Journal of Reliable Intelligent Environments
https://doi.org/10.1007/s40860-022-00175-4

ORIGINAL ARTICLE l‘)

Check for
updates

Helping novice developers harness security issues in cloud-loT systems

1 1

Fulvio Corno'® - Luigi De Russis'® - Luca Mannella'

Received: 22 October 2021 / Accepted: 6 April 2022
© The Author(s) 2022

Abstract

The development of cloud-connected Internet of Things (IoT) systems is becoming more and more affordable, even to novice
programmers, thanks to dedicated cloud platforms that already integrate the core functionality needed by an IoT system. In
this context, a growing number of IoT systems are being developed and deployed on open networks, often without integrating
adequate security in the process. Novice IoT programmers, in particular, tend to overlook security issues, as confirmed by a
small user study. Starting from this risk, the paper analyzes the security features available in two major cloud-IoT platforms
(Amazon Web Services and Microsoft Azure) and highlights those settings, tools, and practices designed to ensure more
secure implementations. We observed that these platforms would reasonably address many security problems detected in the
study, if only the correct features were identified and used. The paper finally contributes a set of guidelines to support novice
IoT developers in avoiding the main and recurrent security issues in their projects and better exploiting cloud-IoT platforms’

inherent security features.

Keywords AWS - Azure - Cloud - Cybersecurity - Guidelines - IoT - Novice programmers

1 Introduction

Internet of Things (IoT) and cloud computing are two
widespread emerging technologies that are becoming very
popular not only for scholars and expert developers but also
for hobbyists and novice developers. Many users are now
using IoT devices in their houses [1], and the cloud comput-
ing market is expanding year after year. The growth of these
two fields brings to the inclusion of IoT functionalities inside
the cloud platforms and the emergence of specialized features
needed in IoT systems. In the past years, these platforms
aided the development of IoT solutions thanks to the already
integrated functionality a cloud-connected IoT application
needs. Nowadays, these platforms are quite easy to use, even
by novice programmers, and more affordable than a few years
ago. Furthermore, cloud computing service providers allow
their customers to pay only for the resources effectively con-

B<I Luca Mannella
luca.mannella@polito.it

Fulvio Corno
fulvio.corno@polito.it

Luigi De Russis
luigi.derussis @polito.it

Dipartimento di Automatica e Informatica, Politecnico di
Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy

Published online: 13 May 2022

sumed, facilitating the entry of many developers into this
market.

Currently, according to Gartner’s evaluation [2], the major
cloud platforms for infrastructure and services are as follows:
Amazon Web Services (AWS), Microsoft Azure, Google
Cloud Platform (GCP), Alibaba Cloud, Oracle Cloud Infras-
tructure (OCI), Tencent Cloud, and IBM Cloud. Furthermore,
all these platforms include specific tools designed for devel-
oping IoT applications or interacting with IoT devices.

Unfortunately, such expansion comes with a price. This
growing number of IoT applications are too often designed,
developed, and deployed on open networks without integrat-
ing adequate privacy and security in the process [1]. For
instance, one of the most known IoT failures is the Mirai
Botnet [3]. Using hard-coded and easy-to-guess passwords in
thousands of IoT devices allowed attackers to create several
massive botnets able to execute powerful Distributed Denial
of Service (DDoS) attacks. Another famous cybersecurity
flaw in the IoT domain occurred in the implantable cardiac
devices developed by St. Jude Medical! (now part of Abbott
Laboratories). In this case, the vulnerability occurred in the
transmitter (a device called Merlin @home) that reads the car-
diac device’s data and remotely shares it with doctors without

1 https://www.muddywatersresearch.com/research/stj/mw-is-short-
stj/, last visited on October 6, 2021.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s40860-022-00175-4&domain=pdf
http://orcid.org/0000-0002-9818-0999
http://orcid.org/0000-0001-7647-6652
http://orcid.org/0000-0001-5738-9094
https://www.muddywatersresearch.com/research/stj/mw-is-short-stj/
https://www.muddywatersresearch.com/research/stj/mw-is-short-stj/

Journal of Reliable Intelligent Environments

authentication or encryption. Indeed, an attacker could eas-
ily impersonate a transmitter unit and communicate with the
cardiac device. In this way, malicious users could control
the device depleting the battery or administering incorrect
pacing or shocks.

However, sometimes the attack could start from the cloud
platform and compromise the device. Indeed, at the begin-
ning of last year, a new CVE related to a core component
of the Kalay cloud platform for IoT devices offered by
ThroughTek was created [4]. By exploiting this flaw, a mali-
cious user could steal the credentials used by other users to
access one of their devices. To proceed, the attacker should
obtain the unique identifier of the device. Then, registering
another device with the same identifier on the network, they
overwrite the original device on Kalay servers. Once this
association is established, the next victim’s connection will
be directed by the server to the attackers, allowing them to
steal the credentials.

The burden of ensuring the security of complex IoT
systems falls ultimately on the developers, and security con-
siderations add to the complexity of this already challenging
application domain.

Building a fully secure system is challenging and requires
a deep understanding of all the issues involved. However,
even novice programmers could reach a basic level of secu-
rity, avoiding the most basic vulnerabilities, if they apply
security-by-design concepts, following a clear and focused
set of guidelines during their development process.

Nevertheless, designing a secure application from the
beginning is not always straightforward, especially for a
novice developer. However, this task could be tough even
for experienced developers if they are new to a particular
technology (especially in a diversified programming field
like the ToT). It is challenging to avoid security issues “by
design” if programmers do not feel comfortable with a spe-
cific technology. Hence, in this work, we focused on novice
loT programmers, by considering software developers who
are not new to the programming world in general, but they
had never developed a full-working and production-ready
10T system.

The goal of this paper is to help novice IoT program-
mers realizing more secure cloud-IoT solutions. To achieve
this goal, the paper provides a set of straightforward guide-
lines that could be easily followed by developers new to this
specific application domain, suited to the major cloud-IoT
platforms. To conduct this work, we started from preliminary
results presented in [5], where we exposed a use case devel-
oped in the context of a training activity. In that use case, a
group of novice IoT developers created a cloud-IoT applica-
tion using a major cloud platform. Initial results showed that
developers often did not accurately consider some security
issues in their design and implementation, thus motivating
further research for providing them an adequate support.

@ Springer

The results initially presented in [5] are briefly recalled and
extended in this paper (Sect. 5), where we try to understand
the security perception of this class of developers and the
impact of this perception on their developed applications.
Taking into account the survey’s findings, this paper ana-
lyzes some relevant security features available in Amazon
Web Services (AWS) and Microsoft Azure, two of the major
cloud IoT platforms, to comprehend if they could compen-
sate for novice IoT programmers’ lack of security knowledge.
AWS and Azure are well-known cloud platforms, with a wide
industry adoption and comparable functionalities, according
to both industry [2] and academic [6-8] studies. In partic-
ular, we observed that the two platforms could reasonably
counter many security problems detected in the study if the
developers identify and use the correct features.

As a final contribution, to support novice IoT developers
in shunning the major security issues in a generic IoT archi-
tecture, we developed a set of guidelines helpful to exploit
the inherent security features of cloud-IoT platforms.

This paper is structured as follows: we analyze the related
works in Sect. 2. Then, Sect. 3 introduces the two cloud
platforms considered in the study: AWS and Azure. We
present an illustrative use case in Sect. 4, where we identify
some possible attack points (Sect. 4.1). Section 5 presents
the user study results expanding the work in [5] and exam-
ines the perception of the previously cited issues by our
novice IoT developers. Section 6 analyzes how the previously
highlighted attack points could be faced by the two cloud
platforms. Then, the paper discusses in Sect. 7 the actual
severity of the previously cited issues considering both the
developers’ perceptions and the cloud-IoT platforms’ design.
Building on the previous analysis, Sect. 8 proposes some
guidelines to support novice IoT developers in avoiding the
security issues previously discussed in their projects. In the
end, Sect. 9 concludes the paper and proposes some consid-
erations for future activities.

2 Related work

Nowadays, cloud computing is a well-known concept. The
benefits and the opportunities offered by this technology are
evident not only for developers but also for the general public.
Nevertheless, opening such a distributed technology to many
different platform users from anywhere in the world could
create many security threats. For this reason, companies [9]
and researchers [10,11] have analyzed the security risks and
issues of cloud computing since the very beginning of this
paradigm.

Even the way of thinking of novice developers is a field
of research already examined by scholars. In 1989, Soloway
and Spohrer published a whole book [12] to illustrate the
major issues for this kind of developer.

Journal of Reliable Intelligent Environments

The first research activities were mainly focused on better
understanding how this class of developers faces the most
complicated programming feature like, for instance, recur-
sion [13]. More recently, Lahtien et al. [14] conducted a vast
survey—including 559 students and 34 teachers from five
different countries—focused on the main common problems
in learning how to develop computer programs by a univer-
sity student. In this study, researchers discovered that novice
developers’ most recurrent problem is not comprehending a
computer science course’s notions but learning how to apply
them concretely. The outcome of this research could explain
why, even if the developers involved in our survey are con-
scious of a few security concepts, they did not try to apply
them during the development of their prototypes. Under-
standing the main problems of these developers and helping
them improve their skills is still an active research topic.
Scholars not only study novice programmers in universities,
but they are also interested in understanding the main issues
in a life-long context. For instance, in a recent study, Billy
Javier analyzed the difficulties of life-long novice program-
mers and provided some suggestions to improve the courses
given to them [15].

Even our research group had already conducted some
research activities related to novice programmers. For two
consecutive years, we studied novice loT programmers of
the “Ambient Intelligence” course, held in Politecnico di
Torino (precisely 2014 and 2015 editions). In one of our pre-
vious studies [16], we spotlighted some of the most painful
points for this category of developers. Notably, we realized
that novice developers perceived their tasks as extremely
difficult when they are associated with: integrating various
subsystems, interaction with proprietary third-party services,
and the configuration of mobile, web, or hybrid applications.
Furthermore, we are still investigating their issues and study-
ing possible solutions to help programmers create better [oT
solutions using tools like a computational notebook focused
on [oT technologies and physical computing [17,18].

However, it is not so common to find studies related to
the security perception of a novice programmer. Usually,
researchers analyze this kind of perception from a non-
technical point of view. For instance, considering the security
perception from a platform user’s point of view, it is demon-
strated that there is a relationship between a well-designed
human—computer interface and the users’ security percep-
tion [19]. Another example of this kind of study is the work
of Varga et al. [20]. They published an article related to the
cyber-threat perception of actors belonging to the Swedish
financial sector.

Discussing the IoT domain instead, in line with the recent
literature, IoT systems appear to be in a critical situation.
According to the study of Kumar et al. [1], people started con-
siderably using IoT systems in their houses. Indeed, roughly
40% of houses worldwide have at least an IoT device; mean-

while, this percentage rises to approximately 70% only in
North America. In their work, Kumar et al. investigated an
extensive data set of IoT devices (83M) located in a signifi-
cant amount of real houses (15.5M). Thanks to this analysis,
they discovered that an unexpected amount of devices still
support protocols considered not secure nowadays, like the
File Transfer Protocol (FTP) and Telnet. In addition to this
large study, they performed an in-depth analysis of the data
retrieved on a specific day. These data were retrieved from
the users actively using Avast Wi-Fi inspector.> From the
outcome of this specific analysis, they discovered that 62%
of the scanned houses were afflicted by at least one known
vulnerability.

In another paper [21], Kafle et al. proved a lateral privilege
escalation attack on a cloud-IoT environment (specifically
on Google Nest?). Their study demonstrated that the low
security of a cloud platform is sometimes related to third-
party programmers’ mistakes. Indeed, even if Nest attempted
to maintain its platform secure through a review process,
they decided not to execute this inspection on the appli-
cations downloaded by less than 50 users. Unfortunately,
applications with a low number of downloads are more likely
developed by novice programmers (or explicitly created with
a malicious purpose).

Even if other scholars are studying security require-
ments [22], best practices [23], and countermeasures to the
weaknesses of IoT systems (e.g., through sharp Intrusion
Detection Systems [24]), our works aims at better analyzing
the architectural elements involved in a typical cloud-IoT
application. Indeed, even if the best practices provided by
Momenzadeh et al. [23] were verified against some cloud-
10T platforms, they are more focused on the point of view of
the platforms’ developers. Instead, our final goal is to provide
a straightforward methodology that a novice IoT program-
mer (in their role as a final user of the cloud platform) could
use from the very beginning to design and implement a more
reliable IoT system interacting with a cloud back-end.

3 Cloud platforms overview

This section introduces the two cloud-IoT platforms analyzed
in more detail in our study, that will be used to highlight the
common security issues, and their solution, and to inform the
definition of the guidelines presented in Sect. 8.

2 https://support.avast.com/en-id/article/ 104/, last visited on January
27,2022.

3 https://store.google.com/category/google_nest, last
January 27, 2022.

visited on

@ Springer

https://support.avast.com/en-id/article/104/
https://store.google.com/category/google_nest

Journal of Reliable Intelligent Environments

P

AWS IoT Architecture

AWS IoT SiteWise
Data services

| {AWS IoT Events

AWS IoT Analytics

BB

Control services

AWS IoT Device Mgmt.

AWS IoT Core

N

AWS IoT Device Defender

AWS IoT Things Graph

AWS IoT Greengrass

Device software

O

FreeRTOS

AWS IoT Device Tester

AWS IoT Device SDKs

BE E

Fig. 1 AWS IoT services overview

3.1 Amazon Web Services (AWS)

Amazon Web Services (AWS) is an on-demand cloud com-
puting platform developed and maintained by Amazon. This
platform provides many basic abstract technical infrastruc-
ture and distributed computing building blocks and tools.
AWS offers its cloud services according to the three main
common cloud paradigms: Infrastructure as a Service (IaaS),
Platform as a Service (PaaS), and Software as a Service
(SaaS).

On the security page of their website,* Amazon declares
to put much effort into keeping AWS a reliable service for
its customers. In their white papers, Amazon guarantees that
AWS’s IT infrastructure is designed and managed in align-
ment with security best practices and several IT security
standards [25,26]. This commitment also seems to be con-
firmed by the work of other scholars [27].

Nevertheless, one of the main points clearly explained
inside the AWS policy is the shared responsibility model
[28]. Considering that the customers share with AWS the
control over the IT environment, security could not be con-
sidered a duty of Amazon entirely, but it is a responsibility
shared with any customer that uses AWS. For this reason,

4 https://aws.amazon.com/security/, last visited on January 12, 2022.

@ Springer

programmers must not underestimate their role in keeping
the application developed through AWS secure. This model
could be particularly tricky for novice developers. Their lack
of knowledge could more easily bring them to overlook their
responsibilities when creating projects with a very famous
cloud platform.

To support developers, AWS IoT provides some cloud
services helpful in connecting each IoT device to others and
to AWS cloud services. Moreover, AWS IoT offers device
software helpful to integrate these devices into AWS IoT-
based solutions. Amazon divides its IoT components into the
following three categories (Fig. 1): Device Software, Control
Services, and Data Services. In particular, considering that in
this study, we focused our attention on the interconnection of
the devices to the platform, instead of on the various possible
devices, we mainly considered the components belonging to
the second category (Control Services).

3.2 Microsoft Azure

Microsoft Azure (initially known as Windows Azure) is a
public cloud computing platform offered and maintained
by Microsoft. It supports many different services both from
Microsoft and third parties. Like AWS, Azure offers its cloud
services in three different ways: laaS, PaaS, and SaaS.

https://aws.amazon.com/security/

Journal of Reliable Intelligent Environments

Azure loT Hub

Azure loT Hub Device
Provisioning Service

Azure Digital Twins

Azure
Services for loT

N

Azure Time Series Insights

Azure Maps

Azure Sphere
Azure loT Device SDK
Azure loT Edge

loT and Edge
Device Support =7
Azure Data Box Edge

Fig.2 Azure IoT technologies and services

Microsoft security documentation reports that “security is
integrated into every aspect of Azure”.> The latter provides
various services and tools to help developers create secure
solutions, as also analyzed in previous studies [7,29].

However, similarly to Amazon, Microsoft released a white
paper to clarify the concept of a shared responsibility when
developers are using a cloud platform offered by a third-
party [30]. Though the customers’ responsibilities visually
decrease according to the kind of infrastructure used in
their model, the responsibility is always shared. Therefore,
even when using Microsoft’s platform, the programmers
should not underestimate their role during the applications’
development.

Specifically, the main focus of our Azure analysis is Azure
10T, a collection of cloud services designed to connect, mon-
itor and control a large number of IoT assets. Microsoft
classifies its components in two main categories as follows:
Azure Services for IoT and IoT and Edge Device Support
(Fig. 2). Among them, similarly to AWS, Microsoft offers
device software to integrate and connect [oT devices with its
cloud platform. In addition, Azure also proposes Azure loT
Central, a fully-managed platform that can be used to create
an IoT solution starting from an application template.

4 Use case

An initial understanding of the security issues faced by a
novice developer was formalized in a small-scale study,
conducted in the context of a professional training course
for a consulting engineering company in Turin, Italy. The
course’s main goal was to teach a small group of program-
mers how to develop a cloud-IoT-based application from
scratch. This course started by introducing the IoT world,
explaining possible advantages, disadvantages, and chal-
lenges. It also explained one of the most used protocols in this
field: Message Queuing Telemetry Transport (MQTT). After

> https://docs.microsoft.com/en-us/azure/security/, last visited on
January 14, 2021.

Azure Stream Analytics
Azure Cosmos DB

Azure Al

Azure Cognitive Services
Azure ML

Azure Logic Apps

Windows loT

Azure Certified for loT
—Device Catalog

Azure Active Directory
Azure Monitor

Azure DevOps

Power BI

Azure Data Share
Azure Spatial Anchors

Azure ML
Azure SQL
Azure Functions

Azure Stream Analytics Azure Cognitive Services

Azure Storage

this, the programmers learned the fundamentals of cloud
computing technologies starting from a general perspective.
Subsequently, they were introduced to AWS, focusing on
cloud computing for IoT. In the end, the software developers
received some additional concepts related to developing an
HTTP-based server using the Representational State Transfer
(REST) approach.

The course was organized in nine non-consecutive days
(distributed among six weeks), with theoretical sections in
the mornings and practical experiences in the afternoons: one
introductory lecture, four lectures reserved to cloud comput-
ing, and four lectures for AWS-IoT. To successfully pass the
course, the attendees, divided into groups, had to develop
a full-working prototype with all the components shown in
Fig. 3. The participants had to present also their prototype in
a final discussion one week after the end of the course.

The prototype had to be composed of the following cloud
components:

e an [oT gateway: to manage bidirectional communication
with IoT devices;

e an APIs gateway: to manage requests from developers
and final users;

e aserverless component: to run code in response to events,
to schedule processes, and to interact with some acting
devices;

e adatabase: to quickly store a potentially massive flow of
data from many IoT devices.

If we consider the mapping of the high-level architectural
components onto the services offered by the cloud platforms,
we examined as [oT gateway the IoT Core in AWS and the
IoT Hub in Azure. The service for managing the Application
Programming Interfaces (APIs) is called API Gateway in
AWS and API Management in Azure. Regarding the server-
less component, it could be mapped as Lambda in AWS,
while Azure simply called it Functions. To conclude, talking
about the database, considering that NoSQL databases are
very suitable for IoT applications [31], we decide to adopt:
DynamoDB in AWS and Cosmos DB in Azure.

@ Springer

https://docs.microsoft.com/en-us/azure/security/

Journal of Reliable Intelligent Environments

Amazon
DynamoDB

i
aaley

: Lambda '
H AWS loT Core i Eunction : i Amazon API
' ; ! Gateway
i | E 5 !
| i : 5 |
i H i i i
: ' ‘ ; |
: i : i :
a é s | i
i 10TMQTT | 1oTMQTT ! ; RESTful !
i protocol : protocol ! HTTP :
s a a I~ | ;
i : : loT i i
Sensing dev:/ices i E certificate : i
A ' ‘
<~

10T sensor

mrrr
10T thing
thermostat

loT hardware
board

Fig.3 The architectural schema of a use case application in AWS

Adding more details on the third component, it allows run-
ning code without managing servers or creating workload-
aware scaling logic. The great advantage of using such
a component is that developers have only to provide the
code, and the platform automatically runs it allocating
execution power based on the incoming requests. Further-
more, these services support many different programming
languages. AWS Lambda supports Java, Go, PowerShell,
Node.js JavaScript, C#, Python, and Ruby code. In addi-
tion, it provides a runtime API that allows developers to use
any additional programming languages. Instead, Azure Func-
tions support C#, JavaScript Node.js, and F# since version
1. Then, from version 2, they also support Java, PowerShell,
Python, and TypeScript.

Regarding the communication protocols, for this proto-
type, we suggested taking advantage of the two primary
protocols explained during the course and typically used in
basic IoT applications: MQTT and HTTP.

@ Springer

Acting devices -

Device
gateway
(Flask)

Application

11011

@

=]
TITIT

Phillips Hue

TTTIT
i
1
.

No custom hardware was developed, and IoT devices were
selected among available off-the-shelf ones, as the scope of
the course was more on the cloud and interoperability aspects,
rather than on connected embedded devices.

4.1 Main architecture attack points

From an architectural of view, it is possible to divide the
main hardware and software components of a simple cloud-
IoT project into the following four different categories:

e Sensing devices: devices used to retrieve some data from
the physical world (e.g., a temperature sensor).

e Acting devices: devices used to act on the physical world
(e.g., a smart lamp).

e The cloud: a cloud back-end server able to manipulate
and store all the data necessary for the application.

Journal of Reliable Intelligent Environments

e Front-end devices: used to interact with the back-end
(e.g., a mobile application).

Considering the proposed architecture (Fig. 3), we defined
the main attack points according to the state-of-the-art secu-
rity issues in the IoT field (e.g., [1,21,24,32]). In particular, to
conduct this analysis, we decided to use the STRIDE threat
model [33]. Initially developed in the Security Engineering
and Communications group at Microsoft, different scholars
used this model in many different research activities related
to IoT (e.g., for the security of Cyber-Physical Systems [34],
Smart Cities [35], or Smart Grids [36]), and it is applicable
and suitable to the use case. STRIDE is an acronym for the
six categories used by the model to classify security threats:
Spoofing, Tampering, Repudiation, Information disclosure,
Denial of Service (DoS), and Elevation of privilege. Each of
these threat-categories is associated with a related security
property: Authenticity, Integrity, Non-repudiability, Confi-
dentiality, Availability, and Authorization, respectively. In
this specific use case, we were not interested in enforcing
non-repudiability, so we did not consider issues related to
repudiation threats.

We want to clarify that we defined these attack points
having a cloud-centered approach in mind. For this reason,
we did not consider issues related to the possible constrained
capabilities of the IoT devices or the security of the mobile
applications installed on the front-end devices. We followed
this approach in defining the principal architecture’s issues
to create a scenario that is as generic as possible, analyzing
a set of threats independent of the physical devices used by
the developers.

According to the STRIDE framework, we identified the
following five main attack points in the use case architecture:

1. the data flows between a sensor and the back-end;

2. the data flows between the back-end and a physical actu-
ator (e.g., a smart lamp);

3. the data flows between the APl Gateway and the user’s
device;

4. the developed code stored and executed inside the back-
end (e.g., the serverless component);

5. the back-end database (i.e., the NoSQL database).

Considering the first three attack points (1, 2, and 3), all the
data flows could be primarily subject to spoofing and tamper-
ing. Some possible attacks related to these threats are Replay
attacks® or Man-In-The-Middle (MITM) attacks.’” This last

6 An attack in which a valid data pack is stored and sent by a malicious
user in a different moment.

7" An attack in which a malicious user intercepts and modifies the data
meanwhile they are being transmitted.

attack is particularly relevant because it could exploit basi-
cally all the security threats presented by the STRIDE model.

Moreover, discussing the code executed on the back-end
(point4), in the proposed [oT architecture it was implemented
by using the AWS Lambda component to develop the back-
end’s functionalities. This component is reasonably the best
point for executing an elevation of privilege attack. Further-
more, from this component it could also be easy to obtain
access to sensible information (i.e., information disclosure).
Indeed, if the code on the back-end of the application is com-
promised, attackers could become able to execute arbitrary
functions inside the developed system.

In conclusion, if the back-end database (point 5) is
not well protected and the stored data are not adequately
encrypted, the content of the database could be altered (i.e.,
tampering) or the system might be a victim of a steal of
information (i.e., information disclosure)—this information
could be directly used by the malicious user or sold (e.g.,
login credentials or payment data are interesting information
to sell).

5 Developers security perspective

The analysis of the security perspectives in developing the
proposed use case (Sect. 4) will allow us to better comprehend
the behavior of novice programmers in similar scenarios. In
particular, we aim at understanding if and how the features
of the cloud platforms’ components may compensate from
the developers’ lack of specific knowledge.

Hence, to understand their way of thinking, we prepared
a survey starting from the use case presented in Sect. 4. The
main research questions behind the delivered survey are:

e RQ1: What is the security perception of the novice IoT
developers?

e RQ2: Did novice IoT developers think about security
issues during application development?

e RQ3:DidnoviceloT developers act to increase the cyber-
security of their application?

This section explains the survey structure and presents the
answers provided by our participants.

5.1 Survey structure

At the end of the course, after the closing review of
the projects—when the students are already aware if they
successfully passed the final examination—we asked the
attendees to voluntarily participate in a survey. We provided
them a link to an anonymous online questionnaire hosted
on Google Form. All the questions in the survey required
a mandatory answer. When all participants completed the

@ Springer

Journal of Reliable Intelligent Environments

Table 1 Survey closed questions

Question

Description

How much do you feel expert about cybersecurity?

Using AWS, who is responsible for the security of the system you develop?

Values from one to five.

Three possible answers.

Sort the following architecture elements from the easiest to the most difficult to attack.
Sort the same elements according to the potential severity in case of a successful attack.

How many of these elements did you considered as “potentially attackable” during the development?

Ranking order of the 5 options.
Ranking order of the 5 options.
Values from zero to five.

Did you know that AWS offers some security support tool? (e.g., AWS IoT Device Defender)

Three possible answers.

survey, we solicited an open discussion to better understand
the meaning of their answers.

The three main sections of the survey were: “Back-
ground and Individual Studying”, “Possible Attack Points”,
and “Countermeasures and Best Practices”. We divided the
survey in different parts to put the participants’ focus on
different aspects, without overloading them with too much
information.

Indeed, in the first section, we never explicitly mentioned
to the attendees that the use case architecture had vulnerabil-
ities. In that part, we were interested in understanding their
thoughts before being influenced by our use case analysis. So,
the first open question of this part was: “Among the various
aspects of an IoT system, in your opinion, how important
is security?”’. We started giving participants a blank space
for collecting some insights about their cybersecurity per-
ception before influencing them in any way. Therefore, we
asked two closed questions: “How much do you feel expert
about cybersecurity?” and “Using AWS, who is responsible
for the security of the system you develop?”. The first ques-
tion requires a numerical answer from one (“not expert at
all”) to five (“very expert”); the second one has three possi-
ble answers: “the developer”, “Amazon”, and “both of them”.
Then, after showing Fig. 3 as a reminder of their systems’
architecture, we proposed two open questions to force them
to think about (and explain) what they did during the appli-
cation’s development. The two questions were: “Are there
any potential security issues in this architecture? If so, which
ones?”, and “If you have indicated any issues, how would
you manage them during the application’s development?”.

The purpose of the second part of the questionnaire, “Pos-
sible Attack Points”, was to understand what they think about
the attack points we identified and presented in Sect. 4.1. This
survey section is composed of three closed questions and one
open question. The first question requires the learners to sort
the five attack points presented in Sect. 4.1 from the easiest
to the most difficult to attack. Then, we asked them to sort
the same attack points according to the possible severity if an
attack succeeded. After that, the programmers had to answer
the following open question: “what do you think would be the
worst possible consequence in case the most serious point is

@ Springer

attacked?”. To conclude, we asked the attendees how many
of those points they considered attackable while develop-
ing their projects. This closed question required a numerical
answer from zero to five.

While the first two sections were more focused on the first
two research questions, the goal of the last part of the survey
was to understand if the participants tried to take some coun-
termeasures to improve their applications’ security (i.e., the
main focus is on RQ3). This section has five open questions
and one closed question. Specifically, we asked our novice
IoT developers to explain what criteria they used for their
password, and if they had created more users for their applica-
tions. Then, we investigated if they thought about encryption
of data in transit and data at rest (specifically on the database).
The only closed question of the section is related to secu-
rity support applications: “did you know that AWS offers
some security support applications? (e.g., AWS IoT Device
Defender®)”. This question has the following three possible
answers: “yes”, “no”, and “yes, but never used”. To conclude,
an open follow-up question digs in more details: “did you
consider using a support application (e.g., AWS IoT Device
Defender) to develop your system? (Please, answer Yes/No
and why)”.

To summarize, we reported in Table 1 all the closed ques-
tions of the presented survey, while Table 2 contains all the
open questions.

5.2 Survey results

Nine novice IoT programmers attended the professional
training course; we collected answers from six of them (i.e.,
the survey had an answer rate of 67%). All the attendees
were male, and they followed this course to start working
on their first cloud-IoT project for the consulting company.
However, most of them already had professional experience
on developing or testing embedded systems, in the context
of industrial automation and railway industries.

On the one hand, the participants felt very inexperienced
about cybersecurity. Indeed on a scale from one to five (where

8 https://aws.amazon.com/iot-device-defender/, last visited on

February 1, 2021.

https://aws.amazon.com/iot-device-defender/

Journal of Reliable Intelligent Environments

Table 2 Survey open questions

Question

Among the various aspects of an IoT system, in your opinion, how important is security?

Are there any potential security issues in this architecture? If so, which ones?

If you have indicated any issues, how would you manage them during the application’s development?

What do you think would be the worst possible consequence in case the most serious point is attacked?

What criteria did you use for choosing your passwords?

Did you create multiple users (with different permissions) to access your services (e.g., AWS Lambda)? (Please, answer Yes/No and why)

Did you ever verify if connections to and from AWS are encrypted (e.g., using TLS)? (Please, answer Yes/No and why)

Did you ever verify if the data contained on the database are encrypted at rest? (Please, answer Yes/No and why) Did you consider using a
support tool (e.g., AWS IoT Device Defender) to develop your system? (Please, answer Yes/No and why)

one means ‘“‘not expert at all” while five means “very expert”),
five developers out of six answered one, while the remain-
ing one selected two (Fig. 4). On the other hand, according
to the collected insights, they all thought cybersecurity is
quite important. Indeed, one participant declared that cyber-
security is “very important”, another said it is “on average
important”, and a third one states that “authentication is an
important feature”. In addition, three developers also speci-
fied that cybersecurity relevance depends on the severity of
the implemented software solution.

An interesting outcome comes from the question: “Using
AWS, who is responsible for the security of the system you
develop?”. Indeed, four developers said that responsibility is
shared among “both developer and AWS”, while the other
two participants consider the responsibility entirely of the
developer. No one assigns the responsibility uniquely to AWS
(Fig. 5).

All the attendees think that the implemented architecture
could include at least one security issue; in fact, every devel-
oper highlighted some threat in the open question: “Are there
any potential security issues in this architecture? If so, which
ones?”. However, in the related open question, all of them

83,33%
5

16,67%
1

0,00% 0,00% 0,00%
0 0 0

1 2 < 4 5
Perceived Competence

Fig. 4 Novice IoT programmers’ perceived competence about cyber-
security. One means “not expert at all” while five means “very expert”

33,33%

66,67%

m Both of them

= Amazon

m The Developer

Fig.5 Novice IoT programmers’ perception of security responsibilities

declared they did not act to mitigate the previously cited
threats.

Discussing the second part of the survey (the one related to
the attack points presented in Sect. 4.1), Fig. 6 shows that half
of our novice IoT programmers consider potentially attack-
able at most two of the five attack points (three answers). It
is also noticeable that two participants did not consider any
of the raised issues during the application’s development.

50,00%
33,33%

16,67%
1

0,00% 0,00% 0,00%
0 0 0

1 2 3 4 5 6
Attackable Points

Fig.6 The number of attack points considered attackable by the novice
IoT programmers

@ Springer

Journal of Reliable Intelligent Environments

Table 3 Ease of attacking
architecture elements according
to the novice IoT programmers.
The reported values represent
the number of developers
choosing that answer

Table 4 Potential severity in
case of a successful attack for
various architectural elements,
according to the novice IoT
programmers. The values inside
the tables represent the number
of developers choosing that
answer

Attack points

1 (not easy)

5 (very easy)

Sending data from sensors to AWS
The developed lambda functions
The Amazon’s database

The REST APIs

Sending commands to actuation devices

—_ = N =

[OOSR

S = =)

_— NN o

N = O =N

Attack points

1 (not serious)

5 (very serious)

Sending data from sensors to AWS
The developed lambda functions
The Amazon’s database

The REST APIs

Sending commands to actuation devices

S = N =N

e =)

S N = =N

NN O = =

w O O N~

In addition, the participants declared that the AWS
database is the attack point most secure among the presented
elements. On the contrary, the data flows between the AWS
back-end and the sensors/actuators are considered the less
secure points equally. These answers are reported in Table
3. As we already explained in Sect. 5.1, the range of values
goes from one, “not easy at all” (to attack), to five, “very
easy” (to attack).

Proceeding with the possible severity in case of a suc-
cessful attack, our participants declared that the most critical
point is the data flow from the back-end to the actuators.
Then, the second most critical point is represented by the
developed Lambda functions, while the third is the data flow
from sensors to the back-end. These answers are available in
Table 4. The range of values is between one, (attack) “not
serious at all”, and five, “very serious” (attack).

Instead, considering the open answer to the question:
“what do you think would be the worst possible consequence
in case the most serious point is attacked?”, five participants
consider a cyber-physical attack® the worst possible threat.
Indeed, they are mainly afraid that an attacker could take con-
trol of the system to damage a machine or a person. Another
concern cited by three developers is related to data manipu-
lation or data loss.

To conclude the presentation of our survey results, we
are going to discuss the answers collected in the last survey
section. The first open question asked information about the
chosen passwords for the AWS accounts. According to the
answers, all participants created a strong password (prob-
ably because AWS enforces a password policy). However,
when we asked if they had created any additional account
with lesser privileges, only one developer declared to had

9 A security breach in cyberspace that impacts the physical environment
(e.g., activating or deactivating a machine).

@ Springer

used the service for creating secondary accounts. In con-
trast, others simply used the root account. In addition, in
their open answers, just two participants specified that they
did not create additional accounts (with fewer privileges)
during the project’s development. However, they are aware
that they should have created at least one. Discussing now
data flow encryption, four attendees stated they did not check
whether the platform uses a mechanism for encrypting the
data. Only one developer declared to have verified that the
Transport Layer Security (TLS) protocol was used on the
data flow from the sensors to the AWS back-end. Moreover,
considering the encryption of data at rest, a large majority of
participants (five) answered that they did not check if AWS
encrypts by default the data stored inside DynamoDB. To
conclude, discussing the last two questions, no one of the
participants had used an additional tool to improve the secu-
rity of his application. One developer declared to have heard
about AWS IoT Device Defender, but he did not use it for his
project due to the time constraint of delivering the application
on time.

6 Cloud-loT platforms analysis

This section describes what countermeasures could be taken
by the two platforms’ components against the attack points
presented in Sect. 4.1.

Considering that this paper (and our use case) is focused
onacloud-IoT scenario, our security analysis is more focused
on AWS IoT and Azure IoT, the sets of components offered by
the platforms for this specific application domain. However,
we also have considered elements not strictly belonging to
ToT but still valuable for a cloud-IoT use case. For instance,
the already cited serverless computing services offered by the
two platforms (Sect. 3). Indeed, considering their character-

Journal of Reliable Intelligent Environments

istics, this kind of component seems particularly valuable for
a novice programmer new to the IoT world.

Therefore, in this section, we will analyze the components
that better fit the use case (Sect. 4).

6.1 Data flow analysis

Data flows are the target of three of the attack points dis-
cussed in Sect. 4.1. Data transmission is a critical process; at
that moment, data could be eavesdropped, altered, and even
forged. The first threat could reduce the application’s pri-
vacy, but the other two can even alter its functionalities. The
traditional approach to counter these issues is encrypting the
transferred information.

One of the most common protocols used for this purpose
is HTTPS. This protocol augments classic HTTP adding the
Transport Layer Security (TLS) protocol.

TLS was defined by the Internet Engineering Task Force
(IETF) in 1999 [37], and it is a transport layer protocol
based on asymmetric cryptography. It is the successor of the
now-deprecated Secure Sockets Layer (SSL), and its latest
version, TLS 1.3, was released in August 2018 inside RFC
8446 [38]. Recently, in March 2021, IETF formally depre-
cated TLS 1.0 and 1.1 and, even if TLS 1.2 is still considered
acceptable, they recommended starting the migration to the
latest version [39]. However, choosing the correct version
of TLS is not enough to obtain an adequate level of protec-
tion. This protocol could use many different cipher suites,”
so selecting an appropriate suite is crucial to configure a
secure connection. Until TLS 1.2, cipher suites include a
key exchange algorithm, an authentication algorithm, a link
encryption algorithm, and a message authentication code
(MAC) algorithm. From version 1.3, the first three algo-
rithms were replaced by an Authenticated Encryption with
Associated Data (AEAD) algorithm. This particular class of
algorithms simultaneously ensures the confidentiality and the
authenticity of both encrypted and unencrypted information
in the messages.

Therefore, when possible, developers should always pre-
fer TLS 1.3, which has a faster hand-shake and is more secure
by design. When using this version is impossible, program-
mers should not adopt a deprecated version of the protocol
and configure their applications to handle only secure cipher
suites. To verify the current status of a cipher suite, develop-
ers may benefit from online tools like Ciphersuite.info [40].

Another protocol used mainly to establish bidirectional
communication among the IoT devices and the IoT gate-
way is MQTT [41]. MQTT is a publish-subscribe network
protocol designed by the Organization for the Advancement
of Structured Information Standards (OASIS) to transport

10" A cipher suite is a pool of algorithms used to establish a secure
network connection.

messages between any kind of device. It is lightweight and
typically runs over the TCP/IP stack. For these reasons, it is
particularly suitable for IoT applications. Like HTTP, MQTT
does not implement any particularly effective security pro-
tection by default.

So, even in this case, to guarantee confidentiality and
integrity of the transmitted data, developer should apply
encryption mechanisms. Considering that MQTT is an appli-
cation protocol, like HTTP, one of the most common ways
to protect the transferred data is using TLS. As we will see,
adopting MQTT over TLS (MQTTYS) is a strategy supported
and suggested by both the cloud platforms analyzed in this
section.

6.1.1 AWS data flow management

To ensure the security of transmitted data, AWS documen-
tation says that users should always connect to the AWS
back-end employing encryption mechanisms like TLS [26].

The first analyzed Amazon component is the AWS API
Gateway. This service makes it easier for developers to create,
publish, maintain, monitor, and secure APIs. It handles all
the tasks involved in accepting and processing many concur-
rent API calls, including traffic management, authorization,
access control, throttling, monitoring, and API version man-
agement. To test this component, we created a simple Lambda
function associated with an API Gateway. Then, we inter-
acted with the gateway using Postman, a widespread API
platform created to build and test APIs [42]. Actually, we
observed that when users create new public access to this
gateway, the TLS protection is enabled by default. However,
even if this component could help developers to have a reli-
able and secure contact with the AWS back-end, we noticed
that the TLS security policy enabled by default is version
1.0 (as it is possible to see also on the AWS website!!).
As we discussed before, IETF deprecated this version, so
Amazon should not allow this configuration as the default
one. Moreover, AWS’s TLS version 1.0 security policy sup-
ports some weak cipher suites like “DES-CBC3-SHA”.!2
This cipher suite contains the Triple Data Encryption Stan-
dard, an encryption algorithm that the National Institute of
Standards and Technology (NIST) formally deprecated and
will disallow from 2023 [43]. However, not all the AWS
API Gateway endpoints have this security policy enabled
by default. Indeed, AWS also provides specific endpoints for
organizations that must comply with the Federal Information
Processing Standard (FIPS) Publication 140-2. FIPS 140-2 is

I https://docs.aws.amazon.com/apigateway/latest/developerguide/
apigateway-custom-domain-tls-version.html, last visited on September
16, 2021.

12 https://ciphersuite.info/cs/TLS_RSA_WITH_3DES_EDE_CBC_S
HA/, last visited on February 04, 2022.

@ Springer

https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-custom-domain-tls-version.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-custom-domain-tls-version.html
https://ciphersuite.info/cs/TLS_RSA_WITH_3DES_EDE_CBC_SHA/
https://ciphersuite.info/cs/TLS_RSA_WITH_3DES_EDE_CBC_SHA/

Journal of Reliable Intelligent Environments

a USA and Canadian government standard that specifies the
security requirements for cryptographic modules that pro-
tect sensitive information. From April 1, 2021, Amazon had
updated these endpoints to use TLS 1.2 and above.'® Hence,
at least for these endpoints, the Amazon approach is a good
trade-off between usability and state-of-the-art security.

Considering the AWS IoT Core instead, this component
is a cloud service that enables connected devices to interact
with the back-end and each other securely. It can process
many devices and messages and route those messages to
AWS ToT endpoints and other devices. Unlike the AWS API
Gateway, this service is more secure by default; indeed, it
uses a minimum of TLS v1.2 to establish all the commu-
nications.!# This version is used for Web Sockets, HTTPS
(HTTP over TLS), and MQTTS (MQTT over TLS) connec-
tions. As an additional requirement, AWS refuses all the
TLS connections without the extension field Server Name
Indication.'> Instead, talking about the security of the pos-
sible cipher suites, there are still few allowed cipher suites
involving the usage of SHAI as their authentication algo-
rithm. NIST already deprecated this algorithm in 2011 [43],
and some scholars demonstrated its insecurity in 2017 [44].

However, connecting IoT devices to AWS IoT Core is
quite easy. If the developers follow the tutorial on the AWS
website, they will get a pair of public-private keys to estab-
lish a secure connection for each IoT device. Furthermore,
AWS also provides some IoT Device Software Development
Kits (SDKSs) to simplify the connection process. At the time
of writing, Amazon provides five open source SDKs written
in C++, Embedded C, Python, JavaScript, and Java. Using
the available IoT Device SDKs is the suggested approach for
connecting every IoT device to the AWS back-end. Indeed, in
this case, AWS implements a good trade-off between usabil-
ity and state-of-the-art security.

Regarding the possible data flows among an AWS Lambda
function and a physical device, AWS Lambda blocks inbound
network connections. On the other side, the component
allows for outbound connections only TCP/IP and UDP/IP
sockets.

Currently, if a user requires additional security, AWS
offers the possibility to create and configure a virtual private
network in the cloud called Virtual Private Cloud (VPC).
This solution also enables the possibility of using IPsec to
contact the VPC. IPsec is the secure version of the tradi-
tional Internet Protocol (IP), and it was designed to provide
cryptographically-based security for IPv4 and IPv6 [45].

13 https://aws.amazon.com/compliance/fips/, last visited on September
16, 2021.

14 https://docs.aws.amazon.com/iot/latest/developerguide/transport-

security.html, last visited on September 16, 2021.

15 https://datatracker.ietf.org/doc/html/rfc6066#section-3, last visited
on September 28, 2021.

@ Springer

Even if this approach would give more security to the trans-
mitted data, it could not be so intuitive for a novice developer.

Furthermore, Amazon offers two additional components
called AWS IoT Device Management and AWS IoT Device
Defender to facilitate the management of the IoT devices con-
nected to the AWS platform. The first one is a component
agnostic to the device type that simplifies securely regis-
tering, organizing, monitoring, and remotely managing IoT
devices at scale. Instead, the second component automati-
cally audits IoT configurations associated with the connected
devices against a set of defined [oT security best practices. If
something seems to deviate from the expected behaviors, IoT
Device Defender pushes an alarm so the developer can take
action to mitigate the issue. In particular, AWS suggests using
these components when the number of connected devices is
significant.

6.1.2 Azure data flow management

Even Azure recommends always protecting data in transit
with an encryption strategy like HTTPS or a VPN. !¢ In par-
ticular, to connect customers’ networks to Azure, Microsoft
offers a VPN Gateway service that enables the usage of [Psec.
Users could also utilize this service to send encrypted traffic
between Azure virtual networks over Microsoft’s infrastruc-
ture.

The first analyzed component of this section is API
Management. Like AWS API Gateway, this element helps
developers properly manage their exposed APIs. In this case,
to test the component, together with Postman, we used the
API testing environment offered by Azure. Currently, when
users create a new endpoint for their APIs, TLS protection
is enabled by default to v1.2. However, even if the previous
versions are disabled by default, during the creation process,
users can decide to increase the endpoint’s compatibility with
older versions of TLS and with the obsolete SSL 3.0.

Concerning the second component, the developers can
reach the Azure IoT Hub using both HTTP and MQTT.
However, the cloud service ensures that all device com-
munications are secured with TLS.!” Specifically, IoT Hub
offers two authentication methods between the IoT devices
and the back-end. Users can use a Shared Access Signature
(SAS) token authentication or an X.509 certificate. A SAS
token is a string previously generated (and not stored) by
the back-end used by a client (device) to be recognized by
the server. This token also contains an HMAC-SHA256 sig-
nature string to authenticate and protect the integrity of the
communications through this method. An X.509 certificate

16 https://docs.microsoft.com/en-us/azure/security, last visited on
January 17, 2022.

17" https://docs.microsoft.com/en-us/azure/iot-hub/iot- hub-mgqtt-
support, last visited on January 28, 2022.

https://aws.amazon.com/compliance/fips/
https://docs.aws.amazon.com/iot/latest/developerguide/transport-security.html
https://docs.aws.amazon.com/iot/latest/developerguide/transport-security.html
https://datatracker.ietf.org/doc/html/rfc6066#section-3
https://docs.microsoft.com/en-us/azure/security
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-mqtt-support
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-mqtt-support

Journal of Reliable Intelligent Environments

is a standard format for public key certificates introduced by
the International Telecommunication Union - Telecommu-
nication Standardization Bureau (ITU-T). It is a certificate
used in many internet protocols, including TLS. By default,
the IoT Hub establishes a connection with the IoT devices
using TLS 1.2, 1.1, and 1.0 (in this specific order). However,
it is possible to disable the deprecated version of TLS inside
the IoT Hub configuration, but only in some geographical
regions (mainly in the United States).

Similarly to AWS, also Azure provides a Software Devel-
opment Kit (SDK) to help developers interact with the IoT
Hub. In particular, Microsoft offers an IoT Hub Service SDK
and an IoT Hub Device SDK. The first SDK is designed
to facilitate building applications that interact with the IoT
Hub (e.g., for managing devices connected to the hub). It
is currently available for .NET, Java, Node.js, and Python.
Instead, the second SDK simplifies the process of connect-
ing IoT devices to Azure. It is currently available for the
same programming language as the previous one, plus C and
Embedded C languages. In addition, this SDK also supports
Real-Time Operating Systems for embedding devices like
Azure RTOS and FreeRTOS. Microsoft strongly suggests
taking advantage of these SDKSs, even through a blog post
that specifies why developers should use them to increase
their applications’ security.'?

Considering the communications among a client and an
Azure Function, by default, the function’s endpoints allow
connection only with plain HTTP or with HTTPS. However,
every Azure endpoint can enforce HTTPS-only connections
and specify the minimum allowed version of TLS among 1.0,
1.1, and 1.2.

To conclude, among Azure components, there is a valu-
able tool for enhancing the security of the IoT applications,
which is called Microsoft Defender for IoT. This component
allows monitoring the whole IoT solution from a dashboard.
Once enabled, it helps developers connect their IoT devices
and uses Defender for Cloud—an Azure tool for security pos-
ture management and threat protection—to provide security
recommendations and alerts for the connected resources.

6.2 Back-end analysis

Considering that back-end security is a duty of the cloud
platforms’ providers, in this section, we analyzed what a
user could do to protect the access to the back-end services
better or to reduce damages in case of unauthorized access.
Obviously, users must register an account (and successively
authenticate themselves) to access the cloud back-end func-
tionalities (like AWS Lambda or the Azure Functions).
During these interactions, registration and login data flows

18 https://azure.microsoft.com/it-it/blog/benefits-of-using-the-azure-
iot-sdks-in-your-azure-iot-solution/, last visited on January 18, 2022.

are protected using HTTPS. Indeed, assuming that both
platforms (and the associated services) had implemented reg-
istration and login correctly, the two primary possible ways
to compromise the back-end are associated with an inade-
quate privileges policy and choosing weak passwords. So,
in this section, we will discuss what kind of accounts cus-
tomers could create and how they can choose passwords.
Furthermore, an example of a proper privileges policy that
we suggest adopting is the Principle of Least Privilege [46].
The main idea of this principle is to give to any user, appli-
cation, or process only the minimum privileges necessary to
complete its tasks.

6.2.1 AWS back-end management

AWS offers two kinds of accounts for authenticating users:
root user and Identity and Access Management (IAM) user.
When a customer registers an account to AWS, Amazon auto-
matically associates a root user to that account. Root accounts
have the highest possible privileges on the AWS platform.
Using these accounts, users can generate an arbitrary num-
ber of [AM accounts and assign them the privileges necessary
for their activities (e.g., the right to read data from a particular
database or the possibility to use a specific service). Accord-
ing to the Principle of Least Privilege, Amazon recommends
to its customers to use the root account mainly for generating
some IAM accounts (and for those tasks that require neces-
sary to be administrator). However, they do not enforce this
best practice in any way. From our point of view, AWS should
force its users to take advantage of this feature and create at
least an IAM account. Clearly, Amazon should explain to its
customers why they are forced to do so. We think that this
approach could help new users better understand the impor-
tance of this security concept.

Talking about the password policy, AWS enforces a quite
robust policy both for root and IAM accounts. At the time
of writing, users must create passwords with a minimum
length of eight characters, including at least two of these
characteristics:

e including a digit;
e including a non-alphanumeric character;
e including lowercase and uppercase characters.

Furthermore, a root user can build different password policies
for the created IAM account, they can configure a temporary
password and ask the IAM user to change it at first login.
Nevertheless, we observed that AWS seems not to have
taken any specific countermeasures for password dictio-
nary attacks. E.g., a password like “AmazOnWS” is cor-

@ Springer

https://azure.microsoft.com/it-it/blog/benefits-of-using-the-azure-iot-sdks-in-your-azure-iot-solution/
https://azure.microsoft.com/it-it/blog/benefits-of-using-the-azure-iot-sdks-in-your-azure-iot-solution/

Journal of Reliable Intelligent Environments

rectly accepted when registering a new account.!” However,
AWS could automatically generate passwords for the IAM
accounts.

These auto-generated passwords include all the previously
cited characteristics and have a length of 16 characters.

To conclude, we observed that through the IAM control
panel, users could enable a second authentication factor both
for root and IAM accounts. However, this security enhance-
ment is only suggested, and it is not enforced in any way.

6.2.2 Azure back-end management

To access Azure services, users must have a Microsoft or a
GitHub account. So, the password policy applied for Azure
is the same as these accounts. Unfortunately, the password
policy enforced by Microsoft accounts is not very robust.
Currently, it forces the users to create passwords with a mini-
mum length of eight symbols and at least two of the following
four characteristics:

including at least a number;

including at least a non-alphanumeric symbol;
including a lowercase character;

including an uppercase character.

From one side, at least Microsoft implements small coun-
termeasures against dictionary attacks. We tried to create an
account using the password “Microsoft”, and the registration
process refused that specific password for over-usage. On the
other side, we noticed that after this rejection, the registra-
tion process reduced the minimum number of characters for
the password to six, and we have been allowed to use the
password “MAzure”.

Instead, the password policy enforced by GitHub accounts
is slightly more robust. Currently, users have two possible
choices: a password with a minimum length of 15 charac-
ters or a password with eight symbols containing at least
a lowercase character and at least a number. Even GitHub
tests the inserted password for dictionary attacks. We tried
to create an account using the password “github22”, and we
received the error: “password may be compromised”. Nev-
ertheless, the registration process allowed, and considered
strong, passwords like “msazurel” or “microsoftgithub”.
Currently, according to “How Secure is My Password?” [47],
an attacker could crack the first two passwords in around
one minute and the third one in 1000 years. However, this
third password is considered more robust only thanks to its
length [48]. In fact, the tool suggests that the password should
include not only letters and that if it is a dictionary word could
be easily cracked.

19 Currently, according to “How Secure is My Password?” [47], a mali-
cious user could crack this password in around 1 h.

@ Springer

Once users had access to the Azure back-end, Microsoft
offers the possibility of creating other accounts with lim-
ited privileges using Azure Active Directory, its cloud-based
identity and access management service. Surprisingly these
accounts have a default password policy slightly more robust
than a traditional Microsoft account. Since it requires a
minimum length of eight symbols and at least three of the
following four types of symbols:

o digits;

e lowercase characters;

e uppercase characters;

e non-alphanumeric (among a proposed set).

When secondary users log in for the first time, Azure
forces them to change the password (always respecting the
previously cited criteria) and configure a second authentica-
tion factor (even if they can ignore this last step for the first
14 days).

6.3 Database analysis

Continuous flows of data usually characterize IoT projects.
When these communications happen among a considerable
amount of devices at a high frequency, the quantity of data
to manage and store becomes easily massive. For this rea-
son, in our use case, we proposed to use a high-performance
non-relational database. This section analyzes how the two
platforms manage the security of their most famous NoSQL
databases: AWS DynamoDB and Azure Cosmos DB.

In this section, we analyzed three crucial points of
database management: data encryption at rest, backups, and
access to the database. The first feature is essential to reduce
the possibility that, in case a database is stolen, thieves can
read it. The second feature is important both for reliability and
security reasons. Indeed, a backup could be helpful to protect
data against accidental writes or delete operations and even
against direct attacks on the stored data. Instead, correctly
managing how users can access the database is important not
only for ensuring that they can dispose only of the correct
data but also for protecting data in transit.

6.3.1 AWS database management

Amazon provides different database solutions (both rela-
tional and NoSQL), and it offers database-related services
such as data-warehouses. In particular, in our use case,
we proposed to our students using DynamoDB, a NoSQL
database service that provides fast performance with seam-
less scalability. Even in this case, users can access Amazon
DynamoDB via TSL-encrypted endpoints.

By default, the DynamoDB service encrypts all data at
rest to enhance data security.

Journal of Reliable Intelligent Environments

To cipher the data, AWS uses the Advanced Encryption
Standard (AES) algorithm with the longest possible key (256
bits) [49]. This algorithm was approved by FIPS, and it is
considered secure both for government and non-government
organizations. Indeed, it is also part of the Commercial
National Security Algorithm Suite.?”

To encrypt each table, AWS generates and uses a default
encryption key. The platform kept these keys inside the
Key Management Service (KMS). In addition to this default
encryption approach (also called AWS owned key), on which
the developer has no control over the encryption keys, Ama-
zon provides two other different strategies. The first one,
called AWS managed key, allows customers to store a custom
key and leaves the management to the KMS. The other one,
called customer managed key, gives the user complete control
over the KMS keys. Keys are stored inside the AWS account,
but they are created, owned, and managed by the program-
mer. Each time a user creates a new table, DynamoDB offers
the possibility to choose between these three strategies. The
encryption strategy can be modified at any time.

To avoid the risk of losing data, Amazon offers two dif-
ferent approaches to backup database content: on-demand
backup and point-in-time recovery. As the name suggests, the
first approach creates a full backup on-demand of the desired
DynamoDB tables. This approach is particularly indicated
for long-term data retention and archival. Meanwhile, the
point-in-time recovery approach sets up an automatic peri-
odic backup for all the selected tables. With this strategy, it
is possible to restore data at any point in time within the last
35 days. As additional functionality, developers can store the
backups in the same region where the application is deployed
or even in a different one.

To control who can use the DynamoDB resources and
API, the users have to set up permissions in the IAM service.
Through IAM policy, a user can also specify a fine-grained
access control policy (e.g., to allow or deny access to spe-
cific rows or columns). Additionally, each request to the
database must contain a valid HMAC-SHA-256 signature.
HMAC (Hash-based Message Authentication Code) is an
authentication code to be sent together with the request, gen-
erated using SHA-256 (Secure Hash Algorithm), a standard
cryptographic hash function belonging to the SHA-2 family
[50]. Even if more strong hash algorithms are now available
(like SHA-512 or the SHA-3 family [51]), SHA-256 is still
considered a robust alternative. To help programmers in cre-
ating their applications, the AWS Software Developer Kits
automatically sign users’ requests. However, developers can
also write their HTTP requests providing the signature in the
header of the requests.

20 hitps://apps.nsa.gov/iaarchive/programs/iad-initiatives/cnsa-suite.
cfm, last visited on January 13, 2022.

In conclusion, we could say that AWS correctly manages
the security of its databases by default. Developers should
only remember to enable the back-up of their databases.

6.3.2 Azure database management

Even Azure offers several databases (relational and non-
relational) and data warehousing solutions. Considering our
use case, the Azure database that better fits our needs is rea-
sonably Azure Cosmos DB — which is also the suggested
Azure database for IoT applications. This database is com-
parable with AWS Dynamo DB, itis a NoSQL database with
a fast response time, a high availability, and it is able to scale
automatically. In addition, this database could also be manip-
ulated with the same APIs of MongoDB and Cassandra. Like
DynamoDB, also Cosmos DB service encrypts all data at
rest by default using AES-256 and a key managed directly
by Microsoft. Unlike AWS, Azure does not provide its cus-
tomers a different way of managing the default encryption
but allows users to add an optional second layer of encryp-
tion using a customer-managed key. The keys used to enable
this additional security must be stored inside the Azure Key
Vault, an Azure service designed to manage keys, certificates,
and secrets in general like passwords or tokens.

To protect customers’ data, Cosmos DB service auto-
matically performs backups of all data at regular intervals.
Similar to AWS, Microsoft offers two types of backup: peri-
odic backup mode and continuous backup mode. The first
approach is the default one. Azure executes backups peri-
odically but to restore a specific backup is necessary to
contact the support team. The user decides the interval of
time between the backups. Instead, the second approach gives
users the capability to restore data at any point in time dur-
ing the last 30 days. Users can migrate from periodic backup
to continuous back at any moment, but this migration is not
reversible. In addition, also Cosmos DB allows developers to
store multiple copies of their backups in one or more different
geographical regions.

Discussing how to access the database, Cosmos DB pro-
vides three approaches to manage data access. Developers
can use primary/secondary keys, role-based access control
(RBAC), or resource tokens.

The first approach is the most powerful. It provides access
to all the database account’s administrative resources. The
only possible limitation is to specify that keys are read-only.
The purpose of having two keys is twofold. From one side, it
allows users to keep using Azure services when they want to
update a key. For example, users could temporarily use the
secondary key without downtime while Azure is generating
anew primary key. On the other side, users could give trusted
partners the secondary key. If one of them, for any reason, is
not trusted anymore, the users could use their primary key to
easily replace the shared key.

@ Springer

https://apps.nsa.gov/iaarchive/programs/iad-initiatives/cnsa-suite.cfm
https://apps.nsa.gov/iaarchive/programs/iad-initiatives/cnsa-suite.cfm

Journal of Reliable Intelligent Environments

The second approach is the most similar to the AWS
IAM policies. After specifying an Azure Active Direc-
tory (AAD) identity, users can authenticate and authorize
requests with fine-grained policies. Currently, Azure allows
specifying three possible scopes: an account scope, a database
scope, and a container scope. With an account scope, users
can access all the databases of a specific account. With a
database scope, it is possible to access specific databases of
a particular account. Meanwhile, the container scope is the
finest. In Azure, a container is a schema-agnostic set of items.
So, users can define their containers and then provide them
access using this approach.

The last approach, resource tokens, is used when users
want to provide specific access to some resources to clients
without giving them primary keys. These tokens can be built
manually or generated using an Azure SDK.

In the end, we could say that even Azure appropriately
manages the security of its databases by default with a good
level of flexibility.

7 Discussion

Section 5 presented the research questions that led to the
survey design. This section discusses how the collected
responses address the questions, also contemplating the secu-
rity features available on both platforms and discussed in
Sect. 6. These two elements guided us in creating the guide-
lines presented in Sect. 8.

As regards the security perception of the involved ele-
ments, the database was indicated by the novice IoT devel-
opers as the most secure architecture item. Nevertheless, the
interviewees recognized possible data loss (i.e., information
disclosure) as one of the most critical issues. According to
the obtained results, this security perception could have been
quite dangerous considering that almost no one acted to ver-
ify if the data were encrypted at rest or not. Fortunately, in
this case, both platforms have a default mechanism to pro-
tect the data stored inside NoSQL databases. Nonetheless,
even if the platforms take care of this problem, programmers
should remember to manage critical information properly.
For instance, the importance of hashing the users’ passwords
in a real application is well-known. Unluckily, we did not
include users’ registration in our use case, so we did not col-
lect any information on this specific behavior. However, we
would like to remind readers that this protection mechanism
has to be implemented by the developers (meanwhile, the
analyzed platforms automatically manage it for their cus-
tomers’ accounts).

Contrarily, the less secure architecture points for our atten-
dees are the data flows from (and to) the back-end. In more
detail, the data flows from the back-end to the actuators are
considered the most dangerous point if an attack succeeds.

@ Springer

Specifically, the developers are mainly apprehensive about
cyber-physical attacks. Considering so, it is particularly wor-
rying that only a couple of developers verify the security of
the communication channels, even because they can be tar-
geted basically by all the security threats presented by the
STRIDE model (Sect. 4.1). This fact increases our idea that
unencrypted connections should not exist in a cloud-IoT sce-
nario. Considering this specific issue, from one side, Amazon
seems to disallow all the unencrypted connections between
IoT devices and the back-end. On the other side, we observed
that Azure left some unencrypted data flows available by
default. From our point of view, in line with the survey’s
outcomes, the default configuration should not include unen-
crypted communications. Regarding the connections with the
API gateways, Amazon does not allow to contact this service
without protecting the communication with TLS. However,
by default, all the versions of TLS are enabled, even the ver-
sions deprecated by IETF (currently TLS 1.0 and 1.1 [39]),
which are more subject to spoofing and tampering. Contrar-
ily, on Azure, the default configuration has only TLS v1.2
enabled. So, while Azure protection is adequate, AWS pro-
tection is sufficient on this component, but it could not be
enough if the users do not act to change the default behavior.

Continuing our discussion, we noticed that although the
surveyed developers think that cybersecurity is generally
quite significant, they do not consider themselves profi-
cient in this field. These data lead us to assume that the
programmers did not pay particular attention to security
threats during the development of their solutions due to the
above-mentioned low self-confidence. However, it is also
noticeable that no one thought to employ a supplementary
tool to enhance the solution’s robustness (e.g., enabling a
service like AWS IoT Device Defender). From our point of
view, counterbalancing their declared low knowledge with
a service designed to help on that specific issue could have
been a reasonable approach. Nevertheless, to the question:
“Using AWS, who is responsible for the security of the sys-
tem you develop?” no one replied that the responsibility is
entirely assigned to the cloud platform. For two attendees,
the solution’s security is entirely a developer’s responsibil-
ity; meanwhile, for the other participants, the responsibility
is equally shared between the developer and the hosting plat-
form. Hence, we can conclude that developers are aware of
their role in keeping a cloud-IoT application secure.

Focusing more on the second and third research questions,
once we explicitly asked the participants to evaluate whether
the use case architecture could include security issues, all
found at least one possible vulnerability. Nevertheless, during
the development of their projects, no one declared to take
any action to mitigate the problem. We could try to explain
this behavior by considering that this project is the outcome
of a training course, and cybersecurity aspects were not the
central focus of our teaching sessions.

Journal of Reliable Intelligent Environments

According to the retrieved answers, we can reply to the
second research question by stating that, unfortunately, the
participants did not pay particular attention to security threats
during the development of their first cloud-IoT applications.
Reasonably, we can infer that, as a direct consequence, they
did not either act to increase their applications’ cybersecurity.
This behavior is a bit curious, considering that nobody tries
to delegate the cloud platform for their security duties.

In addition, even though all the participants had created
a strong password—probably because the platform policy
forced them—almost no one had used the AWS IAM service
to create separate accounts with different privileges. Using
a unique account for all the possible operations could create
many problems if a malicious user obtained the root account’s
password. For instance, with a root user it is very easy to
tamper with the code executed on the back-end or the con-
tent of the database. Moreover, also the risk of information
disclosure is very high. The fact that only one developer con-
figured an IAM account increases our idea that it is necessary
to drive users to take advantage of this kind of account. From
our point of view, if the cloud platforms forced their cus-
tomers to create at least a secondary account, users would
consider more this particular functionality. Hence, a tutorial
phase dedicated to this specific issue could help novice (IoT)
programmers to understand why it is important to use a good
privilege policy and the possible threats of a successful ele-
vation of privileges.

To conclude, we discovered that developers did not under-
estimate their role in cybersecurity. However, as previously
stated, they did not pay particular attention to the security
issues during the development of their first cloud-IoT appli-
cations. Clearly, this low attention entails decreased actions
to increase their applications’ security. For these reasons,
we believe that providing a set of straightforward guidelines
could help developers think more about the cybersecurity of
their applications and, consequently, take better countermea-
sures to reduce security threats.

8 Proposed guidelines

After considering the most relevant security issues according
to our novice IoT programmers and analyzing how the two
cloud platforms address these problems, we would like to
provide a straightforward set of guidelines (GL) that could
be helpful to design a more secure cloud-IoT application from
the very beginning.

To begin with, we have to consider that IoT systems
involve many different components like sensors, actua-
tors, mini-pc, embedded boards, micro-controllers, cloud
platforms, and many more. Due to the different elements
included, developers usually have to handle many different
technologies and programming languages. Logically, itis dif-

ficult for a novice programmer to approach this challenging
environment, but even for areasonably experienced program-
mer could be tough to develop an application in this context.

Many researchers have already demonstrated that follow-
ing a security-by-design methodology is one of the best ways
to achieve a good security level in many ICT applications. In
particular, the importance of this approach was already dis-
cussed both in the cloud and in the IoT domains [52]. For this
reason, we could say that such an approach is fundamental in
a cloud-IoT application. Specifically, we developed this set
of guidelines starting from the adoption of AWS in our use
case but, taking into account also the additional platform, we
believe that the reader could easily generalize the exposed
concepts to other cloud-IoT platforms.

In this study, we concentrated our research activities
mainly on the platforms’ security (and their connections)
without investigating too much the problems related to the
IoT physical devices. However, this does not mean that things
are less critical. Indeed, we are currently working on another
study focused on understanding the most common security
issues of such devices.

The first guideline we want to provide is applying a proper
model or framework when developers start building a new
IoT application. In particular, in our use case, we decided
to apply the STRIDE framework [33] (already explained in
Sect. 4.1). This framework is easy, consolidated, and already
applied in several research activities [34—36]. We think it
could be a good choice for developing cloud-IoT solutions
having security in mind. Indeed, leading developers to think
about security issues before starting the development of their
applications would reduce the number of possible future
threats.

GL1: Design a new application using a threat model from
the beginning (e.g., STRIDE).

In the following sections, the paper discusses how to con-
figure the components analyzed in Sect. 6.

8.1 Data flows and device protection

IoT systems have many possible connections transporting
commands, measures, or relevant information. As we already
discussed before, the data-flows are very much subject to
the STRIDE threats, so protecting them is one of the more
crucial aspects of such a system. One of the first steps to
achieve a good level of protection is to disable the possi-
bility of contacting the cloud back-end without encryption
and authentication. It is also essential that the IoT devices
communicate with each other using encrypted channels to
reduce potential issues. This protection will avoid threats
like spoofing or tampering and avoid information disclosure
if a malicious user tries to eavesdrop on the data.

@ Springer

Journal of Reliable Intelligent Environments

Table 5 Guidelines summary

D Guideline Description

GL1 Use a threat model Design a new application using a security model from the beginning (e.g., STRIDE).

GL2 Protect data in transit Protect every data flow with encryption mechanisms.

GL3 Configure encryption correctly Ensure that all encryption mechanisms are correctly configured; when using TLS,
configure at least TLS 1.2, and select a recommended cipher suite.

GL4 Use platforms’ SDKs When available, always use the platforms’ SDKs to connect an [oT device to the
cloud platform.

GL5 Use platforms’ support services Always use services implemented by the platform to manage the devices.

GL6 Verify code security Always use compiler features and code checkers to avoid insecure library functions
or language constructs.

GL7 Verify authentication security Always use two-factor authentication and/or complex passwords (e.g., at least two
words, including at least three special characters).

GLS8 Use secondary accounts Always create secondary accounts (e.g., use JAM accounts in AWS and create other
accounts in Azure).

GL9 Use POLP Assign to each secondary account the fewest possible privileges.

GL10 Do not share accounts Each developer must have his or her own account.

GL11 Protect data at rest Always ensure that data protection at rest is enabled.

GL12 Apply more protections Always apply Defense in Depth mechanisms.

GL13 Hash passwords If the developed application involves user registration or authentication, salt and hash
the passwords.

GL14 Have backups Always enable at least periodic database backups (possibly even in different regions).

GL2: Protect every data flow with encryption mechanisms.

Considering TLS, as we already discussed in Sect. 6.1,
the minimum version of TLS now considered safe is TLS
1.2. However, establishing the correct protocol version is not
enough. Another critical step to achieve a good level of pro-
tection against possible attacks is to configure correctly the
cipher suite used to exchange messages. To help developers
in this task, we strongly suggest using tools like Cipher-
Suite.info [40]. This tool is available through a website where
everyone can search for a specific cipher suite and evaluate
its effectiveness. The possible evaluations are as follows:

e insecure: do not use it under any circumstances;

e weak: old ciphers that should be disabled (use only in
particular circumstances);

e secure: state-of-the-art ciphers;

e recommended: secure ciphers that also support Perfect
Forward Secrecy.?!

If developers are starting a new application from scratch,
we strongly suggest choosing a recommended cipher suite.
In this way, they will have the highest possible security. In
any case, we strongly discourage the usage of an insecure or
weak cipher suite. Even if programmers are re-configuring

21 A feature of specific key agreement protocols that ensures that ses-
sion keys will not be compromised even if long-term secrets used in the
session key exchange are compromised.

@ Springer

an already existent solution, they always should avoid using
a suite belonging to these classes.

These configurations should be applied to all possible data
flows in the project (e.g., from an IoT device to the back-end
and vice versa). For instance, in our use case, we proposed
implementing a device gateway based on Flask?? for manag-
ing all the acting devices. To comply with what we discussed
so far, developers have to configure this gateway to accept
at least only TLS 1.2 communications. The same approach
should also be adopted for the API gateways, especially if
developers plan not to expose only public APIs.

GL3: Ensure that all encryption mechanisms are correctly
configured; when using TLS, configure at least TLS 1.2,
and select a recommended cipher suite.

Instead, considering the connection of the IoT devices
with the back-ends, as we already discussed in Sect. 6.1,
both platforms encourage connecting each IoT device to their
back-end using the available SDKs. From one side, using
these tools could simplify the connection process. On the
other side, they could also reduce the possibility of intro-
ducing programming errors and consequently increase the
application’s security.

22 A very widespread open-source web micro-framework developed in
Python.

Journal of Reliable Intelligent Environments

GL4: When available, always use the platforms’ SDKs to
connect an [oT device to the cloud platform.

Moreover, we observed that various scholars consider
managing, fixing, and updating many IoT devices particu-
larly difficult. So, they also proposed some possible solutions
[53,54]. For this reason, when the number of connected
devices is significant, we particularly suggest employing
additional tools offered by the platforms. For instance, in
AWS, instead of using the AWS IoT Core component, users
can take advantage of the AWS IoT Device Management. In
addition, to improve the security of the connected devices,
we also suggest enabling support tools like the AWS IoT
Device Defender or Microsoft Defender for IoT (especially
if there are many devices connected).

GLS5: Always use services implemented by the platform to
manage the devices.

8.2 Back-end protection

We already discussed the security of the data-flows that allow
reaching the back-end. The infrastructure security issues of
the back-end are principally a duty of the cloud platforms,
so we will not deeper investigate this part. From our point
of view, the developers have essentially to face these three
issues:

e write secure code inside the serverless computing ser-
vice;

e choosing appropriate credentials for accessing the back-
end;

e using a good privileges policy.

Writing secure code is a very complex and widespread
research topic, and it could change accordingly to the used
programming language. Suppose the developed code is not
secure enough. In that case, malicious users could easily
exploit this vulnerability to execute a DoS attack or, less eas-
ily, tamper with or obtain some relevant data (information
disclosure). In some cases, they could even execute an ele-
vation of privileges attack. Considering that both platforms
support many programming languages, providing simple
guidelines to follow on this specific topic is challenging. We
can only suggest to developers not to neglect this relevant
aspect and go deep into studying the desired programming
language. Fortunately, nowadays, many code checkers can
help developers write code in a more reliable and secure way.
Some of the code checkers features could sometimes also be
enabled directly inside compilers. Two possible examples
are Snyk Code [55]—a tool that provides a static applica-

tion security testing solution for scanning source code—and
Upsource [56]—a code review and project analytic tool.

GL6: Always use compiler features and code checkers to
avoid insecure library functions or language constructs.

Concerning the second issue, it is clear that choosing weak
credentials could bring hazardous scenarios. A malicious
user who owns root credentials can completely control the
back-end and create all the threats presented in the STRIDE
model. In Sect. 6.2, we discussed the password policies of
both platforms. AWS had a more robust policy for the primary
account, while the policy adopted for the secondary accounts
is almost the same. However, both platforms are quite weak
against dictionary attacks. Users could use tools like “How
Secure is My Password?” [47] to check the robustness of their
passwords, but they should be aware that respecting the cri-
teria imposed by the cloud platforms (or by other associated
websites) is not enough to create a truly secure password.
Unfortunately, there are many misconceptions about pass-
word security [57]. For instance, it is always a bad idea to
include in the password the website’s name (i.e., Amazon,
AWS, Microsoft, or Azure) user’s personal information (e.g.,
name, age, born year, children’s names, hometown, etc.).
Indeed, we would recommend users to avoid always using
easy to guess words and choose long passwords (even longer
than the suggested length). Other researches demonstrated
that using at least two words separated by other characters
could be a good trade-off between security and usability [58].
Moreover, including (at least) three special characters in a
password seems to be an excellent way to improve password
entropy [59]. In conclusion, mixing these two approaches
could be a perfect way to create a strong and quite easy-to-
remember password.

In our analysis, we noticed that AWS did not enforce two-
factor authentication of the accounts, while Azure enforced
this policy (even if it allows users to delay the configuration of
this additional security mechanism). However, users should
always enable two-factor authentication when the platform
provides this possibility, especially for root accounts.

GL7: Always use two-factor authentication and/or com-
plex passwords (e.g., at least two words, including at least
three special characters).

Regarding the last issue, users should apply what we
reported so far both to the main account and to all the
created secondary accounts. As we previously discussed in
Sect. 6.2, even if AWS recommends using the root account
mainly for creating IAM accounts, none of the two plat-
forms enforce this recommendation in any way. We want
to encourage developers to follow this best practice and cre-
ate some secondary accounts applying the password strategy
presented before. Moreover, an easy policy that novice devel-

@ Springer

Journal of Reliable Intelligent Environments

opers could use is the Principle of Least Privilege [46]. Users
should create a secondary account for each primary task and
configure it to have only the privileges necessary to carry on
the related activities. In this way, even if a malicious user
compromises one of these accounts, the other functionali-
ties could remain safe. For instance, in our use case, the API
Gateway should be adequately configured, assigning to each
endpoint the proper privileges, if users plan to expose not
only public APIs. Moreover, multiple users must not share
the same account, especially if they need access to different
privileges or resources.

GLS8: Always create secondary accounts (e.g., use IAM
accounts in AWS and create other accounts in Azure).

GL9: Assign to each secondary account the fewest possible
privileges.

GL10: Each developer must have their own account.

8.3 Database protection

A very relevant element to keep into consideration is the secu-
rity of the data at rest stored in the databases. Indeed, if not
adequately protected, data at rest could be easily modified or
disclosed. Database encryption is essential to reduce damage
in case of data leaks. Furthermore, the possibility of altering
a table containing the list of registered users and adminis-
trators could create a Denial of Service or an unauthorized
elevation of privileges. As we already discussed in Sect. 6.3,
both Amazon DynamoDB and Azure Cosmos DB already
provide an automatic encryption mechanism. If the devel-
oped application does not manage very sensible data, we
suggest to the novice IoT developers simply use the default
encryption provided by the platforms. However, However,
suppose it is necessary (or reasonable) to have a more reli-
able encryption key or increase the security of this process.
In that case, both solutions offer the possibility of improving
the default encryption. If a user plans to use another cloud
platform, they should verify if it offers default data at rest
encryption or if they have to implement this feature by them-
selves.

GL11: Always ensure that data protection at rest is enabled.

When the application involves user authentication, in case
amalicious user would be able to break the database cryptog-
raphy, a very well-known Defense in Depth [60] strategy to
apply is to add additional security to password storage. Usu-
ally, developers can achieve this protection through a hashing
algorithm. Hashing users’ password allows the application to
work correctly, without explicitly storing actual passwords—
which could be a hazardous disclosure in case of a data leak.
There are many hashing algorithms that developers could

@ Springer

use. We suggest following the recommendations of NIST or
similar institutions. Currently, NIST suggests using at least
an algorithm belonging to the SHA-2 family [50]. If pos-
sible, developers should consider using an algorithm from
the SHA-3 family [51]. To further improve the security of
the hash algorithm, it is also a good practice to add “salt”
to passwords. This quite old technique consists of adding a
random-generated string to each password’s beginning or end
before hashing [61]. Basically, instead of simply hashing the
password h (pwd), the program computes something like
h(pwd+salt) orh(salt+pwd). To further improve the
security of this approach, programmers must use a different
salt value for each stored password. These values are then
associated with the correspondent users and stored (in clear
text) in the back-end. According to some researchers, the sug-
gested length for salt values is between 10 and 32 characters
(i.e., from 80 to 256 bits) [62]. Moreover, to achieve an even
higher level of security, developers can follow more sophis-
ticated salt generation approaches. For instance, Boonkrong
and Somboonpattanakit proposed an algorithm for gener-
ating and storing salt values directly from the passwords
themselves [62].

GL12: Always apply Defense in Depth mechanisms.

GL13: If the developed application involves user registra-
tion or authentication, salt and hash the passwords.

Another good practice for improving the developed appli-
cation’s reliability and security is configuring a periodic
database backup. Here we have two different scenarios. On
one side, Microsoft forces users to have at least a periodic
backup: no backup is not an option. On the other side, AWS
does not automatically enable this configuration by default
(also because it requires an additional payment). We strongly
suggest always activating (at least) the point-in-time backup
of the more sensitive tables.

GL14: Always enable at least periodic database backups
(possibly even in different regions).

9 Conclusions

Starting from a preliminary study conducted on a small pool
of novice IoT developers, this paper analyzes the more rel-
evant security features available in two major cloud-IoT
platforms. In particular, it highlights those settings, tools,
and practices useful to achieve a higher level of reliability
and security. Even if we noticed that the developers involved
in the study did not correctly consider security issues in their
IoT projects during the design and implementation phases,
we observed that the platforms effectively support many of
the highlighted security best practices and recommendations.

Journal of Reliable Intelligent Environments

However, sometimes, developers have to identify and use the
correct features to reach a proper level of protection. Indeed,
after discussing the outcome of the survey and the relevant
features of the two cloud-IoT platforms, this work con-
tributes a set of guidelines to support novice [oT developers in
reaching such protection. The final purpose of these guide-
lines is to avoid the primary and recurrent security issues in
cloud-IoT projects and better exploit the inherent features of
the cloud-IoT platforms.

9.1 Future works

In our future works, we would like to have a more focused
survey on a larger sample of novice IoT programmers to
know more about the security perception of this class of
developers. In addition, to complete the view of the cloud-
IoT environments, we also are interested in investigating the
most common security issues in IoT devices and IoT gate-
ways. For this reason, we are now reviewing many novice
programmers’ IoT projects developed for widespread IoT
boards as Arduino-like devices. We are also investigating
the security of a famous open-source smart home gateway:
Home Assistant.

Acknowledgements We want to acknowledge the employees who vol-
untarily decided to participate in the survey to conduct this research
activity.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Deepak K, Kelly S, Benton C, Deepali G, Galina A, Dmitry
K, Rajarshi G, Zakir D (2019) All things considered: an anal-
ysis of IoT devices on home networks. In: 28th USENIX
security symposium (USENIX Security 19), pp 1169-1185.
ISBN 978-1-939133-06-9. https://www.usenix.org/conference/
usenixsecurity 1 9/presentation/kumar-deepak

2. Raj B, Bob G, Dennis S, Kevin J, David W (2021) Magic quad-
rant for cloud infrastructure and platform services. Technical
report, Gartner Inc., July. https://www.gartner.com/doc/reprints?
id=1-2710E4VR &ct=210802

10.

11.

12.

13.

14.

15.

16.

17.

. Manos A, Tim A, Michael B, Matt B, Elie B, Jaime C,

Zakir D, Alex HIJ, Invernizzi L, Michalis K, Deepak K,
Chaz L, Zane M, Joshua M, Damian M, Chad S, Nick S,
Kurt T, Zhou Y (2017) Understanding the mirai botnet. In:
26th USENIX security symposium (USENIX Security 17),
pp 1093-1110, Vancouver, BC, August. USENIX Association.
ISBN 978-1-931971-40-9. https://www.usenix.org/conference/
usenixsecurity 1 7/technical-sessions/presentation/antonakakis

. CVE-2021-28372. Available from MITRE, CVE-ID CVE-2021-

28372., March 13 2021. http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2021-28372

. Corno F, De Russis L, Mannella L (2021) Perception of security

issues in the development of Cloud-IoT systems by a novice pro-
grammer. In: Intelligent environments 2021, pp 5-15. IOS Press.
https://doi.org/10.3233/AISE210074

. Borislav SD, Jovanovi¢ SP, Tim¢enko VV (2014) Cloud computing

in amazon and microsoft azure platforms: performance and ser-
vice comparison. In: 2014 22nd telecommunications forum Telfor
(TELFOR), IEEE, pp 931-934. https://doi.org/10.1109/TELFOR.
2014.7034558

. Montanaro T, Sergi I, Limelli S, Patrono L (2021) Fog comput-

ing: implementation of a simple fog scenario through iot public
services. In: 2021 6th international conference on smart and sus-
tainable technologies (SpliTech), pp 1-6. https://doi.org/10.23919/
SpliTech52315.2021.9566323

. Barcelona-Pons D, Garcia-Lépez P (2021) Benchmarking paral-

lelism in faas platforms. Futur Gener Comput Syst 124:268-284.
https://doi.org/10.1016/j.future.2021.06.005 (ISSN 0167-739X.)

. Brodkin J (2008) Gartner: seven cloud-computing security risks.

Technical report, Network World. https://www.infoworld.com/
article/2652198/gartner-seven-cloud-computing-security-risks.
html

Mariana C, Van Der Merwe A, Kotzé P (2011) Secure cloud
computing: benefits, risks and controls. In: 2011 information secu-
rity for South Africa, IEEE, pp 1-9. https://doi.org/10.1109/ISSA.
2011.6027519

Akhil B, Kanika B (2012) An analysis of cloud computing security
issues. In: 2012 world congress on information and communication
technologies, IEEE, pp 109-114. https://doi.org/10.1109/WICT.
2012.6409059

Elliot S, James SC (1989) Studying the novice programmer.
Lawrence Erlbaum Associates, Inc., Hillsdale, New Jersey. https://
doi.org/10.4324/9781315808321

Hank K (1983) What do novice programmers know about recur-
sion. In: Proceedings of the SIGCHI conference on human factors
in computing systems, CHI ’83, New York, NY, USA. Associa-
tion for Computing Machinery, pp 235-239. ISBN 0897911210.
https://doi.org/10.1145/800045.801618

Lahtinen Essi, Ala-Mutka Kirsti, Jarvinen Hannu-Matti (2005) A
study of the difficulties of novice programmers. ACM SIGCSE Bull
37(3):14-18. https://doi.org/10.1145/1151954.1067453 (ISSN
0097-8418.)

Billy J (2021) Understanding their voices from within: difficulties
and code comprehension of life-long novice programmers. Int J
Arts Sci Educ 1(1):53-73

Corno F, De Russis L, Sdenz JP (2017) Pain points for novice pro-
grammers of ambient intelligence systems: an exploratory study.
In 2017 IEEE 41st annual computer software and applications con-
ference (COMPSAC), vol 1. IEEE, pp 250-255. https://doi.org/10.
1109/COMPSAC.2017.186

Corno F, De Russis L, Sdenz JP (2019) Towards computational
notebooks for IoT development. In: Extended abstracts of the 2019
CHI conference on human factors in computing systems, CHI EA
19, New York, NY, pp 1-6. Association for Computing Machinery.
ISBN 9781450359719. https://doi.org/10.1145/3290607.3312963

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.usenix.org/conference/usenixsecurity19/presentation/kumar-deepak
https://www.usenix.org/conference/usenixsecurity19/presentation/kumar-deepak
https://www.gartner.com/doc/reprints?id=1-271OE4VR&ct=210802
https://www.gartner.com/doc/reprints?id=1-271OE4VR&ct=210802
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-28372
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-28372
https://doi.org/10.3233/AISE210074
https://doi.org/10.1109/TELFOR.2014.7034558
https://doi.org/10.1109/TELFOR.2014.7034558
https://doi.org/10.23919/SpliTech52315.2021.9566323
https://doi.org/10.23919/SpliTech52315.2021.9566323
https://doi.org/10.1016/j.future.2021.06.005
https://www.infoworld.com/article/2652198/gartner-seven-cloud-computing-security-risks.html
https://www.infoworld.com/article/2652198/gartner-seven-cloud-computing-security-risks.html
https://www.infoworld.com/article/2652198/gartner-seven-cloud-computing-security-risks.html
https://doi.org/10.1109/ISSA.2011.6027519
https://doi.org/10.1109/ISSA.2011.6027519
https://doi.org/10.1109/WICT.2012.6409059
https://doi.org/10.1109/WICT.2012.6409059
https://doi.org/10.4324/9781315808321
https://doi.org/10.4324/9781315808321
https://doi.org/10.1145/800045.801618
https://doi.org/10.1145/1151954.1067453
https://doi.org/10.1109/COMPSAC.2017.186
https://doi.org/10.1109/COMPSAC.2017.186
https://doi.org/10.1145/3290607.3312963

Journal of Reliable Intelligent Environments

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

. Corno F, De Russis L, Saenz JP (2021) On computational note-

books to empower physical computing novices. In: Companion
of the 2021 ACM SIGCHI symposium on engineering interactive
computing systems, EICS "21, New York, NY, pp 22-25. Associa-
tion for Computing Machinery. ISBN 9781450384490. https://doi.
org/10.1145/3459926.3464752

Kamoun F, Halaweh M (2012) User interface design and e-
commerce security perception: an empirical study. Int J E-Bus Res
(IJEBR) 8(2):15-32. https://doi.org/10.4018/jebr.2012040102
Varga S, Brynielsson J, Franke U (2021) Cyber-threat perception
and risk management in the swedish financial sector. In: Computers
& security, p 102239. ISSN 0167-4048. https://doi.org/10.1016/j.
cose.2021.102239

Kafle Kaushal, Moran Kevin, Manandhar Sunil, Nadkarni Adwait,
Poshyvanyk Denys (2020) Security in centralized data store-based
home automation platforms: a systematic analysis of nest and hue.
ACM Trans Cyber-Phys Syst 5(1):1-27. https://doi.org/10.1145/
3418286 (ISSN 2378-962X.)

Shantanu P, Michael H, Tahiry R, Subhas M (2020) Security
requirements for the internet of things: a systematic approach. Sen-
sors 20(20). ISSN 1424-8220. https://doi.org/10.3390/520205897
Momenzadeh B, Dougherty H, Remmel M, Myers S, Camp
JL (2020) Best practices would make things better in the
IoT. IEEE Security Privacy 18(4):38-47. https://doi.org/10.1109/
MSEC.2020.2987780

Anthi E, Williams L, Stowiriska M, Theodorakopoulos G, Burnap
P (2019) A supervised intrusion detection system for smart home
IoT devices. IEEE Internet Things J 6(5):9042-9053. https://doi.
org/10.1109/JI0T.2019.2926365

Amazon Web Services Inc (2020) Introduction to AWS secu-
rity. Technical report, Amazon Web Services Inc., North Seat-
tle, WA. https://d1.awsstatic.com/whitepapers/Security/Intro_to_
AWS_Security.pdf

Amazon Web Services Inc (2020) Amazon web services: overview
of security processes. Technical report, Amazon Web Services
Inc.,North Seattle, WA . https://d0.awsstatic.com/whitepapers/
aws-security-whitepaper.pdf

Saakshi N, ArushiJ etal (2015) Cloud computing security: Amazon
web service. In: 2015 Fifth international conference on advanced
computing & communication technologies, IEEE, pp 501-505.
https://doi.org/10.1109/ACCT.2015.20

Marta T, Bradley R, Patrick W (2020) Amazon web services:
risk and compliance. Technical report, Amazon Web Services
Inc., North Seattle, WA. https://d].awsstatic.com/whitepapers/
compliance/ AWS_Risk_and_Compliance_Whitepaper.pdf
Navneet B, Abhik B, Agniswar R (2021) Case study of azure
and azure security practices. In: Machine learning techniques
and analytics for cloud security, p 339. https://doi.org/10.1002/
9781119764113.ch16

Frank S, Eric T (2019) Shared responsibility for cloud
computing. Technical report, Microsoft Corporation, Red-
mond, WA. https://azure.microsoft.com/it-it/resources/shared-
responsibilities-for-cloud-computing/

Souad A, Safae C, Salma M (2018) Which nosql database for iot
applications? In: 2018 international conference on selected top-
ics in mobile and wireless networking (MoWNeT), pp 131-137.
https://doi.org/10.1109/MoWNet.2018.8428922

Huang DY, Apthorpe N, Li F, Acar G, Feamster N (2020) IoT
inspector: crowdsourcing labeled network traffic from smart home
devices atscale. Proc ACM Interact Mobile Wearable Ubiquit Tech-
nol 4(2):1-21. https://doi.org/10.1145/3397333

Shawn H, Scott L, Tomasz O, Adam S (2006) Threat modeling-
uncover security design flaws using the stride approach. In: MSDN
magazine-Louisville, pp 68-75

Rafiullah K, Kieran M, David L, Sakir S (2017) STRIDE-based
threat modeling for cyber-physical systems. In: 2017 IEEE PES

@ Springer

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

innovative smart grid technologies conference Europe (ISGT-
Europe), IEEE, pp 1-6. https://doi.org/10.1109/ISGTEurope.
2017.8260283

Nadeem AM, Mohammed N, Mansoor AA (2020) Modeling secu-
rity threats for smart cities: a stride-based approach. In: Smart
cities-opportunities and challenges. Springer, pp 387-396 . https://
doi.org/10.1007/978-981-15-2545-2_33

Bojan J, Daniela R, Imre L, Marina S, Sebastijan S (2017)
STRIDE to a secure smart grid in a hybrid cloud. In: Computer
security. Springer, pp 77-90. https://doi.org/10.1007/978-3-319-
72817-9_6

Christopher A, Tim D (1999) The TLS protocol version 1.0. RFC
2246, January . https://doi.org/10.17487/RFC2246

Eric R (2018) The transport layer security (TLS) protocol version
1.3. RFC 8446, August. https://doi.org/10.17487/RFC8446
Kathleen M, Stephen F (2021) Deprecating TLS 1.0 and TLS 1.1.
RFC 8996, March. https://doi.org/10.17487/RFC8996

Christian RH, Nils G (2022) Ciphersuite. https://ciphersuite.info/.
[Online: Accessed 03 Feb 2022]

OASIS. MQTT version 5.0 documentation, 2022. https:/
docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html. [Online:
Accessed 27 Jan 2022]

Postman Inc. Postman, 2022. https://www.postman.com/. [Online:
Accessed 24 Jan 2022]

Elaine B, Allen R (2019) Transitioning the use of cryptographic
algorithms and key lengths, 2019-03-21 . https://doi.org/10.6028/
NIST.SP.800-131Ar2

Marc S, Elie B, Pierre K, Ange A, Yarik M (2017) The first collision
for full sha-1. In: Katz J, Shacham H (eds) Advances in cryptology—
CRYPTO 2017. Springer International Publishing, Cham, pp 570-
596

Karen S, Stephen K (2005) Security architecture for the inter-
net protocol. RFC 4301, December. https://doi.org/10.17487/
RFC4301

Schneider FB (2003) Least privilege and more [computer secu-
rity]. IEEE Security Privacy 1(5):55-59. https://doi.org/10.1109/
MSECP.2003.1236236

Security.org. Online tool: How secure is my password? (2022).
https://www.security.org/how-secure-is-my-password/. [Online:
Accessed 19 Jan 2022]

Blase U, Gage KP, Saranga K, Joel L, Michael M, Mazurek ML.,
Timothy P, Richard S, Timothy V, Lujo B, Nicolas C, Faith CL
(2012) How does your password measure up? the effect of strength
meters on password creation. In: 21st USENIX security symposium
(USENIX security 12), Bellevue, WA, August. USENIX Associ-
ation, pp 65-80. ISBN 978-931971-95-9. https://www.usenix.org/
conference/usenixsecurity 1 2/technical-sessions/presentation/ur
Morris D, Elaine B, James N, James F, Lawrence B, Roback E,
James D (2001) Advanced encryption standard (aes), 2001-11-26.
https://doi.org/10.6028/NIST.FIPS.197

Quynh D (2015) Secure hash standard, 2015-08-04 . https://doi.
org/10.6028/NIST.FIPS.180-4

Dworkin MJ (2015) Sha-3 standard: permutation-based hash and
extendable-output functions, 2015-08-04. https://doi.org/10.6028/
NIST.FIPS.202

Sequeiros Jodao BF, Chimuco Francisco T, Samaila Musa G, Freire
Mirio M, Indcio Pedro RM (2020) Attack and system modeling
applied to IoT, cloud, and mobile ecosystems: embedding security
by design. In: ACM Comput. Surv., vol 53(2), March . ISSN 0360-
0300. https://doi.org/10.1145/3376123

Antonio L, Alberto BC, Markus S, Kay R (2019) UpKit: an open-
source, portable, and lightweight update framework for constrained
IoT devices. In: 2019 IEEE 39th international conference on dis-
tributed computing systems (ICDCS), pp 2101-2112. https://doi.
org/10.1109/ICDCS.2019.00207

https://doi.org/10.1145/3459926.3464752
https://doi.org/10.1145/3459926.3464752
https://doi.org/10.4018/jebr.2012040102
https://doi.org/10.1016/j.cose.2021.102239
https://doi.org/10.1016/j.cose.2021.102239
https://doi.org/10.1145/3418286
https://doi.org/10.1145/3418286
https://doi.org/10.3390/s20205897
https://doi.org/10.1109/MSEC.2020.2987780
https://doi.org/10.1109/MSEC.2020.2987780
https://doi.org/10.1109/JIOT.2019.2926365
https://doi.org/10.1109/JIOT.2019.2926365
https://d1.awsstatic.com/whitepapers/Security/Intro_to_AWS_Security.pdf
https://d1.awsstatic.com/whitepapers/Security/Intro_to_AWS_Security.pdf
https://d0.awsstatic.com/whitepapers/aws-security-whitepaper.pdf
https://d0.awsstatic.com/whitepapers/aws-security-whitepaper.pdf
https://doi.org/10.1109/ACCT.2015.20
https://d1.awsstatic.com/whitepapers/compliance/AWS_Risk_and_Compliance_Whitepaper.pdf
https://d1.awsstatic.com/whitepapers/compliance/AWS_Risk_and_Compliance_Whitepaper.pdf
https://doi.org/10.1002/9781119764113.ch16
https://doi.org/10.1002/9781119764113.ch16
https://azure.microsoft.com/it-it/resources/shared-responsibilities-for-cloud-computing/
https://azure.microsoft.com/it-it/resources/shared-responsibilities-for-cloud-computing/
https://doi.org/10.1109/MoWNet.2018.8428922
https://doi.org/10.1145/3397333
https://doi.org/10.1109/ISGTEurope.2017.8260283
https://doi.org/10.1109/ISGTEurope.2017.8260283
https://doi.org/10.1007/978-981-15-2545-2_33
https://doi.org/10.1007/978-981-15-2545-2_33
https://doi.org/10.1007/978-3-319-72817-9_6
https://doi.org/10.1007/978-3-319-72817-9_6
https://doi.org/10.17487/RFC2246
https://doi.org/10.17487/RFC8446
https://doi.org/10.17487/RFC8996
https://ciphersuite.info/
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://www.postman.com/
https://doi.org/10.6028/NIST.SP.800-131Ar2
https://doi.org/10.6028/NIST.SP.800-131Ar2
https://doi.org/10.17487/RFC4301
https://doi.org/10.17487/RFC4301
https://doi.org/10.1109/MSECP.2003.1236236
https://doi.org/10.1109/MSECP.2003.1236236
https://www.security.org/how-secure-is-my-password/
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/ur
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/ur
https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.1145/3376123
https://doi.org/10.1109/ICDCS.2019.00207
https://doi.org/10.1109/ICDCS.2019.00207

Journal of Reliable Intelligent Environments

54.

55.

56.

57.

58.

59.

Georgios S, Rui W, Roel M, Geert-Jan S, Mario M, Stefan I,
Willems Frans MJ, Lieneke K(2020) RESCURE: a security solu-
tion for IoT life cycle. In: Proceedings of the 15th international
conference on availability, reliability and security, ARES *20, New
York, NY, USA. Association for Computing Machinery. ISBN
9781450388337. https://doi.org/10.1145/3407023.3407075

Snyk. Snyk code, 2022. https://snyk.io/product/snyk-code/.
[Online: Accessed 03 Feb 2022]

Jetbrain. Upsource, 2022. https://www.jetbrains.com/upsource/.
[Online: Accessed 03 Feb 2022]

Blase U, Fumiko N, Jonathan B, Segreti SM, Richard S, Lujo B,
Nicolas C, Faith CL (2015) “Tadded ‘!” at the end to make it secure”:
observing password creation in the lab. In: Eleventh symposium on
usable privacy and security (SOUPS 2015)

Richard S, Saranga K, Durity AL, Phillip (Seyoung) H, Mazurek
ML, Segreti SM, Blase U, Lujo B, Nicolas C, Faith CL (2014)
Can long passwords be secure and usable? In: Proceedings of the
SIGCHI conference on human factors in computing systems, CHI
14, pp 2927-2936, New York, NY, USA. Association for Com-
puting Machinery. ISBN 9781450324731. https://doi.org/10.1145/
2556288.2557377

Wanli M, John C, Dat T, Dale K (2010) Password entropy and pass-
word quality. In: 2010 Fourth international conference on network
and system security, IEEE, pp 583-587. https://doi.org/10.1109/
NSS.2010.18

60.

61.

62.

Smith CL (2003) Understanding concepts in the defence in depth
strategy. In: IEEE 37th annual 2003 international Carnahan con-
ference on security technology, 2003. Proceedings. IEEE, pp 8-16.
https://doi.org/10.1109/CCST.2003.1297528

Morris R, Thompson K (1979) Password security: a case history.
Commun ACM 22(11):594-597. https://doi.org/10.1145/359168.
359172 (ISSN 0001-0782.)

Sirapat B, Chaowalit S (2016) Dynamic salt generation and place-
ment for secure password storing. IAENG Int J Comput Sci
43(1):27-36

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

https://doi.org/10.1145/3407023.3407075
https://snyk.io/product/snyk-code/
https://www.jetbrains.com/upsource/
https://doi.org/10.1145/2556288.2557377
https://doi.org/10.1145/2556288.2557377
https://doi.org/10.1109/NSS.2010.18
https://doi.org/10.1109/NSS.2010.18
https://doi.org/10.1109/CCST.2003.1297528
https://doi.org/10.1145/359168.359172
https://doi.org/10.1145/359168.359172

	Helping novice developers harness security issues in cloud-IoT systems
	Abstract
	1 Introduction
	2 Related work
	3 Cloud platforms overview
	3.1 Amazon Web Services (AWS)
	3.2 Microsoft Azure

	4 Use case
	4.1 Main architecture attack points

	5 Developers security perspective
	5.1 Survey structure
	5.2 Survey results

	6 Cloud-IoT platforms analysis
	6.1 Data flow analysis
	6.1.1 AWS data flow management
	6.1.2 Azure data flow management

	6.2 Back-end analysis
	6.2.1 AWS back-end management
	6.2.2 Azure back-end management

	6.3 Database analysis
	6.3.1 AWS database management
	6.3.2 Azure database management

	7 Discussion
	8 Proposed guidelines
	8.1 Data flows and device protection
	8.2 Back-end protection
	8.3 Database protection

	9 Conclusions
	9.1 Future works

	Acknowledgements
	References

