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Abstract This paper presents a recently invented recurring

multi-objective differential evolution (RMODE) to mini-

mize real power losses of total transmission lines and for

voltage stability improvement. This multi-objective reac-

tive dispatch (MORPD) problem has been devised as a

constrained nonlinear optimization problem with the

objectives of total transmission lines real power losses

minimization and voltage stability improvement by mini-

mizing stability index in a power system. In the proposed

recurring MODE algorithm, MODE is employed again and

again with the efficient solutions in hand and initializing

the leftover inhabitants only in each round of RMODE

algorithm. Usefulness of the RMODE algorithm is estab-

lished by solving MORPD problem in the two cases, one

standard 30-bus IEEE test system and other Indian practi-

cal 75-bus system, and by comparing MORPD results with

those obtained using NSGA-II, multi-objective PSO,

MODE, hybrid multiple-swarm PSO algorithm and with

the reported results. On comparison, RMODE algorithm is

found to be a potential approach for handling multi-ob-

jective ORPD problem in power systems.

Keywords Pareto optimal solutions � Preferred solution �
Total transmission lines real power losses minimization �
L-index � Recurring MODE algorithm

Introduction

Optimal reactive power dispatch problem is a crucial task

carried out in modern energy control center. Optimal RPD

is carried out for minimization of total transmission real

power losses, improvement of voltage profile and

enhancement of voltage stability in a power system. In

addition to this, power system voltage stability and voltage

profile can be improved by controlling reactive power

injections. Thus, reactive power dispatch problem can be

considered like a nonlinear, combinatorial optimization

problem having the objectives such as minimization of

transmission lines losses, voltage stability enhancement

and improvement of voltage profile in a power network

[1–3].

As documented in the literature, a number of conven-

tional optimization techniques such as gradient method,

quadratic programming, goal attainment methods, interior

point method and linear and nonlinear programming have

been implemented for handling ORPD problem [3–6].

However, owing to non-convex, nonlinear, non-differential

and multiple modal nature of reactive power dispatch

problem, the classical optimization methods occasionally

converge to local minimum and also these techniques are

sensitive to initial conditions [5, 6]. On the contrary,

population-based meta-heuristic random search techniques/

evolutionary computing (EC) algorithms have good

potential for solving RPD problem [1, 2, 7–38]. Hence, in

recent years, several EC techniques such as genetic algo-

rithm (GA) and its modified versions [7–9], PSO [10, 11],

evolutionary programming [12], differential evolution

(DE) and its modified versions [13–16], bacteria foraging

[17], seeker optimization algorithm [18, 19], harmony

search algorithm [20], teaching–learning-based optimiza-

tion [21], artificial bee colony [22], gravitational search
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(GS) algorithm [23–25], gray wolf optimization [26, 27],

Gaussian bare-bones water cycle algorithm [28], moth-

flame optimization [29] and ant lion optimization [30] have

been applied for solving RPD problem.

Besides several evolutionary computing techniques,

various hybrid algorithms such as hybrid ABC and hybrid

PSO have also been employed to handle optimal RPD

problem in power system. Hybrids EC techniques generally

combine two or more than two evolutionary computing

algorithms to improve further the optimization results [31-

38] []. These hybrid EC algorithms are usually motivated

by biological as well as sociological inspirations and are

very much able to solve the multiple-modal, non-sequen-

tial, non-comparable and non-convex properties of optimal

reactive power dispatch problem. These population-based

EC algorithms, though not guaranteeing global optimality,

are capable of providing near best optimal solution within

adequate computational time.

The optimal RPD problem was considered as one

objective problem [7, 8, 10, 12–14, 26, 34] and as a multi-

objective problem for minimization of transmission line

real power losses and improvement of voltage secu-

rity/voltage profile/voltage stability

[1, 2, 9, 11, 15, 17, 27, 35, 36, 40–43, 45, 46] simultane-

ously. However, multi-objective RPD (MORPD) problem

was converted into a single-objective RPD (SORPD)

optimization problem using weighted summation of

involved objectives [15, 35, 36]. In such case, a single-

objective evolutionary computing (SOEC) technique had to

be run again and again after varying the weights of the

involved objectives in order to obtain several solutions.

Then, from these solutions, the dominated or inferior

solutions had to be searched and discarded. The remaining

solutions having non-conquered nature were considered to

achieve the efficient or optimal Pareto solution set and the

best compromised solution. The Pareto optimal solutions

(POS) and preferred solution of MORPD problem can also

be obtained by running only once a multi-objective evo-

lutionary computing algorithm [1, 2, 27, 40–43, 45, 46].

Owing to this advantage, the multi-objective evolutionary

computing (MOEC) algorithms such as SPEA [2], non-

dominated sorting genetic algorithm (NSGA-II) [40–42],

multi-objective DE (MODE) [43] and multi-objective PSO

(MOPSO) [46] are being increasingly applied for solving

MORPD problem.

In this paper, a recently developed algorithm, namely

recurring MODE (RMODE) algorithm, is proposed for

solving constrained, nonlinear MORPD problem for mini-

mization of total transmission lines real power losses and

voltage stability improvement simultaneously. The key

motivation of the proposed work is to ascertain the

potential of the developed RMODE [45] algorithm for

solving the nonlinear, constrained, multi-objective reactive

power management problem to minimize real power loss

and to improve voltage stability simultaneously.

In the proposed and developed recurring MODE algo-

rithm, the MODE algorithm is applied again and again by

the utilization of the available POS and re-initialization of

residual population only. Afterward, fuzzy membership

function-based approach [15, 39] is implemented to obtain

preferred and efficient solutions. Superiority of the

RMODE algorithm has been established by employing this

algorithm for solving MORPD problem in IEEE 30-bus

system [3] and in practical Indian 75-bus system [45].

Optimal RPD Problem

In the present paper, the objectives are to minimize the

total transmission lines real power losses and to enhance

voltage stability simultaneously, satisfying the equality as

well as inequality constraints. These two objective func-

tions of the optimal RPD problem with constraints are

listed follows [36]:

Objective Functions

(1) Minimization of Total Transmission Lines Real

Power Losses:

Total transmission lines real power losses PTLOSS are

the total real power losses taking place in different

lines of a power network, and this can be computed as

F1 ¼ PTLOSS ¼
Xntl

k¼1

gk V2
i þ V2

j � 2ViVj cos di � dj
� �h i

ð1Þ

where gk represents conductance of kth line; ntl is the total

number of transmission lines in the power system; and

Vi\di and Vj\dj are the voltages at terminal buses i and j,

respectively, of kth line.

(2) Improvement of Voltage Stability

In this paper, for assessment of voltage stability, an

indicator, commonly known as L-index, has been

employed. L-index is a scalar quantity that is equal to 0 at

no load condition of a power system and 1 at its voltage

collapse condition. Voltage stability of a power system can

be improved by minimizing the values of this index at each

load (PQ) bus or by minimization of global L-index [2, 36].

The performance equation in any power network can be

expressed as

Ibus ¼ Ybus � Vbus ð2Þ

By separating out the PQ buses and the PV buses

(generator buses), (2) can be rewritten as
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IL
IG

� �
¼ Y1Y2

Y3Y4

� �
VL

VG

� �
ð3Þ

Or

VL

IG

� �
¼ H

IL
VG

� �
¼ H1H2

H3H4

� �
IL
VG

� �
ð4Þ

where VL represents the voltages at load (PQ) buses, IL
represents the currents at PQ buses, VG represents the

voltages at generator buses and IG represents the currents at

the generator buses. In (4), H is a hybrid matrix having sub-

matrices H1, H2, H3 and H4, which are attained by partial

inversion of the Ybus matrix.

Using (3) and (4),

VL ¼ H1IL þ H2VG ¼ Y�1
1 IL � Y�1

1 Y2VGv ð5Þ

H2 ¼ �Y�1
1 � Y2: ð6Þ

At no load condition of the power system, the currents at

PQ buses (IL) are zero, and in this condition, (5) can be

rewritten as:

Vok ¼
X

i2G
H2ki:Vi ð7Þ

where Vok represents the voltage at kth bus of the power

network at no load condition. This expression has been

utilized to define voltage stability indicator Lk (L-index) at

any PQ bus k, as:

Lk ¼ 1� Vok

Vk

����

���� ð8Þ

where Vk represents the voltage at kth PQ bus. The value of

Lk moves toward 1.0, when a PQ bus in a power system

approaches a situation of voltage collapse. Hence, in a

power system, global or maximum value of Lk should be

less than 1.0. The objective function for improvement of

voltage stability is written as [2, 36]:

F2 ¼ L� index ¼ maxðLkÞ ð9Þ

Voltage stability indicator L-index should be minimized

for improvement of voltage stability. L-index can be

computed through normal power flow program.

Constraints

i. Equality constraints: In ORPD problem, the equality

constraints are the static power flow equations written as:

Pgj � Pdj

� Vj

XNBUS

k¼1

Vk½Gjk cosðdj � dkÞ þ Bjk sinðdj � dkÞ� ¼ 0

ð10Þ

Qgj � Qdj � Vj

XNBUS

k¼1

Vk Gjk sin dj � dk
� �� �

¼ 0 ð11Þ

for j = 1, 2……NBUS, where NBUS shows the number of

total buses in a power system; Pgj represents the real power

generated at jth bus, Qgj represents the reactive power

generated at jth bus, Pdj represents the real power demand

at jth bus, Qdj represents the reactive power demand at jth

bus, Gjk is the transfer conductance of a line connected

between buses j and k, while Bjk is its susceptance.

ii. Inequality constraints: In optimal RPD problem,

operating constraints of a power system are the

inequality constraints and can be listed as:

Generator constraints: These constraints include the

minimum and maximum limits of generator voltage Vg

and its reactive power output Qg and can be expressed as:

Vmin
gj �Vgj �Vmax

gj ; j ¼ 1; 2; . . .;NGR

Qmin
gj �Qgj �Qmax

gj ; j ¼ 1; 2; :::;NGR

where NGR is the total number of generators in power

system.

Transformer constraints: These constraints consist of the

maximum and minimum specified limits on the trans-

former tap settings Tj, and this can be expressed as:where

NTN represents the total quantity of transformers.

Tmin
j � Tj � Tmax

j ; j ¼ 1::::::::NTN ð14Þ

Constraints on Shunt VAR sources: These constraints

contain the maximum and minimum limits on shunt

reactive power compensators output Qs as:

Qmin
sj �Qsj �Qmax

sj ; j ¼ 1:::::NQ ð15Þ

where NQ represents the total count of shunt VAR com-

pensation devices.

Security constraints: The constraints of security include

voltage magnitude and line flow limit constraints. Volt-

age magnitude constraints are the maximum and mini-

mum limits on the voltage magnitudes Vj at the PQ bus j,

while line flow security constraint is the maximum limits

on the power flows Sflk at any transmission line k. Secu-

rity constraints can be given as follows:

Vmin
j �Vj �Vmax

j ; j ¼ 1:::LBUS ð16Þ

Sflk � Smax
flk ; k ¼ 1:::::::ntl ð17Þ

where LBUS represents the total count of PQ buses.
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ORPD as Multi-Objective Optimization Problem

Several optimal solutions are yielded when solving any

MOO problem, recognized as efficient or non-dominated

solutions. These non-dominated solutions form efficient set

(ES) and demonstrate the trade-off that exists among the

involved objectives. The solutions in ES are equally

important, and to obtain the best compromised solution,

further processing is necessary. The MORPD problem

having several constraints and variable bounds can be

written as [36, 45]:

Minimize F ¼ F1F2½ �: ð18Þ

Subject to satisfy the inequality and equality constraints

and bounds on variables given as h (x, u) B 0 and g (x,

u) = 0, and decision variable u boundaries given as

follows:

u
Lð Þ
k � uk � u

Uð Þ
k ; k ¼ 1; 2; 3; . . .; n ð19Þ

where x represents the set of dependent variables and u
Lð Þ
k

and u
Uð Þ
k represent the lower and upper bound of kth control

variable, respectively.

In MORPD problem F1 = PTLOSS(x,u), while F2 = L-

index(x,u) where

xT ¼ Pg1;V1. . .:VLBUS;Qg1. . .:QgNGR; Sfl1::::Sflntl
� �

ð20Þ

where Pgl is the slack bus power.

And

uT ¼ Vg1. . .:VgNGR; T1. . .:TNTN ;Qs1. . .:QsNQ

� �
: ð21Þ

The various constraints for the MORPD problem are as

depicted in (10)–(17). Solutions of MORPD problem

obeying the variables’ bounds and constraints form

feasible control variable space. When solving MOO

problem, various non-dominated solutions are filtered out

and the dominated or inferior solutions are discarded using

the concept of dominance [36, 39, 45]. After attainment of

the efficient set, the preferred or best compromised solution

can be extracted out of it. Fuzzy relationship function

[15, 39] is employed to extract preferred solution in this

paper.

Multi-Objective Evolutionary Algorithms

With the development of several MOEC algorithms such as

multi-objective GA and multi-objective PSO, there is an

increasing trend of implementing these algorithms for

handling a variety of numerical and engineering opti-

mization problems.

Non-Sorting GA-II

In non-sorting GA-II, the optimal Pareto set and the Pareto

optimal solution are attained using the elitist non-domi-

nated sorting genetic algorithm [39]. In each cycle of non-

sorting GA-II, the initial population of parents is generated

and this population is sorted based on the rank as well as

the crowding distance. Then, to select individuals for

mating pool, tournament selection is carried out and to

generate the off-spring population, crossover and mutation

are used.

The non-dominated sorting is carried out to allocate

fitness values to all the individuals of combined population.

At last, elitist sorting is done to select the individuals with

better fitness, which will turn out to be the parent indi-

viduals for next iteration. These steps are to be repeated for

pre-specified number of generations. In addition to it, in the

last generation, a niche strategy is applied to select the

members of the last Pareto front, which are located in the

least crowded section in the front [39]. Once non-domi-

nated solutions are achieved, the preferred solution is

extracted from the Pareto optimal solutions using fuzzy

membership function [15].

MOPSO Algorithm

MOPSO algorithm integrates Pareto optimality concept

into PSO to take care of multi-objective functions [46, 47].

In MOPSO algorithm, the local and global best positions

are defined in different manners. Every particle of the

population is assessed on the basis of its objective func-

tions, and local best is considered as its current position.

The non-dominated local set is created by Pareto optimal

solutions obtained by a particle up to the present iteration.

As this particle travels in the pre-specified search space,

new position of this particle is included in this set. This set

is modified by implementing the dominance conditions, so

that only the efficient Pareto optimal solutions are kept in

the set [15, 46]. Afterward, non-inferior global set is

formed by storing the non-inferior solution obtained by all

particles up to the current iterations.

Some clustering algorithm is also implemented for

reducing the size of non-inferior global set to the pre-

specified value. In addition, external set is formed which

acts as an archive to accumulate a past record of the Pareto

optimal solutions achieved throughout the searching pro-

cess. After each iteration, this set is modified by imple-

menting the dominance conditions to the combination of

the non-inferior global set and this set. Also, on the

external set, some clustering algorithm is implemented for

reducing its size to pre-specified value. The local best

pBest and the global best gBest are updated. The distances

between the members in local best, and the members in
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global best, are calculated. If the local best pBest is a

member of non-dominated local set which provides the

minimum distance, then it is chosen as the local best of the

particles. Similarly, if the global best gBest is a member of

non-dominated global set, which provides the minimum

distance, then it is chosen as the global best of the particles

[47].

MODE Algorithm

Multi-objective differential evolution algorithm is exten-

sion of DE algorithm, which can be implemented for

solving MOO problems. DE algorithm [44] is random

search technique based on population, wherein DE variants

perturb the members of the population (NP) by a scaled

difference of the arbitrarily chosen different members of

the population. The optimization method utilizes the three

main parameters, namely selection, mutation or differen-

tial, and crossover operators in this technique [43–45].

Consider the probability of every solution of particle par-

ents search space by selecting randomly solutions of initial

candidate given limitations as:

yjkð0Þ ¼ ylk þ randð0; 1Þ � ðyuk � ylkÞ ð22Þ

where yjk is the kth component of jth member of the

population, ylk and yuk are the lower and upper bound of the

kth variable, respectively, and (0,1) is the random number

that is uniformly distributed between 1 and 0. In each

iteration, a donor or mutant vector vj(mv) is produced to

perturb the vector yj (mv), a population member. The kth

component of the donor vector is determined as:

vj;kðmvþ 1Þ ¼ yd1;kðmvÞ þ Fðyd2;kðmvÞ � yd3;kðmvÞÞ ð23Þ

where yd1, yd2 and yd3 are three vectors chosen arbitrarily

out of the existing population except the member yj and F

is the scalar number utilized for controlling perturbation as

well as improving convergence. Crossover operator is used

to increase the diversity in the population. Mutant vector is

used to replace its components with those of member yj(t).

The DE operator crossover produces the trail vectors to be

included in the selection procedure. Binomial crossover

adopted in this paper can be written as:

uj;k mvð Þ ¼ vj;k mvð Þ
yj:k mvð Þ

	
if else rand 0; 1ð Þ\Cr ð24Þ

Selection process is implemented to select any

individual from trail vector and the target vector for next

iteration using the principle of survival of the fittest. Thus,

the selection process is given as,

Yj mvþ 1ð Þ ¼ Uj mvð Þ if f ðUj mvð ÞÞ� f Yj mvð Þ
� �

Yj mvð Þ if f ðYj mvð ÞÞ\f Uj mvð Þ
� �

	 

ð25Þ

where f(Y) represents the function, which is to be

optimized. If the trail vector Uj(mv) provides a better

fitness value, then it is included in the next iteration;

otherwise Yi(mv), the target vector is kept in the population.

Thus, in subsequent iterations, either the population gets

better or it remains constant.

The MODE algorithm adopted in this paper applies the

selection operator to maintain the size of population, NP

constant but it uses the concept of dominance. In each

iteration, a dominated evaluation is made NP times. Ter-

minating criterion used in this paper is attainment of a pre-

defined number of iterations M. After completion of the

last iteration, a non-dominated sorting is carried out to

eliminate the inferior solutions [45]. Once the Pareto effi-

cient or Pareto optimal solutions are obtained, the best

compromised solution is taken out from the efficient set

using a fuzzy membership-based mechanism [15, 45].

Recurring MODE Algorithm

Recurring multi-objective DE algorithm [45] has been

applied in this paper, wherein multi-objective DE is

employed for some pre-specified iterations M and Pareto

optimal solutions say NP* are attained. In the next round of

RMODE algorithm, these NP* Pareto optimal solutions

have been used along with the re-initialized remaining

population, i.e., (NP- NP*), and multi-objective DE algo-

rithm has been employed again for iterations M. This

practice has been repeated for a pre-defined number of

rounds R. For each next round of the recurrent MODE

algorithm, the better quality Pareto optimal solutions have

been obtained. As a last step of RMODE algorithm, fuzzy

membership-based mechanism [39, 45] has been applied to

find the preferred solution out of the available Pareto

optimal solutions. As in every next round of the recurring

MODE algorithm, better population has been used; the

improved quality efficient set and preferred solution have

been achieved. Figure 1 depicts the flowchart of the pro-

posed recurring multi-objective DE algorithm.

Solution Steps of RMODE Algorithm

Recurring MODE algorithm is employed to attain optimal

setting of decision variables. The algorithm starts using the

initial population, which is generated arbitrarily within the

given minimum and maximum limits of the variables. For

every entity of the population, NRLF program is developed

and run to attain the values of the ORPD objective func-

tions, namely PTLOSS and L-index as per (1) and (2),

respectively. After that, extended objective functions have

been computed combining the PTLOSS and L-index and the

penalty factor (PF) as per the violation of constraints. At

the end of maximum iteration M of multi-objective DE

algorithm, a non-dominating sorting (NDS) check is
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carried out to achieve the non-dominated solutions NP*.

These Pareto optimal solutions along with the re-initialized

remaining population (NP-NP*) are considered as the ini-

tial population for the subsequent round of the recurring

MODE algorithm. This practice is repeated for a pre-de-

fined rounds R of RMODE algorithm. The solution steps of

the RMODE algorithm are summarized as follows:

i. Initialize the population within the variables’ bounds

using (22).

ii. Set recurring MODE round rc = 1.

iii. Set multi-objective DE iteration mi = 1.

iv. For every entity of the population, run NRLF program,

to obtain the values of PTLOSS (F1) and L-index (F2).

v. Evaluate the extended objective functions by means of

the objective functions F1 and F2 and the penalty factor

as per the violation of the constraints

FF1 = F1 ? PF.

FF2 = F2 ? PF.

vi. Carry out the mutation and crossover as per the

literatures (23) and (24).

vii. Apply selection operator to choose individuals for

next iteration as per the earlier investigations (25).

viii. If mi\M, perform dominated comparison. Put

mi = mi ? 1, then go to step iv. Otherwise, continue

to step ix.

ix. To attain the Pareto optimal or non-dominated solu-

tions NP*, carry out the non-dominating sorting

check.

x. If rc\R, put rc = rc ? 1, m = 1 and proceed to xi.

Otherwise, jump to xiii.

xi. Consider the attained non-dominated solutions NP* as

the initial population and reinitialize the residual

population, i.e., NP—NP*.

xii. Go to step iv.

xiii. Stop. Extract the preferred solution from the non-

dominated [45].

xiv. Choose the decision variables setting corresponding

to the best compromised solution.

The setting of decision variables as attained for the

preferred solution will offer the minimum value of PTLOSS

and the minimum value of L-index simultaneously for the

specified operating condition of a power network. The

results achieved by applying the recurring MODE algo-

rithm have been evaluated by comparing the results

obtained by applying other MOEC algorithms, namely

NSGA-II, MOPSO, MODE and the reported results. Also,

to authenticate the Pareto optimal front (POF) achieved

from the recurring MODE algorithm, a reference Pareto

optimal front has been created. For this purpose, the ORPD

problem has been converted into a SOO problem by means

Is mi ≥ M ?
No

Yes

Is rc ≥ R ?
No

Yes
Stop

Mutation, crossover, selection

RMODE round rc =1

MODE iteration mi = 1

Generate initial population

mi = mi+1

Carry out NDS check to attain non-
dominated solutions NP*

Use NP* as population and reinitialize
only the left over Population

(NP - NP*)

rc = rc +1

mi = 1

Run NRLF program for each individual to compute PTLOSS and L_index

Calculate Fitness of all entity

Set maximum RMODE rounds R and maximum generationsM for
MODE, population size NP, variables and their bounds

Perform dominated comparison

Fig. 1 Flowchart for recurring

MODE algorithm
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of the weighted sum of objective functions PTLOSS and L-

index given as follows:

Minimizew� PTLOSS þ 1� wð Þ � L� index: ð26Þ

Here, w represents the weighing factor that is a number

uniformly spread between 1 and 0. As an example, to attain

25 Pareto optimal solutions, a SOEC algorithm, say

HMPSO, has to be implemented 25 times, and in each

time, the weighing factor w should be different. Using

these Pareto optimal solutions, reference Pareto optimal

front can be drawn. Once the reference Pareto optimal front

was achieved, the POFs using NSGA-II, MOPSO, MODE

and recurring MODE for the same power network have

been evaluated with respect to the reference POF.

In multi-objective optimization algorithm, there is trade-

off between the two conflicting objective functions and the

two objectives are to be considered simultaneously. In this

paper, the Pareto optimal solutions achieved using different

MOO algorithms are also compared with those of reference

Pareto optimal solutions. The MOO algorithm providing

the results very close to that of reference POF is considered

as the superior one.

Simulation Results

The proposed recurring multi-objective DE algorithm is

employed for solving MORPD problem in the 30-bus IEEE

test system [3, 45] and 75-bus Indian system [45]. In this

paper, for solving MORPD problem, two cases of each

power system have been considered. Only the voltage

constraints on PQ buses were considered in (i), whereas the

constraints of voltage and the constraints of line loading

both were implemented in (ii). Performance of the pro-

posed recurring MODE algorithm is evaluated by applying

NSGA-II, MOPSO, MODE and HMPSO [35] algorithms

for the MORPD problem and comparing the obtained

results for both the systems. Simulation results of all the

algorithms were carried out using Matab2017Ra software

on Intel –i7 3470 Desktop PC computer 2.8 GHz, with

2 GB of RAM.

30-Bus IEEE Test System

The 30-bus IEEE test system consists of 06 number of

generators at bus numbers 13, 11, 8, 5, 2 and 1 and total

transmission lines 41 with 04 off-nominal transformers tap

setting ratio in lines 9–6, 10–6, 12–04 and 28–27. This

system has 09 number of shunt VAR sources at bus nos. 29,

24, 23, 21, 20, 17, 15, 12 and 10. Thus, the total number of

control variables in 30-bus IEEE test system for MORPD

problem is 19 (6 ? 4 ? 9). At all the load buses, the lower

limits on bus voltage magnitude are 0.95pu, while the

upper voltage limits are 1.1pu for the PV buses and 1.05pu

for PQ buses. Maximum limits are 1.1pu and minimum

limits are 0.9 pu for transformer tap settings ratio. The

lower limits of the VAR outputs of all the shunt reactive

power sources are 0 and upper limits are 0.05pu [3, 14].

With varying parameters’ values, several trials were

taken when applying various MOEC algorithms for

MORPD problem. However, the best results attained and

provided here are for recurring multi-objective DE popu-

lation size NP = 30, number of recurring MODE rounds

R equal to 10, number of MODE iterations M = 100,

mutation factor F equal to 0.39 and the crossover proba-

bility Cr equal to 0.95. For multi-objective DE algorithm,

with the similar values of crossover probability Cr and

mutation factor F the maximum number of iterations

considered = 1000 (10 9 100). In multi-objective PSO

algorithm, the key parameters considered were like this,

inertia weight w equal to 0.76, cognitive coefficient c1 and

social coefficient c2 equal to 1.9, the total number of

population NP = 30 and number of the particles in repos-

itory = 20. Each algorithm method was implemented for

1000 iterations only for Case 1(i) as well as for Case 1(ii).

Case1 (i): Voltage Constraints

With the voltage profile magnitudes constraints at various

PQ-type buses of IEEE 30-bus system, multi-objective

PSO, non-dominated sorting GA-II, multi-objective DE,

recurring MODE and hybrid multi-swarm PSO algorithms

were applied for MORPD problem with the objectives of

minimization PTLOSS and L-index. The Pareto optimal

fronts obtained on applying these MOEC algorithms are

compared with the reference Pareto optimal solution

[35, 36] in Fig. 2. Recurring MODE algorithm obtained

Pareto optimal front closest to the reference optimal Pareto

front as compared to other multi-objective EC algorithms.

Out of the Pareto optimal solutions, the preferred solutions

having the maximum value of normalized membership

function have been extracted [45] for various algorithms.

The preferred solutions attained for the minimum PTLOSS

and minimum L-index same time using RMODE algorithm

and other algorithms along with the corresponding control

variables are shown in Table 1. As shown in Table 1, the

recurring MODE algorithm gives the minimum total

transmission lines real power losses as 4.87857 MW and

minimum L-index as 0.12864 which are close to those

obtained in reference Pareto optimal solutions using

HMOPSO [36]. This clearly establishes the effectiveness

of the proposed recurring MODE algorithm over the other

MOEC algorithms.
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Case 1(ii): Voltage and Line Loading Constraints

With the constraints on voltage magnitude at PQ buses and

line loading limits at various lines, the NSGA-II, MOPSO,

MODE, RMODE and HMPSO algorithms were

implemented to solve the MORPD problem in the IEEE

30-bus test system. The POFs obtained have been com-

pared with the reference Pareto front in Fig. 3. As shown in

Fig. 3, the POF obtained using RMODE algorithm is very

close to reference POF as compared to those obtained using

other MOEC algorithms.

From the Pareto optimal solutions as obtained above, the

preferred solutions have been extracted using fuzzy mem-

bership-based mechanism [45]. The preferred solutions

thus achieved for the minimum PTLOSS and minimum L-

index at the same time using NSGA-II, MOPSO, MODE,

RMODE and HMPSO algorithms and as reported in [46]

along with decision variables are depicted in Table 2. The

same as given in Table 2, the recurring MODE algorithm

gives the minimum real power loss of total transmission

lines as 4.87758 MW and minimum L-index as 0.12897.

This reveals the usefulness of the recurring MODE algo-

rithm over other MOEC algorithms.

The better performance of recurring MODE algorithm

over the multi-objective DE algorithm can be clearly

observed from the POFs attained by using them for Case
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Fig. 2 POFs for minimization of PTLOSS and L-index—Case 1(i)

Table 1 Decision variables setting for preferred solution—Case 1(i)

S. no. Decision variable Initial setting Algorithms

NSGA-II MOPSO MODE RMODE HMPSO [36]

Generator voltage settings

1 V1 1.0500 1.0720 1.07208 1.07037 1.07154 1.07179

2 V2 1.0400 1.06334 1.06269 1.06168 1.06232 1.06269

3 V5 1.0100 1.03955 1.03795 1.03843 1.04049 1.04036

4 V8 1.0100 1.04023 1.04061 1.03869 1.04023 1.04079

5 V11 1.0500 1.06994 1.07499 1.09185 1.08044 1.08444

6 V13 1.0500 1.05576 1.05084 1.05782 1.05358 1.0492

Transformer tapping setting

7 T11 1.078 0.99654 1.01871 1.07551 1.0238 1.05655

8 T12 1.069 0.99257 0.95274 0.91382 0.96341 0.92951

9 T15 1.032 0.99536 0.99300 0.99578 0.99221 0.98776

10 T36 1.068 0.97476 0.97642 0.97669 0.9766 0.97364

Shunt VAR source settings

11 Qs10 0.0 0.02981 0.05000 0.04871 0.04942 0.05000

12 Qs12 0.0 0.04648 0.04983 0.02483 0.04240 0.04965

13 Qs15 0.0 0.04370 0.050000 0.03791 0.04227 0.04955

14 Qs17 0.0 0.05000 0.04963 0.04807 0.04969 0.04979

15 Qs20 0.0 0.04946 0.05000 0.0493 0.04417 0.04456

16 Qs21 0.0 0.04989 0.05000 0.04903 0.04998 0.04997

17 Qs23 0.0 0.04536 0.04152 0.03389 0.04025 0.03418

18 Qs24 0.0 0.04886 0.05000 0.04922 0.04954 0.04997

19 Qs29 0.0 0.04307 0.04127 0.0429 0.04307 0.03358

PTLOSS 5.8423 4.88684 4.88233 4.88323 4.87857 4.87396

L-index 0.1772 0.12883 0.12843 0.1289 0.12864 0.12899
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1(i) and Case 1(ii) and is shown, respectively, in Fig. 2 and

Fig. 3. As shown in Figs. 2–3, the recurring MODE algo-

rithm offers improved quality and more number of non-

dominated solutions in the POF in comparison with those

obtained using multi-objective DE algorithm.

Comparison of PTLOSS and L-index objectives as attained

using the recurring MODE algorithm with NSGA-II,

MOPSO, MODE and HMPSO algorithms for Cases

1(i) and 1(ii) is summarized in Table 3. As is clear from

Table 3, the recurring MODE algorithm gives improved

results for PTLOSS and L-index minimization when opti-

mized simultaneously. Also, this assessment confirms the

better performance of the recurring MODE algorithm over

NSGA-II, MOPSO and MODE algorithms for solving

multi-objective ORPD problem.

75-Bus Practical Power System

The 75-bus system is a practical power system representing

400 kV and 220 kV buses of Uttar Pradesh State Elec-

tricity Board [35, 45]. This highly stressed practical power

system contains 15 generators at bus numbers 1 to15, 60

load buses from bus numbers 16 to 75 and 17 total number

off-nominal tap settings of transformers in line numbers

16,17, 18, 19, …, 32 and 114 transmission lines. This

system also contains 12 shunt reactors Qs as given in

Table 4. In this power system, total control variables for

optimal reactive power dispatch are 44 (15 ? 17 ? 12).

The upper and lower boundaries on voltage magnitudes at

the generator and load buses and on the transformer tap

settings considered are same as in IEEE 30-bus system.

Minimum limit of shunt reactors’ outputs has been

considered as zero, while maximum limit of shunt reactors’

outputs is the same as shown in column 3 of Table 4. This

column shows the initial settings of 44 control variables

and the corresponding objective functions, PTLOSS and L-

index values. In 75-bus system also, ORPD problem was

handled for the two cases. In the first instance, only the

voltage constraints were imposed. The results obtained thus

are included in Case 2(i), as well as Case 2(ii).

Here also, various trials were taken considering different

values of the key parameters for various MOEC algo-

rithms. However, the best results obtained here are for the

population size NP = 30, recurring MODE rounds R = 8,

maximum number of MODE iterations M equal to 150,

mutation factor F equal to 0.44 and Cr equal to 0.97. For

implementation of multi-objective DE algorithm and

comparison of results, the equivalent number of itera-

tions = 1200 (8 9 150), while the values of F and Cr are

the same as in case of RMODE algorithm. For imple-

mentation of MOPSO algorithm with number of particles

NP = 30, best results obtained were with inertia weight

w = 0.73, c1 = c2 = 1.5 and number of particles in the

repository equal to 30. For the purpose of performance

comparison, every algorithm was implemented for 1200

iterations for both the cases of 75-bus Indian system.

Case 2(i): Voltage Constraints

With the voltage constraints at various PQ buses, the

PTLOSS and L-index objective functions were minimized

simultaneously using NSGA-II, MOPSO, MODE, RMODE

and HMPSO algorithms. The POFs achieved using multi-

objective evolutionary techniques are compared in Fig. 4.

Figure 4 clearly shows that the POF provided by recurring

MODE algorithm is in closed vicinity to reference POF in

comparison with the POFs provided by other MOEC

algorithms.

The preferred solutions extracted out of non-dominated

solutions for the simultaneous minimization of PTLOSS and

L-index and the corresponding control variables are

depicted in Table 4. It is clear from Table 4 that recurring

MODE algorithm offers minimum total transmission lines

real power losses of 1.85742 MW and minimum voltage

stability index of 0.42442, which are better than those of

other MOEC algorithms and comparable with those of

Reference Pareto set. This expresses the efficiency of the

recurring MODE algorithm.

Case 2(ii): Voltage and Line Flows Constraints

NSGA-II, MOPSO, MODE, RMODE and HMPSO algo-

rithms were applied for minimization of PTLOSS and L-

index with voltage security constraints on PQ buses and

line loading constraints on various lines of the power net-

work. The Pareto optimal fronts thus attained are compared

in Fig. 5. Figure 5 clearly shows that in comparison with

the POFs provided by the other MOEC algorithms, the
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Fig. 3 POFs for minimization of PTLOSS and L-index—Case 1(ii)
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Table 2 Decision variables setting for preferred solution—Case 1(ii)

S. no. Decision variable Methods of algorithm

NSGA-II MOPSO MODE RMODE HMPSO MOCIPSO [46] MOIPSO [46] MOPSO [46]

Generator voltage settings

1 V1 1.07296 1.07069 1.07348 1.07174 1.0718 1.10000 0.90000 0.90000

2 V2 1.06485 1.06207 1.06435 1.06288 1.06271 1.10000 0.90000 1.10000

3 V5 1.04123 1.03815 1.04119 1.04005 1.04024 1.10000 0.90817 1.10000

4 V8 1.04258 1.04025 1.0405 1.04054 1.04079 1.10000 1.10000 0.90000

5 V11 1.06443 1.08145 1.08284 1.08381 1.08444 1.10000 1.10000 0.90000

6 V13 1.04601 1.05591 1.04909 1.05415 1.04984 1.10000 1.10000 1.10000

Transformer tapping setting

7 T11 0.99965 1.01564 1.0434 1.02168 1.03948 0.94000 0.95000 1.01000

8 T12 0.99316 0.9706 0.93533 0.96714 0.94601 1.10000 1.10000 0.91000

9 T15 0.98572 0.99598 0.98261 0.98940 0.9887 1.10000 1.10000 1.10000

10 T36 0.98028 0.98112 0.97433 0.97786 0.97338 0.94000 0.95000 0.94000

Shunt VAR source settings

11 Qs10 0.05000 0.04965 0.04939 0.04942 0.04992 0.22000 0.28000 0.00000

12 Qs12 0.05000 0.05000 0.0274 0.0205 0.04999 0.30000 0.30000 0.30000

13 Qs15 0.05000 0.02056 0.04832 0.04266 0.04712 0.12000 0.08000 0.00000

14 Qs17 0.05000 0.05000 0.04982 0.04895 0.04998 0.09000 0.00000 0.00000

15 Qs20 0.05000 0.05000 0.02949 0.04908 0.04415 0.00000 0.05000 0.00000

16 Qs21 0.04989 0.05000 0.04972 0.04988 0.04999 0.11000 0.17000 0.23000

17 Qs23 0.03930 0.04879 0.0449 0.04199 0.03525 0.01000 0.06000 0.09000

18 Qs24 0.05000 0.05000 0.04998 0.04991 0.04998 0.07000 0.00000 0.00000

19 Qs29 0.03991 0.03954 0.03505 0.04107 0.0333 0.03000 0.04000 0.05000

PTLOSS 4.88947 4.88043 4.87890 4.87758 4.87386 5.2320 5.2790 5.3080

L-index 0.12949 0.12948 0.12920 0.12897 0.12901 0.11821 0.11904 0.12191

Table 3 Preferred solution for minimization of PTLOSS and L-index in IEEE 30-bus system

Case Method Preferred solution

PTLOSS (MW) L-index

1(i) NSGA-II algorithm 4.88684 0.12883

MOPSO algorithm 4.88233 0.12843

MODE algorithm 4.88323 0.12890

RMODE algorithm 4.87857 0.12864

HMOPSO algorithm [36] 4.87396 0.12899

1(ii) NSGA-II algorithm 4.88947 0.12949

MOPSO algorithm 4.88043 0.12948

MODE algorithm 4.87890 0.12920

RMODE algorithm 4.87758 0.12897

HMOPSO algorithm 4.87386 0.12901

MOCIPSO algorithm [46] 5.2320 0.11821

MOIPSO algorithm [46] 5.2790 0.11904

MOPSO algorithm [46] 5.3080 0.12191
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Table 4 Decision variables setting for preferred solution—Case 2(i)

S. no. Decision variable Initial setting Method/algorithm

NSGA-II MOPSO MODE RMODE HMPSO

Generator voltage settings

1 V1 1.030 1.06378 1.06338 1.06193 1.06377 1.06036

2 V2 1.050 1.09155 1.03696 1.04848 0.99148 1.0746

3 V3 1.030 1.08172 1.06429 1.05208 1.03209 1.07554

4 V4 1.050 1.03555 1.0179 1.0827 1.04722 1.06474

5 V5 1.050 0.95 1.03093 1.02667 1.04235 0.99973

6 V6 1.050 1.06676 1.00562 1.01639 1.04604 0.96395

7 V7 1.050 0.99141 1.02341 1.05555 1.03043 1.07137

8 V8 1.050 0.98524 0.98852 0.99824 1.0218 1.00281

9 V9 1.050 1.02816 0.96154 1.07671 1.03792 1.00812

10 V10 1.020 1.01253 1.05256 1.02946 1.04961 1.09002

11 V11 1.020 1.08069 1.06526 0.99383 1.03178 1.07837

12 V12 1.050 1.05041 1.03656 1.07798 1.09583 1.04255

13 V13 1.050 1.04073 1.0721 1.04633 1.0962 1.07957

14 V14 1.030 0.96969 0.98311 1.09243 1.06829 1.04157

15 V15 1.010 1.02876 0.99295 0.98236 0.98488 0.99195

Transformer tapping setting

16 T16 1.0 0.95928 1.01328 0.98664 0.99537 0.99783

17 T17 1.0 1.02299 0.96161 0.95511 0.95022 0.98323

18 T18 1.0 1.01107 0.98146 0.98067 0.98268 0.98163

19 T19 1.0 1.00241 1.03865 1.0235 1.02463 0.99035

20 T20 1.0 0.9691 1.0053 0.95007 0.9549 0.98884

21 T21 1.0 0.95777 0.98148 0.9502 0.95331 0.96383

22 T22 1.0 0.96191 0.9504 0.97198 0.96943 0.95665

23 T23 1.0 0.97802 1.00009 0.99454 0.98098 0.97551

24 T24 1.0 0.97063 0.96384 0.95057 0.96705 0.97902

25 T25 1.0 1.1 0.9549 0.95017 0.95159 0.95001

26 T26 1.0 0.95503 1.03285 0.95051 1.06421 0.97276

27 T27 1.0 0.9501 1.02003 1.04369 0.9507 1.05082

28 T28 1.0 1.00668 0.98765 0.97445 0.98136 1.00867

29 T29 1.0 0.95913 1.0042 1.01855 1.00584 1.00066

30 T30 1.0 1.02188 0.98143 0.99163 0.98795 0.97989

31 T31 1.0 1.01128 0.95075 1.01909 1.01635 0.98695

32 T32 1.0 0.95319 1.01241 0.95002 0.95005 0.97569

Shunt reactors settings

33 Qs17 1.00 0.24482 0.00895 0.1767 0.00386 0.00926

34 Qs19 0.50 0.24219 0.14997 0.00127 0.0005 0.00022

35 Qs22 0.50 0.27856 0.48956 0.21042 0.00271 0.4671

36 Qs23 1.00 0.94969 0.3301 0.92521 0.94147 0.7183

37 Qs26 1.63 0.00874 0.00273 0 0.00116 0.00433

38 Qs29 1.00 0.70346 0.52397 0.43845 0.6547 0.48107

39 Qs35 0.50 0.11575 0.14741 0.0204 0.01492 0.05602

40 Qs36 0.50 0.04468 0.30179 0.00001 0.0005 0.01086

41 Qs41 2.23 2.1593 1.19611 1.19871 1.49052 1.4605

42 Qs42 0.63 0.36542 0.31331 0.03409 0.05239 0.13921

43 Qs73 0.50 0.49909 0.5 0.49957 0.4995 0.49943

44 Qs74 2.83 1.71797 2.80696 2.49491 2.36265 2.59054

PTLOSS 2.05591 1.86935 1.8575 1.85809 1.85742 1.85668

L-index 0.5025 0.42600 0.42604 0.42448 0.42442 0.42385
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Pareto optimal front provided by the recurring MODE

algorithm is very close to reference POF. From the Pareto

optimal solutions obtained using various algorithms, the

preferred solutions have been extracted and are shown

along with their corresponding decision variables in

Table 5. As per the observation of Table 5, the recurring

MODE algorithm gives the minimum total transmission

lines real power losses of 1.87698 MW with minimum L-

index of 0.43265, which are better than those of other

MOEC algorithms and comparable with those of reference

Pareto set. This clearly reveals the efficacy of the proposed

recurring MODE algorithm.

The superior performance of the recurring MODE over

the multi-objective DE algorithm can be noticed from the

POFs attained by using them for both cases and is shown,

respectively, in Fig. 4 and Fig. 5. This is noticed fromFigs. 4

and 5 that the recurring MODE algorithm offers improved

quality and larger set of non-dominated solutions in the POF

in comparison with those attained using MODE algorithm.

Comparison of PTLOSS and L-index objectives as attained

using the recurring MODE algorithm with NSGA-II,

MOPSO, MODE and HMPSO algorithms for both cases is

summarized in Table 6. As clearly shown in Table 6, the

recurring MODE algorithm gives improved results for

PTLOSS and L-index minimization when optimized concur-

rently. Also, this assessment confirms the superiority of

recurring MODE algorithm over NSGA-II, MOPSO and

MODE algorithms for solving MORPD problem.

Performance Comparison of Various MOEC
Algorithms

Performance of various single-objective evolutionary

computing or multi-objective evolutionary computing

techniques cannot be compared only on the basis of the

preferred or best compromised solution provided by them.

Some standard tests like analysis of variance (ANOVA)

test are to be carried out in evaluating the performance of

single-objective evolutionary computing algorithms [48].

However, ANOVA test has also been carried out in multi-

objective evolutionary computing (MOEC) algorithms, but

for determining the importance of various parameters on

the given objective function and selecting the more influ-

ential parameters [51–53].

To measure the performance of various MOEC algo-

rithms, many performance metrics such as generational

distance (GD), inverted generational distance (IGD),

maximum Pareto front error (MPFE) and spacing are cal-

culated to declare the best one [54, 55]. The performance

metrics GD, IGD, MPFE and spacing are calculated for all

the four MOEC algorithms applied for solving MORPD

problem and listed in Table 7 and Table 8 for 30-bus IEEE

test system and for 75-bus practical power system,

respectively. On the basis of various metrics, it can be

observed that RMODE algorithms are the better algorithms

out of the four MOEC algorithms.

Performance Metrics

Nowadays, there are many metrics to measure performance

of MOEAs. Among them, the following five metrics are

widely employed. They can reveal the convergence and

diversity of MOEAs very well. However, many researches

just employ a few of them to evaluate algorithms and argue

that their proposed algorithms are the best. In fact, it is

unfair to give the conclusion without comprehensive met-

rics and evaluations. Therefore, the five metrics are selec-

ted to make the comprehensive comparisons. Generational

distance

GD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 d
2
i

p

n

where di = minjkf(xi)—PFtrue(xj)k is the distance between

non-dominated solution f(xi) and the nearest Pareto front
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Table 5 Decision variables setting for preferred solution—Case 2(ii)

S. no. Decision variable Methods/algorithm

NSGA-II MOPSO MODE RMODE HMPSO

Generator voltage setting

1 V1 1.07844 1.03977 1.04358 1.03811 1.06656

2 V2 1.07628 1.06513 1.09586 1.06513 1.07995

3 V3 1.06258 1.09988 1.01322 1.09988 1.07554

4 V4 0.96453 1.04984 1.02059 1.04984 1.00451

5 V5 0.99154 0.96216 0.95346 0.96216 0.99478

6 V6 1.00927 0.97634 1.06123 0.97634 0.98919

7 V7 0.96339 0.99952 0.95618 0.99952 1.00178

8 V8 1.07241 1.01544 0.99792 1.01544 1.02198

9 V9 0.98472 1.07856 1.04893 1.07856 1.0547

10 V10 1.06295 1.08922 1.07405 1.08922 1.05737

11 V11 1.05288 1.07986 1.06639 1.07986 1.07521

12 V12 1.07109 1.0023 1.06455 1.0023 1.05313

13 V13 1.04388 1.0676 1.03389 1.0676 1.05493

14 V14 0.95115 1.0212 1.01539 1.0212 1.0031

15 V15 0.98481 0.99926 0.96922 0.99926 1.03926

Transformer tapping setting

16 T16 1.06408 0.95 0.98722 0.95 0.99289

17 T17 0.93845 1.02522 1.02147 1.02522 0.97923

18 T18 0.98167 1.00345 1.01096 1.00345 0.99867

19 T19 1.03072 0.95526 1.0536 0.95526 0.97982

20 T20 0.98347 1.05075 0.95964 1.05075 1.02422

21 T21 0.92521 0.97286 0.95826 0.97286 0.95343

22 T22 0.96952 0.99362 0.95163 0.99362 0.98804

23 T23 0.97625 1.04446 0.95307 1.04446 1.02741

24 T24 0.96596 0.9773 0.98756 0.9773 0.96901

25 T25 0.96752 1.00056 1.0334 1.00056 0.9892

26 T26 0.98921 1.00581 0.9931 1.00581 1.06335

27 T27 1.06939 0.97676 0.98759 0.97676 0.98059

28 T28 1.03455 1.03282 1.00197 1.03282 0.98776

29 T29 0.93871 0.95 1.01865 0.95 0.99536

30 T30 1.02028 1.00937 1.02157 1.00937 1.0343

31 T31 1.07432 0.95015 0.98186 0.95015 0.98995

32 T32 0.90000 1.01538 0.98844 1.01538 0.98997

Shunt reactors settings

33 Qs17 0.26679 0.48228 0.57711 0.48228 0.00002

34 Qs19 0.29141 0.23175 0.0 0.23175 0.00004

35 Qs22 0.40243 0.49908 0.05012 0.49908 0.5

36 Qs23 0.96378 0.87482 0.60796 0.87482 0.41272

37 Qs26 1.44517 0.09452 0.36718 0.09452 0.00335

38 Qs29 0.63971 0.7051 0.82353 0.7051 0.99965

39 Qs35 0.06779 0.08292 0 0.08292 0.39505

40 Qs36 0.29510 0.02816 0.04764 0.02816 0.02804

41 Qs41 0.80627 0.31598 0.39383 0.31598 2.09884

42 Qs42 0.15941 0.22083 0.43324 0.22083 0.39485

43 Qs73 0.10109 0.47887 0.39569 0.47887 0.49943

44 Qs74 1.87438 2.59483 2.76236 2.59483 2.21748

PTLOSS 1.88995 1.88031 1.88979 1.87698 1.88244

L-index 0.43799 0.43384 0.43101 0.43265 0.43144
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solution in objective space. It is to measure the closeness of

the solutions to the real Pareto front. If GD is equal to zero,

this reveals that all the non-dominated solutions generated

are located in the real Pareto front. Therefore, the lower

value of GD indicates that the algorithm has better

performance [54, 55].

• IGD: PFtrue is a set of uniformly distributed points in

the objective space. PA is the no dominated solution set

obtained by an algorithm and the distance from PFtrue to

PA is defined as

IGD PA;PFtrueð Þ ¼
P

v2PFtrue d v;PAð Þ
PFtruej j

where (t, PA) is the minimum Euclidean distance between

v and the points in PA. Algorithms with smaller IGD values

are desirable [54, 55].

• Hyper volume: This hyper volume metric calculates the

volume (in the objective space) covered by members of

non-dominated solutions sets obtained by MOEAs

where all objectives are to be minimized [54]. A

hypervolume can be calculated as follows:

HV ¼ volume
[PA

i¼1

ti:

The larger the HV value is, the better the algorithm is.

Spacing: The metric spacing is to measure how uni-

formly the non-dominated set is distributed. It can be

formulated as follows:

s ¼
ffiffiffi
1

n

r Xn

i¼1

ðdi � dÞ2

where di is the same as the di in GD metric, d is the average

Table 6 Preferred solution for minimization of PTLOSS and L-index in 75-bus power system

Case Method Preferred solution

PTLOSS (MW) L-index

2(i) NSGA-II algorithm 1.86935 0.42600

MOPSO algorithm 1.85750 0.42604

MODE algorithm 1.85809 0.42448

RMODE algorithm 1.85742 0.42442

HMPSO algorithm 1.85668 0.42385

2(ii) NSGA-II algorithm 1.88995 0.43799

MOPSO algorithm 1.88031 0.43384

MODE algorithm 1.88979 0.43101

RMODE algorithm 1.87698 0.43265

HMPSO algorithm 1.88244 0.43144

Table 7 Performance comparison for 30-bus IEEE test system

Performance metrics Case 1(i) Case 1(ii)

NSGA-II MOPSO MODE RMODE NSGA-II MOPSO MODE RMODE

GD 0.00088 0.00032 0.00028 0.00021 0.00243 0.00228 0.00052 0.00026

IGD 0.00501 0.00573 0.00311 0.00062 0.01415 0.011 0.00418 0.00254

MPFE 0.01186 0.00289 0.00315 0.00268 0.0155 0.01693 0.00262 0.00168

Spacing 0.00322 0.00054 0.00068 0.00054 0.00244 0.00383 0.00055 0.00047

Table 8 Performance comparison for 75-bus practical power system

Performance metrics Case 2(i) Case 2(ii)

NSGA-II MOPSO MODE RMODE NSGA-II MOPSO MODE RMODE

GD 0.00093 0.00066 0.00063 0.00054 0.00132 0.00071 0.00056 0.00051

IGD 0.00799 0.00711 0.00612 0.00363 0.00737 0.00719 0.00613 0.00615

MPFE 0.00746 0.00583 0.00356 0.00355 0.00975 0.00687 0.00461 0.00461

Space 0.00131 0.00115 0.00085 0.00084 0.00124 0.00111 0.00094 0.00093
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value of di and n is the number of individuals in non-

dominated set. The smaller the spacing is, the better the

algorithm performs [55].

• Maximum Pareto front error: It is to measure the worst

case and can be formulated as follows:

MPFE ¼ maxðdiÞ

where di is the same as di employed in GD. MPFE is the

largest distance among these di. The lower the value of

MPFE is, the better the algorithm is [55].

Conclusions

In this paper, a new approach RMODE algorithm has been

implemented for solving multi-objective reactive power

dispatch problem having two competing objectives, namely

total transmission lines real power losses minimization and

enhancement of voltage stability. Superiority of the pro-

posed RMODE algorithm has been established by imple-

menting RMODE algorithm to solve the MORPD problem

in the standard 30-bus IEEE test system and 75-bus prac-

tical power system and by comparing the results with those

provided by NSGA-II, MOPSO, MODE and HMPSO

algorithms and the reported results. Comparison of the

results and the performance metrics clearly demonstrates

the efficiency of the recurring MODE algorithm in terms of

improved solution quality and confirms its potential to

solve the multi-objective optimization problem in practical

power systems as well.
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