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During the decades of development of artificial intelligence, a spectrum of applications involving image, 
speech, text data, etc. are successfully powered by machine learning. The advantages are mainly derived 
from the learning ability from data, which most traditional databases lack. Recent years have seen 
a surge in approaches that explore artificial intelligence to power traditional databases, i.e. learnable 
databases, making databases more adaptive and intelligent. Specifically, they can be automatically 
optimized according to historical metric statistics and current query workload, which significantly 
improves the database performance and relieves the trivial routine maintenance suffering. However, one 
of the major issues, especially for practitioners, is the lack of consensus in their definitions as well as 
a lack of clear categorization from a machine learning perspective. To alleviate these problems, this 
paper introduces concepts and algorithms related to learnable databases and investigates the progress 
in learnable databases in five aspects: database parameter configuration, data storage management, 
query optimization, query interface, and benchmark of learnable databases. Additionally, we survey AI-
empowered technique development in commercial databases and new approaches to learning-based 
database security. We develop a categorizing framework in terms of input features, model selection, and 
output results (mostly being viewed as class labels). Finally, we conclude the current work and discuss 
future work on learnable databases.

© 2021 Elsevier Inc. All rights reserved.
1. Introduction

With the growth in popularity of machine learning and arti-
ficial intelligence, a spectrum of applications that involve speech 
recognition, image classification, and natural language processing, 
etc. are powered by machine learning and are witnessed their in-
credible success.

Machine learning learns rules and patterns from data or experi-
ence. Usually, we train a model using data that is labeled or allow 
it to work on its own to discover information. As a branch of ma-
chine learning, reinforcement learning [1] recently attracts much 
attention. Reinforcement learning is a general framework of learn-
ing, forecasting and decision-making [2]. If a problem can be trans-
formed into a sequential decision-making problem, which defines 
state, action and reward, then reinforcement learning may help to 
automate or optimize the strategy of manual design. With abun-
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dant data and increased computing power, deep learning mimics 
the workings of the human brain via building complex and deep 
networks. They all play essential roles behind many of the appli-
cations we use every day.

The advantages of machine learning are mainly derived from 
the learning ability from data, which most traditional databases 
lack. They are static, unadaptable in most cases despite limited 
tries in tuning database parameters. Certain data distributions are 
also presumed in advance. This means that they are hard to dy-
namically adapt or adjust themselves according to the historical 
query performance, nor can they perform specific system opti-
mization based on the diverse data distribution and user work-
load. However, in the real-life world, the query workload changes 
over time, particularly on cloud and the data distribution varies 
in different application scenarios. This means that these databases 
cannot adapt themselves automatically, nor can they perform spe-
cific system optimization based on the real data distribution and 
diverse workload posted by users [3]. The databases are required 
to dynamically adjust themselves to obtain the optimal running 
status [4].

With the much development of artificial intelligence, it is nat-
ural to think about combining databases with artificial intelligence 
such as query interface and query optimization or vice versa [5].
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The integration of the two established technologies AI and 
DBMS was early proposed [6], but the focus is mainly the efficient 
management of data as well as knowledge to facilitate information 
retrieval. The example is Intelligent Database, which was intro-
duced in 1989 by the book “Intelligent Databases” [7]. Intelligent 
database (IDB) systems integrate resources from both relational 
database management systems and knowledge-based systems to 
manage information, making it easy to store, access and apply [6]. 
Different from the aims of Intelligent Database, learning database 
can effectively capture various characteristics of workload and data 
by machine learning, and select the optimum machine learning 
model to optimize the database system. This paper emphasizes the 
learning ability from data and investigates learnable models and 
methods applied in databases or AI4DB for short.

The possibility of integrating machine learning with databases 
was discussed in 2015 [8]. It characterizes the role of machine 
learning in the effective acquisition of the workload and data. This 
feature makes it increasingly become popular in database opti-
mization [9]. Learned indexes [10] pioneered the practical AI4DB 
work and demonstrated effectiveness and efficiency. Gartner pro-
posed ten trends in data development in February 2019, among 
which “Augmented Analytics” was listed as the top three [11]. En-
hanced data analysis automates the process of data preparation, 
insight acquisition, and insight visualization through the hybrid 
of machine learning and artificial intelligence. Previous literature 
mainly sheds light on the path of AI4DB. Nowadays, more and 
more work on learnable databases has been proposed with much 
progress in the database community of academia and industry. 
They aim at self-configuring, self-optimizing, self-monitoring, self-
healing via machine learning.

[12] studies the limitations of the three key components in the 
cost-based optimizer: cardinality estimation, cost model, and plan 
enumeration and further summarize the learning-based and non-
learning improvement techniques. [13,14] reviews the techniques 
on how database and artificial intelligence benefit from each other, 
such as AI4DB: learning-based configuration tuning, query opti-
mizer, index/view advisor, and security, etc.

The related surveys to ours do not sort out the work of learn-
able databases in terms of the input features, models, and output 
results (mostly in form of labels) from a machine learning per-
spective for practitioners. Moreover, they do not discuss the de-
velopment of commercial databases empowered by AI and some 
benchmarks in learnable databases. This paper mainly summa-
rizes a variety of machine learning methods used in the learnable 
databases and describes the different characteristics of the input 
and output in various models.

Fig. 1 shows the framework of this survey. It mainly divides 
into six parts: parameter configuration, storage management, query 
optimization, query interface, benchmark and database security. 
Specifically, parameter configuration includes workload analysis 
and tuning plan, storage management includes data partition and 
index structure, query optimization includes query plan, query size 
and query cost, benchmark includes data sets and related algo-
rithms, and database security includes data security and operation 
security.

The contributions of this paper are as follows.

• We introduce the definition and classification and investigate 
the progress of learnable databases including parameter con-
figuration, storage management, query optimization, and query 
interface. Specifically, they are workload analysis, tuning plan, 
data partition, index structure, materialized view, query plan, 
query size, and query cost. In particular, we develop a catego-
rizing framework in terms of input features, model selection, 
and output results (mostly being viewed as class labels) from 
a machine learning perspective. Finally, we introduce new fea-
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Fig. 1. Main Framework.

tures of AI4DB in commercial databases (e.g., OpenGauss, Ora-
cle Autonomous Database, Azure SQL Database, and Alibaba).

• We summarize the current main benchmark datasets and 
methods.

• We classify and introduce the new approaches to database se-
curity.

• The research directions of future work are concluded in this 
paper.

The remainder of this paper is structured as follows. The 
progress on how to automatically configure database metric pa-
rameters are introduced in Section 2. The intelligent storage man-
agement including data partition, indexing, and materialized view 
is described in Section 3. Section 4 investigates query optimization 
of the learnable database. The query interface, especially NL2SQL, 
is described in Section 5. The introduction of new features of 
AI4DB in commercial databases is described in Section 6. The var-
ious benchmark tests are described in Section 7. The introduction 
of database security is described in Section 8. Finally, we present 
the conclusion of this paper and future work in the last section.

2. Database parameter configuration

The workload of the database is changing more and more 
rapidly, and the database system requires to use intelligent ap-
proaches to improve the ability to respond quickly. Machine learn-
ing can be used to learn historical data to predict the unknown 
data so that the database system can dynamically configure the pa-
rameters under different workloads to form an optimization plan.

2.1. Workload analysis

During the decades of the development of database self-tuning, 
some system tuning methods have been proposed.

The research on the parameter configuration of the database 
can be traced back to the modification of the database system de-
sign [15] in 2005. Management tasks have gradually become the 
dominant task in the database system. It is inefficient to adjust 
CPU, memory and storage resources for the current workload only 
by administrator. To address this issue, Narayanan et al. proposed 
a way to upgrade the configuration by predicting the workload. 
The authors propose a modification plan for the database system 
design so that resource consultants can answer “what-if” questions 
about resource upgrades. The machine learning models of this self-
prediction DBMS system are buffer pool and storage models, the 
input feature is workload, and the output feature is buffer pool 
size. This model demonstrates the superiority of performance by 
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predicting the throughput and response time of OLTP workloads. 
The advantage is that it uses a modular architecture to increase 
the extensibility, but it still needs to reduce response time.

For many OLTP applications, it is generally used dynamic allo-
cation to calculate how to adjust resource allocation to adapt to 
the workloads that are constantly evolving. Despite this method 
responds to workload changes, it will reconfigure and add ex-
tra burden to the system that has been overloaded. An OLTP 
database, called P-Store [16], can predict the workload and make 
the database readjust the resource configuration before the peak 
workload. It re-configures the database through a time series 
model based on dynamic programming algorithms, which can ac-
curately predict the load of different applications, thereby reducing 
the resource configuration overhead of the database. Optimizing 
the configuration is also critical to operating modern cloud sys-
tems, but the difficulties come from the different workloads of the 
cloud system, the scale of large systems, and the huge parameter 
space.

In 2017, [17] proposed an autonomous driving database man-
agement system and introduced the architecture of the 1st-
generation self-driven database management system, Peloton. This 
system controls and adjusts the database configuration by pre-
dicting future workload changes through an integrated planning 
component. Therefore, the database management system does not 
need to manually determine the correct deployment mode and the 
appropriate deployment time. The machine learning model of this 
self-driven database management system is deep learning model, 
and the input and output features are workload and response time 
individually. It extends an innovative method for realizing automa-
tion of different databases and reducing manual operations, but its 
performance will decrease with the increase of dimensions.

Li et al. [18] studied the robustness of auto-tuning in cloud 
systems and proposed an auto-tuning service, Metis. It is found 
that performance metrics such as tail latencies can be sensitive 
to nontrivial noises. Besides, while treating target systems as a 
black box promotes applicability, it complicates the goal of bal-
ancing exploitation and exploration. Metis implements customized 
Bayesian optimization to robustly improve auto-tuning: Diagnostic 
models to identify potential data outliers for re-sampling, a mix-
ture of acquisition functions to balance exploitation, exploration 
and re-sampling. Metis supports different system parameter types 
and predicts the best performance configuration by training the 
workload and parameter values of the system. It obviates service 
interruptions caused by a configuration change. The disadvantage 
is that the configuration of prediction has randomness.

Different query execution sequences result in multiple disk ac-
cess. SmartQueue [19] is a query scheduling system based on rein-
forcement learning, which maximizes cache hits to improve query 
performance. The author encodes the cache state and the read op-
eration to be performed and uses them as the input of the model. 
The model uses deep Q-learning to obtain a scheduling strategy to 
improve the cache hits. This system can maintain long-term stable 
performance and can also adapt to new input data access patterns, 
but the linear combination of neural networks is limitation.

At present, the problem of high memory consumption in com-
mon occurred, even cloud database still needed to adjust the load 
buffer to adapt to this resource bottleneck problem. In a large 
cloud cluster database, the workload of each instance may change 
dynamically. It will be a huge task that the buffer of each database 
is configured and optimized manually. iBTune [20] is the sys-
tem that realizes a function of automatically arranging buffers for 
all instances of the entire database. When the workload on each 
instance may change dynamically, it is found that manual opti-
mization is not suitable for large cloud clusters. The relationship 
between the miss ratio and allocated memory size is used to opti-
mize the target buffer pool size. Meanwhile, a pair of deep neural 
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network is designed to provide a guaranteed service level protocol 
(SLA), the input feature is the information on workload, and the 
upper bound of request response time is predicted by the mea-
surement characteristics of the instance. The target buffer pool size 
can only be adjusted if the predicted maximum response time is 
within the security limit. iBTune saves more memory resources 
than other systems in practical operating, but DBA is still required 
to verify the extension requirements of the system to ensure that 
the buffer pool size satisfies the effective requirements.

2.2. Tuning plan

The tuning plan in the database generally depends on the 
amount of cached data and the buffer pool size of the disk pages. 
Through a good tuning plan, the system can avoid using the cache 
that has an impact on performance.

Different from the previous buffer adjustment methods,
PostgreSQL-TtDB [21] uses an equation to identify the buffer size 
limit. By associating the buffer allocation plan with the unused 
rate that affects the performance cache, the probability of a buffer 
miss is obtained. Besides, PostgreSQL-TtDB also predicts the cost 
of I/O. [22] proposed STMM for memory optimization of multiple 
versions of DB2. This is a kind of cost-benefit analysis to adjust 
the allocated memory and input cost-effectiveness data to get the 
best tuning plan. STMM can select the optimal memory adjust-
ment scheme based on the cost-effectiveness of different memory 
users.

[23] provided an automated method to overcome the problem 
of non-standard, independent, and non-universal DBMS configura-
tion “tuning knobs”. The combination of supervised or unsuper-
vised machine learning methods was used to adjust the configu-
ration; This new tool, Ottertune, extracts training data from the 
historical tuning plan and uses the Gaussian model to get the 
recommendation of parameter configuration. It is universality and 
matches well in various types of databases. This tool creates more 
load-compliant configurations in a shorter time.

It is difficult for the database management system in the cloud 
environment to adapt to the changes in hardware configuration 
and workload. CDBtune [24] uses deep reinforcement learning 
with a reward feedback mechanism. This cloud database automatic 
tuning system replaces the traditional regression mechanism, re-
alizes end-to-end learning, accelerates the convergence speed of 
the model, and improves the efficiency of online adjustment. Al-
though the recommended configuration has limited performance 
when the amount of data less, especially in the cloud environment, 
it reduces the dependence on training samples and enhances the 
adaptability of the system by the reinforcement learning. After it 
sets the knob for the cloud database, the system can have higher 
throughput. The input features of CDBtune and Ottertune are his-
torical parameter configuration data. However, the reinforcement 
learning model of CDBtune is more effective.

Due to the impact of the rapid growth of data scale and the 
rapid increase of data volume in the era of big data, and it is 
urgent for OLAP database to provide real-time and efficient anal-
ysis services for complex temporary data processing. Zhan et al.
[25] proposed a real-time OLAP database system, AnalyticDB. This 
kind of database is mainly aimed at the data processing process of 
large-scale data with large write throughput and high query con-
currency. It uses the storage structure of mixed structure row and 
column layout, and separates the process of reading and writing 
access path. It has better performance in retrieving structured and 
complex data types. Analyticdb also adds a SQL optimizer that can 
save query and execution records to reduce query latency.

The comparison of learnable database parameter configuration 
models is divided into workload analysis and tuning plan.
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Table 1
Intelligent Parameter Configuration Approaches.

Category Approach Input Feature Machine Learning Model Output Result

Workload Analysis Peloton [17] Workload Deep Learning Deployment Action
Metis [18] Workload Bayesian Optimization Performance Configuration
SmartQueue [19] Code Vectors Deep Q-Learning Scheduling Strategy
iBTune [20] Workload Deep Neural Network Response Time

Tuning Plan OtterTune [23] Tuning Plan Gaussian Configuration Parameters
CDBtune [24] Tuning Plan Reinforcement Learning Optimal Configuration

Table 2
Advantages and Disadvantages of Intelligent Parameter Configuration Approaches.

Approach Advantages Disadvantages

Peloton [17] Extending an innovative method for automation The performance decreases with increasing dimensions
Metis [18] Supporting different system parameter types The configuration of prediction has randomness
SmartQueue [19] Long-term stable performance The linear combination of neural networks is limitation
iBTune [20] Saveing more memory resources Requirements of manual inspection system
OtterTune [23] Universality & matching various databases The performance of RL model is relative low
CDBtune [24] High throughput & RL model is more effective Unstable configuration performance
In terms of the workload analysis, the four machine learn-
ing models we introduced are the Bayesian optimization, the 
deep Q-learning and the deep neural network. Their input fea-
tures are workload and code vectors, and the output results of 
each model are deployment actions, performance configuration, 
scheduling strategy and response time.

Furthermore, with regard to the tuning plan, the two machine 
learning models we introduced are the Gaussian and the reinforce-
ment learning. Their input features both are tuning plan, and the 
output results of each model are configuration parameters and op-
timal configuration respectively. Table 1 gives the comparison of 
parameter configuration models, and Table 2 gives the advantages 
and disadvantages of parameter configuration approaches.

2.3. Summary

The database has dozens or even hundreds of adjustable param-
eters, and many of them are continuous-valued tuning spaces, and 
the optimal parameter combination cannot be generated depend-
ing on manual experience. Intelligent data parameter configura-
tion can predict the workload and obtain the optimal optimization 
plan, so that the performance of database storage management and 
query optimization can be improved, and the adaptability of the 
database to the era of big data can be further improved.

3. Database storage management

learnable database storage management is mainly divided into 
data partition and index. The query load and data layout of the 
database determines the characteristics of the partition. Using the 
learning prediction characteristics of the intelligent can realize the 
partition optimization to improve the overall performance of the 
database. The index is a decentralized storage structure to speed 
up the retrieval. The intelligent is used to replace the index or 
select an efficient index to improve storage management perfor-
mance.

3.1. Data partition

After data partitioning, the table can be further divided into 
finer granularity to facilitate distributed data processing. [26] pro-
posed OpenAI Gym that realized a self-adjusting function of data 
partition and layout. Through the reinforcement learning model, 
the input feature is the prediction of external workload and cur-
rent physical design, and the output result is the selection of an 
adaptive partition. In order to use in the online environment, the 
4

agent learns n action sequences of fixed length, which maximizes 
the time reward of the predicted workload. Its advantage is that 
it can greatly reduce parallelism in training, GPU utilization, and 
memory footprint reductions, but the overall system has not been 
developed.

The DEL-based [27] that uses a DRL (deep reinforcement learn-
ing model) to solve the partition problem of a distributed database 
and provide a ready-made extended database solution for OLAP 
style workload in the cloud. DRL agents learn from experience 
by monitoring the returns of different workloads and partitioning 
schemes. Set up an online learning stage to continue learning the 
actual execution time of the data partition after the estimated ex-
ecution time of the learning load. Through evaluation, this method 
not only finds better partitions than the existing automatic parti-
tion design method but also easily adapts to different deployments, 
it is not currently supported in the OLTP database.

3.2. Index structure

The index structure provides a query path to make data access 
more efficient. It can also satisfy a variety of data access modes 
with different requirements. The index structure can also be re-
placed by a machine learning model. [10] proposed an idea: the 
machine learning model could be used to learn the sorting or-
der of search keys to predicting the search position. This type of 
learning index can predict the corresponding record location of the 
query when the query key is a type of integer or string. Replac-
ing the index structure with machine learning models can save a 
lot of space compared with other traditional indexing techniques. 
Undoubtedly, the learning index is a new direction in database in-
dexing. Although this kind of index structure has been improved 
in space utilization, it can not completely replace the traditional 
indexes in practical application.

[28] applied a new multi-dimensional index (Flood) to five core 
spatial partitioning techniques, namely fixed-grid, adaptive-grid, 
Kd tree, QuadTree and STR tree. It indexes points using a variant 
of the Grid-file. The current core spatial partitioning will process 
the query through three stages: index searching, optimization and 
scanning. The authors replace the learning model to the index 
optimization stage, that can effectively improve the query speed, 
especially for low-selectivity range queries.

To deal with the problem that the proposed new memory in-
dex cannot be easily integrated with the key-value system, Zhang 
et al. [29] proposed S3, which is an in-memory skip-list index used 
in expandable memory and adopts a two-layer index structure. 
At the top level, it used a cache-sensitive structure to maintain 
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some protection entries to facilitate searching in the skip list. At 
the bottom, a semi-sorted skip list index is constructed to support 
highly concurrent insertions and fast search and range queries. In 
order to further improve the indexing performance, it trains a neu-
ral network to intelligently select protection entries according to 
data distribution and query distribution. The approximation strat-
egy trained by the neural network can deal with more complex 
situations. The disadvantage is that the index will sacrifice the 
reading performance. This skip list index uses a neural network 
by input key values for training. It will obtain the indexes mak-
ing the better optimized query. Experiments on multiple datasets 
show that S3 has the same query capability as other new mem-
ory indexing schemes, and can support large amounts of data by 
replacing skipping lists in current memory systems such as Lev-
elDB [30] and RocksDB [31].

The NoDBA system [32] is an automatic database management 
system based on deep reinforcement learning. NoDBA trains the 
code of the current workload and current configuration to obtain 
query response time using a neural network. Generally, due to 
space constraints and index maintenance costs, there is a ceiling 
on the number of indexes to be created. Therefore, it is not an op-
tion to simply index all columns, and it will create an index on a 
specific column that is defined as an executable operation. The sys-
tem uses a deep reinforcement learning model to iterate the initial 
index and load state. When the number of indexes reaches the up-
per limit, the iteration stops, and the optimal index configuration 
is given. In the case of a given workload, the task of index selec-
tion is to determine the properties to create a secondary index that 
maximizes the benefit of workload processing. NoDBA can be op-
timized without query estimation, but the disadvantage is that it 
cannot be implemented well under non-fixed workloads.

Many kinds of machine learning systems have been widely used 
in database, but it is becoming increasingly difficult for users to 
understand the results of these machine learning models. There-
fore, it is a new research direction to help users better understand 
these models. Users can only choose by comparing the accuracy of 
the model, so they cannot understand how to select the model 
in a specific situation. Kahng et al. [33] used data cube analy-
sis to explore and understand the results of machine learning, 
and proposed MLCube, which uses a visual tool to help users ob-
serve which models could better improve the performance of data 
processing in practical applications. At present, such visualization 
tools are only applied to small-scale instances, and more work is 
needed to determine whether they can be extended to larger data 
sets or more complex systems.

3.3. Materialized view

A materialized view is a database object that includes a query 
result. It is used to generate a summary table based on the sum 
of data tables. Materialized views are essentially queries, and they 
are conjunctive queries that form an algebraic lattice by calculating 
dependency relationships (that is, scroll up, drill down, or contain-
ment).

One of the main advantages of materialized views is to pre-
compute the query and save the results. Decision analysis usually 
involves complex queries with high computational costs (for ex-
ample, join and aggregate calculations for tables with a size of one 
million or more tuples). Pre-calculating some queries and answer-
ing from these queries can effectively improve query efficiency. In 
query optimization, finding query rewriting in materialized views 
can generate a more effective query execution plan.

Reinforcement learning plays a vital role in intelligent mate-
rialized views. It is model as a Markov Decision Process (MDP), 
mainly including state, action, policy and reward. As shown in 
Fig. 2, State: M; Workload: Q ; Action: {0, +} create views or not; 
5

Fig. 2. Automatic View Materialization with Reinforcement Learning.

Policy: (Q , M) -> {0, +} according to the current state, the cor-
responding actions are selected to generate the decision sequence; 
Reward: R (q,v) the benefit B from creating views, B= Q uery (q,v) 
− Q uery (q,φ); The agent filters the candidate views according to 
the input view state (M) and query workload (Q), then according 
the policy and benefit B, it selects the views which improves the 
query performance. Specifically, the reward function R is calculated 
by evaluating the actual time benefit B economized by querying Q
under the created view compared to not creating the view.

When a quantity of queries is posed on big data, some query 
results have many possibilities to recur multiple times, which can 
be materialized to reduce these redundant calculations. Including 
the problems of defining the materialized view as an integer lin-
ear programming, the approaches for estimating the query cost 
after rewriting the materialized view by using machine learning 
and deep learning, and the methods to iteratively optimize the se-
lection of the materialized view by using reinforcement learning.

3.3.1. Automatic view generation
[34] proposed the end-to-end automatic view generation method, 

which selects “highly beneficial” sub-queries to materialize. To 
achieve this method, the authors summarize the tasks that are 
supposed to be addressed. They include: how to estimate the 
benefit of using a materialized view for a query; defining the 
materialized view as an integer linear programming (ILP) prob-
lem; using machine learning and deep learning to estimate the 
query cost after the materialized view is rewritten and using re-
inforcement learning to iteratively optimize the selection of the 
materialized view.

It contains three phases: 1) Pre-process: the system extracts 
candidate sub-queries from the query workload. 2) Offline training: 
first, the system collects the training data from the query engine as 
input features; then it trains the cost estimation model using the 
actual cost of the query rewritten by the appropriate views and 
fine-tunes the model by the actual benefits. 3) Online recommen-
dation: the benefits derived from the cost estimation model are 
used to recommend the best sub-queries to generate materialized 
views.

When the current queries match the results of views, the 
database can rewrite these views which avoids the process of re-
dundant queries.

The features which are the input of the cost estimation model 
contain two parts: the query/view plans and the associated tables. 
The collected table statistics are converted into numerical features 
and the query/view plans and associated tables are split into non-
numerical features. The former is normalized and input into the 
wide linear model to get a fixed-length vector, while the latter is 
input into the schema encoding model and plan sequence coding 
model in the depth model to convert into fixed-length vectors. Fi-
nally, a regressor is used to combine the outputs of the wide and 
deep models to obtain the final predicted cost.

To prove the improvement of query performance achieved by 
this system and how to select optimal subqueries. The author first 
enters the query results through a neural network and extracts fea-
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Table 3
Intelligent Storage Management Approaches.

Category Approach Input Feature Machine Learning Model Output Result

Data Partition OpenAI Gym [26] Query Workload Reinforcement Learning Way of Block
DEL-Based [27] DRL Agent Deep Reinforcement Learning Query Combination

Index Structure Learned Index [10] Plastic/String 
Dataset

Neural Network Filtered Query Records

S3 [29] Key Values Neural Network Optimization Index
NoDBA [32] Workload Coding Neural Network Query Response Time
MLCube [33] Feature Conditions Deep Learning Model Performance

Materialized View Automatic View 
Generation [34]

View Plans and 
Associated Tables

Deep Reinforcement Learning Predicted Query Cost

Materialized Views 
Selected [36]

Query Time Benefits Asynchronous Reinforcement Learning Valuable Views

Table 4
Advantages and Disadvantages of Intelligent Storage Management Approaches.

Approach Advantages Disadvantages

OpenAI Gym [26] Greatly reduce parallelism The overall system has not been developed
DEL-Based [27] Adapting to different deployments Unsupported in the OLTP database
Learned Index [10] Increasing space utilization Can not completely replace the traditional indexes
S3 [29] The approximation strategy can deal 

with complex situations
The reading performance is relative low

NoDBA [32] Supporting optimize without query 
estimation

Cannot be implemented well under non-fixed work-
loads

MLCube [33] Helping users observe models better Only applied to small-scale instances
tures from different angles, then uses an effective coding model to 
convert the extracted features into hidden representations; the au-
thor introduces integer linear programming to solve the problem 
of how to choose the optimal subquery, and iterates. The optimiza-
tion process is replaced with a deep reinforcement learning model, 
and the performance of the obtained query plan is improved to a 
certain extent.

[35] further proposed an end-to-end autonomous MV manage-
ment system AutoView via deep reinforcement learning, which in-
tegrates the embedding vectors of materialized views and queries 
to capture the correlation between them.

3.3.2. Materialized views selection
Aiming at the problem of using materialized views to improve 

the performance of OLAP workloads, Liang et al. [36] proposed a 
DQM system, which uses a deep reinforcement learning model to 
obtain an adaptive materialized view solution. RL is equivalent to 
a “learning by doing” process, which can observe the actual query 
behavior through performance indicators. The more feedback you 
get, the more efficient the learned behavior. In this way, the RL 
method can identify whether the view that can be stored currently 
is valuable. The OLAP system can save query results that may be 
useful in the future through materialized views. However, in actual 
applications, the system will be applied to various data and its 
usage mode will also change. From this, the previously stored view 
results may not be used in future queries and thus be discarded. 
Besides, maintaining a large number of views puts a burden on 
the query optimizer and cannot select which views to use for a 
given query. The experimental results of DQM under multiple load 
conditions of the SparkSQL dataset show the ability to adapt to the 
workload.

The authors quoted Opportunity Materialization (OM) [37], 
which makes it possible to pre-cache the results of important 
queries (or sub-queries) for future use. In the DQM system, the 
storage of the optimal view is achieved through three steps. First, 
an online miner is used to obtain the trace of the SQL query to 
determine the candidate view of the current query. Second, the RL 
agents are then selected from the candidate set and filtered. Third, 
some views used to rewrite queries will not match future query 
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plans. In the current query, the query sequence of the database in-
cludes relational tables and materialized views, and a process of 
rewriting the view exists. Therefore, the additional query time can 
be divided into two parts: the time to create the view and the 
incremental cost of answering the query with the view.

The authors formalize the online view selection into a Markov 
decision process. First, the DQM system selects the view through 
an asynchronous reinforcement learning algorithm, and inputs the 
actual time benefits before and after each query uses the view into 
the decision model and quantifies the rewards of each time-step 
(query) to analyze the instantaneous benefits or harm in the cur-
rent state. In the meantime, these queries and materialized views 
are filtered through certain conditions to output valuable views. 
Finally, these views are input into the eviction model with stor-
age constraints. If the current storage space reaches the specified 
threshold, the view management will evict the views with fewer 
benefit gains and replace them with better views.

The intelligent storage management models are surveyed in 
terms of data partition, index structure and materialized view.

In data partition, the main machine learning models are rein-
forcement learning and deep reinforcement learning. Their input 
features are query workload and DRL agent and the output results 
of each model are the way of block and query combination respec-
tively.

Besides, with regard to the index structure, the machine learn-
ing models are the neural network and the deep learning. Their 
input features are plastic, string datasets, key values, workload en-
coding, and feature conditions. The output results of each model 
are filter query records, optimization index, query response time 
and model performance respectively.

Finally, with respect to the materialized view, the machine 
learning models are deep reinforcement learning and asynchronous 
reinforcement learning. The input features of the first approach 
are view plans and associated tables; the input feature of the sec-
ond approach is query time benefits, and the output results of 
each model are predicted query cost and valuable views. Table 3
gives the comparison of storage management models, and Table 4
gives the advantages and disadvantages of storage management 
approaches.
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3.4. Summary

Adaptive data partition now plays an important role in storage 
management optimization. Intelligent methods can learn workload 
and data distribution to predict the adaptive partition results. The 
learning indexing also opens up a whole new research direction 
for the research field of storage management optimization. For 
new memory indexes that cannot be easily integrated with key-
value systems, new indexing methods have also been proposed. For 
users to better understand machine learning models, some visual 
tools are proposed. In this section, we introduce two intelligent 
materialized view methods that efficiently improve the query per-
formance of the database. There are many tables in the database, 
and there are many columns in the table. How to automatically 
construct indexes and views to improve the performance of the 
database is a problem to be considered.

4. Database query optimization

The query operation can convert the user’s query and data 
modification operation commands into the operation sequence of 
the database system. The current query optimization method is 
transforming the query optimization module with artificial intel-
ligence. Since the reasonable execution plan is very important for 
query processing, appropriate intelligent technologies can be com-
bined at various levels of query analysis, processing, and optimiza-
tion to improve the performance of the execution plan [38]. Query 
optimization has straight been a problem that databases are sup-
posed to improve database performance, and it includes query size 
estimation, query cost estimation, join operation sequence opti-
mization, query plan generation, and so on.

4.1. Query plan

The final execution plan of the database is based on the esti-
mation of the query workload and the query size. Therefore, the 
intelligent methods can be used to obtain the optimal query plan 
by learning the historical queries.

At present, the main query optimization method is using ma-
chine learning, which can continuously optimize the quality of 
query size estimation and query cost estimation according to the 
performance of each query estimation and actual performance. The 
purpose of query optimization is to enable the calculation of rela-
tional expressions to select the most effective and least expensive 
query plan.

Query Performance Prediction (QPP) [39] is the core of effective 
resource management, query optimization and query scheduling. 
The current query optimizer mainly uses the analysis cost model 
to select the smaller written plan among all the alternative query 
plans. However, it has a weak ability to predict the execution de-
lay of the query plan. In 2012, [40] proposed a query optimization 
model based on predictive modeling, which can learn query exe-
cution behaviors of different granularities. It used QPP to obtain 
efficient query plans for different types of data models, and mix 
the high-efficiency query plans of coarse-grained planning model 
and fine-grained type of complex operation model. In short, it is 
used this model to predict efficient query plan under static and 
dynamic query workloads.

It is feasible to introduce the prediction of query execution 
time into database management tasks. Wu et al. [41] considered 
the more general problem of dynamic concurrent workloads. The 
framework proposed in this paper is based on analytic modeling. 
What is worth paying attention to is that they used a combined 
queue model and buffer pool model based on a query optimizer. 
First, it uses a cost model to obtain the query requirements of 
I/O and CPU of each query channel. Second, a combination of the 
7

queue model and buffer pool model is used to merge the query 
requests. Finally, the combination model can evaluation the query 
time prediction of all query tasks. Through relevant experiments, 
it is proved that the method based on analytical modeling has 
stronger prediction accuracy than the method based on traditional 
machine learning. The general applicability and validity of these 
two methods are demonstrated by efficient query tasks on Post-
greSQL and TPC-H datasets. However, there is uncertainty, and it is 
necessary to confirmed whether the performance of the database 
can be further improved under the combination of the two meth-
ods.

In 2018, [42] proposed a new approach for learning to optimize 
connection search strategies through the connection between the 
classic dynamic programming enumeration method and the lat-
est research results of reinforcement learning. The RL-based DQ 
optimizer obtains prediction results of customized search strate-
gies and search times, and its input features are planning spaces 
and specific data sets. The RL-based DQ optimizer uses three ver-
sions of DQ which were created in Apache Calcite, integrated into 
PostgreSQL and SParkSQL to illustrate the ease of integration into 
existing database management systems. The plan implemented by 
DQ in each system has optimization costs and query execution 
time that compete with the native query optimizer, but execu-
tion speeds up significantly after learning (usually by orders of 
magnitude), the deficiency lies in the high requirement for the uni-
versality of data.

4.2. Query size

The best query plan is based on the evaluation of query size 
and query cost of all plans. Query size estimation is one of the 
most important factors of query cost estimation. By improving the 
accuracy of query size estimation to optimize query cost estima-
tion, the query plan is also optimized [43].

Lakshmi et al. [44] first used neural networks for query size 
estimation in 1998. It is an iterative method used to parse the 
metadata which is used as the feature vector by neural network, 
and the output result of this method is an accurate selective es-
timation of predicates. This method makes use of real query sizes 
to achieve query size estimates for user-defined data types and 
user-defined functions. Because the distribution of the data is not 
necessarily uniform, ordinary activation functions in neural net-
works cannot accurately fit the changes in query size. This method 
provides ORDBMS and extensible DBMS vendors with a practical 
solution that can be extended using data cartridges or extenders, 
but the overall optimization requires additional integrated optimiz-
ers.

MSCN [45] is a multi-set convolution network designed for rep-
resenting relational query plans. It uses set semantics to capture 
query features and true cardinality. The input feature vector of 
the MSCN model is the range query threshold of numerical data 
in SQL statements, and it uses a neural network model integrat-
ing approximate selectivity functions [46]. MSCN is built based 
on sampling-based estimation, and solves the weaknesses of un-
sampled tuples that are not conforming to the predicate, and it 
captures the cross-correlation of joins.

In addition to using the threshold of the query range as the fea-
ture vector, the Deep Sketch [47] also uses the statistical histogram 
information of each table in the database. The Deep sketch is a 
cardinality estimation method based on deep learning, which can 
obtain the correlation between different columns(and even across 
tables). It uses a multi-set convolution neural network that outputs 
the correlation results between the tables to perform an estimate 
of query size. Its effect is better than the traditional cardinality es-
timation, but the structural information which the feature vector 
obtained is insufficient.
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4.3. Query cost

Query cost estimation is the premise of query plan generation. 
By selecting an appropriate query size and a query cost as reason-
able as possible, the query execution plan is finally generated.

In the application of the large data warehouse, the query be-
havior can be determined before query execution, and it will 
solve the practical problems. For instance, if the database man-
agement system is able to identify the query that will run for a 
long time, it can avoid the resource occupation problem caused 
by other queries; for some query tasks, if the system can de-
termine whether it provides the required workload requirements 
within the task period time, it can reject or preplanned alloca-
tion these query tasks. Ganapathi et al. [48] developed a system 
in 2009 that uses the KCCA (Kernel Canonical Correlation Analysis) 
to predict whether the database can meet the performance index 
of the query. KCCA uses a neural network to train the number of 
connection operations and the size of the query in the query load 
and obtains various performance indicators of the database query, 
such as query execution time and the number of access tuples. 
This method can not only accurately predict queries with differ-
ent timeliness, but also compare the accuracy of using different 
techniques to predict query indexes. This method is still tested its 
performance in Map-reduce, and it is supposed to complete the 
operational mode in the parallel computing environment.

Aiming at the query cost prediction problem of the query op-
timizer, Bi et al. [49] used LSTM to predict the query cost. This 
method uses the operation behavior and actual running time in 
the query plan as the source of neural network feature extraction. 
To reduce the complexity of load management, a sophisticated 
model based on a recurrent neural network is proposed to predict 
the query overhead, the operation behavior, and actual running 
time in the query plan are used as the source of feature extrac-
tion. When a specific query plan is given, the model can generate 
the predicted execution time interval before the plan is executed. 
This will be more referenced than the cost estimation results pro-
duced by the query optimizer of the existing database, and it will 
be preferred than the query progress indicator that predicts after 
execution starts. This model outputs the predicted cost sequence 
of the query plan, and before the query plan is executed, it can 
generate a prediction of the actual running time of the plan. The 
drawback is that this model has not been extended to other types 
of databases other than PostgreSQL database.

In order to estimate the selectivity of different queries on 
a single table, [50] proposed a data-driven cardinality estima-
tion method. First, the authors use the deep autoregressive model 
(DAR) to learn the data features, that is, learn the joint probabil-
ity distribution of the data column. The input feature is a set of 
n-dimensional tuples, and the output features are the point den-
sity estimates which are used to obtain the detection indicators 
through a selective estimator. Second, they realize a way that sup-
ports arbitrary range queries, that is, they select sample rows in 
the query range of the first column based on the probability es-
timated by the DAR model, and then the DAR model iteratively 
derives the selectivity of the remaining range queries on these 
rows. Furthermore, to generate a truly usable estimator, the au-
thors develop a Monte Carlo integration scheme based on the au-
toregressive model, which can effectively deal with range queries 
of dozens of dimensions or more.

The previous learning-based cost estimation methods have 
some shortcomings: they only focus on the estimation of SQL 
statements, which is not suitable for the estimation of differ-
ent query sub-plans in query optimization. To efficiently estimate 
the cardinality and query cost under multi-table connection, [51]
proposed an end-to-end cost estimation framework based on Tree-
structured Model. First, the authors use a training data generator 
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to collect the fully connected graph of the database; they ran-
domly generate the connected table and connected conditions and 
randomly generate the corresponding type of query conditions for 
each column, then the query optimizer obtains the execution plan 
and costs through the optimizer. Second, they use a feature ex-
tractor to extract tree structure encoding of the execution plan, 
structure encoding of query condition, and string encoding. The 
nodes in each execution plan are encoded into a vector. As the 
value of the string is discrete and sparse, for instance, a LIKE query 
will query various substrings which enumerate too many queries 
to be learned. The authors reduce this problem to a set-covering 
problem so that one set of rules can be used to generate strings 
that are covered in the workload. Finally, the authors design a tree-
structured model to capture the structural and semantic features 
of the encoding execution plan, then it estimates the cardinality 
and cost on this basis. The model uses a two-layer fully connected 
neural network to transform query representation into cost and 
cardinality, and it gets loss compared with real cost and cardinal-
ity, then returns it to an upstream neural network for parameter 
updating. The advantage of this model is that it uses some shared 
operators to obviate some redundant calculations, but the cost of 
operators is high.

The comparison of intelligent query optimization models is 
classified into query plan, query size and query cost.

In terms of the query plan, the machine learning model we in-
troduced is reinforcement learning. The input features are specific 
datasets, and the output result is the search strategy.

Besides, with respect to the query size, the machine learning 
models we introduced are neural network and multi-set convolu-
tion network. Their input features are the parsed metadata, the 
range query threshold of numerical data and tables, and the out-
put results of each model are the accurate selective estimation of 
predicates, filter query records and table correlation respectively.

Finally, with regard to the query cost, the machine learning 
models we introduced are neural network, LSTM neural network, 
deep autoregressive and tree-structured model, their input features 
are workload code, query plan, a set of n-dimensional tuples, and 
structural and semantic features of the encoding execution plan, 
and the output features are query response time, query cost, point 
density estimates and cost and cardinality of the plan. Table 5
shows the comparison of query optimization models, and Table 6
shows the advantages and disadvantages of query optimization ap-
proaches.

4.4. Summary

Intelligent query optimization mainly includes query plan, 
query size and query cost. The query plan depends on the re-
sults of query size and query cost estimation; the query accuracy 
and the estimation accuracy of the query cost are continuously 
improved to formulate a better execution plan. Databases systems 
are prone to dynamic changes. Intelligent query processing and 
optimization can monitor the hardware state of the database, de-
tect performance fluctuations, and use transfer learning to improve 
the adaptive ability of the model. In addition, end-to-end learning 
query optimizer may provide more insights into AI-enabled query 
processing and optimization problems.

5. Database query interface

In database optimization, query interface (query language) is re-
cently paid much attention to.

5.1. Query interface

[52] aimed at the tedious problem of information extraction 
caused by the complex attributes of data and researched the ex-
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Table 5
Intelligent Query Optimization Approaches.

Category Approach Input Feature Machine Learning Model Output Result

Query Plan RLDQ [42] Specific Datasets Reinforcement Learning Search Strategy
Query Size Iterative [44] Parsed Metadata Neural Network Selective Estimation

MSCN [45] Query Threshold Neural Network Filtered Query Records
Deep sketch [47] Tables Multi-Set Convolutional 

Network
Table Correlation

Query Cost KCCA [48] Query Load Parameter Neural Network Query Response Time
LSTM [49] Query Plan LSTM Neural Network Query Cost
Data-Driven [50] Tuples DAR Point Density Estimate
End-to-End [51] Structural and Semantic 

Features
Tree-structured Cost and Cardinality of 

Plans

Table 6
Advantages and Disadvantages of Intelligent Query Optimization Approaches.

Approach Advantages Disadvantages

RLDQ [42] Execution speeds up significantly High requirement for the universality of data
Iterative [44] Providing practical solution Overall optimization requires additional integrated optimizers
MSCN [45] Captured the cross-correlation of joins The input features are limited
Deep-sketch [47] Obtaining the correlation of various columns The structural information obtained is insufficient
KCCA [48] Compare the accuracy of predicted indexes Still test in Map-reduce and parallel computing environment
LSTM [49] Generating the predicted execution time in-

terval before the plan is executed
Limited to PostgreSQL database

Data-Driven [50] Generating truly usable estimator Limitations on the number of dimensions
End-to-End [51] Obviating some redundant calculations The cost of operators is high
ploratory query that can skip query language and avoid mechanism 
complexity. When the data set is more complex or difficult to be 
parsed by the user, the attributes and certain characteristics of 
the data can be used to infer the query results required by the 
user. The authors introduce this example-based exploratory analy-
sis method, which may be a new research direction in the query 
interface.

A method that represents SQL queries as vectors named 
Query2Vec [53] which converts natural language to database query 
language. Its input features are the query plan and query template, 
and it trains the LSTM neural network to obtain a recommended 
query vector which is used to represent the semantics of the query. 
Query2Vec applies this recommended query vector to index rec-
ommendations to indicate that the SQL query has achieved good 
results. The main advantage is that the knowledge learned in the 
model of large SQL workload can be transferred to other work-
loads and applications, and it is currently being extended to query 
optimization and data integration.

The CODE-NN model [54] is an LSTM neural network model 
with an attention mechanism. This model is superior to com-
petitive benchmarks and achieves state-of-the-art performance on 
automatic indicators (METEOR and BLEU) and manual evaluation 
studies. At present, the authors plan to develop better models for 
capturing the structure of the input. Its input feature is the SQL 
Statement, and its output feature is a description of the functions 
that can be implemented. CODE-NN answers programming ques-
tions by retrieving the most appropriate code snippet from the 
corpus and breaks previous benchmarks for this task based on 
MRR.

[55] proposed a cognitive database that introduces artificial 
intelligence into query statements and query interfaces in rela-
tional databases. First, it converts structured data into meaningful 
unstructured text data. Second, an unsupervised neural network 
model for input query is constructed by using word embedding 
to generate text. Finally, this model is combined with SQL query 
structure to generate a new SQL-based analysis query. This kind 
of query is called cognitive intelligence (CI) query, which can be 
combined with the knowledge provided by external knowledge, 
and it obtains the semantic relation vector used to code context in 
database tokens of different types. CI query uses this semantic re-
9

lation vector to realize complex query, such as semantic matching 
and inductive reasoning query. The improvements to this cognitive 
database are mainly new approaches for accelerating model train-
ing and developing incremental vector training.

In terms of the query interface, the machine learning models 
we proposed are neural network and LSTM. The input features of 
the first approach are query plan and query template, and the out-
put result is recommended query vector. The input feature of the 
second approach is SQL statement, and the output result is sum-
maries of SQL codes. The input feature of the third approach is the 
model of vector, and the output result is predictive query. Table 7
shows the comparison of query interface models, and Table 8 gives 
the advantages and disadvantages of query interface approaches.

5.2. Summary

Natural language query interfaces, say NL2SQL, are becoming a 
new trend for database interface.

6. AI4DB in commercial databases

At present, intelligent database presents a variety of new fea-
tures. This paper summarizes the new features of AI4DB in differ-
ent commercial databases, which are OpenGauss Database, Oracle 
Autonomous Database, Azure SQL Database, and Alibaba Database 
respectively; They introduced functions or components optimized 
for their own environment.

6.1. Opengauss database

Three intelligent technologies are mainly used in the Open-
gauss database, they include X-Tuner (database parameter tuning 
framework), SQLDiag (SQL statement intelligent recognition), and 
Intelligent Optimizer (database execution cost prediction).

X-Tuner has the following characteristics. 1) strong robustness 
and certain fault tolerance. 2) Flexible deployment and convenient 
operation. 3) Easy to understand and facilitate secondary develop-
ment. In practical application, relying on X-Tuner related technol-
ogy, Huawei cloud database DAS service can intelligently recom-
mend parameters for the historical load of user database. Through 
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Table 7
Intelligent Query Interface Approaches.

Category Approach Input Feature Machine Learning Model Output Result

Query Interface Query2Vec [53] Query Plan and Template Neural Network Recommended Query Vector
CODE-NN [54] SQL Statement LSTM Neural Network Summaries of SQL codes
Cognitive Database [55] The Model of Vector Neural Network Predictive Query

Table 8
Advantages and Disadvantages of Intelligent Query Interface Approaches.

Approach Advantages Disadvantages

Query2Vec [53] Know ledges can be transferred to other work-
loads

Expanding and integrating

CODE-NN [54] Superior to other competitive benchmarks Developing better models for capturing the structure 
of the input

Cognitive Database [55] It can combine with the knowledge provided by 
external knowledge

Improvements to new approaches for accelerating 
model training and developing incremental vector 
training

 

 

the actual test, the overall performance is improved by about 20%, 
which can greatly save cloud computing resources for users and 
reduce production costs.

SQLDiag focuses on the historical SQL statements of the database.
Since there will not be much difference in the execution time of 
database SQL statements in a short time, SQLDiag can detect sim-
ilar SQL statements from historical data, and predict the execution 
time of SQL statements based on SQL vectorization technology and 
timing prediction algorithm, and then identify potential slow SQL. 
This framework has the following advantages. 1) It does not re-
quire an execution plan for SQL statements and has no impact 
on database performance. 2) At present, many algorithms in the 
industry are highly targeted, such as only applicable to OLTP or 
OLAP. SQLDiag can even be used in NoSQL after modification. 3) 
The framework is robust and easy to understand. Users can design 
their prediction model only by simple modification.

The intelligent optimizer is convenient operation, has finer 
granularity, and is easy to locate the performance bottleneck of 
the plan. Besides, the deployment is flexible to minimize the im-
pact on database performance. It also has an open interface that 
enables users to place a custom machine learning operation in a 
database function to implement simply calling.

6.2. Oracle autonomous database

Oracle autonomous database has the following new features: 1) 
Automatic database configuration, optimization and expansion. It 
can configure and adjust to specific workloads and expand com-
puting resources when needed, all of which is done automatically. 
2) Automated data protection and security. Oracle autonomous 
databases automatically protect sensitive and regulated data, repair 
database security vulnerabilities and prevent unauthorized access. 
3) Automatic fault detection, fault transfer and repair. Oracle au-
tonomous databases can automatically detect and prevent system 
failures and user errors.

6.3. Azure SQL database

Azure SQL database automatically optimizes and uses the rec-
ommendations of CREATE INDEX, DROP INDEX, and FORCE LAST 
GOOD PLAN to optimize database performance. CREATE INDEX is 
used to identify indexes that can improve workload performance, 
and automatically verify whether query performance is improved. 
DROP INDEX deletes unused (in the past 90 days) and duplicate 
indexes, but does not delete unique indexes. This option may au-
tomatically be disabled when there are queries with index prompts 
in the workload, or when the workload performs partition switch-
10
ing. FORCE LAST GOOD PLAN can automatically correct the query 
plan.

6.4. Alibaba database

Alibaba’s Database Autonomy Service is a cloud service based 
on machine learning and expert experience to realize database 
self-perception, self-healing, self-optimization, self-operation, and 
self-security. This service can help users eliminate service failures 
caused by manual operation, and it effectively ensures the stability, 
security and efficiency of database services.

7. Benchmark

7.1. Datasets

Here we investigate the benchmarks most on datasets for 
AI4DB, specifically NL2SQL.

In terms of datasets, the current more popular English datasets 
include WikiSQL, WikiTableQuestions, ATIS, etc. each data set has 
its characteristics. A brief introduction to these datasets as follows.

7.1.1. WikiSQL
This dataset is a large-scale labeled NL2SQL dataset proposed 

by Salesforce in 2017, and it is the largest NL2SQL dataset at 
present. It is a large crowd-sourced dataset for developing natu-
ral language interfaces for relational databases. It contains 24,241 
tables, 80,645 natural language questions and corresponding SQL 
statements. Currently prediction accuracy rate of up to 91.8% of 
the academic community [56].

7.1.2. Spider
The Spider dataset [57] is a larger NL2SQL dataset newly pro-

posed by Yale University in 2018. The dataset contains 10,181 
natural language questions and 5,693 SQLs distributed in 200 in-
dependent databases, covering 138 different fields. Although it is 
not as good as WikiSQL in terms of the amount of data, Spider 
introduces more SQL usage, such as higher-level operations such 
as Group By, Order By and Having. It even needs to join differ-
ent tables, that are closer to the real scene, so it is more difficult. 
Currently, the highest accuracy rate is only 54.7%.

7.1.3. WikiTable questions
This data set is proposed by Stanford University in 2015 for 

those semi-structured question and answer forms in Wikipedia [58].
It contains 22,033 real questions and 2,108 tables. Since the source 
of the data is Wikipedia, the data in the table is true but not nor-
malized. A cell may contain multiple entities or meanings, such as 
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“Beijing, China” or “200 km”. To generalize the data in other fields 
properly, the relationship between the table topics and entities in 
the test set of this dataset is not seen in the training set.

7.1.4. The air travel information: system (ATIS)
It is a relatively old classic data set, which is proposed by Texas 

Instruments in 1990. The data set is taken from the relational 
database Official Airline Guide (OAG, 1990) and contains 27 ta-
bles and less than 2,000 queries. Each inquiry has an average of 
7 rounds. In 93% of the cases, more than 3 tables need to be com-
bined to get answers. The contents of the inquiry include flight, 
cost, city, and ground service information [59].

7.1.5. The Tianyi Chinese dataset
The Tianyi Chinese data set is the data set published by Tianyi 

Technology Limited Corporation for the Tianchi competition, in-
cluding 40,000 labeled data as the training set and 10,000 unla-
beled data as the test set. The accuracy of the first place in the 
competition has reached 92%.

7.2. Benchmark

When benchmarking the WikiSQL dataset in 2017, the logical 
form accuracy and execution accuracy are 23.3% and 37% in the 
development environment. Compared with a relatively stable test 
environment, the accuracy rate of the logic form is 23.4%, and 
the execution accuracy rate is 35.9%. The author of this data set 
also proposes a seq2sql model [60], which is based on a neural 
network. Compared with baseline, the execution accuracy of this 
model is increased from 35.9% to 59.4%, and the logical form of 
accuracy is increased from 23.4% to 48.3%. The execution accuracy 
of the WikiSQL dataset has increased from the original 59.4% to 
91.8% in recent years, and progress has been rapid. Its method has 
also been transformed from simple seq2seq to multitasking, trans-
fer learning, and pre-training.

In the same year, technicians from the University of Washington 
and Microsoft made some improvements to the Seq2SQL model. 
They used supervised learning for training. The accuracy of logical 
form and execution of the model is 59.5% & 65.1% respectively, 
which are a significant improvement compared with the previous 
version.

Xu et al. [61] proposed SQLNet. The test standard increases the 
query matching accuracy rate in addition to the logical form accu-
racy rate and execution accuracy rate. Its meaning is to convert the 
synthetic query SQL and ground truth query SQL into the standard 
form, and see if it can still match the previous exact match. In the 
test, the query matching accuracy is 61.3% and the execution ac-
curacy is 68%, which proves that SQLNet can be 9% to 13% higher 
than the prior in WikiSQL tasks.

In Microsoft’s latest research, they proposed X-SQL [62], a new 
network architecture for parsing natural language into SQL queries. 
The evaluation of X-SQL on the WikiSQL dataset has an accuracy 
rate of 86% in logic form and an execution accuracy rate of 91.8%.

8. Database security

As early as 2004, there has been the introduction of artificial 
intelligence to database security. Bai et al. [63] proposed a for-
mal artificial intelligence method in object-oriented database sys-
tem security, which combined the specification of object-oriented 
databases with security policy and provided formal syntax and se-
mantics. In recent years, some learning-based algorithms [64,65]
have been used in database security, these algorithms are proposed 
to discover sensitive data, conduct access control, and avoid SQL 
injection.
11
Aurum [66] is a learning-based sensitive data discovery system, 
it provides flexible queries to search data sets and plays the role of 
automatic detection, so it timely and accurately monitors confiden-
tial data. Since the data will be accessed by unauthorized users, 
[67] is a purpose-based access control model. It formulates rel-
evant access control strategies to constrain the data requests of 
different users, which can well protect the database from random 
access. SQL injection is currently the most common and harmful 
method affecting database security. Classification tree [68] and the 
fuzzy neural network [69] are proposed to detect SQL injection to 
prevent interference with SQL statements to modify or view higher 
priority data in the database.

9. Conclusion and future work

This paper investigates the progress in learnable databases from 
the perspective of machine learning, including parameter configu-
ration, storage management, query optimization, query interface, 
and benchmark test.

The current main related work is summarized as follows. 1) 
self-tuning system parameter configuration based on historical 
workload and query data via reinforcement learning. 2) automati-
cally data partitioning and index recommending or optimizing by 
using certain machine learning models. 3) self-optimizing query 
plan by estimating the query size and query cost via deep learning 
or reinforcement learning. 4) providing query interface by combin-
ing natural language and database SQL language. 5) many commer-
cial databases have also introduced AI, and they have developed 
different new features. 6) database security generally refers to the 
security of the data and system operation.

Recently, graph algorithms based on graph embedding repre-
sentation have proved the great potential of AI in graph processing, 
e.g. complex coupling and interactive network topological structure 
and attribute information are modeled via deep autoencoder [70], 
and the storage management and performance optimization of 
graph databases empowered by AI will be a new research direc-
tion. Many deep learning models have been applied to space and 
time series modeling, which provides an opportunity for intelli-
gent data access to extend to space-time data. Furthermore, deep 
learning is also applied to more popular spatio-temporal predic-
tion problems, and spatio-temporal data query processing and op-
timization will also be one of the promising research directions in 
the future.

Although deep learning is applied in some scenarios such as 
query optimization and query interface etc. in databases, the lack 
of interpretation and the frangibility prohibit its further use in 
practice. To integrate both knowledge-driven and data-driven mod-
els will mitigate the challenges. Data distribution drift may make 
the model ineffective. Thus another promising direction is online 
learning or continuous intelligence [11] that uses real-time con-
text data to improve decision making in databases.
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