of the
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neural network involves the generation of the weight and bias
matrix for each layer of the neural network. The weight matrix
and bias matrix generation require generating the random

numbers using the following equations.

Wi ¼ Ri þ wC ð2Þ

Bi ¼ Ri þ bC ð3Þ
where Wi and Bi is the weight and bias of ith neural network in
the population of the size m and Ri 2 ð0; 1Þ and wc and bc is

constant. Now once the weight and bias for all the neural net-
works are created the population, then the SWNN classifier is
ready to start the training phase. The actual output of every

neural network in the population is presented as follows.

Yi ¼
Xn

l¼1
WiP

T
K þ Bi ð4Þ

where Yi is the actual output of the i
th neuron in the neural net-

work population. The patterns are fed into every neural net-
work of the neural population and it is done in every

iteration. Now the evaluation of neurons is performed in par-
allel with others, so at the end of each iteration the perfor-
mance is kept in the list YOr, and to represent the parallel

the
Q

symbol is used.

YOr ¼ ðY1;Y2; . . . . . . :YiÞr ¼
Yr
r¼1
ðYiÞr ð5Þ

Each transport pattern is labeled with the type of transport

and the label of the pattern is the target TRK for pattern Pk.
Now, these patterns are considered to be neural network pop-
ulations and feed into the population by considering one at a

time. So, after every iteration, the calculation of the error

EOr for the rth iteration is performed. The calculation of the

Error is performed as follows.

EOr ¼ jTRi
k � Yi

kjr ð6Þ
where TRi

K is the target of pattern Pk The sum of square error

or SSE is calculated for ith neuron in the SWNN population as
follows.

SSEi ¼ EOT
r EOr ¼ jTRi � YijTr jTRi � Yijr ð7Þ

The matrix format for calculating the SSE is presented in
Eqn. (7). Now, the first phase of the training of SWNN is
performed with the back-propagation method.In this method

the error is back-propagated and the sensitivity or Sl of lth

layer is calculated from the ðlþ 1Þth layer. The calculation

of the sensitivity is calculated for all the neural layers of a
neural network and it is calculated for every neural network
in the population. The calculation of the sensitivity, SEl of
the single 3-layer feed-forward neural network is calculated

as follows.

SEl ¼ dnetlþ1
dnetl

dF
dnetlþ1

¼ FlðnetlÞðWlþ1ÞTSElþ1 ð8Þ

where FlðnetlÞðWlþ1Þ is the Jacobin matrix. In this method for
a neural network in the SWNN population, the sensitivity is

calculated over 3-layer feed-forward network structure. So,
the calculation of SEl is started from the last layer and moves
back to the first layer where the sensitivity is calculated as

follows.
SE1 ¼ dF
dnetl

¼ dðTRk�YÞTðTRk�YÞ
dnetl

¼ �2ðTRk � YÞFlðnetlÞ
ð9Þ

Now, in the back-propagation phase, the weight and bias of
all the neural networks in the neural population are calculated

as follows.

Wl
iþ1 ¼Wl

i � aSElðYl�1ÞT ð10Þ

Bðiþ 1Þl ¼ Bl
i � aSEl ð11Þ

Then Eqs. (10) and (11) is helped us to modify the weight
and bias of the neural network of the neural population. After
a single iteration the neural population NNpop is evaluated and

the performance of the best neuron NNbest is selected based on

the following rule.
If (AccuracyðNNpopÞP h) Then.
MaxðAccuracyðNNpopÞÞ ¼ NNbest

Now, when this NNbest is decided then the last round of the
weight and bias modification is performed. This equation of
weight and bias modification considers the Wbest and Bbest of

NNbest as the best weight and bias of the population for an iter-
ation. The equation is constructed as follows.

Wiþ1 ¼Wi þ R1e
ðDWÞðWbest �WiÞ þ R2ð1� randð0; 1ÞÞ ð12Þ

Biþ1 ¼ Bi þ R1e
ðDBÞðBbest � BiÞ þ R2ð1� randð0; 1ÞÞ ð13Þ

where the DW and DB are the euclidean distance between the
best and current weight and bias of the neural network. R1 and
R2 are the two constant. The rand(0,1) is the random number

in between 0,1. Based on the Eqs. (12) and (13) is the weight
and bias of all neural networks in the neural population is
updated. The algorithm of the proposed SWNN model for
intelligent transportation system is presented in Algorithm 1.

Algorithm 1. Proposed SWNN Model

1 INPUT: Pattern Pk, Target TRk, Neural population NNpop,

Population weight Wpop, Population Bias Bpop, Learning rate a
2 OUTPUT: NNbest;Wiþ1;Biþ1
1: Fixed the number of iteration: EPk

2: for K:1 to SizeðNNpopÞ do
3: create weight and bias matrix for every NN based on Eqs.

(2) and (3)

4: Wpop  Wi

5: Bpop  Bi

6: end for

7: Maximum Independent Run = Mr

8: while (Counter 6 Mr) do

9: for LPi:1 to SizeðNNpopÞ do
10: Create lightweight process: LPi

process

11: LPi
process  NNModelða;Wi;BiÞ

12: Each neuron in NNpop updates Wi and Bi using Eqs. (10)

and (11)

13: Error of each NN Ei ) Epop

14: Calculate AccuracyðNNpopÞ using Eq. (14)

15: end for

16: if MaxaccuracyðNNpopÞP h) then

(continued on next page)
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17: Update Best neuron in NNpop

18: NNnew
best )MaxaccuracyðNNpopÞ

19: end if

20: Find Wbest ) NNbest

21: Find Bbest ) NNbest

22: for p:1 to SizeðNNpopÞ do
23: DW EuclideanðWi;WbestÞ
24: DB EuclideanðBi;BbestÞ
25: Update Wi using Eq. (12)

26: Update Bi using Eq. (13)

27: end for

28: Counter ¼ Counterþ 1

29: if AccuracyðNNbestÞP U then

30: Break

31: end if

32: end while
Fig. 2 Correlation matrix of the 12 feature dataset without the

implementation of the Rule.
3. Empirical evaluation

The proposed method’s success is dependent on the SWNN-
based classification approaches’ performance, which aids in
detecting the logistic transit type. This section evaluates and

improves the suggested swarm neural network approach for
the TMD dataset for optimum performance by modifying dif-
ferent parameters over a wide range of values. The SWNN is

evaluated for its performance in terms of solution quality
and stability in delivering the best solution. The simulation is
performed over a dataset that is relevant to the theory pre-

sented in this work, and in this dataset, data is sent via car sen-
sors, making it relevant for the experiment. The performance
of the suggested technique is compared with the standard
benchmark algorithms such as Random Forest, XGBoost,

and Decision Tree.

3.1. Simulation setup and dataset

The test is carried out on an Intel i5 9th generation computer
with 8 GB RAM and a 4 GB graphics card, as well as a 1 TB
hard drive. The Numpy, Scipy, and Panda libraries are used to

create the SWNN simulation, and the Matplotlib library is
used to plot the studied results. The proposed method’s perfor-
mance is assessed in terms of solution quality, which is mea-
sured by calculating accuracy. The typical machine

algorithm’s classification error, precision, recall, and accuracy
are evaluated.

The TMD dataset is separated into sections based on the

number of features. These features are derived from the sensor
data received and processed by the data processing section.
The sensor signal is separated using a set-sized window in

the processing stage. The features are then gathered from this
window. The experiment employs an accelerometer, gyro-
scope, magnetometer, and audio sensors. The dataset is now

sorted into three groups depending on the available features.
The first dataset contains 12 features, the second contains 32
features, and the third dataset contains 36 features. For com-
paring the performance of the proposed approach and other

machine algorithms across different dimensions of the trans-
port dataset, the dataset is divided into these three groups.
The performances of the proposed method and the standard
machine algorithm are analyzed based on classification error,
precision, recall, and accuracy as follows,

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
ð14Þ

Precision ¼ TP

TPþ FP
ð15Þ

Recall ¼ TP

TPþ FN
ð16Þ

where TP = true positive, TN = True negative, FP = False
Positive, and FN = False Negative. In the performance mea-
surement, the high value of precision and recall reflects the
highly accurate result.

The correlation value of the characteristics in the dataset is
used to analyze them and the correlation matrix is constructed
based on Eqn. 1. Such matrix is shown in Fig. 2. The following

rule is used during the correlation-based feature selection
process.

If COðX1;X2Þ > 0:5Then
Remove X2

Where X1 and X2 are the two different features. This rule
states that the strongly correlated for the correlation matrix

are eliminated. After eliminating the strongly linked features,
the correlation matrix is re-plotted and shown in Fig. 3.

The correlation matrix of 32 feature dataset without and
with the implementation of the Rule are shown in Figs. 4

and 5, respectively. Similarly, the correlation matrix of 36 fea-
ture dataset without and with the implementation of the Rule
are shown in Figs. 6 and 7, respectively.

3.2. Parameter analysis for SWNN model

The parameter analysis for the proposed method is performed

in an empirical way to adjust the parameters for the SWNN
method over the transport mode dataset. The adjustment of
these parameters will remain the same for any number of fea-



Fig. 3 Correlation matrix of the 12 feature dataset after the

implementing the Rule.

Fig. 4 Correlation matrix of the 32 feature dataset without the

implementation of the Rule.

Fig. 5 Correlation matrix of the 32 feature dataset after the

implementing the Rule.

Fig. 6 Correlation matrix of the 36 feature dataset without the

implementation of the Rule.
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tures used for the dataset. The parameter analysis for every
parameter is initiated with a wide range of values, but only a

few of them are selected for the presentation purpose. The
parameters that impact the performance of the proposed
SWNN model are neural population size and learning rate.
The population size is tested with the different values, but

the 5, 10, and 20 population size is used for the presentation
purpose. (See Tables 1–3).

Considering the higher population size becomes unneces-

sary as the SWNN achieves its maximum accuracy with a pop-
ulation size of 20. The error produced with population size 10
and 20 is 0.024 and 0.006. Hence, population size 20 is good

with the learning rate range 0.06 to 0.125. The Learning rate
ranges are used instead of the single learning rate for neural
networks of the neural population. The use of different learn-
ing rates creates a variation in the performances in the neural
networks of the neural population. The learning rate in which
the best performance is observed is 0.06 to 0.125. The higher

learning rate is not used here because the proposed learning
rate produces the best accuracy over the transport mode data-
set. The overall fixed values of the different parameters are

described in Table 4.

3.3. Comparative result analysis and discussion

Proposed swarm neural network-based techniques are applied
over the dataset consisting of different numbers of features.
This variation is analyzed to understand the stability of the

proposed SWNN model over different dimensions of the data-
set. The solution quality is also analyzed by comparing the per-



Fig. 7 Correlation matrix of the 36 feature dataset after the

implementing the Rule.

Table 1 Performance analysis of SWNN by varying the

learning rate with population size 5.

Population size = 5

Accuracy Precision Recall

Range1 (0.0001, 0.009) 0.781 0.701 0.771

Range2 (0.01, 0.06) 0.801 0.799 0.787

Range3 (0.06 0.125) 0.883 0.853 0.853

Table 2 Performance analysis of SWNN by varying the

learning rate with population size 10.

Population size = 10

Accuracy Precision Recall

Range1 (0.0001, 0.009) 0.867 0.857 0.857

Range2 (0.01, 0.06) 0.901 0.901 0.901

Range3 (0.06 0.125) 0.976 0.966 0.966

Table 3 Performance analysis of SWNN by varying the

learning rate with population size 20.

Population size = 20

Accuracy Precision Recall

Range1 (0.0001, 0.009) 0.971 0.970 0.970

Range2 (0.01, 0.06) 0.988 0.988 0.988

Range3 (0.06 0.125) 0.994 0.989 0.989

Table 4 Parameters of Swarm-NN.

Sl. No. Parameter Names Value

1 NN layer size 3

2 Noneuron/layer 1

3 No of NN in population 20

4 Learning range for neural population 0.6 to 0.125

5 / (Eq. 16, Eq.17) 0.25

Table 5 Comparative analysis of proposed method (SWNN)

with standard algorithms over 12 features.

Algorithms Precision Recall Accuracy

Random Forest 0.71 0.71 0.77

Decision Tree 0.67 0.68 0.69

K-nearest Neighbour 0.51 0.49 0.51

Proposed Method 0.88 0.89 0.9

Table 6 Comparative analysis of proposed method (SWNN)

with standard algorithms over 32 features.

Algorithms Precision Recall Accuracy

Random Forest 0.75 0.76 0.8

Decision Tree 0.67 0.67 0.68

K-nearest Neighbour 0.54 0.53 0.54

Proposed Method 0.89 0.9 0.94

Table 7 Comparative analysis of proposed method (SWNN)

with standard algorithms over 36 features.

Algorithms Precision Recall Accuracy

Random Forest 0.83 0.83 0.84

Decision Tree 0.85 0.84 0.88

K-nearest Neighbour 0.78 0.79 0.8

Proposed Method 0.97 0.97 0.98
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formance of the proposed solution with another standard
benchmark algorithm. The algorithms are Random Forest

[20], Decision Tree [21], and K-Nearest Neighbor [22]. From
the past few decades, Random Forest, Decision Tree, and
K-Nearest Neighbour algorithms have achieved higher predic-
tion accuracy, precision, and recall over the other machine
learning models in various fields related to the Internet of

Things, such as smart transportation systems, smart health-
care, smart agriculture, etc. Thus, to show the outperformance
of the proposed SWNN model in the agent-based logistic

transportation framework, we have introduced Random For-
est, Decision Tree, and K-Nearest Neighbour algorithms for
comparative analysis over a benchmark dataset. The perfor-

mance of these algorithms is shown in Table 8.
From Tables 5–7, it is observed that the performance of the

algorithm increases with the number of features. Now, if the
minimum number of features are available then the perfor-

mance of the SWNN is also better than that of the standard
algorithms. The performance of the SWNN over the dataset
with 12 features is 24.3% more than that of the average accu-

racy of the other three algorithms, Tables 5 and 8. In the case
of the dataset with 32 and 36 features, the performance
increases by 26.3% and 14% respectively.



Table 8 Comparative analysis of the proposed method over

different machine learning algorithms.

12 Features 32 Features 36 Features

Random Forest 0.77 0.80 0.84

Decision Tree 0.69 0.68 0.88

K-nearest Neighbour 0.51 0.54 0.8

Proposed Method 0.90 0.94 0.98

Fig. 9 Comparative analysis of the proposed method with other

standard machine learning algorithm over different numbers of

features.
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The performance of the standard machine learning algo-

rithms and the proposed SWNN approach is compared in
Table 5, where the random forest achieves the second-highest
performance and the SWNN outperforms all other methods

on the dataset with 12 features. The random forest yielded a
23% inaccuracy, while the proposed SWNN approach pro-
duced 10% inaccuracy. Within the limited simulated environ-

ment, there is a significant 13% improvement in
performance. The random forest has the second-best perfor-
mance over the 32 feature dataset with a reported error rate
of 20%. The performance of the proposed SWNN approach

has improved by 0.04% for this 32-feature dataset compared
to the previous one. This significant improvement in the
SWNN method claimed that the performance is attributable

to the increased availability of features in the dataset. Now,
a similar pattern of performance improvement can be seen
with the dataset with 36 features, which produces only

0.02% error for logistic type prediction. The performance of
the decision tree is the second-best in the list for the dataset
with 36 features. However, the performance of the decision
tree is 10% less than the proposed SWNN approach, which

makes the SWNN approach the best-suited method for pre-
dicting this kind of logistic transportation.

This performance is an enhancement in the proposed algo-

rithm is only possible for the parallel implementation of the
neural networks from the neural population and its weight
adjustment strategy. The learning of the proposed method is

dynamic because the selection of the best neural network is
performed in each iteration and then the learning of the best
neural network of the population is shared with the other neu-

ral network in the population. This performance of the pro-
posed SWNN strategy also reflects its stability in the
Fig. 8 Comparative analysis of the proposed method with other

standard machine learning algorithm based on precision and recall

value.
performance over the different datasets. The performance

quality of the proposed method is represented graphically in
Figs. 8 and 9 and this shows that the quality of the solution
is also outperforming the other strategies of machine algorithm
presented here with a limited simulation environment.

4. Conclusion

This paper has designed a new logistic agent-based model for

analyzing public transports at the edge of the networks and
making decisions intelligently for public transportation. For
analyzing real-time sensory data of public transportation,

retrieved from multiple vehicle sensors, we have introduced a
new Swarm-Neural Network (SWNN) model. The SWNN
model is constructed with a set of parallel neural networks,

and it fits within the intelligent logistic transportation frame-
work for data analytics. The proposed model shortens the
transit time of every small-scale logistics delivery to its destina-
tion. The main goal of the SWNN model is to detect the trans-

portation model efficiently by training the weight and bias
matrix of the neural networks. The performance of the pro-
posed SWNN model is evaluated over a standard dataset,

namely the TMD dataset that consists of multiple sensory data
of public transports such as accelerometer, gyroscope, magne-
tometer, and audio sensors. During the evaluation, the features

of the sensory data are extracted based on a 5-s time interval
before analyzing the dataset using the proposed SWNNmodel.
A set of simulation analyses with multiple features have been

performed to show the outperformance of the proposed
SWNN model over the standard machine learning techniques.
The comparative analysis represents that the proposed SWNN
model achieves 78–98% accuracy over the standard machine

learning algorithms. In the future, we will develop a logistic
agent-based intelligent framework at edge networks with
advanced communication technology such as 6G networks to

reduce network congestion and analyze the vehicular sensory
data with higher accuracy.
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