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Abstract
In this study, a novel nature-inspired autonomous motion was investigated using the honey-bee algorithm for aerial robots. 
The main idea belonged to a novel analogy between optimal honey bees and aerial robots’ motion in proposing autonomous 
guidance. Three-dimensional simulations for aerial robots were considered to show the efficient performance of autonomous 
guidance. A new equation system was also developed based on the yaw angle control to simplify dynamic flight calculations. 
Moreover, different uncertainties such as lateral wind current and navigation’ noise were considered and checked precisely 
using a neural-fuzzy network to enhance autonomous guidance reliability. Accordingly, aerial robots’ autonomous motions 
were developed by fuzzy logic to overcome low-quality data linkages between aerial robots. The results of this study illus-
trated that the integrated nature-inspired guidance by fuzzy logic had a lower total passing and the final time of 24.64% and 
21.87% for aerial robots, respectively.

1  Introduction

Autonomous aerial robots with closed-loop guidance are of 
paramount importance for civil missions. Further research 
and ideas are required for conventional guidance methods 
to develop the next generations of aerial robots. The usual 
open-loop guidance methods are underpinned by the ground 
station; therefore, the reduction of ground station commands 
by novel intelligent methods is essential for the next aerial 
robots’ development. Moreover, many studies have exam-
ined closed-loop guidance using artificial intelligence meth-
ods to remove uncertainties (Al-Rabayah and Malaney 2012; 
Babaei et al. 2011; Bernsen and Manivannan 2012; Bitam 
et al. 2013; Chen et al. 2016, 2017; Dadkhah and Mettler 
2012; Eng et al. 2010). The problem statement, the main 

contributions and the motivation of this paper are as fol-
low. The main problem of this paper is belonged to propose 
a novel nature-inspired autonomous motion of arial robots 
with artificial intelligence. The idea of this paper represented 
a novel analogy between optimal honey bees and aerial 
robots’ motion in proposing autonomous guidance. Moreo-
ver, to explain the motivation of this paper, new equation 
system was also developed based on the yaw angle control to 
simplify dynamic flight calculations. Furthermore, different 
uncertainties such as lateral wind current and navigation’ 
noise were considered using a neural-fuzzy by training a 
network to develop autonomous guidance reliability. Also, 
aerial robots’ autonomous motions were enhanced by fuzzy 
logic to overcome low-quality data linkages between aerial 
robots as a closed-loop guidance method.

Different guidance methods, especially closed-loop and 
autonomous algorithms, are valuable for aerial robots to 
enhance the precision of online path planning. Hence, many 
studies have focused on novel methods such as machine 
learning and the Internet of Things (IoT). Novel methods 
address problems such as low-quality information linkages 
and low-accuracy targets looking for autonomous aerial 
robots; therefore, their contributions have been demon-
strated. Mavrovouniotis et al. (2017) studied the changes in 
the dynamics of swarm intelligence algorithms to increase 
their performance (Fallah-Zazuli et al. 2019). Mettler and 
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Dadkhah investigated autonomous guidance using optimiza-
tion methods.

Furthermore, the primary system was integrated based on 
the cost function and approximation using the optimal path 
planning (Goerzen et al. 2010). Rajasekhar et al. (2017) rep-
resented the engineering applications of swarm intelligence 
optimization algorithms. In Hoffer et al. (2014), some engi-
neering applications of the honey-bee optimization method 
are illustrated. In Huang et al. (2016), Laomettachit et al. 
(2015) performed the bifurcation analysis and stochastic 
simulations in honey-bee swarms using adaptive decision-
making. Moreover, Luo et al. (2019) represented the swarm 
intelligence algorithm as MSAAs using a new elite posi-
tion-based method (Lange et al. 2009). Zedadra et al. (2018) 
discussed decentralized systems, including honey-bee algo-
rithms, in Laomettachit et al. (2015). Some advantages such 
as self-organization and potentials to overcome the complex 
problems of incomplete and limited information in the com-
putation were also investigated. Moreover, the advantages of 
the IoT application were examined by Zedadra et al. (2018) 
to develop the new guidance methods. In Liu et al. (2016), 
Zhou studied autonomous three-dimensional guidance for 
aerial robots with different cost functions.

In Luo et al. (2019), a k-degree smoothing method for 
trajectory design was proposed considering a complex envi-
ronment for multiple sources. Both artificial intelligence and 
particle swarm optimization were considered in combination 
with the adaptive algorithm for optimal trajectory in Ma 
et al. (2006). In Mavrovouniotis et al. (2017), an encoding 
approach was proposed using the two-part wolf pack search 
algorithm for multiple autonomous aerial robots to avoid 
complex environments and check uncertainties. Moreover, 
genetic, birds swarm, random search, and firefly algorithms 
were included under the same conditions. The findings in 
Mettler et al. (2010) illustrated that most autonomous guid-
ance methods had an actual performance for aerial robots’ 
real dynamic model, thereby enhancing the system’s reli-
ability. Furthermore, three-dimensional online guidance 
was proposed for the trajectory optimization of aerial robots 
(Moayedi and Hayati 2018a). Lange et al. proposed a guid-
ance algorithm for aerial robots by estimating the relative 
altitude and position (Moayedi and Hayati 2018b). Similarly, 
many studies have focused on relevant topics such as system 
identification approaches for low-cost aerial robots (Moayedi 
et al. 2020), trajectory planning with and without environ-
ment differential constraints, aerial robots’ autonomous 
guidance under uncertain conditions, helicopter navigation 
and control techniques, and state estimation for aerial robots 
(Moayedi and Rezaei 2019).

In this study, novel guidance was presented based on 
the analogy between optimal honey-bee motion and aerial 
robots’ guidance. The new analogy was described, and three-
dimensional simulations were established. Moreover, the 

neural-fuzzy network was trained to avoid different uncer-
tainties such as lateral wind current and navigation system’ 
noise. Moreover, fuzzy logic was studied to overcome low-
quality data linkages between aerial robots. The results 
showed the potentials of the proposed method for autono-
mous aerial robots to have robust closed-loop guidance.

2 � Literature review

One of the major studies in this field belongs to Moayedi 
et al. (2019), who described the primary sources of uncer-
tainty arising in aerial robots’ guidance and the relevant 
practical techniques. They compared the contributions of 
robotics and artificial intelligence with those of the dynamic 
systems and controls. These fields’ contributions were high-
lighted, providing a roadmap to tackle with the aerial robot 
guidance problem using the intelligence method. Hence, a 
novel method for autonomous aerial robots should be pro-
posed using the artificial bee algorithm.

Moreover, the neural-fuzzy network was considered to 
reduce lateral wind current and navigation noise. The other 
studies have not addressed these two types of uncertainties 
simultaneously. In Mosallanezhad and Moayedi (2017), sev-
eral non-linear machine learning models such as feedforward 
neural network, radial basis neural network, general regres-
sion neural network, support vector machine, tree regression 
fitting model, and adaptive neuro-fuzzy inference system 
were investigated and compared. Then, the predicted find-
ings of the models were compared with those of the finite 
element data. The findings showed a good agreement in 
terms of reliability for the feedforward neural network. The 
other applications of machine learning models were pre-
sented in Nguyen et al. (2019), in which an artificial neu-
ral network investigated an engineering problem, and the 
results were highly accurate. The proposed approach had 
high agreement with a lower mean absolute error, compared 
to the other methods. Moreover, the presented models’ accu-
racy was investigated using the value of root-mean-square 
error and regression plots in Paw and Balas (2011).

The development of a spatially explicit deep learning neu-
ral network model was studied to predict landslide suscepti-
bility in Rajasekhar et al. (2017). According to the findings, 
the deep learning neural network model provided accurate 
results. Furthermore, the efficiency of the model was com-
pared to that of the quadratic discriminant analysis, Fisher’s 
linear discriminant analysis, and multi-layer perceptron neu-
ral network. One of the main advantages of machine learn-
ing models is their combination with optimization methods. 
Hence, the artificial neural network’s capability was syn-
thesized with artificial bee colony, and the particle swarm 
optimization algorithms were investigated in Samani et al. 
(2015). The findings demonstrated that training the artificial 
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neural network with artificial bee colony and particle swarm 
optimization algorithms enhanced the network’s reliability. 
The combination of the artificial neural network with the 
particle swarm optimization algorithm provided the most 
accurate results. In Torres et al. (2016), various evolution-
ary artificial intelligence and machine learning models were 
optimized using the artificial neural network, particle swarm 
algorithm, differential evolution algorithm, adaptive neuro-
fuzzy inference system, general regression neural network, 
and feedforward neural network. In this regard, a combina-
tion of an imperialist competitive algorithm and an artificial 
neural network was proposed in Zedadra et al. (2018), and 
the artificial neural network was improved by being opti-
mized with an imperialist competitive algorithm.

Furthermore, the multi-layer perceptron neural network 
was optimized with the artificial bee colony and particle 
swarm algorithms. The results revealed that the use of the 
artificial bee colony and particle swarm optimization algo-
rithms improved the multi-layer perceptron neural network’s 
efficiency (Zhou et al. 2020). In Zhou et al. (2019), the effi-
ciency of the proposed neural model of the artificial neural 
network optimized with particle swarm in estimating the 
safety factor, compared to other machine learning methods, 
was investigated. Moreover, the neuro particle-based opti-
mization of the artificial neural network was studied, and 
the results were compared with the conventional artificial 
neural network and adaptive neuro-fuzzy inference system 
training solutions. According to the findings, the artificial 
neural network optimized by particle swarm optimization 
algorithm performed slightly better than the conventional 
artificial neural network algorithms.

3 � Novel guidance for autonomous aerial 
robots

Food sources (flower nectar) and bees are two main parts 
of honey-bee swarm motion. In this study, bees and food 
sources were considered as aerial robots and artificial tar-
gets, respectively. The main target was considered as the best 
nectar. An initial population of the algorithm for different 
artificial targets was selected randomly. Search space (main 
domain) is defined by the minimum and maximum values 
of motion bounds, where the main target is placed. Accord-
ingly, the three bounds are considered in Eq. (1).

A place in the above cubic domain is taken in 
[
X,Y ,Z

]
 . 

Like bees in the Artificial Bee Colony algorithm (ABC), the 
aerial robots are of three types. Worker, onlooker, and scout 
bees are named A, B, and C, respectively. Aerial robots, as 
A-type, have initial random roles. In this algorithm, A-type 

(1)X =
{
Xmin,Xmax

}
,Y =

{
Ymin, Ymax

}
,Z =

{
Zmin, Zmax

}

aerial robots’ positions are randomly distributed in the main 
domain. These are called zero positions (X0, Y0, Z0). Later, 
aerial robots move from (X0, Y0, Z0) to the next positions 
(Xi*, Yi*, Zi*). The index (i) represents the number of aerial 
robots. Moreover, the bounds of search space are determined 
as �x, �y, �z . Furthermore, X*, Y*, Z* are derived based on 
Eqs. (2–5) (Figs. 1 and 2). In Fig. 2, VN (N is the number of 
aerial robots) represents aerial robots’ random positions with 
random initial velocities.R

(2)
||||

⇀

X
max

−
⇀

X
min

|||| =
⇀

�

(3)
⇀

� =
[
�x �y �z

]

(4)
⇀

X =
[
X Y Z

]

Fig. 1   Three-dimensional bounds/cubic domain

Fig. 2   Random positions of aerial robots in cubic domain
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In the above equations, |rand| denotes a random number 
smaller than �k∕2(k = x, y, z) , and X∗

i
 , Y∗

i
 , Z∗

i
 represent the 

next position of the ith aerial robot in the cubic domain. 
According to the ABC algorithm, the second positions of 
aerial robots are achieved randomly. A flowchart of the pro-
posed nature-inspired guidance is illustrated in Fig. 3.

A-type aerial robots search for artificial targets and 
memorize their positions. Then the new artificial targets are 
updated and shared with the B-type aerial robots. B-type 
aerial robots search for the closest artificial targets. The 
third role of aerial robots belongs to the C-type when an 
artificial target is not improved after a limited number of 
searches. Accordingly, the C-type aerial robots contribute to 
the achievement of better targets and replace them with the 
last artificial targets. Hence, the C-type aerial robots improve 
the algorithm to find the best artificial target in the defined 
domain. For each artificial target, A-type bees generate new 
motions to search the next artificial targets and their neigh-
borhood using the following equation:

where m ∈ {x, y, z} , j ∈ {1, 2, 3, ... , N} , and N is the num-
ber of aerial robots. The index k denotes the random targets 
that may help updating artificial targets, n is the iteration in 
the mentioned algorithm, and k = n − 1 . Moreover, �j

n is a 
random value in the range of [−1, 1] , which causes random 
motions.

One of the most remarkable features of bees is nutation 
dancing. When A-type aerial robots return to the hive, they 
transform the information of artificial targets to the B-type 
aerial robots by their nutation signals. A target selected by 
the B-type aerial robots is detonated by Pn.

(5)
⇀

X

∗

i
=

⎧
⎪⎨⎪⎩

����
⇀

Xmax

���� +
����
⇀

Xmin

����
2

⎫
⎪⎬⎪⎭
+

�
�rand� ≤ ����

⇀

�∕2
����
�

(6)m�
j

n
= m� j

n
+ �j

n

(
m� j

n
− m�

j

k

)

The qualities of artificial targets are demonstrated by fitn. 
The aerial robots transfer the position information in this 
way; hence, aerial robots with more fuel will remain. Finally, 
some artificial targets cannot be searched by A- and B-types. 
Consequently, C-type aerial robots are sent to search the 
main domain. C-type aerial robots help the algorithm find 
unsearched artificial targets. In other words, this algorithm 
can overcome the difficulties in finding the global/main tar-
get. This is one of the advantages of this algorithm, which 
can be used as novel guidance for aerial robots.

The mentioned guidance can take place in eight steps: (1) 
the first step refers to the initial motion of aerial robots and 
is completely random in the defined domain, (2) distances 
from artificial targets are evaluated, (3) stopping criterion is 
likely to occur, or a new distribution is formed. In this step, 
the aerial robots’ swarm motion is formed while the stopping 
criterion (finding the primary target) is met, (4) neighbor-
hood is searched to find the minimum distance from artificial 
targets, (5) the employment of aerial robots for selected arti-
ficial targets is considered, and distances are re-evaluated, 
(6) the main target is selected based on the distance values 
for aerial robots, (7) to increase the potentials of the men-
tioned algorithm, the remaining aerial robots are assigned to 
search randomly, while evaluating their distances by other 
aerial robots, and (8) finally, the algorithm is finished by the 
while-loop considered in the third step.

4 � Decreasing uncertainties by neural‑fuzzy 
network

The present study has two main novelties. The first one is to 
consider the artificial bee algorithm for path planning and to 
regard an analogy between bee motion and aircraft. Since the 
bee motion algorithm is optimal naturally, the aerial robot 
swarm’s motion is considered optimal. The second novelty 

(7)Pn =
fitn∑N

m=1
fitm

Fig. 3   Flowchart of novel 
proposed guidance based on the 
honey bee algorithm
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is to decrease uncertainties concerning lateral wind current 
and navigation system’ noise by the neural-fuzzy network.

A neural-fuzzy network is a powerful method for machine 
learning, decision-making, and response predicting in a 
complex system to cover uncertainties and increase the 
dynamic system’s reliability (Al-Rabayah and Malaney 
2012; Babaei et al. 2011). The state variable ⇀u and time t 
influence the control part of a dynamic system x⃗ , ⇀u =

⇀

u(x⃗, t) . 
Dynamic systems with no robust controllers against noise 
are weak in operation and less reliable. Any disturbances in 
the initial conditions and noise along the path can make the 
system deviate from the pre-designed trajectory. In a system 
with high reliability, if noise is added to the dynamic system, 
it can reduce noise and return to the main path, so u⃗ = u⃗(x⃗).

To implement the neural-fuzzy intelligent system, sev-
eral flight scenarios are selected from the simulation of the 
last section. Accordingly, three flight scenarios are selected 
so that the neural-fuzzy network accomplishes the dynamic 
system training by artificial intelligence.

The simulation’ results from the autonomous bee algo-
rithm in the previous section are given to the neural-fuzzy 
network for training. First, the validity of the trained system 
should be examined. Then, one of the results of the trained 
neural-fuzzy network is examined for an already-simulated 
scenario.

Figure 4 shows the validity of the training procedure. As 
presented in the figure, 390 training data are demonstrated 
by o, and the output of the neural-fuzzy network is indicated 
by *. Hence, when o and * are matched, the training proce-
dure is matched precisely as well.

The dynamic system is trained accurately with an error 
rate below 0.00020963. Moreover, the number of iterations 
for training is expressed by epoch number as 10. Once the 
neural-fuzzy network training is assured, the results will 
be encrypted as software in the artificial bee algorithm’s 
dynamic system. In this method, the membership functions 
are tuned optimally based on the artificial neural network’s 
training input data. Regarding uncertainty in the initial con-
ditions, the control variable corresponding to the state vector 
is generated from the neural-fuzzy network output as the 

yaw control angle. The output of the neural-fuzzy network 
is the trained yaw control angle �(t) , and the horizontal line 
(number of data) is the number of data considered for three 
scenarios presented in Table 1.

Furthermore, the generated network by the neural net-
work is illustrated in Fig. 5. As shown in the figure, four 
inputs with three separate membership functions are con-
sidered to construct the neural-fuzzy network. Moreover, 
all inputs are correlated and engaged with an output. Fur-
thermore, the backpropagating method is used in the fuzzy 
inference system for training data.

Accordingly, closed-loop guidance is achieved for the 
mentioned aerial vehicles. The training scenarios for the 
neural-fuzzy network are described in Table 1.

5 � Uncertainties

In this work, two types of uncertainties are considered to check 
the mentioned intelligent guidance’s reliability. The first is the 
environment effect on the lateral wind current, and the sec-
ond is the noise exerted on the dynamic navigation system by 
noisy state variables. For uncertainties in lateral wind current, 
three modeled lateral wind currents are considered based on 

Fig. 4   Validation of the neural-
fuzzy network

Table 1   Three scenarios trained by neural-fuzzy network

Scenario Initial condition Final condition

First scenario x0 = 100 (m)

y0 = 195 (m)

z0 = 65 (m)

xf = 0 (m)

yf = 0 (m)

zf = 0 (m)

Second scenario x0 = 90 (m)

y0 = 205 (m)

z0 = 75 (m)

xf = 0 (m)

yf = 0 (m)

zf = 0 (m)

Third scenario x0 = 95 (m)

y0 = 200 (m)

z0 = 85 (m)

xf = 0 (m)

yf = 0 (m)

zf = 0 (m)
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Eqs. (8)–(10) for three dimensions of x, y, z. In these equa-
tions, the lateral wind’s relative speed is V = 20 (m/s) in the 
height of h = 50 (m). Hence, the lateral wind is formulated as 
follows:

Moreover, the random numbers are added to the model for 
precise modeling of lateral wind current to show the neural-
fuzzy network’s reliability.

Figure 6 demonstrates the second type of uncertainties 
exerted on the navigation system.

(8)v = −(V∕h)x

(9)u = −(V∕h)y

(10)w = −(V∕h)z

(11)
v = u = w = −

(
V∕h

)
(1 + �)

� ∈
[
0 0.1

]
; RandomNumber

(12)x⃗noisy = x⃗ + 𝛿x⃗

In Eq. (12), the noise vector 𝛿x⃗ is an action on the dynamic 
system or state variables concerning the navigation system’s 
fault. The equations below demonstrate noise in the state vari-
ables x, y, z.

6 � Kinematic equations

The motion equations for the mentioned aerial robots are mod-
eled as the point mass equations for achieving aerial robot 
guidance.

(13)�x(t) = 0.5 sin(10�(t))x(t)

(14)�y(t) = 0.5 sin(10�(t))y(t)

(15)�z(t) = 0.5 sin(10�(t))z(t)

(16)
dx

dt
= V cos(�) cos(�) + u

Fig. 5   Neural-fuzzy network

Fig. 6   Applied noise to the 
dynamic system
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Figure 7 illustrates the schematics of aerial robots’ coor-
dinates. In Eqs. (16–17), lateral wind speeds are considered 
as u, v, w. Further, there are two control angles of pitch 
and yaw as �(t),�(t) in the mentioned differential equations, 
respectively. In this paper, the first derivatives of the two 
mentioned angles, d�

dt
,d�
dt

 , are obtained from the simulations 
of the bee algorithm. Moreover, a mathematical relation-
ship is established between the two angles. The relationship 
between these two control angles are expressed as:

In this section, the output of the neural-fuzzy network is 
considered �(t) . The new differential equations are consid-
ered and integrated, d� instead of dt.

The proposed neural-fuzzy network can deliver the aerial 
robots using the above dynamic system with high reliability, 
while considering uncertainties from the initial point to the 
endpoint as an online process.

(17)
dy

dt
= V cos(�) sin(�) + v

(18)
dz

dt
= V sin(�) + w

(19)
d�

d�
=

d�∕dt
d�∕dt

(20)
dx

d�
=

1

(d�∕dt)
(V cos(�) cos(�) + u)

(21)
dy

d�
=

1

(d�∕dt)
(V cos(�) sin(�) + v)

(22)
dz

d�
=

1

(d�∕dt)
(V sin(�) + w)

The following figures show the results. In each of 
Figs. 8, 9, 10, 11, 12 and 13, three series of data are pre-
sented. Graphs for “Open-Loop without Noise” show one 
of the aerial robots’ flight simulations to reach the target. 
Graphs for “Closed-Loop with Noise” show the dynamic 
systems’ exerted noise, where the neural-fuzzy network 
can decrease the noise precisely. Therefore, graphs for 
“Closed-Loop with Noise” are completely consistent with 
graphs for “Open-Loop without Noise”. On the other hand, 
graphs for “Open-Loop with Noise” show the dynamic 
system’s exerted noise without considering the neural-
fuzzy network. Evidently, the aerial robot is out of its path 
and has no resistance to the noise.

Fig. 7   Schematics of aerial robots coordinate and lateral wind current

0 0.5 1 1.5 2 2.5 3 3.5 4
0

5

10

15

20

25

t(sec)

X 
(m

)

Open loop

Closed Loop with Noise
Open Loop With Noise

Fig. 8   Time history of x(t) regarding damping uncertainties
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Fig. 9   Time history of y(t) regarding damping uncertainties
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Figure 9 shows the divergence open loop with noise. 
Also, it is obvious aerial robots by open loop with noise 
diverges.

Figures 8, 9 and 10 demonstrate one of the aerial robots’ 
motion in three directions of x, y. z. The divergence of aerial 
robots when noise is exerted on the dynamic system without 
considering the neural-fuzzy network is shown in Figs. 8 
and 9. Therefore, intelligent guidance by the neural-fuzzy 
network offers a robust response to enhance the reliability 
of aerial robots’ motions against the lateral wind current.

Figure 11, demonstrates the yaw angle regarding open 
loop, open loop and closed loop with noise. Results show 
the yaw angles of aerial robots have the robust responses 
against noise. Hence, the yaw angle is independent of noise 
regarding Eqs. (20–22).

The pitch angle has divergency due to the exerted noise in 
the graph “Open-Loop with Noise”, as illustrated in Fig. 12. 
Hence, closed-loop guidance by the neural-fuzzy network 
provides precise results to reduce the noise effect on the 
dynamic system. The three-dimensional motion of one of 
the aerial robots is shown in Fig. 13.

Further, another test to determine the accuracy of the 
training process by the neural-fuzzy network was applied. 
Hence, the trained artificial system robustness was investi-
gated to decrease the noise inserted on the control variable. 
Here, noise is considered as follows:

(23)�noisy(t) = �(t) + ��(t)
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Fig. 10   Time history of z(t) regarding damping uncertainties
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Fig. 12   Time history of �(t) regarding damping uncertainties
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The applied noise �� to the dynamic system is formulated 
by Eq. (24).

In Figs. 14, 15 and 16, blue tringle graphs illustrate the 
open-loop guidance without considering noise; black lines 
demonstrate the noise by considering the neural-fuzzy net-
work; and red dotted lines show the results without consider-
ing the neural-fuzzy network.

Figure 14 demonstrates the x direction with and without 
noise. Red dotted line shows divergence of an aerial robot 
without considering neural-fuzzy network. Hence, the aerial 
robot regarding considering neural-fuzzy network has pre-
cise x direction.

As observed in Fig. 14, the neural-fuzzy network can 
decrease the noise exerted on the yaw control angle. Accord-
ing to Figs. 15 and 16, the exerted noise on the yaw con-
trol angle does not affect the y and z directions of motion. 
The trained neural-fuzzy network can overcome the system 
noise, and the reliability of the designed intelligent system 
increases, as shown in Figs. 14, 15 and 16. Hence, intelligent 
guidance can follow the main path.

7 � Enhancing position of aerial robots 
by fuzzy logic

In this study, aerial robots’ autonomous motions were 
improved by the intelligent method of fuzzy logic. The graph 
theory considering information linkages between aerial robots 
was used to enhance the accuracy of the proposed guidance. 
Each aerial robot contains information received from others to 
determine the positions. Linkages are denoted by 𝛼�⃗  , where 
� is a design coefficient � ∈ [0 1] , and �⃗  is a vector possess-
ing information of aerial robots. �⃗  is a function of position �⃗R , 

(24)��(t) = 0.25 sin(10�(t))�(t)

where �⃗R = [x, y, z] . The quality of information is shown by Ω⃗ , 
and the distance from the destination is denoted by ℑ . There-
fore, information linkages can be denoted as � = �( �⃗R, Ω⃗,ℑ).

It should be noted that Ω⃗ can be a function of the received 
information from GPS and distance to the destination ℑ 
implicitly. There are many �⃗  linkages between aerial robots. 
Based on �sr between aerial robot (s) and aerial robot (r), the 
fuzzy rules are constructed to guide the aerial robots intel-
ligently by increasing the proposed guidance quality. Hence, 
�sr can be formulated as below:

where �����⃗𝜍(.) is the vector of the position for aerial robots. 
Index (s) and (s + 1) are considered because the aerial robot 
(s) and (s + 1) are closed to each other, thereby transferring 
information better. Furthermore, �′

sr
 is considered as:

(25)�
P
sr
=
|||������⃗𝜍(s) − ����⃗𝜍(s + 1)

|||r=s+1

(26)�
�P
sr

=
|||������⃗𝜍(s) − ����⃗𝜍(e)

|||e=random
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Fig. 14   Time history of x(t) regarding damping uncertainties of the 
control variable
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Fig. 15   Time history of y(t) regarding damping uncertainties of the 
control variable
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The information linkage between aerial robot (s) and 
other aerial robots is considered as random aerial robots’ 
position. Accordingly, all the transform linkages can be 
evaluated. The linkages include two vectors and one constant 
as �⃗sr = �sr

(
R⃗, Ω⃗, ℑ

)
 and �⃗�

sr = �
�
sr
(R⃗, Ω⃗, ℑ) . Some infor-

mation about the positions of aerial robots is achieved from 
GPS, and the positions’ vectors are also obtained.

The main problem here is how to use �sr or �′
sr

 in the 
proposed guidance. The answer is to exploit the fuzzy logic. 
Based on the defined fuzzy rules, the aerial robots’ deci-
sions are made to increase the operation for converging more 
qualified results. The mentioned fuzzy logic method is con-
sidered for A-type aerial robots. Therefore, aerial robots’ 
swarm guidance is developed based on data received from 
GPS and fuzzy logic decisions. Some rules for fuzzy logic 
are illustrated below:

1. If there is not GPS signal then high usual behavior of
algorithm is considered.

2. If GPS signal is low then high usual behavior of algo-
rithm is considered.

3. If GPS signal is high then low usual behavior of algo-
rithm is considered.

4. If there is not �sr or �′
sr

  signal then usual behavior of
algorithm is considered.

5. If �sr or �′
sr

 signal is high then low usual behavior of
algorithm is considered.

6. If �sr is high and �′
sr

 is low then medium behavior of
algorithm is considered.

7. If �sr  is high and �′
sr

 is high then low behavior of algo-
rithm is considered.

8. If �sr is low and �′
sr

 is low then high behavior of algo-
rithm is considered.

Five bell-shaped membership functions are considered 
for the fuzzification and defuzzification of the fuzzy logic. 
Moreover, the weights of rules are equal to 1, and the Mam-
dani method is considered for the inference system.

The nature-inspired guidance illustrated in this study 
is improved by the fuzzy logic; hence, the proposed fuzzy 

logic-integrated nature-inspired guidance provides more 
precise results. Table 2 presents the comparison of two pro-
posed guidance methods of fuzzy logic-integrated nature-
inspired guidance and nature-inspired guidance algorithms, 
indicating the former’s high accuracy.

According to Table 2, the fuzzy logic-integrated nature-
inspired guidance has a lower total passing (decreasing 
24.64%) and final time (decreasing 21.87%) for aerial robots.

In order to better study the fuzzy logic, 20 aerial robots 
are considered in Fig. 17. Figure 17 demonstrates the loca-
tion of 20 aerial robots without considering fuzzy logic. In 
this way, Fig. 18 shows the communication links of aerial 
robots at the beginning of the use of fuzzy logic. After using 
fuzzy logic and improving the communication network 
between the aerial robots, their convergence increases. For 

Table 2   Comparison two proposed guidance

Nature-inspired 
guidance

Integrated nature-
inspired guidance by 
fuzzy logic

The total path for 
all aerial robots

(50 aerial robots)

8536 (m) 6432 (m)

Final time for all 
aerial robots

(50 aerial robots)

32 (s) 25 (s)
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Fig. 17   Aerial robots’ distribution
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Fig. 18   Fuzzy linkages for aerial robots
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a better review of the upgrade of the mentioned intelligent 
guidance, Fig. 19 is given. By comparing Figs. 17 and 18, 
the behaviors of the improved aerial robots by fuzzy logic 
are emphasized. Finally, Fig. 20 shows the convergence of 
aerial robots based on fuzzy logic.

8 � Conclusion

This study focused on a nature-inspired autonomous algo-
rithm for multiple aerial robots. This algorithm was consid-
ered not only as a novel nature-based autonomous guidance 
but also as an autonomous method. Considering a decrease 

in flight mechanics’ calculations, a new equation system 
was proposed based on the derivatives by the yaw control 
angle. Moreover, the neural-fuzzy network as one of the 
powerful methods was applied to decrease different uncer-
tainties such as lateral wind current and navigation’ noise. 
The neural-fuzzy network was proved to be highly efficient 
in estimating, approximating, and increasing reliability. To 
implement the intelligent neural-fuzzy system, several flight 
scenarios are selected. Accordingly, three flight scenarios 
were selected with close boundary conditions here. The yaw 
control angle accomplished the dynamic system training by 
artificial intelligence as the neural-fuzzy network output. 
The proposed neural-fuzzy network could deliver the aerial 
robots by high reliability and consider uncertainties from the 
initial point to the path’s endpoint. According to the results, 
aerial robots’ precision in arriving at the target increased 
from 31.62 to 67.32% for different lateral wind currents 
and navigation’ noise. Moreover, aerial robots’ autonomous 
motions were improved by the fuzzy logic to develop infor-
mation linkages between aerial robots with a lower total 
passing and final times of 24.64% and 21.87%, respectively. 
In sum, autonomous aerial robots could be designed intel-
ligently using a novel combination of the bee algorithm, 
neural-fuzzy network, and fuzzy logic.
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