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Abstract
An increasing body of literature shows that predicting gene clusters related to human cancer disease using biological networks 
is significant in bioinformation, it would help to understand disease mechanisms, and benefit the development of diagnostics 
and therapeutics. However, due to noise and preprocessing of data, a single network or graph generated from one cancer 
disease is insufficient to cluster genes. As some cancer diseases are correlated with each other in practice, by integrating 
several gene expression networks generated from those associated cancer diseases, more accurate and robust partition of 
genes can be obtained. In this paper, we propose a multiple graph spectral clustering method with graph association, it helps 
us to discover functional modules in each cancer disease more accurately and comprehensively, meanwhile the degree of 
association among cancer diseases can also be determined. Our idea is to construct a block adjacency matrix to integrate 
the adjacency matrix of each graph and the degree of association among multiple graphs together, then spectral clustering 
would be employed to calculate clusters for each graph. The proposed algorithm is based on a self-consistent field iteration 
such that both the degree of association and gene clusters can be identified during iterations. Moreover, we establish the 
condition under which convergence of the proposed algorithm is guaranteed with some assumptions. Experimental results 
on two datasets of human cancer diseases are presented, which demonstrate that the proposed method can not only identify 
gene functional modules, but also calculate the degree of association among different cancer diseases accurately.

Keywords Gene clusters · Spectral clustering · Gene coexpression data · Nonlinear eigenvalue problem · Self-consistent 
field iteration

1 Introduction

The completion of Human Genome Project (HGP) and the 
development of advanced high-throughput technologies 
have introduced large quantities of gene expression datasets 
from different cancer diseases. Such datasets have moti-
vated lots of research works to investigate the relationship 
among genes. Particularly, numerous research works have 
been done to predict gene clusters related to human cancer 
diseases (Chen et al. 2014; Gill et al. 2014; Hu et al. 2018; 

Li et al. 2014; Sun et al. 2011). Usually, genes in the same 
cluster are functionally related, so disease-related gene clus-
ters can support the existence of distinct disease-specific 
functional modules (Goh et al. 2007; Oti et al. 2006; Wu 
et al. 2010). The identification of gene clusters can not just 
help to better understand cancer disease mechanisms, but 
provide new and exact diagnostics and therapeutics.

An undirected graph is often used to represent the gene 
expression dataset, where interesting genes are vertices and 
the pairwise relationships among genes are edges. Usually, 
one single graph is insufficient to analyze due to noise and 
uncertainty in data generation and preprocess. Nowadays, 
datasets over the same set of genes with different kinds of 
the relationship generated from different sources are avail-
able. For example, different tissues and diseases may share 
some common functional modules when analyzing multiple 
gene expression datasets obtained from different tissues or 
diseases. Quantities of works about such multiple relational 
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datasets have been done, refer to (Hu et al. 2005; Shen et al. 
2015; Zhang and Ng 2016; Zhang et al. 2015).

According to literatures, multi-view clustering has been 
well developed to discover the underlying clustering struc-
tures of such datasets, see for instance (Chen et al. 2017; 
Kumar and Daumé 2011; Tang et al. 2009; Xie and Sun 
2013). However, most existing methods assume that all 
graphs contribute the same when exploiting partitions of 
objects across graphs. While, in reality, some graphs may 
be strongly or weakly associated with the other graphs. For 
example, when we integrate gene expression datasets from 
different cancers, some cancers may be the same subtypes 
from the same tissue, which may share the same features 
compared with those from different tissues. Better clustering 
results can be obtained with the consideration of association 
among graphs.

In this paper, we propose to solve multiple graphs clus-
tering by self-consistent field (SCF) iteration. Our idea is 
to construct a block adjacency matrix to integrate multiple 
graphs, diagonal blocks refer to the relationship within each 
graph, the off-diagonal blocks refer to the degree of associa-
tion among different graphs. During each iteration, spectral 
clustering is performed, clusters in each graph and degree of 
association among graphs would be calculated by utilizing 
the corresponding eigenvectors. The whole process can be 
formulated as a nonlinear eigenvalue problem, which can be 
solved by SCF iteration, the condition under which the algo-
rithm converges is analyzed. Experimental results on two 
gene expression datasets are given to illustrate its superior 
clustering performance and excellent ability in measuring 
the degree of association among cancers.

The rest of this paper is organized as follows. In Sect. 2, 
we briefly review some related work. In Sect. 3, the proposed 
model and algorithm are introduced. In Sect. 4, two gene 
expression datasets are used to illustrate the performance of 
our method. Conclusion is given in Sect. 5. In "Appendix", 
we show the convergence analysis of our proposed model 
and identify the condition under which the convergence of 
the algorithm is guaranteed.

2  Related work

We will show the related works about graph clustering from 
three aspects.

2.1  Clustering for single graph

Spectral clustering is one of the most popular clustering 
algorithms when dealing with one single graph. Given a 
graph G = (V ,E) , V represent the set of N vertices, which 
refers to the interested objects for clustering. And E is the 
set of edges which connect vertices. The corresponding 

adjacency matrix A can be constructed for an undirected 
graph G, where Aij represents the connection between ith 
object and jth object. If the ith object and the jth object have 
a link, then Aij = 1 , otherwise Aij = 0 . If there are K clusters, 
we denote a N-by-K matrix U as an object-cluster-indicator 
matrix. When the ith object is assigned to the jth cluster, 
then Uij = 1 , otherwise it is equal to 0. From the graph cut 
point of view, spectral clustering aims to find a partition of a 
graph such that the edges between different groups have very 
low weights and the edges within groups have high weights. 
The optimization problem is formulated as:

where Tr(⋅) denotes the trace of a matrix. The optimal solu-
tion U in Eq. (1) is K eigenvectors corresponding to the first 
K largest eigenvalues of A . The clustering result is obtained 
by clustering the embeddings of data points U , which are the 
K eigenvectors corresponding to the first K largest eigenval-
ues of A . The detailed theoretical and practical introduction 
about spectral clustering is shown in Von Luxburg (2007).

2.2  Clustering for multiple graphs

According to the literature, more accurate clustering results 
can be obtained by integrating information from multiple 
graphs. In this section, we will briefly review some related 
works. A multi-objective method with the pareto frontier is 
proposed in Wang et al. (2013) to search the joint numeri-
cal range of multiple graphs. While choosing preferred cuts 
from alternative clusters brings high computational costs. 
Xie and Sun (2013) extended clustering ensembles to multi-
view clustering. In Liu et al. (2012), the authors presented 
a tensor-based framework to solve multi-domain spectral 
clustering problem, this formulation is solved by high-order 
singular value decomposition. A probabilistic generative 
model is proposed by Shiga and Mamitsuka (2010), based 
on variational Bayesian estimation, a robust learning scheme 
is used to solve. Dong et al. (2012) combined the spectrum 
of multiple graphs to cluster vertices. Linked matrix fac-
torization (LMF) method is proposed in Tang et al. (2009). 
For each graph, a specific factor and a common factor for 
all graphs can be calculated by applying matrix factoriza-
tion. The common factor provides features used to cluster 
all vertices. In Zhou and Burges (2007), a method based on 
spectral clustering is developed for multi-view data, which 
generalizes the normalized cut from a single view to multi-
ple views. Kumar and Daumé (2011) proposed to combine 
multi-view spectral clustering with co-training. For each 
graph, the structure would be updated by using clustering 
results from other graphs, such a process would repeat itera-
tively. In Kumar et al. (2011), Kumar et al. presented a co-
regularization framework by a cost function containing two 

(1)max
�

Tr(UT
AU) subject to U

T
U = IK
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parts, one measures disagreement between clusters of two 
views, another is the spectral clustering objective function 
of each individual view.

There are two drawbacks to the above methods. One is 
that all methods seek the common clusters across all graphs, 
they assume that the same objects of different graphs should 
be in the same cluster. Another is that they do not take the 
association among different graphs into consideration when 
integrating information from multiple graphs, clustering 
performance may be degraded when some graphs are less 
relevant to the other graphs.

2.3  Multiple graphs association

In multiple graphs clustering, more accurate clustering 
results would be obtained by identifying relevant and irrel-
evant graphs for each graph. In Cheng et al. (2016), co-
regularized graph clustering (CGC) method based on non-
negative matrix factorization was proposed, it makes use of 
relationships across multiple graphs to enhance clustering 
result and reevaluate the consistency across graphs. Ni et al. 
(2015) developed NoNClus method, it models the similar-
ity of graphs as a graph, which can be utilized to regularize 
the clustering structures in different networks. While the 
calculation of NMF in each iteration of CGC and NoNClus 
causes high computational cost. Sun et al. (2013) proposed a 
probabilistic approach to integrate meta-path selection with 
user-guided clustering, the weight of each meta path would 
be learned and clusters with the updated weight would be 
generated. Recently, Chen et al. (2017) combined the Lapla-
cian matrix of all graphs into an block Laplacian matrix and 
used a trade-off parameter to control the association among 
graphs, then apply spectral clustering on this block Lapla-
cian matrix.

The disadvantages of the above-mentioned methods are 
that their optimization process is computationally intensive 
and costly, and some of them seek consensus partition across 
all graphs.

3  The proposed model

In this section, we propose a multiple graphs spectral clus-
tering method with graph association.

3.1  Degree of association calculation

It is significant to design an appropriate method to calculate 
the degree of association among graphs such that accurate 
clustering results would be achieved by data integration. 
Assume that Xj is a N-by-K matrix containing the clustering 
information of the jth graph. The degree of association 
between two graphs should be higher when they have similar 

clustering structure. In Liu et al. (2018), the degree of asso-
ciation between ith domain and jth domain is calculated 
using cosine similarity max{xT

i
xj,−x

T
i
xj}

‖xi‖2‖xj‖2  . Normalization is used 

here in order to control the scale of association and make it 
comparable across graphs, thus maximum is to avoid the 
case that the signs of two vectors may be different. Inspired 
by it, instead of using one eigenvector in Liu et al. (2018), 
here, we calculate the degree of association B(i, j) between 
ith graph and jth graph using K eigenvectors according to

Here, Tr() is the trace of a matrix. |.| means taking the
absolute value instead of maximum. By this way, when 
two graphs have similar clustering structures, a large 
B(i, j) would be achieved, which reflects a large correlation 
between the ith graph and the jth graph.

3.2  Block adjacency matrix with domain association

When given M undirected graphs G1,G2,… ,GM over the 
same set of N vertices. Am ∈ ℝ

N×N denotes the adjacency 
matrix of graph Gm . For the graph Gm , if the ith object and 
the jth object are connected with a link, then Am(i, j) = 1 . 
Otherwise there is no link. Then we can construct a M-by-M 
block adjacency matrix A(X1,X2,… ,XM) to integrate the 
relationship within each graph and degree of association 
among multiple graphs together:

B in Eq. (4) is a matrix describing the degree of association 
among graphs, a larger value in B(i, j) illustrate that ith graph 
and jth graph has a larger degree of association.

Moreover, � is a known constant to balance the inner-
relation information within each graph and the association 

(2)B(i, j) =
�Tr(XiX

T
j
)�

‖Xi‖F‖XT
j
‖F

(i ≠ j)

(3)
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among graphs. A contains the relationship among interest of 
objects for each graph.

And Ai is a symmetric matrix describing the similarity 
among objects in the ith graph. It is easy to verify that both 
A(X1,X2, … ,XM) and B are symmetric matrices.

3.3  Multiple graphs clustering by self‑consistent 
field iteration (SCF) method

In order to obtain better classification performance and precise 
degree of association simultaneously, we propose to solve the 
following self-consistent field (SCF) iteration problem:

where X = [XT
1
,XT

2
,… ,XT

M
]T ∈ ℝ

MN×K  , it contains the 
clustering information of each graph, and XT

X = IK  . 
A(X1,X2,… ,XM) ∈ ℝ

MN×MN is defined in Eq. (3),it is a 
M-by-M block matrix, and each block is a N-by-N matrix. 
Assume that each graph contains K clusters, then X contains 
K eigenvectors corresponding to the first K largest eigen-
value �K of A(X1,X2, … ,XM) . Further we would use this X 
to construct a new block adjacency matrix A(X1,X2,… ,XM) 
according to Eq. (3). In each iteration, clusters for each 
graph are determined with the largest separability by con-
sidering both correlation between objects within each graph 
and correlation among graphs. Then the new updated vec-
tors X containing clustering information would be used to 
calculate new degree of association. The SCF procedure 
will be terminated until the difference between block matrix 
A(X1,X2,… ,XM) in two successive iterations is negligi-
ble, then stable partition of objects and finalized accurate 
association among graphs would be achieved. The detail 
of algorithm is shown in Algorithm 1. The convergence of 
Algorithm 1 also be provided in “Appendix”. We remark that 
(1) we only use information within each graph to calculate 
the degree of association in the beginning of algorithm. (2) 
By using Eq. (4), we have Bi,j = Bj,i . When two different 
graphs are similar (or not similar) clustering structures, their 
association Bi,j would be large (or small).

(5)A =

⎡⎢⎢⎢⎣

A1 0 … 0

0 A2 … 0

⋮ ⋮ ⋱ ⋮

0 0 … AM

⎤⎥⎥⎥⎦

(6)A(X1,X2,… ,XM)X = �kX s.t. X
T
X = IK

Algorithm 1 Multiple graphs clustering by self-
consistent iteration algorithm
Input: M -by-M block symmetric adjacency
matrix A.
Step 1: X1, X2, . . ., XM are the first K largest
eigenvectors of A1, A2,. . ., AM separately, let
X = [XT

1 ,X
T
2 , . . . ,X

T
M ]T , use Eq. (3) to update

A(X1,X2, . . . ,XM ).
repeat

Step 2: Compute the first K largest eigen-
vectorsXi of Ai(X1,X2, . . . ,XM ) by optimiza-
tion of Eq. (6);

Step 3: Apdate A(i+1)(X1,X2, . . . ,XM )
according to the Eq. (3) using Xi

until A(i+1)(X1,X2, . . . ,XM ) −
Ai(X1,X2, . . . ,XM ) < tol (tol = 10−5 in the
experiment).
Step 4: Calculate corresponding Laplacian
matrix of A(i+1)(X1,X2, . . . ,XM ), then apply
spectral clustering on it.

4  Experimental results

We used two gene expression datasets to evaluate the perfor-
mance of the proposed algorithm in clustering and its ability 
in the degree of association, thus we compared it with the 
BLSC method (Chen et al. 2017).

4.1  Gene expression data: LUAD‑LUSC‑OV‑UCEC

The gene expression data for four cancer diseases is down-
loaded from The Cancer Genome Atlas (TCGA), these four 
cancer diseases are: lung adenocarcinoma (LUAD), lung 
squamous cell carcinoma (LUSC), ovarian serous cystadeno-
carcinoma (OV), and uterine corpus endometrial carcinoma 
(UCEC). All cancer disease datasets are generated with 
Affy-metrix HT_HG-U133A by the Broad Institute. There 
are 32 samples, 154 samples, 597 samples and 54 samples in 
LUAD, LUSC, OV and UCEC respectively, 17,825 common 
genes are involved in total. Firstly, we calculated the vari-
ance of all the genes across samples, and selected the first 
1500 genes with the largest variance for each cancer. Then 
we took the union of genes from four cancers, finally there 
are 2831 common genes selected as the interested objects 
for further analysis.

To construct the gene coexpression networks, first, 
the similarity between two genes is calculated accord-
ing to the Pearson correlation coefficient, then use 
hard thresholding to create the adjacency matrix. It 
means if the value of similarity between two genes is 
larger than a given value, then an edge with weight 1 
is assigned between them; if not, they do not connect. 
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We tried different thresholds and compute the linear 
regression coefficient between the frequency of degree 
d(log10(f(d))) and log10 transformed degree d(log10(d)) 
to see whether these networks have approximately scale-
free property (Zhang and Horvath 2005). We finally set 
the hard threshold for LUAD, LUSC, OV and UCEC 
as 0.68, 0.51, 0.74 and 0.59 respectively. Then we con-
structed the corresponding adjacency matrix Aj for four 
cancer diseases. So here M = 4 and N = 2831.

In terms of the number of clusters K, we firstly calcu-
lated the eigenvalues of corresponding Laplacian matrix 
of the adjacency matrix Aj for each cancer, then observed 
the first big jump ( �i+1–�i)/(�i–�i−1 ) in the relative change 
of successive eigenvalues, the first big jump of four can-
cers are shown in Fig. 2. The first big jump of eigenvalue 
for LUAD occurs in 533, that of LUSC occurs in 550, that 
of OV appears in 1306, and that of UCEC is 545. So in 
the experiment, we considered 533, 550, 545 and 1306 as 
the value of K, and calculated the consistent clusters for 
each cancer with different values of K.

Figure 1 shows the average calculated degree of asso-
ciation among four cancers with the change of � when 
K = 533 , it can be seen that the average degree of asso-
ciation close to zero when � is smaller than 1, and it is 
close to 1 when � close to 10. So to control the final con-
vergent value of Bij to be reasonable, � is set as 2 . After 
applying Algorithm 1, we calculate the average degree 
of association when K is set as 533, 550, 545 and 1306, 
it is displayed in Table 1. Then we calculated the com-
mon clusters among four different cancers and deleted 
those clusters whose size was smaller than 5 to simplify 
the analysis. Thus, we show the common genes shared 
by clusters among four cancer diseases in Table 2. It is 
clear that the number of common genes is consistent with 
the value of Bij , which illustrates that our method can 
determine an accurate degree of association among cancer 
diseases.

4.1.1  Clusters analysis

For OV and UCEC, there are 28 common clusters, the 
detailed information is shown in Table 3. We further per-
formed enrichment analysis for Gene Ontology (GO, bio-
logical process) and KEGG pathways for these clusters with 
DAVID (Huang et al. 2009). In Table 3, size means the num-
ber of genes in the cluster. NGO or NKEGG refer to the number 
of enriched GO terms or KEGG pathways. 20 gene clusters 
enrich GO terms, and 14 gene clusters enrich KEGG path-
ways. The enrichment results with P value less than 1E-6 for 
GO categories are shown in Table 4.

In Cluster #1, six among 7 genes are involved in the 
regionalization and pattern specification process (Zhang 
2018). All six genes belong to the gene family HOX, they 
are HOXB2, HOXB3, HOXB5, HOXB6, HOXB8, HOXB9. 
According to existing results, the HOX gene is highly dys-
regulated in cancer. What’s more, according to current evi-
dence, some HOX genes play a general supportive role in 
malignancy at the cellular level and tumor level. For exam-
ple, it promotes proliferation and blocking apoptosis (Mor-
gan et al. 2007) at the cellular level. Moreover, at tumor 
level, where they have been shown to variously induce angi-
ogenesis (Kachgal et al. 2012), drive metastasis (Hong et al. 
2015), facilitate drug (Jin and Sukumar 2016; Li et al. 2015).

For Cluster #9, it is mainly related to responses, includ-
ing immune response and inflammatory response with P 
value being 3.6E− 45 and 4.05E−29. Immune response is 
recognized to have the potential to destroy cancer cells 
and inhibit tumor growth. A lot of evidences suggest that 
immunotherapeutic approaches will become the next major 
therapeutic advance for cancer, including lung cancer and 
ovarian cancer (Carbone et al. 2015; Domagala-Kulawik 
2015; Domagala-Kulawik et al. 2014).For example, the 
immune system is recognized as an important mediator of 
ovarian carcinogenesis (Charbonneau et al. 2013). Inflam-
matory is considered as a key factor to promote tumor 
progression. Cancer-related inflammation influences many 

Fig. 1  The average degree of 
association among four cancers 
Bij with the change of � when 
K = 533
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aspects of malignancy, including the proliferation and 
survival of malignant cells, angiogenesis, tumor metas-
tasis and tumor response to chemotherapeutic drugs and 

hormones (Gomes et al. 2014; Ness and Cottreau 1999). 
More comprehensive understanding towards inflammation 
will provide new insights to the treatment of cancer.

Cluster #10 is also related to immune responses, evi-
dences already show that Type I interferons are protective 
in acute viral infections, which can activate the adaptive 
immune system, then boosting the development of high-
affinity antigen-specific T and B cell responses and immu-
nological memory (Ivashkiv and Donlin 2014). Moreover, 
Type I interferons have become key regulators that modu-
late tumor cell growth, proliferation, migration, apoptosis 
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Fig. 2  The first big jump of eigenvalue for LUAD, LUSC, OV, UCEC 
appear near the 533th, 550th, 1306th, 545th eigenvalue

Table 1  The convergent values of Bij for LUAD–LUSC–OV–UCEC

LUAD LUSC OV UCEC

LUAD 0 0.5243 0.7519 0.5857
LUSC 0.5243 0 0.7084 0.5235
OV 0.7519 0.7084 0 0.7559
UCEC 0.5857 0.5235 0.7559 0

Table 2  Overlapped genes shared by clusters among four cancers

LUAD LUSC OV UCEC

LUAD 0 1212 1237 1148
LUSC 1212 0 1283 1201
OV 1237 1283 0 1221
UCEC 1148 1201 1221 0

Table 3  Common clusters 
identified for OV and UCEC by 
our method

# Cluster Size N
GO

N
KEGG

1 7 5 0
2 23 25 1
3 15 9 2
4 11 0 0
5 23 4 0
6 15 1 0
7 7 0 0
8 8 4 1
9 214 148 40
10 18 7 2
11 6 0 0
12 8 0 0
13 12 2 0
14 12 6 1
15 119 107 9
16 6 0 0
17 11 1 0
18 11 6 1
19 54 11 2
20 67 23 12
21 13 1 0
22 20 11 1
23 116 15 1
24 6 0 0
25 6 0 0
26 10 0 0
27 41 27 10
28 119 44 2
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and so on. More research on it would improve the treat-
ment of cancer (Lu et al. 2019).

For Cluster #15, four significantly enriched GO terms 
contribute to the extracellular matrix, which is a non-cellular 

component of tissue. Rather than its structural role, it serves 
for cell–cell communication, cell adhesion and cell prolif-
eration (Walker et al. 2018). Collagen is the most signifi-
cant component and most abundant fibrous protein in the 

Table 4  Gene ontology 
enrichment of the common 
clusters for OV and UCEC by 
our method

Cluster Enriched GO terms % P value

Cluster 1 GO:0009952 anterior/posterior pattern specification 56.02 1.29E−11
GO:0048704 embryonic skeletal system morphogenesis 46.69 3.71E−10

Cluster 9 GO:0006955 immune response 26.62 3.60E−45
GO:0006954 inflammatory response 19.61 4.05E−29
GO:0070098 chemokine-mediated signaling pathway 9.34 1.26E−21
GO:0006935 chemotaxis 9.34 7.17E−17
GO:0071346 cellular response to interferon-gamma 6.07 1.03E−12
GO:0042102 positive regulation of T cell proliferation 6.07 1.97E−12
GO:0002548 monocyte chemotaxis 5.14 2.24E−11
GO:0050729 positive regulation of inflammatory response 6.07 2.29E−11
GO:0060326 cell chemotaxis 5.60 1.15E−10
GO:0050776 regulation of immune response 7.94 1.26E−10
GO:0030593 neutrophil chemotaxis 5.60 1.37E−10
GO:0007166 cell surface receptor signaling pathway 9.34 1.96E−10
GO:0007186 G-protein coupled receptor signaling pathway 16.35 2.23E−10
GO:0060333 interferon-gamma-mediated signaling pathway 5.60 3.11E−10
GO:0006968 cellular defense response 5.14 1.35E−9
GO:0007267 cell–cell signaling 8.41 3.17E−9
GO:0007165 signal transduction 17.28 1.27E−8
GO:0071347 cellular response to interleukin-1 4.67 8.14E−8
GO:0031295 T cell costimulation 10 4.67 1.87E−7
GO:0032496 response to lipopolysaccharide 6.07 2.75E−7
GO:0071356 cellular response to tumor necrosis factor 5.14 3.74E−7
GO:0048247 lymphocyte chemotaxis 3.27 5.08E−7
GO:0070374 positive regulation of ERK1 and ERK2 cascade 6.07 5.53E−7
GO:0090026 positive regulation of monocyte chemotaxis 2.80 6.09E−7
GO:0002504 antigen processing and presentation of peptide or 

polysaccharide antigen via MHC class II
2.80 8.55E−7

Cluster 10 GO:0060337 type I interferon signaling pathway 61.61 1.05E−18
GO:0009615 response to virus 49.29 4.65E−12
GO:0051607 defense response to virus 49.29 8.27E−11
GO:0045071 negative regulation of viral genome replication 30.81 4.92E−8

Cluster 15 GO:0030198 extracellular matrix organization 12.98 1.83E−20
GO:0030199 collagen fibril organization 7.08 4.28E−16
GO:0030574 collagen catabolic process 7.67 4.19E−15
GO:0007155 cell adhesion 12.39 5.52E−12

Cluster 27 GO:0055114 oxidation-reduction process 38.08 6.01E−13
GO:0044597 daunorubicin metabolic process 10.15 3.17E−7
GO:0044598 doxorubicin metabolic process 10.15 3.17E−7

Cluster 28 GO:0008544 epidermis development 13.96 5.60E−19
GO:0031424 keratinization 6.98 7.78E−9
GO:0030216 keratinocyte differentiation 7.85 9.03E−9
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extracellular matrix, it makes up to 30% of total protein in 
multicellular animals (Daley et al. 2008). The primary func-
tional properties of the matrix are dominated by collagen, 
changes in the deposition or degradation will result in the 
loss of extracellular matrix homeostasis, which would have 
great influences on the proliferation of cancer cells (Fang 
et al. 2014; Provenzano et al. 2006). An overall understand-
ing toward extracellular matrix has been intensely researched 
to investigate its potential markers for better diagnosis and 
prognosis of various cancers, including ovarian cancer and 
lung cancer (Cho et al. 2015; Lim et al. 2017; Nadiarnykh 
et al. 2010).

In Cluster #27, three enriched GO terms are all about 
metabolic process, both doxorubicin and daunorubicin are 
anthracycline drugs which used in the treatment of many 
cancers, including lung, ovarian and breast (Thorn et al. 
2011). Oxidation-reduction process is a type of redox reac-
tion, which has been shown to control carcinogenesis, cancer 
cell proliferation, migration, invasion, metastasis and cancer 
vascularization (Hegedűs et al. 2018). A lot of researches 
have been provided to show that cell death in cancer can 
be induced by targeting redox-mediated signaling cascade 
(Acharya et al. 2010; Nagane et al. 1998; Pegram et al. 2000; 
Tsai et al. 1996). Therefore, further study about this cluster 
would contribute to new drug targets and novel drug devel-
opments of cancer.

For Cluster #28, all enriched GO terms are about epider-
mis and corresponding cell junctions, which are essential 
components for mamals (Liu et al. 2013). Epidermis is the 
outermost of three layers that make up the skin, it is pri-
marily composed of keratinocytes, both keratinization and 
keratinocyte differentiation are a normal physiological pro-
cess about keratinocytes. There are a lot of researches which 
show that epidermal growth factor receptor inhibition may 
be an effective strategy to enhance the effectiveness of treat-
ment in ovarian cancer and endometrial cancer (Alper et al. 
2001; Dong et al. 2013; Granados et al. 2015; Hudson et al. 
2009; Nishimura et al. 2015; Siwak et al. 2010).

4.1.2  Comparison with BLSC method

To illustrate the performance of our methods better, we con-
ducted an experiment on the LUAD-LUSC-OV-UCEC data-
set using BLSC method (Chen et al. 2017), which assumes 
the association among four cancers is the same. We kept the 
same number of clusters K and � , and did the same process 
as what we did in the last subsection. We also conducted 
enrichment analysis for Gene Ontology and KEGG pathway 
on the common clusters of OV and UCEC using DAVID. 
The final result is shown in Tables 5 and 6.

For cluster #A and cluster #B in Table 5, they enriched 
similar GO terms with closed P value compared to cluster 
#9 and cluster #15 in Table 3. Compared with cluster #C 
and cluster #D in Table 5, cluster #27 and cluster #28 in 
Table 3 enriches the same three GO terms with much smaller 
P value, because some genes are not discovered by BLSC. 
Cluster #E in Table 5 is the same with Cluster #1 in Table 3.

In conclusion, compared with BLSC, GO terms 
enriched by clusters discovered by our methods have lower 
P value, which indicates that better clustering results for 
multiple cancer diseases would be obtained with taking 
associations among cancer diseases into consideration.

4.2  Gene co‑expression data: COAD‑KIPAN‑KIRC

In this data set, we did research on the gene expression 
profiles of three different cancer diseases, they are kid-
ney renal clear cell carcinoma (KIRC), Colon adenocar-
cinoma (COAD) and pan-kidney cohorts (KIPAN). These 
three datasets are also produced with Affymetrix HT_
HG-U133A by the Broad Institute. This dataset contains 
17185 common genes expressed in 172 COAD samples, 
72 KIRC samples, 88 KIPAN samples. Similar to the last 
gene expression data, the variance of all the genes across 
samples for each cancer was calculated. 1500 genes with 
the largest variance were selected for each cancer. Finally, 
2513 common genes were determined for data integra-
tion analysis by taking the union from three cancers. So 
M = 3 and N = 2513 . Similar as the previous subsection, 
adjacency matrices for three gene co-expression networks 
were constructed. The threshold for COAD, KIPAN and 
KIRC are 0.58, 0.46 and 0.61 respectively. Moreover, we 
determined the number of clusters K following the way in 
the last subsection. The first big jump of eigenvalue for 
COAD occurs in 524, that of KIPAN appears in 117, that 
of KIRC is 340. So we consider the value of K as 117, 
340 and 524, then consistent clusters for each cancer are 
computed with three different values of K.

Figure 3 shows the average degree of association among 
three cancers calculated by Algorithm 1 with the change of 

Table 5  Common clusters 
identified for OV and UCEC by 
BLSC

# Cluster Size N
GO

N
KEGG

A 248 160 39
B 187 134 15
C 29 26 13
D 114 49 3
E 7 5 0
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Table 6  Gene Ontology 
Enrichment of the common 
clusters for OV and UCEC by 
BLSC

Cluster Enriched GO terms % P value

Cluster A GO:0006955 immune response 25.19 4.42E−45
GO:0006954 inflammatory response 17.64 1.45E−26
GO:0070098 chemokine-mediated signaling pathway 8.40 1.92E−20
GO:0009615 response to virus 7.98 2.47E-15
GO:0006935 chemotaxis 7.98 1.65E−14
GO:0051607 defense response to virus 8.82 2.62E−14
GO:0060337 type I interferon signaling pathway 6.30 4.98E−14
GO:0050776 regulation of immune response 8.40 1.21E−12
GO:0060333 interferon-gamma-mediated signaling pathway 5.88 4.64E−12
GO:0071346 cellular response to interferon-gamma 5.46 5.45E−12
GO:0042102 positive regulation of T cell proliferation 5.46 1.04E−11
GO:0002548 monocyte chemotaxis 4.62 9.01E−11
GO:0050729 positive regulation of inflammatory response 5.46 1.19E−10
GO:0007166 cell surface receptor signaling pathway 8.82 3.24E−10
GO:0060326 cell chemotaxis 5.04 5.19E−10
GO:0007267 cell–cell signaling 8.40 6.06E−10
GO:0030593 neutrophil chemotaxis 5.04 6.16E−10
GO:0006968 cellular defense response 4.62 5.28E−9
GO:0045071 negative regulation of viral genome replication 3.78 3.19E−8
GO:0007165 signal transduction 16.38 5.79E−8
GO:0007186 G-protein coupled receptor signaling pathway 13.87 1.16E−7
GO:0071347 cellular response to interleukin-1 4.20 2.71E−7
GO:0031295 T cell costimulation 4.20 6.14E−7

Cluster B GO:0030198 extracellular matrix organization 9.68 3.07E−20
GO:0030574 collagen catabolic process 5.81 6.73E−16
GO:0030199 collagen fibril organization 5.03 9.01E−16
GO:0007155 cell adhesion 10.07 1.05E−12

Cluster C GO:0055114 oxidation-reduction process 46.39 4.73E−11
GO:0044597 daunorubicin metabolic process 15.46 1.09E−7
GO:0044598 doxorubicin metabolic process 15.46 1.09E−7

Cluster D GO:0008544 epidermis development 12.91 1.10E−17
GO:0031424 keratinization 6.89 5.28E−9

Cluster E GO:0009952 anterior/posterior pattern specification 56.02 1.29E−11
GO:0048704 embryonic skeletal system morphogenesis 46.69 3.71E−10

Fig. 3  The average degree of 
association among three cancers 
Bij with the change of � when 
K = 524
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� when K = 524 . Similarly, when � close to 10, the degree 
of association increases. So we set � to be 10 in our experi-
ment. The average value of Bij with three different numbers 
of clusters K are shown in Table 7. Then the overlapped 
clusters with size larger than 5 among three different can-
cers are calculated for simplified analysis. What’s more, 
the number of overlapped genes among three cancers are 

shown in Table 8. The consistency between the degree of 
association and the number of overlapped genes illustrates 
that the association identified by our method is reasonable.

4.2.1  Clusters analysis

For COAD and KIPAN, 23 clusters are shown in Table 9 
are discoveried. Enrichment analysis for Gene Ontology 
(GO, biological process) and KEGG pathways are con-
ducted for these clusters with DAVID (Huang et al. 2009). 
Within 23 clusters, 16 clusters enriched GO terms, 14 
clusters enriched KEGG pathway. The enrichment results 
with P value less than 1E − 6 for GO categories are dis-
played in Table 10. It is apparent that Cluster #4, #6, and 
#16 significantly enriched GO terms.

Cluster #4 enriches one GO term which is related to 
acute-phase response, an acute inflammatory response that 
is mediated by several acute phase proteins whose concen-
trations in the plasma increase or decrease when people are 
infected or injured. Until now, evidence suggests acute phase 
proteins may have a profound impact on cancer growth, and 
it has tremendous potential as cancer biomarkers (Orr et al. 
2011).

For Cluster #6, six GO terms are enriched significantly. 
Cell adhesion is indispensable to assemble individual cells 
into the three-dimensional tissue of animals, and it is an 
important unit for the intercellular communication in all 
kinds of tissues (Gumbiner 1996; Missler et  al. 2012). 
Besides, the other three GO terms are also related to colla-
gen and matrix, we already show that collagen is the domi-
nant component in the extracellular matrix organization, and 
loss of extracellular matrix homeostasis would result in the 
proliferation of cancer cells.

Cluster #16 is related to immune response and many other 
responses belonging to the immune system. It seems that 
there are many responses occurring in the human body eve-
ryday to prevent the deterioration of cancer diseases. For 
instance, the generation of immune response would lead to 
the proliferation of antigen-specific lymphocytes, then it 
would result in antibodies up-regulation so that carcinogen-
esis can be better controlled (Adam et al. 2003).

4.2.2  Comparison with BLSC method

For comparison, we also conducted an experiment on 
COAD-KIPAN-KIRC using the BLSC method with the 
same K and � as our method. Enrichment analysis for Gene 
Ontology and KEGG pathways on the clusters of COAD and 
KIPAN are also conducted using DAVID, clusters enriched 
significantly are shown in Tables 11 and 12.

Table 7  The convergent values of Bij for COAD-KIPAN-KIRC

COAD KIPAN KIRC

COAD 0 0.6362 0.5855
KIPAN 0.6362 0 0.5706
KIRC 0.5855 0.5706 0

Table 8  Overlapped genes shared by clusters among four cancers

COAD KIPAN KIRC

COAD 0 1810 1798
KIPAN 1810 0 1799
KIRC 1798 1799 0

Table 9  Common clusters 
identified for COAD and 
KIPAN by our method

# Cluster Size N
GO

N
KEGG

1 28 4 4
2 634 109 17
3 8 3 0
4 10 3 0
5 105 37 8
6 94 86 18
7 7 0 0
8 8 0 0
9 16 1 1
10 18 2 1
11 6 0 0
12 11 0 1
13 11 3 1
14 71 10 3
15 25 0 0
16 647 82 33
17 22 1 1
18 52 21 0
19 8 0 0
20 24 7 4
21 6 0 0
22 21 6 1
23 16 4 4
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Cluster #A and cluster #16 in Table 9 have 528 common 
genes, cluster #B and cluster #16 have 22 common genes, 
and genes in cluster #C are all contained in cluster #16. 
However, only a few GO terms are significantly enriched by 
clusters discovered by BLSC. Cluster #D enriched the same 
GO terms with the same P value as cluster #4 discovered 
by our method. So we can also conclude that the associa-
tion among diseases would help us to obtain more accurate 
clustering results for multiple cancer diseases.

5  Concluding remarks

In this paper, we proposed a clustering method for multiple 
graphs with graphs association using a self-consistent field 
iteration method. In each iteration of our method, the con-
sistency among graphs are updated based on first K eigen-
vectors containing the clustering structure information of 
each graph, then construct a new adjacency matrix. In terms 
of the experiment’s results, the clustering performance of 
our methods is better than the BLSC method using two gene 
expression datasets. Besides, results on two gene expres-
sion datasets also demonstrate better clustering performance 
with the degree of association among graphs. Moreover, the 
convergence of a nonlinear eigenvalue problem in which the 
consistency weight depends on eigenvectors of the block 
adjacency matrix, has been studied in “Appendix”. This 
research also opens up several avenues for future work. In 
our framework, all graphs should contain the same size and 

Table 10  Gene ontology 
enrichment of the clusters for 
COAD and KIPAN by our 
method

Cluster Enriched GO terms % P value

Cluster 4 GO:0006953 acute-phase response 43.573 9.64E−7
Cluster 6 GO:0007155 cell adhesion 15.43 3.09E−12

GO:0030574 collagen catabolic process 7.31 5.97E−10
GO:0030198 extracellular matrix organization 9.75 1.87E−9
GO:0001501 skeletal system development 8.12 1.56E−8
GO:0006954 inflammatory response 11.37 2.21E−8
GO:0030199 collagen fibril organization 5.68 2.58E−8

Cluster 16 GO:0006955 immune response 5.84 8.75E−14
GO:0006954 inflammatory response 4.97 4.62E−11
GO:0070098 chemokine-mediated signaling pathway 1.86 2.91E−8
GO:0007204 positive regulation of cytosolic calcium ion 

concentration
2.49 3.06E−8

GO:0007166 cell surface receptor signaling pathway 3.60 3.10E-8
GO:0007165 signal transduction 8.70 1.12E−7
GO:0008015 blood circulation 1.37 8.79E−7

Table 11  Common clusters identified for COAD and KIPAN by 
BLSC

#Cluster Size N
GO

N
KEGG

Minimal P value

A 589 197 28 1.14E−12
B 42 51 12 2.40E−10
C 18 3 1 5.54E−7
D 10 5 0 9.64E−7

Table 12  Gene ontology 
enrichment of the clusters for 
COAD and KIPAN by BLSC

Cluster Enriched GO terms % P value

Cluster A GO:0006955 immune response 5.77 1.14E−12
GO:0006954 inflammatory response 5.37 2.90E−12
GO:0007155 cell adhesion 5.63 7.16E−11
GO:0007166 cell surface receptor signaling pathway 4.02 1.02E−9
GO:0007204 positive regulation of cytosolic calcium ion 

concentration
2.82 1.14E−9

GO:0070098 chemokine-mediated signaling pathway 1.74 6.29E−7
Cluster B GO:0030198 extracellular matrix organization 15.61 2.40E−10
Cluster C GO:0045926 negative regulation of growth 20.52 5.54E−7

GO:0071294 cellular response to zinc ion 20.52 5.54E−7
Cluster D GO:0006953 acute-phase response 42.87 9.64E−7
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types of objects. However, in many applications, different 
types of objects with different size are connected with dif-
ferent types of relationships, handling such multiple graphs 
with different topological structures and semantic meanings 
is an important and challenging topic of future research.

Appendix: Convergence analysis

As we all know, self-consistent iteration (SCF) may not con-
verge (Kouteckỳ and Bonačić 1971). According to Algo-
rithm 1, in order to analyze convergence more easily, we 
are concerned about the following problem in which B is 
replaced by B̄.

where X ∈ ℝ
MN×K ,A(X1,X2,… ,XM) ∈ ℝ

MN×MN is a M-by-
M block matrix, and the size of each block is N-by-N. X is K 
eigenvectors corresponding to the first K largest eigenvalues 
�k of A(X1,X2,… ,XM) , and X = [XT

1
,XT

2
,… , XT

M
]T . The 

matrix A(X1,X2,… , XM) depends on eigenvectors X . It is 
defined as:

where � is a known constant. And

is an block diagonal matrix, and Ai is symmetric matrix. The 
dependency is expressed through a matrix B̄ , defined as:

�̄� is a M-by-M matrix, and �̄�ij = w̄ij|Tr(XiX
T
j
)| for i ≠ j , W̄ is:

Assume the M-by-M block matrix A(X1,X2,… ,XM) is:

(7)A(X1,X2,… ,XM)X = �KX s.t.XT
X = Ik

(8)A(X1,X2,… ,XM) = 𝐀 + 𝛼�̄�⊗ IN

(9)A =

⎡⎢⎢⎢⎣

A1 0 … 0

0 A2 … 0

⋮ ⋮ ⋱ ⋮

0 0 … AM

⎤⎥⎥⎥⎦

(10)

B̄ = W̄⊙

⎡⎢⎢⎢⎣

0 �Tr(X
1
X
T
2
)� … �Tr(X

1
X
T
M
)�

�Tr(X
2
X
T
1
)� 0 … �Tr(X

2
X
T
M
)�

⋮ ⋮ ⋱ ⋮

�Tr(XMX
T
1
)� �Tr(XMX

T
2
)� … 0

⎤
⎥⎥⎥⎦

(11)W̄ = W̄
T
=

⎡⎢⎢⎢⎣

0 w̄
12

… w̄
1M

w̄
21

0 … w̄
2M

⋮ ⋮ ⋱ ⋮

w̄M1
w̄M2

… 0

⎤⎥⎥⎥⎦

Here notation Tr(.) means trace of a matrix, and |.| means 
taking the absolute value.

When given X with constrain XT
X = IK , then the eigenvec-

tors of A(X1,X2,… ,XM) corresponding to the first K largest 
eigenvalues is Y = [YT

1
,YT

2
,… ,YT

M
]T,Y ∈ ℝ

MN×k, Y1,Y2, 
… ,YM ∈ ℝ

N×k . Then these new eigenvectors would be used 
to construct a new block adjacency matrix. In the following 
analysis, A(X) is used to represent A(X1,X2,… ,XM) . The 
changing term of A(X1,X2,… ,XM) during iterations is

Suppose the eigenvalues of A(X) are

Since 𝜆k > 𝜆k+1 , a filter function �̄�(𝜆) that satisfies

can be constructed, then

Here � denotes the eigenvalue matrix of A(X) , then the 
changing term can be represented as

Here abs(.) means taking the absolute value on each element 
of the matrix. Tr2(.) means to take a trace for each block in 
a block matrix. For example, if T is a M-by-M block matrix, 
each block is a N-by-N matrix.

Then

A(X1,X2,… ,XM)

=

⎡
⎢⎢⎢⎣

A1 … 𝛼�Tr(X1X
T
M
)�w̄1MIN

𝛼�Tr(X2X
T
1
)�w̄21IN … 𝛼�Tr(X1X

T
M
)�w̄2MIN

⋮ ⋱ ⋮

𝛼�Tr(XMX
T
1
)�w̄M1IN … AM

⎤
⎥⎥⎥⎦

(12)Γ̄ =

⎡⎢⎢⎢⎣

0 �Tr(X1X
T
2
)� … �Tr(X1X

T
M
)�

�Tr(X2X
T
1
)� 0 … �Tr(X2X

T
M
)�

⋮ ⋮ ⋱ ⋮

�Tr(XMX
T
1
)� �Tr(XMX

T
2
)� … 0

⎤⎥⎥⎥⎦

𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆k > 𝜆k+1 ≥ ⋯ ≥ 𝜆MN

(13)�̄�(𝜆) =

{
0 for 𝜆 = 𝜆k+1,… , 𝜆MN

1 for 𝜆 = 𝜆1, 𝜆2,… , 𝜆k−1, 𝜆k

�̄�(A(X)) =Y�̄�(�)YT = YY
T

=

⎡⎢⎢⎢⎣

Y1Y
T
1

Y1Y
T
2

… Y1Y
T
M

Y2Y
T
1

Y2Y
T
2

… Y2Y
T
M

⋮ ⋮ ⋱ ⋮

YMY
T
1
YMY

T
2

… YMY
T
M

⎤⎥⎥⎥⎦

�̄ = abs(Tr2(YY
T))⊙M

T =

⎡⎢⎢⎢⎣

T11 T12 … T1M

T21 T22 … T2M

⋮ ⋮ ⋱ ⋮

TM1 TM2 … TMM

⎤⎥⎥⎥⎦
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So A(X) can be constructed from �̄ . It is

If A(X) is constructed from the �̄in , then �̄out can be repre-
sented as a function of �̄in.

So there is a mapping F from �̄in to �̄out . In order to show the 
convergence of (7), we need to seek a condition such that F 
becomes a contraction, it is

For function �̄�(t) , we define �̄�(t) as Fermi-Dirac distribu-
tion, it is

Here � is decided by the input matrix of �̄�(t) . 𝛽 > 0 is a 
positive constant. � is the solution of the following problem

According to Yang et  al. (2009), because 
∑n

i=1
f�(�i) is

monotonic with respect to � for a fixed � , the solution to Eq. 
(15) is unique for any choice of � and A . Moreover, Yang 
et al. (2009) already shows that a larger � results in a sharper 
drop-off of �̄�(t) from 1 to 0 and a large enough constant � 
can make Eq. (13) satisfied in finite precision arithmetic if 
the UWP condition holds.

Lemma 1 Let B,C ∈ ℝ
M×M , then

hold.

Proof If B,C ∈ ℝ
M×M , then

furthermore,

Tr2(T) =

⎡⎢⎢⎢⎣

Tr(T11) Tr(T12) … Tr(T1M)

Tr(T21) Tr(T22) … Tr(T2M)

⋮ ⋮ ⋱ ⋮

Tr(TM1) Tr(TM2) … Tr(TMM)

⎤⎥⎥⎥⎦

A(�̄) = A + 𝛼�̄⊙W ⊗ IN

�̄out = abs(Tr2(�̄�(A(�̄in))))⊙M

(14)‖F(�̄1) − F(�̄2)‖1 < 𝜌‖�̄1 − �̄2‖1

�̄�(t) = f̄𝜇(t) =
1

1 + e𝛽(t−𝜇)

(15)trace(�̄�(A)) = trace(f̄𝜇(A)) = K

‖abs(B) − abs(C)‖1 ≤ ‖B − C‖1

abs(B) =

⎡⎢⎢⎢⎣

�b11� �b12� … �b1M�
�b21� �b22� … �b2M�
⋮ ⋮ ⋱ ⋮

�bM1� �bM2� … �bMM�

⎤⎥⎥⎥⎦

abs(C) =

⎡⎢⎢⎢⎣

�c11� �c12� … �c1M�
�c21� �c22� … �c2M�
⋮ ⋮ ⋱ ⋮

�cM1� �cM2� … �cMM�

⎤⎥⎥⎥⎦

so the Lemma 1 holds. ◻

Assume that A
1
 and A

2
 are symmetric matrix created 

from the changing term �̄1 and �̄2 respectively. If 𝜇1 > 𝜇2 , 
then f̄𝜇1

(t) ≥ f̄𝜇2
(t) for any t. According to Lemma 1. We 

can show that

Lemma 2 Let �̄� ∈ ℝ
M×M be a symmetric positive semidefi-

nite matrix, then the inequality

holds.

Proof If �̄� ∈ ℝ
M×M is a symmetric positive semidefinite 

matrix, define the Schatten p-norm of matrix �̄� as ‖�̄�‖Sp . It
is easy to know that

So the Lemma 2 can be proved. ◻

Lemma 3 If Ā is a symmetric positive semidefinite matrix, 
then Tr2(Ā) is also a symmetric positive semidefinite matrix.

Proof Ā is a symmetric positive semidefinite matrix. So 
it can be decomposed as Ā = U

A
�

A
U

T

A
 with nonnega-

tive eigenvalue �
A
 and its corresponding eigenvectors U

A
 . 

U
A
= [u

1
,… , u

MN
] ∈ ℝ

MN×MN , uj (1 ≤ j ≤ MN) ∈ ℝ
MN×1 , 

�
A
= Diag([�1, �2,… , �MN]) , �1, �2,… , �MN ≥ 0 , Diag(x) 

‖abs(B) − abs(C)‖1
=max

j
(∣ �b1j� − �c1j� ∣ + ∣ �b2j� − �c2j� ∣ +…

+ ∣ �bMj� − �cMj� ∣)
≤max

j
(∣ b1j − c1j ∣ + ∣ b2j − c2j ∣ +…

+ ∣ bMj − cMj ∣)

=‖B − C‖1

(16)

‖F(�̄1) − F(�̄2)‖1
=‖abs(Tr2(f̄𝜇1

(A
1
)))⊙M

−abs(Tr2(f̄𝜇2
(A

2
)))⊙M‖1

≤(M − 1)‖abs(Tr2(f̄𝜇1
(A

1
)))

−abs(Tr2(f̄𝜇2
(A

2
)))‖1

≤(M − 1)‖Tr2(f̄𝜇1
(A

1
)) − Tr2(f̄𝜇2

(A
2
))‖1

≤(M − 1)[‖Tr2(f̄𝜇1
(A

1
)) − Tr2(f̄𝜇2

(A
1
))‖1

+‖Tr2(f̄𝜇2
(A

1
)) − Tr2(f̄𝜇2

(A
2
))‖1]

‖�̄�‖
1
≤
√
MTr(�̄�)

‖�̄�‖
1
≤
√
M‖�̄�‖

2
≤
√
M‖�̄�‖F

=
√
M‖�̄�‖S2 ≤

√
M‖�̄�‖S1 =

√
MTr(�̄�)
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means a diagonal matrix with x on its diagonal, so 
Ā = �1u1u

T
1
+⋯ + �MNuMNu

T
MN

.

For any vector v = [v1, v2,… , vM]
T ∈ ℝ

M , then

fo r  1 ≤ j ≤ MN  ,  l e t  uj = [(u1
j
)T, (u2

j
)T,… , (uM

j
)T]T  , 

u
i
j
∈ ℝ

N×1 , then

thus �1, �2,… , �MN ≥ 0 , so vTTr2(Ā)v ≥ 0 for any v ∈ ℝ
M . 

Therefore, Tr2(Ā) is a symmetric positive semidefinite 
matrix. The Lemma holds.   ◻

According to Lemmas 2 and 3:

According to LEMMA 4 in Yang et al. (2009), suppose that 
A
1
= X

1
�

1
X
1

T and A
2
= X

2
�

2
X
2

T are the spectral decom-
positions of A

1
 and A

2
 respectively, then

Using the mean value theorem and the fact that

we can show that

Therefore

Tr2(Ā) = Tr2(�1u1u
T
1
+⋯ + �MNuMNu

T
MN

)

= �1Tr2(u1u
T
1
) + �2Tr2(u2u

T
2
)

+⋯ + �MNTr2(uMNu
T
MN

)

v
TTr2(Ā)v =�1v

TTr2(u1u
T
1
)v + �2v

TTr2(u2u
T
2
)v

+⋯ + �MNv
TTr2(uMNu

T
MN

)v

v
TTr2(uju

T
j
)v =

M∑
i=1

M∑
t=1

viTr(u
i
j
(uT

j
)T)vt

=

M∑
i=1

M∑
t=1

vi(u
i
j
)TuT

j
vj

= (v1u
1
j
+ v2u

2
j
+⋯ + vMu

M
j
)T

(v1u
1
j
+ v2u

2
j
+⋯ + vMu

M
j
)

≥ 0

(17)

‖F(�̄1) − F(�̄2)‖1
≤(M − 1)MN

√
M‖f̄𝜇2

(A
1
)) − f̄𝜇2

(A
2
)‖1

+N‖f̄𝜇2
(A

1
)) − f̄𝜇2

(A
2
)‖1

(18)
‖f̄𝜇2

(A
2
) − f̄𝜇2

(A
1
)‖1

≤𝛼M2N2‖Ĉ‖1‖W‖1‖�̄2
− �̄

1
‖1

|f �
�
(t)| ≤ �

4

max
j,k

|Ĉj,k| ≤ 𝛽

4

Combining Eq. (17), Eq. (18) and Eq. (19). we obtain

If � satisfies

We can conclude that F is a contraction, then the conver-
gence of problem Eq. (7) is guaranteed.
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(19)‖Ĉ‖1 ≤ MN𝛽

4

‖F(�1) − F(�2)‖1
≤
�M3N4(M − 1)(M

√
M + 1)�‖W‖1‖�2 − �1‖1
4

(20)� ≤
4

M3N4(M − 1)(M
√
M + 1)�‖W‖1

https://doi.org/10.4161/oxim.3.1.10095
https://doi.org/10.1016/s0163-7258(03)00056-1
https://doi.org/10.1016/s0163-7258(03)00056-1
https://doi.org/10.1093/jnci/93.18.1375
https://doi.org/10.1097/JTO.0000000000000551
https://doi.org/10.1097/JTO.0000000000000551
https://doi.org/10.1615/critrevimmunol.2013006813
https://doi.org/10.1615/critrevimmunol.2013006813
https://doi.org/10.1186/1755-8794-7-S2-S2
https://doi.org/10.1002/nla.2075
https://doi.org/10.1002/nla.2075
https://doi.org/10.1145/2903147
https://doi.org/10.3389/fonc.2015.00245
https://doi.org/10.1242/jcs.006064
https://doi.org/10.3978/j.issn.2218-6751.2015.01.11
https://doi.org/10.3978/j.issn.2218-6751.2015.01.11


Network Modeling Analysis in Health Informatics and Bioinformatics           (2022) 11:20  

1 3

Page 15 of 16    20 

Domagala-Kulawik J, Osinska I, Hoser G (2014) Mechanisms of 
immune response regulation in lung cancer. Transl Lung Cancer 
Res 3(1):15. https:// doi. org/ 10. 3978/j. issn. 2218- 6751. 2013. 11. 03

Dong X, Frossard P, Vandergheynst P et al (2012) Clustering with 
multi-layer graphs: a spectral perspective. IEEE Trans Signal 
Process 60(11):5820–5831. https:// doi. org/ 10. 1109/ TSP. 2012. 
22128 86

Dong P, Kaneuchi M, Konno Y et al (2013) Emerging therapeutic 
biomarkers in endometrial cancer. BioMed Res Int. https:// doi. 
org/ 10. 1155/ 2013/ 130362

Fang M, Yuan J, Peng C et al (2014) Collagen as a double-edged sword 
in tumor progression. Tumor Biol 35(4):2871–2882. https:// doi. 
org/ 10. 1007/ s13277- 013- 1511-7

Gill N, Singh S, Aseri TC (2014) Computational disease gene prior-
itization: an appraisal. J Comput Biol 21(6):456–465. https:// doi. 
org/ 10. 1089/ cmb. 2013. 0158

Goh KI, Cusick ME, Valle D et al (2007) The human disease network. 
Proc Natl Acad Sci 104(21):8685–8690. https:// doi. org/ 10. 1073/ 
pnas. 07013 61104

Gomes M, Teixeira AL, Coelho A et al (2014) The role of inflam-
mation in lung cancer. Inflamm Cancer. https:// doi. org/ 10. 1007/ 
978-3- 0348- 0837-8_1

Granados ML, Hudson LG, Samudio-Ruiz SL (2015) Contribu-
tions of the epidermal growth factor receptor to acquisition 
of platinum resistance in ovarian cancer cells. PLoS One 
10(9):e0136893. https:// doi. org/ 10. 1371/ journ al. pone. 01368 93

Gumbiner BM (1996) Cell adhesion: the molecular basis of tissue 
architecture and morphogenesis. Cell 84(3):345–357. https:// 
doi. org/ 10. 1016/ s0092- 8674(00) 81279-9

Hegedűs C, Kovács K, Polgár Z et al (2018) Redox control of cancer 
cell destruction. Redox Biol 16:59–74. https:// doi. org/ 10. 1016/j. 
redox. 2018. 01. 015

Hong CS, Jeong O, Piao Z et al (2015) Hoxb5 induces invasion 
and migration through direct transcriptional up-regulation of �
-catenin in human gastric carcinoma. Biochem J 472(3):393–
403. https:// doi. org/ 10. 1042/ BJ201 50213

Hu K, Hu JB (2018) Tang L et al Predicting disease-related genes 
by path structure and community structure in protein–protein 
networks. J Stat Mech Theory Exp 10:100001. https:// doi. org/ 
10. 1088/ 1742- 5468/ aae02b

Hu H, Yan X, Huang Y et al (2005) Mining coherent dense sub-
graphs across massive biological networks for functional dis-
covery. Bioinformatics 21(suppl 1):i213–i221. https:// doi. org/ 
10. 1093/ bioin forma tics/ bti10 49

Huang DW, Sherman BT, Lempicki RA (2009) Bioinformatics 
enrichment tools: paths toward the comprehensive functional 
analysis of large gene lists. Nucleic Acids Res 37(1):1–13. 
https:// doi. org/ 10. 1093/ nar/ gkn923

Hudson LG, Zeineldin R, Silberberg M et al (2009) Activated epider-
mal growth factor receptor in ovarian cancer. Ovarian Cancer. 
https:// doi. org/ 10. 1016/j. canep. 2012. 06. 005

Ivashkiv LB, Donlin LT (2014) Regulation of type i interferon 
responses. Nat Rev Immunol 14(1):36–49. https:// doi. org/ 10. 
1038/ nri35 81

Jin K, Sukumar (2016) Hox genes: major actors in resistance to 
selective endocrine response modifiers. Biochimica et Biophys-
ica Acta (BBA) Rev Cancer 1865(2):105–110. https:// doi. org/ 
10. 1016/j. bbcan. 2016. 01. 003

Kachgal S, Mace KA, Boudreau NJ (2012) The dual roles of home-
obox genes in vascularization and wound healing. Cell Adhes 
Migr 6(6):457–470. https:// doi. org/ 10. 4161/ cam. 22164

Kouteckỳ J, Bonačić V (1971) On convergence difficulties in the 
iterative hartree-fock procedure. J Chem Phys 55(5):2408–2413. 
https:// doi. org/ 10. 1063/1. 16764 24

Kumar A, Rai P, Daume H (2011) Co-regularized multi-view spec-
tral clustering. Adv Neural Inf Process Syst 24:1413–1421. 
https:// doi. org/ 10. 5555/ 29864 59. 29866 17

Kumar A, Daumé H (2011) A co-training approach for multi-view 
spectral clustering. In: Proceedings of the 28th international 
conference on machine learning (ICML-11), Citeseer, pp 393–
400. https:// doi. org/ 10. 5555/ 31044 82. 31045 32

Li M, Zhang J, Liu Q et al (2014) Prediction of disease-related genes 
based on weighted tissue-specific networks by using DNA meth-
ylation. BMC Med Genom 7(2):1–8. https:// doi. org/ 10. 1186/ 
1755- 8794-7- S2- S4

Li N, Jia X, Wang J et al (2015) Knockdown of homeobox a5 by 
small hairpin RNA inhibits proliferation and enhances cyta-
rabine chemosensitivity of acute myeloid leukemia cells. Mol 
Med Rep 12(5):6861–6866. https:// doi. org/ 10. 3892/ mmr. 2015. 
4331

Lim SB, Tan SJ, Wan-Teck L et al (2017) An extracellular matrix-
related prognostic and predictive indicator for early-stage non-
small cell lung cancer. Nat Commun 8(1):1–11. https:// doi. org/ 
10. 1038/ s41467- 017- 01430-6

Liu X, Ji S, Glänzel W et al (2012) Multiview partitioning via ten-
sor methods. IEEE Trans Knowl Data Eng 25(5):1056–1069. 
https:// doi. org/ 10. 1109/ TKDE. 2012. 95

Liu S, Zhang H, Duan E (2013) Epidermal development in mammals: 
key regulators, signals from beneath, and stem cells. Int J Mol 
Sci 14(6):10869–10895. https:// doi. org/ 10. 3390/ ijms1 40610 869

Liu Y, Ng MK, Wu S (2018) Multi-domain networks association for 
biological data using block signed graph clustering. IEEE/ACM 
Trans Comput Biol Bioinform 17(2):435–448. https:// doi. org/ 10. 
1109/ TCBB. 2018. 28489 04

Lu C, Klement JD, Ibrahim ML et al (2019) Type i interferon sup-
presses tumor growth through activating the stat3-granzyme 
b pathway in tumor-infiltrating cytotoxic t lymphocytes. 
J Immunother Cancer 7(1):1–11. https:// doi. org/ 10. 1186/ 
s40425- 019- 0635-8

Missler M, Südhof TC, Biederer T (2012) Synaptic cell adhesion. 
Cold Spring Harbor Perspect Biol 4(4):a005694. https:// doi. org/ 
10. 1101/ cshpe rspect. a0056 94

Morgan R, Pirard PM, Shears L et al (2007) Antagonism of hox/pbx 
dimer formation blocks the in vivo proliferation of melanoma. 
Cancer Res 67(12):5806–5813. https:// doi. org/ 10. 1158/ 0008- 
5472. CAN- 06- 4231

Nadiarnykh O, LaComb RB, Brewer MA et al (2010) Alterations of the 
extracellular matrix in ovarian cancer studied by second harmonic 
generation imaging microscopy. BMC Cancer 10(1):1–14. https:// 
doi. org/ 10. 1186/ 1471- 2407- 10- 94

Nagane M, Levitzki A, Gazit A et al (1998) Drug resistance of human 
glioblastoma cells conferred by a tumor-specific mutant epidermal 
growth factor receptor through modulation of bcl-xl and caspase-
3-like proteases. Proc Natl Acad Sci 95(10):5724–5729. https:// 
doi. org/ 10. 1073/ pnas. 95. 10. 5724

Ness RB, Cottreau C (1999) Possible role of ovarian epithelial inflam-
mation in ovarian cancer. J Natl Cancer Inst 91(17):1459–1467. 
https:// doi. org/ 10. 1093/ jnci/ 91. 17. 1459

Nishimura T, Nakamura K, Yamashita S et al (2015) Effect of the 
molecular targeted drug, erlotinib, against endometrial cancer 
expressing high levels of epidermal growth factor receptor. BMC 
Cancer 15(1):1–11. https:// doi. org/ 10. 1186/ s12885- 015- 1975-5

Ni J, Tong H, Fan W, et al (2015) Flexible and robust multi-network 
clustering. In: Proceedings of the 21th ACM SIGKDD interna-
tional conference on knowledge discovery and data mining, pp 
835–844. https:// doi. org/ 10. 1145/ 27832 58. 27832 62

Orr WS, Malkas LH, Hickey RJ, et al (2011) Acute phase proteins 
as cancer biomarkers. Acute phase proteins as early non-specific 

https://doi.org/10.3978/j.issn.2218-6751.2013.11.03
https://doi.org/10.1109/TSP.2012.2212886
https://doi.org/10.1109/TSP.2012.2212886
https://doi.org/10.1155/2013/130362
https://doi.org/10.1155/2013/130362
https://doi.org/10.1007/s13277-013-1511-7
https://doi.org/10.1007/s13277-013-1511-7
https://doi.org/10.1089/cmb.2013.0158
https://doi.org/10.1089/cmb.2013.0158
https://doi.org/10.1073/pnas.0701361104
https://doi.org/10.1073/pnas.0701361104
https://doi.org/10.1007/978-3-0348-0837-8_1
https://doi.org/10.1007/978-3-0348-0837-8_1
https://doi.org/10.1371/journal.pone.0136893
https://doi.org/10.1016/s0092-8674(00)81279-9
https://doi.org/10.1016/s0092-8674(00)81279-9
https://doi.org/10.1016/j.redox.2018.01.015
https://doi.org/10.1016/j.redox.2018.01.015
https://doi.org/10.1042/BJ20150213
https://doi.org/10.1088/1742-5468/aae02b
https://doi.org/10.1088/1742-5468/aae02b
https://doi.org/10.1093/bioinformatics/bti1049
https://doi.org/10.1093/bioinformatics/bti1049
https://doi.org/10.1093/nar/gkn923
https://doi.org/10.1016/j.canep.2012.06.005
https://doi.org/10.1038/nri3581
https://doi.org/10.1038/nri3581
https://doi.org/10.1016/j.bbcan.2016.01.003
https://doi.org/10.1016/j.bbcan.2016.01.003
https://doi.org/10.4161/cam.22164
https://doi.org/10.1063/1.1676424
https://doi.org/10.5555/2986459.2986617
https://doi.org/10.5555/3104482.3104532
https://doi.org/10.1186/1755-8794-7-S2-S4
https://doi.org/10.1186/1755-8794-7-S2-S4
https://doi.org/10.3892/mmr.2015.4331
https://doi.org/10.3892/mmr.2015.4331
https://doi.org/10.1038/s41467-017-01430-6
https://doi.org/10.1038/s41467-017-01430-6
https://doi.org/10.1109/TKDE.2012.95
https://doi.org/10.3390/ijms140610869
https://doi.org/10.1109/TCBB.2018.2848904
https://doi.org/10.1109/TCBB.2018.2848904
https://doi.org/10.1186/s40425-019-0635-8
https://doi.org/10.1186/s40425-019-0635-8
https://doi.org/10.1101/cshperspect.a005694
https://doi.org/10.1101/cshperspect.a005694
https://doi.org/10.1158/0008-5472.CAN-06-4231
https://doi.org/10.1158/0008-5472.CAN-06-4231
https://doi.org/10.1186/1471-2407-10-94
https://doi.org/10.1186/1471-2407-10-94
https://doi.org/10.1073/pnas.95.10.5724
https://doi.org/10.1073/pnas.95.10.5724
https://doi.org/10.1093/jnci/91.17.1459
https://doi.org/10.1186/s12885-015-1975-5
https://doi.org/10.1145/2783258.2783262


Network Modeling Analysis in Health Informatics and Bioinformatics           (2022) 11:20 

1 3

   20  Page 16 of 16

biomarkers of human and veterinary diseases, 408. https:// doi. 
org/ 10. 5772/ 25181

Oti M, Snel B, Huynen MA et al (2006) Predicting disease genes using 
protein–protein interactions. J Med Genet 43(8):691–698. https:// 
doi. org/ 10. 1136/ jmg. 2006. 041376

Pegram MD, Konecny G, Slamon DJ (2000) The molecular and cel-
lular biology of her2/neu gene amplification/overexpression and 
the clinical development of herceptin (trastuzumab) therapy for 
breast cancer. Adv Breast Cancer Manag. https:// doi. org/ 10. 1007/ 
978-1- 4757- 3147-7_4

Provenzano PP, Eliceiri KW, Campbell JM et al (2006) Collagen reor-
ganization at the tumor-stromal interface facilitates local invasion. 
BMC Med 4(1):1–15. https:// doi. org/ 10. 1186/ 1741- 7015-4- 38

Shen C, Pan J, Zhang S et al (2015) Multiple networks modules iden-
tification by a multi-dimensional Markov chain method. Netw 
Model Anal Health Inform Bioinform 4(1):1–13. https:// doi. org/ 
10. 1007/ s13721- 015- 0106-1

Shiga M, Mamitsuka H (2010) A variational bayesian framework for 
clustering with multiple graphs. IEEE Trans Knowl Data Eng 
24(4):577–590. https:// doi. org/ 10. 1109/ TKDE. 2010. 272

Siwak DR, Carey M, Hennessy BT et al (2010) Targeting the epider-
mal growth factor receptor in epithelial ovarian cancer: current 
knowledge and future challenges. J Oncol. https:// doi. org/ 10. 1155/ 
2010/ 568938

Sun PG, Gao L, Han S (2011) Prediction of human disease-related gene 
clusters by clustering analysis. Int J Biol Sci 7(1):61. https:// doi. 
org/ 10. 7150/ ijbs.7. 61

Sun Y, Norick B, Han J et al (2013) Pathselclus: integrating meta-
path selection with user-guided object clustering in heterogeneous 
information networks. ACM Trans Knowl Discov Data (TKDD) 
7(3):1–23. https:// doi. org/ 10. 1145/ 25004 92

Tang W, Lu Z, Dhillon IS (2009) Clustering with multiple graphs. In: 
2009 Ninth IEEE international conference on data mining. IEEE, 
pp 1016–1021. https:// doi. org/ 10. 1109/ ICDM. 2009. 125

Thorn CF, Oshiro C, Marsh S et al (2011) Doxorubicin pathways: 
pharmacodynamics and adverse effects. Pharmacogenet Genom 
21(7):440. https:// doi. org/ 10. 1097/ FPC. 0b013 e3283 3ffb56

Tsai CM, Levitzki A, Wu LH et al (1996) Enhancement of chemosensi-
tivity by tyrphostin ag825 in high-p185neu expressing non-small 
cell lung cancer cells. Cancer Res 56(5):1068–1074

Von Luxburg U (2007) A tutorial on spectral clustering. Stat Comput 
17(4):395–416. https:// doi. org/ 10. 1007/ s11222- 007- 9033-z

Walker C, Mojares E, del Río Hernández A (2018) Role of extracel-
lular matrix in development and cancer progression. Int J Mol Sci 
19(10):3028. https:// doi. org/ 10. 3390/ ijms1 91030 28

Wang X, Qian B, Ye J, et al (2013) Multi-objective multi-view spectral 
clustering via pareto optimization. In: Proceedings of the 2013 
SIAM international conference on data mining. SIAM, pp 234–
242. https:// doi. org/ 10. 1137/1. 97816 11972 832. 26

Wu H, Xiong WC, Mei L (2010) To build a synapse: signaling 
pathways in neuromuscular junction assembly. Development 
137(7):1017–1033. https:// doi. org/ 10. 1242/ dev. 038711

Xie X, Sun S (2013) Multi-view clustering ensembles. In: 2013 inter-
national conference on machine learning and cybernetics. IEEE, 
pp 51–56. https:// doi. org/ 10. 1109/ ICMLC. 2013. 68904 43

Yang C, Gao W, Meza JC (2009) On the convergence of the self-con-
sistent field iteration for a class of nonlinear eigenvalue problems. 
SIAM J Matrix Anal Appl 30(4):1773–1788. https:// doi. org/ 10. 
1137/ 08071 6293

Zhang S (2018) Comparisons of gene coexpression network modules 
in breast cancer and ovarian cancer. BMC Syst Biol 12(1):75–87. 
https:// doi. org/ 10. 1186/ s12918- 018- 0530-9

Zhang B, Horvath S (2005) A general framework for weighted gene 
co-expression network analysis. Stat Appl Genet Mol Biol. https:// 
doi. org/ 10. 2202/ 1544- 6115. 1128

Zhang S, Ng MK (2016) Gene-microrna network module analysis for 
ovarian cancer. BMC Syst Biol 10(4):445–455. https:// doi. org/ 10. 
1186/ s12918- 016- 0357-1

Zhang S, Zhao H, Ng MK (2015) Functional module analysis for gene 
coexpression networks with network integration. IEEE/ACM 
Trans Comput Biol Bioinform 12(5):1146–1160. https:// doi. org/ 
10. 1109/ TCBB. 2015. 23960 73

Zhou D, Burges CJ (2007) Spectral clustering and transductive learn-
ing with multiple views. In: Proceedings of the 24th international 
conference on machine learning. pp 1159–1166. https:// doi. org/ 
10. 1145/ 12734 96. 12736 42

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.5772/25181
https://doi.org/10.5772/25181
https://doi.org/10.1136/jmg.2006.041376
https://doi.org/10.1136/jmg.2006.041376
https://doi.org/10.1007/978-1-4757-3147-7_4
https://doi.org/10.1007/978-1-4757-3147-7_4
https://doi.org/10.1186/1741-7015-4-38
https://doi.org/10.1007/s13721-015-0106-1
https://doi.org/10.1007/s13721-015-0106-1
https://doi.org/10.1109/TKDE.2010.272
https://doi.org/10.1155/2010/568938
https://doi.org/10.1155/2010/568938
https://doi.org/10.7150/ijbs.7.61
https://doi.org/10.7150/ijbs.7.61
https://doi.org/10.1145/2500492
https://doi.org/10.1109/ICDM.2009.125
https://doi.org/10.1097/FPC.0b013e32833ffb56
https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.3390/ijms19103028
https://doi.org/10.1137/1.9781611972832.26
https://doi.org/10.1242/dev.038711
https://doi.org/10.1109/ICMLC.2013.6890443
https://doi.org/10.1137/080716293
https://doi.org/10.1137/080716293
https://doi.org/10.1186/s12918-018-0530-9
https://doi.org/10.2202/1544-6115.1128
https://doi.org/10.2202/1544-6115.1128
https://doi.org/10.1186/s12918-016-0357-1
https://doi.org/10.1186/s12918-016-0357-1
https://doi.org/10.1109/TCBB.2015.2396073
https://doi.org/10.1109/TCBB.2015.2396073
https://doi.org/10.1145/1273496.1273642
https://doi.org/10.1145/1273496.1273642

	A new clustering algorithm for genes with multiple cancer diseases by self-consistent field iteration method
	Abstract
	1 Introduction
	2 Related work
	2.1 Clustering for single graph
	2.2 Clustering for multiple graphs
	2.3 Multiple graphs association

	3 The proposed model
	3.1 Degree of association calculation
	3.2 Block adjacency matrix with domain association
	3.3 Multiple graphs clustering by self-consistent field iteration (SCF) method

	4 Experimental results
	4.1 Gene expression data: LUAD-LUSC-OV-UCEC
	4.1.1 Clusters analysis
	4.1.2 Comparison with BLSC method

	4.2 Gene co-expression data: COAD-KIPAN-KIRC
	4.2.1 Clusters analysis
	4.2.2 Comparison with BLSC method


	5 Concluding remarks
	Acknowledgements 
	References




