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Abstract The concept of fuzzy logic has created an

immense interest for various research workers in the dif-

ferent fields. Various offshoots of fuzzy logic appeared in

the literature during the last four decades or so. As the data

involved for several applications has grown considerably,

the number of rules of fuzzy systems for real-life appli-

cations has increased exponentially and is unmanageable.

To reduce the complexity of a fuzzy system, hierarchical

fuzzy logic emerged as one of the most viable options. This

paper gives an introductory approach to design a system

that includes various small dimension fuzzy subsystems,

where all subsystems are arranged in a hierarchical struc-

ture. This approach handles large numbers of rules and

paves a way to design advanced big data applications such

as IoT, Intelligent systems, cyber security and WSNs.

Keywords Fuzzy logic � Hierarchical systems �
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Introduction

In 1965, the term ‘fuzzy logic’ was introduced by Lotfi

Zadeh in one of his papers [1] on fuzzy sets. Fuzzy logic

provides an adequate route for conflict resolution and

making real assessments. Fuzzy logic has the capability to

deal with imprecise, uncertain and vague information.

Fuzzy logic comprises linguistic variables that support the

design of mathematical and realistic models. The fuzzy

logic facilitates a huge number of real-life applications. In

this paper, a concise review of the hierarchical fuzzy logic

has been presented. This will pave a way for researchers to

gain the necessary foundations keeping in view the

explosion of large datasets in various fields.

A. Fuzzy systems.

The fuzzy logic [1, 2] has been derived from the con-

ventional logic, i.e., the fuzzy set theory. The fuzzy logic

consolidates the smooth transformation between false and

true. Instead of presenting the output as extreme ‘0’ or ‘1,’

the output results in the form of degree of truth that

includes [0, 1]. The fuzzy logic follows the notion of partial

truth. In fuzzy logic, the value fluctuates between ‘0’ and

‘1.’ Fuzzy logic [2, 3] constitutes the set theory in which

set A in universe U is categorized by various elements

defined by ‘x’ that appear as real values for each element in

universe U. Equation (1a) represents the membership

relation for set ‘A,’ where l(x) is the membership function

for elements ‘x’ in set ‘A.’

A ¼ fx; lðxÞjx 2 Ug ð1aÞ

For more than one fuzzy set, the binary mapping is used

in general to aggregate the membership function of all the

sets. Consider two fuzzy sets as ‘A’ and ‘B,’ then the binary

mapping can be shown in Eq. (1b) as:

lðA;BÞ ¼ T lAðxÞ; lBðxÞf g ð1bÞ

where lA(x) and lB(x) are the membership functions for

elements ‘x’ in the set ‘A’ and the set ‘B,’ respectively.

Interpretability is the main constituent of a fuzzy system

that characterizes linguistic approach and human interpre-

tation. Not all the conventional systems derived from
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sample data can comprehend human language. Mamdani

and Takagi–Sugeno–Kang proposed a model [4] to boost

the objectives of interpretability and accuracy. The Mam-

dani model defines a linguistic fuzzy modeling concept to

enhance the interpretability, whereas the Takagi–Sugeno–

Kang model [4] focuses on precision modeling to increase

the accuracy. The fuzzy logic consists of a nonlinear

behavior and presents a white-box system that facilitates

transparency between analysis and its logical

interpretation.

B. Real-life examples of fuzzy systems.

With the advent of various complex systems for real-life

applications [3] in recent times, the fuzzy logic has bene-

fited many researchers, scientists, mathematicians, ana-

lysts, etc. Fuzzy logic has been used in endless real-life

applications in the areas such as automotive, defense and

security [5, 6], biomedical, Internet of things, electronics

and forecasting of weather.

One of the realistic applications [3] of the fuzzy logic is

the Sendai subway in Japan. Hitachi designed Nanboku

line to manage the railway transport systems using the

fuzzy logic control system. Another example of the fuzzy

logic is its appearance for the consumer applications, i.e.,

air conditioner, HVAC systems, ventilator, etc. to manage

the thermostat for cooling, heating and making energy

efficient systems.

Nowadays, in most of the 3D animated movies, fuzzy

logic-based animation systems have been used for gener-

ating crowds. The extensive use of these systems can be

visible in one of the world’s best movies like The Lion,

Avatar, the Lord of the Rings, the wardrobe films, etc.

C. Neuro-fuzzy systems.

The term neuro-fuzzy [6, 7] is extracted from the

combination of fuzzy logic and neural networks. This

hybridization gives an intelligent system, where the fuzzy

logic adds linguistic reasoning style, and the neural net-

works connect the cognitive science concepts. The neuro-

fuzzy system incorporates the set theory alongside fuzzy

systems that consists of linguistic behavior with fuzzy rule

base using IF–THEN statements. The neuro-fuzzy

approach adds the interpretability from the fuzzy behavior

and accuracy from the neural networks. The fuzzy system

restricts the usage of the system within specific data size,

whereas the neuro-fuzzy can manage data with large

dimensions and can handle higher computation than a

conventional fuzzy system.

D. Problem statement.

Despite several advancements in the literature, both the

fuzzy and neuro-fuzzy systems have limitations to the

dimension, i.e., maximum number of inputs, maximum

number of rules, etc. These limitations restrict the use of

fuzzy and neuro-systems to address complex real-life

applications with large dimension datasets. This paper

presents an introductory approach to design hierarchical

fuzzy systems [6–8] to leverage a large rule base without

reducing the performance of the overall system.

Hierarchical Fuzzy Systems

The term ‘hierarchical fuzzy systems’ is an arrangement of

several fuzzy logic units connected in the form of

hierarchy.

Due to transparency, the fuzzy logic system has been

preferred for designing complex systems with large dataset

[7], but at the same time, the fuzzy logic possesses several

functional limitations [6, 7, 9] such as dimensions of rules,

dimension of parameters and dimensions of data. These

limitations have become a bottleneck in various complex

real-life applications. To overcome these limitations, the

hierarchical fuzzy system has emerged as one of the most

efficient options.

The system loses both generalization and accuracy due

to the over-fitting of large data. In the 1990s, Raju, Zhou

and Kisner [9] presented the concept of hierarchical fuzzy

systems. Several substructures with low data dimensions,

commonly known as fuzzy units, are linked together in the

form of the hierarchical structure. For various real-life

applications, several researchers leveraged hierarchical

fuzzy systems with the conventional fuzzy to filter and

refine results.

Similarly, the multi-input multi-output (MIMO) systems

can be designed using hierarchical systems by connecting

various distributed multi-input single-output (MISO) sys-

tems in a hierarchical manner, without losing generalization

and transparency. In the literature, Kamthan and Singh [7]

proposed an algorithm to design hierarchical systems for

multi-input multi-output systems by removing the duplica-

tion of common subsystems among various outputs and by

enhancing the overall system performance. The algorithm

showcases the ability of the hierarchical system to handle

and manage large rule dimensions such as images.

A. Hierarchical tree structures.

The hierarchical tree structures are described by multi-

ple levels and each level consists of several subsystems.

For the hierarchical fuzzy design, these subsystems are

referred to as fuzzy units. Besides raw inputs and lowest

level, the output from the previous level becomes the input

to the next level and so on. Figure 1a shows the cascaded

hierarchical tree structure.

Chung and Duan [7, 9] proposed the incremental hier-

archical tree structure, as shown in Fig. 1b. The structure
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 (a)

(b)

(c)

(d)

Cascaded structure of hierarchical systems

Incremental hierarchical structure

 Aggregated hierarchical structure

Distributed multi-layer hierarchical structure

Fig. 1 Hierarchical fuzzy tree

structures
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contains a multistage platform, where one stage incorpo-

rates one hierarchical level. In incremental hierarchical tree

architecture, each level consists of only one fuzzy unit. To

enhance the accuracy, it is suggested to use the most

important inputs at the lower level of hierarchical structure

and rest can be added at later stages.

Wang [7, 9] proposed the aggregated hierarchical tree

structure, as shown in Fig. 1c. The aggregated hierarchical

structure has a multistage platform, and one stage incor-

porates one hierarchical level. In this structure, each level

can have several fuzzy units. All actual inputs are con-

sumed at the lowest level of hierarchical structure, and

later, the outputs from the previous level are considered as

inputs.

To further refine the accuracy of the hierarchical struc-

ture, Karr and Magladena [7, 9] proposed the distributed

hierarchical structure where all the real inputs are dis-

tributed at all the levels. Figure 1d shows the multilayered

hierarchical tree structure.

B. Real-life applications of hierarchical fuzzy logic.

A few examples of the hierarchical systems are image

classification, target acquisition, mobility, tracking sys-

tems, advanced transformation networks such as WSNs,

IoTs, defense and security [6, 7], and survivability of

unmanned vehicles [6, 8]. Many real-life applications

possess large dataset. A large dataset increases the

dimensionality of rules and thus increases the complexity

of the system. In recent times, this increase in complexity

becomes unmanageable and uncontrollable and surpasses

the capacity of the conventional systems. The hierarchical

systems present a workable solution to surpass the draw-

backs of conventional systems by reducing the complexity

of the system [5–7].

C. Representation and design approach of hierarchical

systems.

The hierarchical fuzzy systems [7], in mathematical

form, can be represented by Eqs. (2a) and (2b). Consider

{x1, x2, x3, … xn} as n-inputs and { bx1 ; bx2 ; . . .; bxn} as fuzzy

member variables abstract from these inputs.

IF bx1 ¼ U j
1

� �

AND bx2 ¼ U j
2

� �

; THEN y1 ¼ Oj
1

� �

IF dxiþ1 ¼ U j
iþ1

� �

AND dyi�1 ¼ Oj
i�1

� �

; THEN yi ¼ Oj
i

� �

ð2aÞ

y1 ¼
Pm1

j¼1 Q1;jlU j
1
xið ÞU j

2
xið Þ

Pm1

j¼1 lU j
1
xið ÞlU j

2
xið Þ

yi ¼
Pmi

j¼1 Qi;jlOj
i�1

yi�1ð ÞlU j
iþ1

xiþ1ð Þ
Pm1

j¼1 lOj
i�1

yi�1ð ÞlU j
iþ1

xiþ1ð Þ

ð2bÞ

where the parameters are defined as:

• ‘j’ = 1, 2, 3, …, m, with ‘m’ = total rules

• fU j
1 and U j

2g and Oj
1 represent the fuzzy sets for inputs

and outputs, respectively

• ‘i’ ranges from (2, 3, 4, … n - 1)

• bx1 and bx2 present inputs to the first fuzzy logic unit

• dxiþ1 and dyi�1 present the real input variable and output

from the previous fuzzy logic unit, respectively.

• lU j
i
xið Þ and lOjðyiÞ present the input and output mem-

bership functions

For any linear or nonlinear equations, the following

steps below summarize the design approach [7] for a

hierarchical system:

1. Identify all the input(s), represented as {x1, x2, x3, …
xn}, and the output, represented as ‘y,’ for the system to

be designed.

2. Consider a system and expand it to the desired number

of elements. For example: Expression {Y = A.(B ?

C)} can be expanded further as {Y = (A.B) ? (A.C)},

where (A.B) and (A.C) are different elements of ‘Y.’

3. Group each element of the equation separately, i.e.,

consider (A.B) and (A.C) from the above expression.

4. Identify input(s) for each element separately and keep

the output as same as desired.

5. For the first level of hierarchy, design the fuzzy unit for

each element with its respective inputs and desired

output using fuzzy c-mean clustering method. For

example: (A.B) requires input(s) as A and B only,

whereas (A.C) requires input(s) as A and C only.

6. From second level of hierarchy or onwards, design the

fuzzy unit for each element with its respective inputs

and the output from previous layer as an additional

input, keeping the desired output the same using fuzzy

c-mean clustering.

7. Connect all the fuzzy units in the form of hierarchy

using any of the given hierarchical tree structures as

shown in Fig. 1.

8. Using aggregation method, evaluate the final output of

the hierarchical structure.

Figure 2 represents the design approach of a hierarchical

system [7] proposed in this paper. A nonlinear equation is

expanded into a desired number of expressions. Generate a

fuzzy inference system for every expression separately

using fuzzy c-mean clustering. In this paper, the fuzzy

c-mean clustering is preferred to map center points

extracted from clusters directly into a fuzzy rule base.

Arrange these fuzzy subsystems in a required hierarchical

tree structure shown in Fig. 1. To evaluate the final output,

aggregate all the outputs at the final level of hierarchy.
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D. Complexity of hierarchical system.

It is an established fact that the conventional systems

possess a constraint to the data dimensions [6, 7]. The

constraints can be presented in the form of the complexity

of the systems. The complexity has been best displayed in

conjunction with the representation of the rule base. Rise in

the number of inputs prompt a boost in total rules and thus

escalates the complexity of the system. The increment in

number of rules is proportional to the complexity. For

resolving the complex issues with large dataset, these

constraints narrow down the usage of conventional fuzzy

systems. The hierarchical fuzzy system has become a most

viable solution to surpass the constraints of conventional

systems.

E. Dimensionality of rules.

In a conventional fuzzy system, the membership func-

tion creates input segments and structures all feasible

interconnections between input and output parameters. The

interconnection is referred to as ‘rule.’ The rise in the

number of inputs causes the exponential growth in total

rules. For large input parameters, it is very challenging to

construct the conventional fuzzy systems that can handle

large numbers of rules, whereas the hierarchical fuzzy

system is favored as it provides solutions with reduced rule

base. To understand better, assume an ‘n 9 1’ system with

‘m’ membership functions for each input. A conventional

fuzzy system has a total of ‘mn’ rules. A hierarchical fuzzy

system has a total number of rules defined as: ‘(n - 1).m2.’

It is assumed that every fuzzy unit in hierarchical structure

has two inputs, thus ‘(n - 1)’ fuzzy units are required for

the system.

Radek Sindelar [10] discussed the approach to design

hierarchical fuzzy systems for a simple nonlinear equation.

This paper describes how rule base explosion can be con-

trolled by converting the system into a layer-by-layer

hierarchical model. The aim is to maintain the same or

better accuracy than conventional systems. The

flowchart of the given approach is shown in Fig. 3. A

3 9 1 fuzzy system has been considered with inputs (X1,

X2, X3) and output (Y). The system is divided into two

subsystems. The two inputs X1 and X2 are used for sub-

system S1, and the rule base can be expressed by Eq. (3a).

In the next layer, the output of S1 and the input X3 are used

for subsystem S2 and the rule base for the subsystem S2 can

be expressed by Eq. (3b).

For subsystem S1 : R1

) IF X1 is Ai AND X2 is Bi; THEN Z is Ui

ð3aÞ

For subsystem S2 : R2

) IF X3 is Ci AND Z is Ui; THEN Y is Pi

ð3bÞ

In another example, let us take the Mackey–Glass (MG)

time delay differential model [11] represented in Eq. (4)

Fig. 2 Graphical representation

of hierarchical system design
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and determine the time series values until ‘t’ time to

estimate subsequent values at (t ? P). A typical approach

is to depict Z sample points for ‘u’ units in time

(x(t - (Z - 1) u), …, x(t - u), x(t)) to an estimated

value x(t ? P) in future. The input training data with

Z = 4, P = 6 and u = 6 can be represented in vector form

as shown in Eq. (5) as:

x tð Þ
�

¼ 0:2x t � Tð Þ
1þ x10 t � Tð Þ � 0:1x tð Þ ð4Þ

Y tð Þ ¼ x t � 19ð Þ; x t � 12ð Þ; x t � 6ð Þ; x tð Þ½ � ð5Þ

To calculate the maximum rules possible via

conventional fuzzy, design a fuzzy inference system for

the Mackey–Glass time delay differential equation. In this

paper, fuzzy c-mean clustering method [5, 7] with 16

cluster points has been considered. Each input is classified

into two Gaussian membership functions. The maximum

number of rules in such a case is 24 = 16 rules.

Similarly, a two-layer hierarchical fuzzy system has

been designed for the Mackey–Glass time delay differen-

tial equation to estimate the maximum number of rules.

First level has two fuzzy units, and each unit consists of

two inputs. The next level has one unit. The outputs from

the first level become inputs to the second level. The final

output is represented by the output of the second level.

Like conventional system design, each real input has been

classified into two Gaussian membership functions.

The maximum number of rules in such a case is

(22 ? 22 ? 22) = 12 rules, where every unit has 22 = 4

rules. Figure 4a, b represents the design of the Mackey–

Glass time delay differential model, shown by Eq. (5), with

a conventional fuzzy system and a hierarchical fuzzy sys-

tem, respectively.

Figure 5 presents three outputs extracted from the

Mackey–Glass time delay differential equation shown in

Eq. (5), hierarchical fuzzy system shown in Fig. 4b and

conventional fuzzy system shown in Fig. 4a, where

‘Mackey–Glass time delay differential equation output is

the mathematical output extracted directly from Eq. (5);

‘conventional fuzzy’ graph is the fuzzy output from con-

ventional fuzzy system, shown in Fig. 4a, designed for

Mackey–Glass time delay differential equation shown in

Eq. (5); and ‘hierarchical fuzzy’ graph is fuzzy output from

a hierarchical fuzzy system, shown in Fig. 4b, designed for

Mackey–Glass time differential equation shown in Eq. (5).

Fig. 3 Flowchart of two-level hierarchical structure

(a)

(b)

Conventional fuzzy system

Hierarchical fuzzy system – Aggregated tree structure

Fig. 4 Mackey–Glass time delay differentials model
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In another detailed comparison, Table 1 presents the

correlation [7] between different outputs, i.e., output from

Mackey–Glass time differential equation, output from

conventional fuzzy and output from hierarchical fuzzy

systems. Table 2 presents statistical analysis between these

three outputs.

From the graph, it is clearly visible that the correlation

between the outputs from the conventional fuzzy and the

hierarchical fuzzy systems and the output of the Mackey–

Glass time delay differential equation is similar in nature.

The statistical analysis between output from Mackey–Glass

time delay differential equation and hierarchical system

presents a similar behavior. Nevertheless, the hierarchical

fuzzy system is designed with a smaller number of rules

compared to a conventional fuzzy logic as described and

shown in Fig. 4 and thus provides less system complexity.

This analysis showcases the hierarchical fuzzy system is an

effective option especially with reduced rule base.

Comparison of hierarchical logic
with conventional logic approaches

Table 3 provides the descriptive analysis between con-

ventional system and hierarchical system approach.

Fig. 5 Output comparison between MG time differential equation, conventional fuzzy and hierarchical fuzzy logic

Table 1 Comparison between conventional systems and hierarchical systems

Correlation variables Correlation value

Mackey–Glass time differential equation and conventional fuzzy system 0.93

Mackey–Glass time differential equation and hierarchical fuzzy system 0.91
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Conclusion

Fuzzy logic has extensively been used for several decades

in a variety of applications. Because of the explosion in

data, the future of fuzzy logic research work will look for

more advanced approaches for big data applications.

Hierarchical systems offer the most viable option to over-

come the limitation of dimensions possessed by conven-

tional systems. Hierarchical systems can handle imprecise,

uncertain and vague data. Hierarchical systems provide

enhanced performance and efficiency due to reduced rule

base and complexity. In this paper, an approach has been

discussed by which any system can be designed in the form

of desired hierarchical structure. The procedure is illus-

trated with the help of examples and the results of hierar-

chical systems match with the conventional systems. This

paper will help researchers in exploring design in hierar-

chical systems and their applications in real-life and big

data applications such as WSNs and IoTs.
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