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A B S T R A C T

In this study, we analyse the advantageous effects of neural networks in combination with wavelet functions on
the performance of financial market predictions. We implement different approaches in multiple experiments
and test their predictive abilities with different financial time series. We demonstrate experimentally that
both wavelet neural networks and neural networks with data pre-processed by wavelets outperform classical
network topologies. However, the precision of conducted forecasts implementing neural network algorithms
still propose potential for further refinement and enhancement. Hence, we discuss our findings, comparisons
with ‘‘buy-and-hold’’ strategies and ethical considerations critically and elaborate on future prospects.
. Introduction

Forecasting models tailored for financial time series are discussed
requently in business and science (Sezer et al., 2020). The development
f computer-based methods has witnessed significant progress, which
s well illustrated by, for example, Renaissance Technologies, led by
ames Simons. Renaissance Technologies has systematically outper-
ormed market growth over many years through the execution and
dvanced analysis of algorithms and signals (Burton, 2016). However,
he majority of actively managed funds1 based on statistical anal-
sis display severe underperformance owing to lower yields earned
ompared to the respective benchmark (market) indices (Otuteye &
iddiquee, 2019). In particular, said underperformance renders itself
isible once trading and management fees are considered, which are
ompared with passive investments, such as buy-and-hold strategies
Otuteye & Siddiquee, 2019).

The rapid growth in the research field of artificial intelligence (AI)
ince 2010 highlights neural networks (NNs), particularly in terms
f computer-aided methods (Sezer et al., 2020). Based on machine
earning and pattern recognition algorithms in large amounts of data

∗ Corresponding author.
E-mail addresses: markus.vogl@vogl-datascience.de (M. Vogl), peter.roetzel@th-ab.de (P.G. Rötzel), s150554@th-ab.de (S. Homes).

1 Personal decisions are involved in the active process of investing, whereas passive management of funds is based solely on index allocation, for example, on
arket capitalisation (?).
2 Non-periodic, localised wave function, which integral yields exactly zero value (?).

(such as time series), NNs exhibit a higher potential for producing more
accurate predictions than conventional statistical methods (e.g. expo-
nential smoothing, as shown by Hill et al., 1996) (Paliwal & Kumar,
2009). Applications to the field of financial market and risk manage-
ment predictions are given in Petneházi (2021), among others, stating
convolutional neural networks (CNNs) for value-at-risk predictions.
However, according to Makridakis et al. (2018), NNs have not revealed
their full potential, which can be seen in Peng et al. (2021), analysing
several deep neural networks to assess empirical performance in terms
of technical indicators. Furthermore, Peng et al. (2021) state that
no strategy under analysis was able to outperform simple buy-and-
hold strategies. Contrastingly, following, for example. Chalvatzis and
Hristu-Varsakelis (2020) or Nobre and Neves (2019) state respective
outperformance of buy-and-hold strategies already. The advantages
of NNs as predictive models are owing to the significantly increased
amount of data availability, as well as higher computational capacity
(Jordan & Mitchell, 2015). Therefore, the methods and experiments
discussed in this study examine, for example, the conjecture that larger
and better data sets lead to a more accurate prediction of stock and
index prices. The latter conjecture follows the well-known remark of
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Peter Norvig, namely, that ‘‘more data beats clever algorithms but
better data beats more data’’. Furthermore, the concept of wavelets,2
aken from the field of signal processing, provides some interesting
pplication possibilities in individual tests regarding the analysis of
inancial time series (Crowley, 2007). In particular, for the processing
f time series with different periodicity, as well as for short- and long-
erm cycles, wavelet transforms offer advantages (e.g. for business
ycle analysis) (Crowley, 2007). Although Sezer et al. (2020) state that
ovel methodologies in NN designs are well researched, it remains
nresolved, whether a combination of NNs with signal processing
echniques, such as previously mentioned wavelet functions, indicates a
positive) effect on the predictive performance in financial forecasting
Alexandridis & Zapranis, 2014).

Therefore, this gap warrants further investigation, leading to our
irst research question, namely, the elucidation of potential relations
etween the amount of input data and predictive time horizons. Fur-
hermore, regarding prediction accuracy, it appears that various net-
ork topologies perform differently at variable time horizons (Tsan-

ekidis et al., 2017). Our second research question elucidates the pro-
edure of proportionally replacing the neurons of established network
opologies with wavelons (i.e. a wavelet function as replacement of a
igmoidal activation function, refer to Alexandridis & Zapranis, 2014),
hus, generating wavelet neural networks (WNNs) (Zhang & Benveniste,
992). Alexandridis and Zapranis (2014), as well as other analysed
ublications (e.g. Billings & Wei, 2005; Zhang, 1997), reveal that cer-
ain wavelet functions are more suitable than other respective wavelet
quations. A wavelet activation function (e.g. a Morlet-wavelet) can
utperform a logistic function; however, additional analysis of further
avelet functions is required to achieve a respective generalisation
f the latter superiority presupposition (Anjoy & Paul, 2017). The
undamental demand for combined models (i.e. of hybrid models),
uch as WNNs (see also Yang & Wang, 2021), is derived from the fact
hat (financial) time series contain various information components,
uch as time and frequency information (Chakrabarty et al., 2015).
requency components can be extracted by applying transformations
e.g. Fourier transformation [FT]) to the data sets (Chakrabarty et al.,
015). Unfortunately, once the FT is applied, the required time in-
ormation components are lost, whereas, the wavelet transformation
reserves said time information (Chakrabarty et al., 2015). Addition-
lly, NNs are advantageous over statistical models (e.g. exponential
moothing) regarding the processing capabilities of nonlinear functions
Alexandridis & Zapranis, 2013; Hill et al., 1996).

Therefore, within the academic literature, corresponding
pproaches are elaborated on from two different research streams,
amely, intermediate and generalised. Moreover, a combination of NNs
nd wavelets is possible, applicable and reasonable for various scientific
isciplines (Alexandridis & Zapranis, 2014). The intermediate research
tream deals with the pre-processing of time series by applying wavelet
ecompositions (Alexandridis & Zapranis, 2014). Therefore, we discuss
he effect of the additional input of time series processed with wavelet
ecomposition on a NN instead of applying only unprocessed time
eries. The experiment is focused on comparing the predictive success
o well established NNs, such as multilayer perceptron (MLP) and long
hort-term memory (LSTM) networks without pre-processing the data.
n addition, we aim to determine, whether performance deviations
etween different referring prediction periods exist. In response to the
reviously mentioned implication by Norvig, several publications elab-
rate on the ‘‘more data’’ hypothesis critically. For example, Walczak
2001) concludes that considering more than two years of data has no
ignificant effect on the accuracy of forecasting models. We explore
WNN approach in which the activation functions of an NN (e.g. in

he hidden layers) are proportionally replaced by wavelet functions
Zhang & Benveniste, 1992). Therefore, we investigate the change in
he forecasting performance of an NN, in which a wavelet is applied as
n activation function. More specifically, we intend to determine the
ost appropriate wavelet function in combination with NN topologies
 e

2

in terms of financial market prediction. Further, to substantiate our
findings regarding both the research questions, we perform a respective
back-test.

Moreover, we state other studies taken out of the academic liter-
ature (e.g. Kumbure et al., 2022 or Yang & Wang, 2021), proposing
comparisons of WNNs or otherly NN comparisons to provide a holistic
picture of stated groundwork determinations. Finally, we elaborate on
the underlying topology that is best suited for this kind of methodology
and discuss the results in terms of performance comparability with
buy-and-hold strategies and ethical considerations critically.

2. Literature review

In the 1990s, many NN-projects3 were carried out in the field
of time-series analysis, and most of the latter projects present the
basis for corresponding future research endeavours (Vellido et al.,
1999). Nonetheless, according to Sezer et al. (2020), the area of NN
research was neglected until 2011. During this period, many publica-
tions (e.g. Chen, 1994 or Vellido et al., 1999) reported problems with
NNs, mainly owing to computers in the said period to provide very
little computational power or respective memory (Lim et al., 2004).
Furthermore, problems with successful implementation existed; hence,
more simplistic models were considered sufficient at the time (Adya &
Collopy, 1998). With the progression of the 2010s and driven by the
extensive availability of data and inexpensive computational capacity,
the field of NN-based AI experienced a rediscovery, visible in the vast
dissemination of academic research (Jordan & Mitchell, 2015). The
results show that NNs are suitable for producing acceptable predictions
in the case of financial time series, even if only to a limited extent
(Adya & Collopy, 1998). Nevertheless, the potential for improvement
was recognised, including the application of hybrid models (e.g. Vui
et al., 2013; Zhou et al., 2019). Hybrid models generally combine
two or more well-established methods (e.g. classical NNs with signal
processing techniques or stochastic elements) into a novel application
(Dong et al., 2016). However, hybrid models should be tested carefully
with different time series before deployment to obtain a reasonable
understanding of their inherent functionality (Guresen et al., 2011;
Yang & Wang, 2021).

First, following Alexandridis and Zapranis (2013, 2014), referring to
the intermediate research stream mentioned earlier, we apply a hybrid
model combined with a respective wavelet transform to transfer a time
series into the frequency domain. Subsequently, based on Taspinar
(2018), the signal is processed and subdued to a respective back-
transformation to obtain data, serving as input for a classical NN. The
second, more innovative strategy consists of partially replacing the
neurons of the referred network with wavelons (Zhang & Benveniste,
1992). In addition, the resulting WNN is constructed from a three-
layer MLP (Alexandridis & Zapranis, 2014). Henceforth, we refer to
the previously mentioned basic structure applying wavelons as part of
the generalised research stream, which differs from the intermediate
research stream in terms of activation functions (Alexandridis & Zapra-
nis, 2014). Wavelet activation functions are applied to the underlying
network topology instead of the commonly implemented sigmoidal
activation functions (Zhang et al., 1995).

To the best of our knowledge, some publications discuss the men-
tioned approaches; however, elaborate exclusively on their exploration
in general or aim directly at specialised applications (e.g. see Yang
& Wang, 2021 for a comparison in terms of energy series) (Alexan-
dridis & Zapranis, 2014). This is due to increased design and testing
requirements for WNNs (Oussar & Dreyfus, 2000). Nevertheless, ac-
cording to Alexandridis and Zapranis (2013), a framework for building
WNNs is available, which discusses construction and training algo-
rithms in detail. However, most publications with an economically

3 For example, see Hill et al. (1996), Kaastra and Boyd (1996), and Zhang
t al. (1995) for further reference.
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relevant alignment focus solely on the intermediate research stream. In
particular, Bao et al. (2017), which combines accuracy and profitability
measurements, can be considered in this regard. Further, Bao et al.
(2017) present reasonable and reproducible values for three different
network topologies (including LSTM). The referring data sets that
Bao et al. (2017) investigate are various economic indices, including
S&P500 and DJIA100, as well as four other Asian indices.

Even if the literature provides some successful predictions with NNs,
as mentioned before, successful forecasts are not guaranteed because
of the stochastic functionality of NNs, which is based on the learning
algorithm implemented in each NN (Kaastra & Boyd, 1996). The latter
learning algorithm performs a gradient descent operation as part of the
training process and can compute an acceptable solution (i.e. local error
minimum). Unfortunately, the results do not necessarily represent the
optimal solution (i.e. the global error minimum) of the approximation
of the respective training function (Kaastra & Boyd, 1996). Further-
more, some wavelet functions in the field of application with NNs are
more commonly implemented than others (Alexandridis & Zapranis,
2014). Depending on the application, different wavelet functions are
recommended, mainly the family of Gaussian wavelets (e.g. Billings &
Wei, 2005 or Zhang, 1997) (Alexandridis & Zapranis, 2014). Moreover,
wavelets can be custom-designed if required, i.e., specifically tailoring
said functions to the respective application and its objectives (Misiti
et al., 2007). This study focuses on two Gaussian wavelets, namely, the
first and second derivatives of the Gaussian bell curve as depicted in
Barlow (1983). The latter is also labelled as the Mexican Hat function,
owing to its shape.

Different application frequencies are also observable in the choice of
topology for NNs. Therefore, we present the three most applied topolo-
gies from our sampled literature, as shown in Table 1. This selection is
also favoured to set up benchmark networks in the experiment with
MLP and LSTM as bases. Since all other topologies are built on or
derived from MLPs, the MLP is the most widely researched network
topology in the field of financial market prediction and is repeatedly
taken as a referring benchmark (Sezer et al., 2020). According to
De Faria et al. (2009), this simple NN predicts the positive or negative
sign for yields in the Brazilian stock market with 60% accuracy. The
aforementioned second and ongoing wave of AI research has shown
significant progress since the 2010s, especially, with newly developed
NN topologies (Jordan & Mitchell, 2015). Furthermore, it would be of
interest to elaborate on subsequently the aforementioned hybrid models
(Sezer et al., 2020; Vui et al., 2013). However, such an experiment does
not necessarily lead to predictive success, as demonstrated through the
combination of generalised autoregressive conditional heteroscedastic-
ity models and MLP, which are highly influenced by existing noise
effects in the data under analysis by Guresen et al. (2011).

By contrast, Tsaih et al. (1998) find the hybrid extended futures
forecast model to be promising in terms of trading S&P500 futures. In
addition, a similar methodology can be found in Zhang et al. (2001),
who also analyse futures trading and show that hybrid models con-
sisting of wavelets and NNs lead to more profitable trading results
than otherwise implemented MLPs, although they are dependent on
outliers in different market situations. Therefore, we will also elabo-
rate on the general performance of NN solutions in comparison with
simplistic ‘‘buy-and-hold’’ strategies and elucidate for which market
actors under which dynamical presupposition these methodologies can
be favourable (see Section 6.2).

3. Research hypotheses

We further elaborate on hybrid models by focusing on the appli-
cation of different NNs with wavelet components, since the correct
specification of network topology as well as wavelet-function is a key
problem according to Chen et al. (2006). Both of the aforementioned
research questions aim to improve the performance of NNs in financial

market predictions. The first research question claims that the quantity

3

Table 1
The most commonly implemented network topologies as depicted in our
sampled literature. The results are in line with the findings of Sezer et al.
(2020) as a point of reference.

Network topology Percentage of analysed publications

LSTM 31%
MLP 21%
Hybrid 8%
Other specifications 40%

Notes: LSTM: long short-term memory; MLP: multilayer perceptron.

and quality of the input data are crucial for the precision of prediction
capability and the quality of an NN. We tested this experimentally by
developing several NNs according to the intermediate approach and
comparing the respective results based on the quantity of input data as
well as with two common NN topologies, namely, MLP and LSTM. The
hypothesis of the second question is that the involvement of a WNN by
a generalisation approach fundamentally improves the success of pre-
dictions. Furthermore, we demonstrate that not all wavelet functions
serve equally well as activation functions. Therefore, further classical
NNs are constructed with different wavelets as activation functions.

4. Methodology, experimental design, and data description

For the experiments, we create eight different NNs in accordance
with the criteria defined in the research questions (see Section 3)
and examine the latter for respective predictive capabilities. There-
fore, we initially examine and implement two well-established network
topologies, then, based on the results, we implement the other six ex-
perimental NNs. This procedure aims to create the same foundation for
both research questions, thus, minimising the implementation effort,
as well as the risk of potential errors, while concurrently improving
comparability. MLP-based NNs can only handle one time series simulta-
neously and can only predict a single value. By contrast, the other LSTM
topologies are capable of an n-step-ahead-forecast and accept multiple
time series as input. Therefore, LSTMs allow predictions over longer
periods, which exceed just one-day-ahead forecasts.

In addition, we intend to derive statements about whether more
input data leads to better results, referring to the initially stated and
academically critically discussed proposition of Walczak (2001) (see
Section 1). To study the research stream of WNNs, we first implement
four topologies followed by two more topologies to study subsequently
the effects of wavelet decomposition.

4.1. Wavelet neural networks

Like classical NNs, a WNN generally consists of three different
layers: input, hidden, and output layers (Alexandridis & Zapranis,
2014). Owing to theoretical construction possibility of feedforward NNs
in terms wavelet decompositions (see Pati & Krishnaprasad, 1993 or
Zhang & Benveniste, 1992 for early reference), WNNs represent an
alternative to cope with NN weaknesses (such as randomised starting
values in training algorithms) (Alexandridis & Zapranis, 2013). Fur-
thermore, WNNs represent a generalisation of radial basis function net-
works (Alexandridis & Zapranis, 2013). In contrast to well-established
networks, the hidden layer of a WNN does not contain neurons, but
wavelons that fulfil the same task as neurons. The only difference lies
in the respective activation function specifications, namely, incorpo-
rating a wavelet function instead of a sigmoidal function representa-
tion (Alexandridis & Zapranis, 2014). To be more detailed, the nodes
(i.e. the wavelons) of a WNN are the wavelet coefficients of the func-
tion expansion, yielding a significant value (Alexandridis & Zapranis,
2013). Moreover, multidimensional wavelets preserve the ‘‘universal
approximation’’ property that is characteristic for NNs (Alexandridis &
Zapranis, 2014). Furthermore, reasons to conduct said alterations lay
within the characteristics of wavelets (refer to Bernard et al., 1998),
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(

Fig. 1. Structure of a three-layer wavelet neural network (WNN), consisting of input, hidden, and output layers. Note that the activation function of a WNN (right) differs from
those of standardised neural networks (left), namely, the WNN incorporates wavelons, which represent themselves via respective wavelet functions.
Fig. 2. Wavelet functions applied as wavelon activation functions, namely, the Gaussian wavelet activation functions: Gauss1 (left) and Gauss2 (right).
namely, high compression capabilities in computing the value at a
single point or updating the functional estimate from a novel local
measure, which involves only a small subset of all given coefficients,
respectively (Alexandridis & Zapranis, 2013, 2014). Thus, WNNs al-
low for constructive procedures, which efficiently initialise network
parameters, i.e. convergence to the global minimum of the referring
cost function (Alexandridis & Zapranis, 2013). To be more detailed, the
initial weight vector of a WNN4 is present into close proximity of the
global minimum and, therefore, drastically reduces training times, as
also stated in Alexandridis and Zapranis (2013) and Yang and Wang
(2021). Thus, the general idea of a WNN is given by the aim to adapt
the corresponding wavelet basis to the respective training data (Alexan-
dridis & Zapranis, 2014). In case of multi-wavelet NNs the according
activation function is given by a linear combination of wavelet bases
and combinable with discrete wavelet transforms (DWTs) or principal
component analysis (PCA) algorithms (Alexandridis & Zapranis, 2013).
A conceptual illustration of this is shown in Fig. 1. The only significant
change in the implementation of a WNN compared with other NNs is
the inclusion of the manually defined activation function, namely, the
resulting and previously noted wavelons. Two wavelet functions are
applied, namely, the first (Gauss1) and second (Gauss2) derivatives of
the Gaussian bell curve, as illustrated in Fig. 2. The two standard net-
work topologies, MLP and LSTM, incorporate the previously mentioned
Gaussian wavelets, resulting in four test networks, which are depicted
in Table 2.

4.2. Wavelet decomposition neural networks

In contrast to WNNs, the NN itself is not changed within the
wavelet decomposition neural network (WDNN) research; however,
more time series are added to the input amount (Alexandridis & Za-
pranis, 2014). First, regarding the research field of signal processing, it

4 For an in-depth mathematical treatise refer to Alexandridis and Zapranis
2013, 2014) and Zapranis and Alexandridis (2008, 2009).
4

Table 2
Comparison of well-established neural networks and experimen-
tal wavelet neural networks elaborated on during the empirical
investigation of this study.

Established network topology Experimental network

MLP WNN (MLP & Gauss1)
WNN (MLP & Gauss2)

LSTM WNN (LSTM & Gauss1)
WNN (LSTM & Gauss2)

Notes: MLP: multilayer perceptron; LSTM: long short-term
memory.

is common to conduct an initial decomposition of the signal (e.g. of a
respective stock price series) by applying a wavelet transform (Mallat,
1989). Second, following Taspinar (2018), the results are processed
in the respective frequency domain. Finally, the signal is transformed
back to the time domain by executing a back-transformation (Mallat,
1989). One disadvantage is that signal decomposition by transforma-
tion leads to overlaps at the edges of the respective time–frequency
series and is amplified by larger choices of the decomposition level
(Williams & Amaratunga, 1997). Unfortunately, said edge effects can-
not be completely avoided due to the finite nature of real-world time-
series data (Torrence & Compo, 1998). Therefore, in accordance with
Anjoy and Paul (2017), we select decomposition levels, which do
not exceed the value of five. The additional data to be analysed
within the WDNNs are pre-processed by applying the previously men-
tioned wavelet decomposition and being fed into the LSTM topology
accordingly.

The wavelet transform displays the property of a low-pass filter,5
which we intend to exploit (Taspinar, 2018). Furthermore, we focus
on two NNs with different levels of decomposition. The first WDNN
performs one level of pre-processing and the second performs five,

5 Denoising of the input data is conducted (Torrence & Compo, 1998).
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Table 3
Comparison of well-established neural networks and experi-
mental wavelet decomposition neural networks (WDNNs). The
WDNNs decompose respective signals or series through wavelet
transformation within the frequency domain before conducting
a back-transformation into the time domain, respectively.

Established network topology Experimental network

LSTM WDNN (Level 1)
WDNN (Level 5)

Notes: LSTM: long short-term memory; WDNN: wavelet
decomposition neural network.

which results in an increase in the number of input time series by
one and five, respectively. Both WDNNs are based on a basic LSTM
topology. Hence, following the recommendation of Lahmiri (2014),
Daubechies wavelet 4 (DB4) is the most feasible for decomposition
purposes. Hereinafter, we generate the experimental NNs, as shown in
Table 3.

4.3. Basic network structure, fitting procedure and accuracy intervals

The aforementioned network structure of the three layers is applied
for all NNs built on an MLP basis. Further, regarding networks with
an LSTM basis, additional layers are added to enable the function of
n-step-ahead forecasts, which are not available for the MLPs under
consideration. The output layer corresponds to the number of features
(i.e. the number of time series) being fed into the NN. Nevertheless, our
experiment intends only to predict the daily (-adjusted) closing prices.
In terms of network structure, the hidden layer remains sufficiently
variable such that the number of neurons can be adjusted, if necessary.
Following the guidelines proposed by Guresen et al. (2011), the number
of learning epochs (see Rashid, 2016) of an NN should be larger than
the number of weights and, thus, of the neuron connections in the
network (Guresen et al., 2011). However, respecting this guideline
leads to overfitting in the present experiment (Guresen et al., 2011).
The application of excessive amounts of learning epochs ensures that
the memory capacity of the network approximates the training data
perfectly, which negatively affects the prediction performance of un-
known data (Lawrence et al., 1998). Therefore, for all topologies, it
is important to determine the number of learning epochs that lead
to the best forecasting results before overfitting sets in. To simplify
this step, we implement an early stopping mechanism, as proposed
in Caruana et al. (2000). This ensures that the training process is
stopped, as soon as no further significant improvement in fitting can
be achieved (Kaastra & Boyd, 1996). The mean squared error (MSE)
can be calculated as a measure of goodness of fit (GoF) for a given
(stock) time series, which is approximated by the referring network
(Alexandridis & Zapranis, 2014). The MSE indicator describes the av-
erage of the squared deviations at each given value in the time series
of the approximated curve to the real value of the training data curve
(Alexandridis & Zapranis, 2014). The MSE is supposed to be minimised
in the NN without causing overfitting (Alexandridis & Zapranis, 2014).
The final value to be predicted must not be trained as an input data
point in the NN (Adya & Collopy, 1998; Kaastra & Boyd, 1996). To test
the repeated predictions of the NNs, we apply an 80–20 split of the data
as proposed by Kaastra and Boyd (1996).

Therefore, all network topologies are based on only 80% of the
data and subsequently predict values from the isolated 20% test dataset
(Kaastra & Boyd, 1996). Finally, the specification of the results and
their precision measures requires a formal discussion. Even if the
well-accepted accuracy is a measure representing the GoF in terms
of time-series approximation, it does not necessarily imply anything
about how well an NN can predict future value developments outside
the training data set (Cristea et al., 2000). Assuming overfitting, for
instance, produces very high accuracy based on the training data, yet,
displays no predictive capability (Caruana et al., 2000). Especially
 c

5

in the case of hybrid models, such as WNNs, it is not certain that
the accuracy represents a performance measure that evaluates the
predictive power of (financial) time series in a meaningful and correct
manner (Alexandridis & Zapranis, 2014; Kumbure et al., 2022). Fur-
thermore, we determine a potential gap within the academic literature;
namely, only a few studies address this difficulty properly. Therefore,
we disregard accuracy as a measure and apply another measure that is
more practicable and more descriptive in terms of evaluating forecasts,
as described in the following (Alexandridis & Zapranis, 2014). In the
final back-test described in Section 4.3, we performed several runs and
statistically evaluate individual predictions. Subsequently, we present
the results as a 95% confidence interval around the true value to
be predicted and as percentage values, following Altman and Bland
(2005). Therefore, the individual prediction results are averaged over a
time horizon. Further, twice the standard deviation of the mean value
is subtracted and then added to obtain the accuracy interval, which we
apply within our empirical setting (Altman & Bland, 2005).

4.4. Data description

Following Halevy et al. (2009), one of the most important factors for
solving both research questions is represented by the data under inves-
tigation. Therefore, we extract all relevant data sets from the renowned
Refinitiv Eikon Datastream (formerly Thomson Reuters), which are
publicly available as adjusted-values, that is, adjusted for corporate
actions, such as stock splits (Refinitiv Limited, 2019). Another factor
to be considered in the choice of data is the respective stock exchange
from which the time series are obtained. At this point, we favour the
New York Stock Exchange (NYSE) because of its high trading volume
(Statista Research Department, 2019). If the NYSE is not capable of
providing sufficient data quality, the trading venue with the largest
trading volume in the home country of the respective corporation is
selected as the relevant source. All time series are provided in the
related national currency of the stock exchange.6 The recorded datasets
were available until the end of February 2020. We examine 20 datasets,
of which 15 are public companies and five are indices, as displayed in
Table 4. The stocks analysed are based on eight of the largest companies
within the MSCI World index in terms of market capitalisation. As
these positions in the MSCI World index represent American stocks
almost exclusively, we supplement the analysis with six of the largest
positions within the Euro STOXX50 index (Ticker SX5T), in a manner
that European stocks are also included in our experiment (STOXX,
2021). These datasets are supplemented ultimately by the stock of the
Asian Alibaba Group.

The indices analysed are the NASDAQ100, DJIA100, DAX30, EURO
STOXX50 and CSI300. If required, we clean the datasets of recording
errors, i.e., in some cases, missing or erroneous values are averaged
from the previous and subsequent values (Kaastra & Boyd, 1996).
Refinitiv datasets are available on a daily basis and are provided as
‘‘.csv’’-files. The procedure for time-series data originating from indices
is handled analogously. The first date recorded in each case is the day
when a share has been tradable on the referring stock exchange and,
therefore, can differ from the respective initial public offering date. For
all financial time series under consideration, the opening and closing
prices, as well as the highest and lowest values within the daily data
frequency, are recorded. Each dataset is split into training and test sets
(refer to Section 4.3). The common division of 80% for the training set
and 20% for the test set is applied (Kaastra & Boyd, 1996).

In this experiment, we implement NNs as regressors to output the
prices of stocks and, consequently, are, in principle, not obligated
to scale the input data (Albon, 2018). However, as observed in the
datasets under analysis, many stock prices rise sharply over the years
considered. To consider the latter insight, we apply a scaling function

6 US-Dollar for American companies and Alibaba Group, Euro for European
ompanies, as well as index points for indices.
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Fig. 3. Overview of the predictability logic of our empirical analysis, namely, iterative counts per prediction, per data set, as illustrated.
Table 4
Selected publicly data sets for this study, consisting of the company or
respective index name, the ticker symbol, and the country of origin.
The data sets are extracted from Refinitiv Eikon Datastream (formerly
Thomson Reuters) on a daily frequency until February 2020.

Name Symbol Country

Stocks

Alibaba Group BABA.K China

L’Oréal S.A. OREP.PA FranceLVMH SE LVMH.PA

Allianz SE ALV

GermanyLinde plc LIN
SAP SE SAP.N
Siemens SIEGn.DE

Apple Inc. AAPL.O

USA

Alphabet Inc. C GOOGL.O
Amazon Inc. AMZN.O
Facebook Inc. FB.O
Johnson & Johnson JNJ
Johnson & Johnson JNJ
JP Morgan Chase JPM
Microsoft Corp. MSFT.O
Visa Inc. V

Indices

China Securities Index 300 CSI300 China

EURO STOXX 50 STOXX50 Europe

DAX 30 GDAXI Germany

Dow Jones Industrial Average DJI USANASDAQ 100 NDX

that transfers the input variables into a range between zero and one.
Additionally, we note the benefits of the efficiency of the respective
NN by employing a respective scaling operation (Kaastra & Boyd,
1996). Moreover, we perform back-tests over a period of two years,
for example, a training and test set split of 80–20 results in a training
data period of eight years for a test period of two years, assuming
that data for exactly 10 years are available. For stocks that are listed
for a shorter period, the test period is reduced, whereas the 80–20
ratio remains constant. The NNs predict 30 days of future stock prices
for each test iteration, which repeatedly records predictions from 20
successive inputs, as illustrated in Fig. 3. In the case of shorter datasets,
we retain the 30 day prediction periods, yet, with a shorter iteration
count than 20, such as Facebook Inc. (13 samples) or Alibaba Group (9
samples).

5. Empirical results

Before elaborating on respective results, we note the stochastic
nature of NNs to impose a great influence on the magnitude deviations
between the predictions (Kaastra & Boyd, 1996). The before mentioned
implication originates from the existence of many predictions, which
enable the prediction of only small fractions of a percent from the
intended value. In addition, however, a similar number of predictions
deviate from the true value by several percent, according to non-
optimal gradient descent algorithms, as stated in Kaastra and Boyd
(1996). In total, we record up to 600 predictions7 from each stock

7 20 times 30 days.
 3

6

or index and LSTM topology, less for shorter data sets,8 respectively.
Furthermore, up to 20 predictions are added with NNs on MLP basis
for each data set, thus, we obtain a total number of 58,446 predic-
tions, which are documented and evaluated according to the back-test
described previously. As suspected, the examination of the prediction
results provides a differentiated picture of the quality of predictions
regarding the different selected NNs. Therefore, it is favourable to
address different perspectives within the respective evaluations. The
first perspective envisages the results with a focus on the general
performance of an NN over the time horizon from one to 30 days.
Therefore, we consider all available results of each network, separated
per time horizon but averaged across all data sets. The second perspec-
tive elucidates the performance within the predicted stocks and indices.
For each stock or index, the best network is determined for each time
horizon. Further, it can be deduced whether an NN performs better than
others regarding certain data sets and time-horizons.

Hence, we present the results in more detail. The various result
tables display the prediction accuracy around the true value by cal-
culating the confidence interval described in Section 4.3, resulting in
more narrow intervals for better predictions than wide intervals. The
intervals are given at 95% confidence; hence, individual predictions of
individual networks are much more accurate. Because two standard
deviations are selected, the intervals can also yield negative values.
Nevertheless, due to the stochastic nature of NNs, more accurate out-
comes are not guaranteed in every prediction. The variation ranges in
the results across all stocks and indices examined are, in the best case,
approximately 9% around the true value and about 44% in the worst
case. The best case is presented as a one-day-ahead forecast stated in
Table 5, indicating the best NNs per prediction period. The worst-case
interval is approximately 5% wider than the best network displayed
for a 30 day-ahead prediction (approximately 39% interval width) and,
therefore, is not shown in Table 5. Hence, there are large differences
in the respective fluctuation ranges of the accuracy intervals, as stated
in Table 5. A possible explanation is provided by the predicted time
horizon.

Following Nguyen and Chan (2004) it is found that the longer
the time horizon, the wider the interval around the true value and
the worse the long-term forecast. The best case mentioned above is
represented by the forecast for the next day, while the worst case is
a 30 day forecast. Regarding the evaluation of individual stocks, the
referring intervals are sometimes more precise, namely, up to 3.21%
for the Johnson & Johnson stock, yet, mostly within the range of the
values stated in Table 5. In individual cases, such as within the Apple
Inc. dataset, however, these are significantly less accurate, resulting
in extreme cases in terms of fluctuation ranges of up to 89.60%,
rendering predictions futile. To provide a holistic representation of all
results, the complete overview of our empirical findings are given in
the supplementary material of this study.

In general, many cases of the researched networks (i.e. WNNs and
WDNNs) indicate better performance than the basic topologies, despite
a few limitations, as shown in Tables 6 and 7. These tables provide a
ranking of the best NNs with respect to individual datasets. The first
ranking (see Table 6) displays results for a period of one day and the
second ranking (see Table 7) for longer-term predictions. For example,

8 For example, Facebook Inc. (13 times 30 days) or Alibaba Group (9 times
0 days).
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the MLP continues to be the best NN for one-day-ahead forecasts
for 40% of the datasets examined. The WNN with the first Gaussian
derivative as the activation function ranks as the second best in terms of
predictability performance and is the best NN on more than one-third of
the datasets. Thus, the basic MLP and WNN (MLP & Gauss1) are almost
equivalent. Even though the performance is slightly lower than that of
the MLP, the performance is better than the LSTM topology. This over-
performance can still be seen in long-term forecasts (see Table 7). The
WNN (LSTM & Gauss1) is the best predictor for 8 out of 20 datasets and,
thus, is superior to LSTM. By contrast, the WNN (LSTM & Gauss2) does
not represent the best performer for any dataset, but displays a similar
performance to the established LSTM. Even if the WDNNs provide the
best results with 15% and 10% for a quarter of all data sets, only a
closer examination reveals further important indications.

Moreover, adding time series to the input, which is pre-processed
with wavelet decomposition, does not always produce favourable re-
sults and does not lead to an improvement in the performance of the
predictions.

For example, regarding the topology WDNN (Level 5), some predic-
tions perform worse than all other NNs. However, few cases exist in
which the WDNN (Level 5) reveals over-performance that is, actually
representing the best results within a dataset. Compared to the other
topologies, the WDNN (Level 1) provides the best performance over all
data sets for a period of three days. Furthermore, the accuracy interval
of [−7.35%; 6.65%] displays a width of 14% around the true stock
price. Regardless of the comparisons, the best prediction of the WDNN
(Level 1) is found with a two-day prediction period and a fluctuation
interval of 13.4%. For single datasets, the WDNN (Level 1) is best suited
for short-term prediction, namely, for Microsoft Corp., Apple Inc., JP
Morgan Chase, Allianz SE, and the CSI300 Index. An example is shown
in Fig. 4. Please note that due to the high volume of forecasts, only
selective graphical displays are possible since a holistic display would
render itself unsuitable. The aforementioned WDNN (Level 5) causes
said topology to be at a disadvantage over the total set of predictions
in most cases. In addition, the WDNN also provides a systematic under-
estimation of the stock price at the 95% significance level of about 20%
on average, which is reflected in an accuracy interval width of 40%.

However, an exceptional perspective on the WDNN (Level 5)
emerges while regarding individual stock datasets separately. The
WDNN (Level 5) is the best topology for long-term predictions of the
stocks of Apple Inc., Facebook Inc., and Alibaba Group, as well as the
STOXX50 Index. The WNNs implemented in this experiment provide
the most accurate predictions for long-term time horizons out of all
topologies and datasets under consideration. With a prediction period
ranging from four to nine days, the WNN with the first Gaussian deriva-
tive as an activation function provides the best predictions. Further,
from the 10th to the 30th prediction, the WNN with the Mexican Hat
activation function is more advantageous. This answers the question of
which wavelet of the two is better suited from this perspective. The
Mexican Hat wavelet displays better results, but with little difference
compared to the first Gaussian derivative. The accuracy intervals for
both WNNs range from approximately 15% (four days) to 29% (30
days) around the true value. Following Fig. 5, we present an example
of a 30 day forecast employing the WNN (LSTM & Gauss2). The basic
topology, which is more adequate for WNNs, is represented by the MLP
for one-day-ahead price forecasts. The first Gaussian derivative as a
wavelet is slightly better suited (interval [−6.12%; 3.71%]) than the
Mexican Hat function (interval [−4.89%; 5.21%]). For longer periods,
only LSTM is favourable because of the possibility of n-step-ahead
forecasts. Contrary to the one-day-ahead forecast, the Mexican Hat
wavelet reveals a better performance than the first Gaussian derivative,
with respect to time horizons of at least 10 days.

Finally, the third perspective elucidates the number of almost flaw-
less predictions. Now we examine the amount of predictions of each
network topology, which lie within a specified interval. Table 8, shows

that the MLP as an established topology also presents the best precision (
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Table 5
Evaluation table referring to all data sets, stating the best network topology per period
as well as respective accuracy intervals.

Prediction period in days Accuracy interval Best topology per period

1 [−4.94%; 4.05%] MLP
2 [−6.28%; 6.02%] LSTM
3 [−7.35%; 6.65%] WDNN (Level1)
4 [−10.11%; 5.46%]

WNN (LSTM & Gauss1)

5 [−10.59%; 5.85%]
6 [−11.27%; 6.34%]
7 [−11.56%; 6.69%]
8 [−11.80%; 7.01%]
9 [−12.29%; 7.50%]

10 [−11.76%; 8.89%]

WNN (LSTM & Gauss2)11 [−11.87%; 8.78%]
12 [−12.17%; 9.11%]
13 [−12.75%; 9.61%]
14 [−13.05%; 9.53%]

WNN (LSTM & Gauss2)

15 [−13.39%; 9.88%]
16 [−13.58%; 9.86%]
17 [−13.82%; 9.73%]
18 [−14.05%; 10.00%]
19 [−14.10%; 9.85%]
20 [−14.55%; 10.16%]
21 [−14.98%; 10.65%]
22 [−15.49%; 10.99%]
23 [−15.73%; 11.14%]
24 [−15.67%; 10.99%]
25 [−16.02%; 11.31%]
26 [−16.36%; 11.89%]
27 [−16.55%; 12.00%]
28 [−16.72%; 12.12%]
29 [−16.70%; 12.22%]
30 [−16.78%; 12.22%]

Notes: MLP: multilayer perceptron; LSTM: long short-term memory; WDNN: wavelet
decomposition neural network; WNN: wavelet neural network.

Table 6
Ranking of the most successful network topologies for a predictive period of one day
(pred. = 1 day).

Network topology [%] — Share of data sets best
predicted (pred. = 1 day)

MLP 40%
WNN (MLP & Gauss1) 35%
LSTM 10%
WNN (MLP & Gauss2) 5%
WDNN (Level 1) 5%
WNN (LSTM & Gauss2) 5%

Notes: MLP: multilayer perceptron; LSTM: long short-term memory; WDNN: wavelet
decomposition neural network; WNN: wavelet neural network.

with one-day-ahead predictions. Of all predictions, 5% lie within a
tenth of a percent frame around the value to be achieved, and two-
thirds of all predictions are between −2% and +2%. Further, the three
experimental NNs achieve a more accurate ‘‘hit rate’’9 than the basic
LSTM model.

Furthermore, we note that the studied MLP-based NNs offer a more
accurate performance than those based on LSTM across all networks
with WDNN (Level 1) as the only exception. A combination of the
results regarding the accuracy interval and precision suggests the ap-
plication of wavelets as an activation function to reduce the scatter
of the predictions, but it does not necessarily improve the accuracy
itself. However, if the wavelet functions are operationalised for input
processing, a larger variation is observed, with an equally inconsistent
increase in flawlessness. Furthermore, we present a complete overview
of the one-day versus multiple-day forecasting topologies for each
dataset in Table 9.

9 Describes the number of predictions meeting the target accuracy interval
in line with Gupta & Lam, 1996).



M. Vogl, P.G. Rötzel and S. Homes Machine Learning with Applications 8 (2022) 100302

n

6

p
C
a
r
i
b
w
b
c
s

Fig. 4. Example of 30 day prediction with experimental wavelet decomposition neural network (Level 1) based on the Microsoft stock data set. Notes: WDNN: wavelet decomposition
neural network.
Fig. 5. Example of 30 day prediction with experimental wavelet neural network (LSTM & Gauss2) based on the Johnson & Johnson stock data set. Notes: WNN: wavelet neural
etwork.
. Discussion and implications

The empirical results of this study confirm that hybrid models are
otentially more advantageous than classical NNs (e.g. Bao et al., 2017;
ristea et al., 2000; Yang & Wang, 2021; Zhang et al., 2001). In
ddition, regarding the present experiments, the MLP is one of the most
eliable predictors, which lends credence to its continued application
n research and practice (Guresen et al., 2011; Sezer et al., 2020). To
e more detailed, we present empirical implications in Section 6.1,
hile subsequently elaborating on the performance comparison with
uy-and-hold investment strategies in Section 6.2, elucidating ethical
onsiderations in Section 6.3, propose limitations in Section 6.4 and
tate future avenues of research in 6.5.
8

6.1. Empirical implications

To the best of our knowledge and following the implications of these
results, the premise that simply increasing the amount of data will lead
to enhanced predictive results is not confirmed with respect to the
experimental setting of this study. Even before the final experiment,
the time series for logarithmic returns and trading volumes per day
tested as additional inputs led to inadequate predictions of all rele-
vant network topologies. Therefore, we discard the latter approach.
Regarding WDNN (Level 5), adding additional time series merely to
increase data volume is not favourable. These findings align with the
conclusions of Walczak (2001), who states that larger amounts of data
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Table 7
Ranking of the most successful network topologies for a predictive period of multiple
days (pred. > 1 day).

Network topology [%] — Share of data sets best
predicted (pred. = 1 day)

WNN (LSTM & Gauss1) 40%
LSTM 35%
WDNN (Level 5) 15%
WDNN (Level 1) 10%
WNN (LSTM & Gauss2) 0%

Notes: MLP: multilayer perceptron; LSTM: long short-term memory; WDNN: wavelet
decomposition neural network; WNN: wavelet neural network.

Table 8
Precision of different topologies displayed as ‘‘hit rate’’, which describes the number
of predictions meeting the target accuracy interval (in line with Gupta & Lam, 1996).

One-day prediction [%] — Share of forecasts in the interval

Topology [−0.1%; 0.1%] [−1.0%; 1.0%] [−2.0%; 2.0%]

MLP 5% 36% 66%
WNN (MLP & Gauss1) 3% 31% 54%
WDNN (Level 1) 3% 24% 43%
WNN (MLP & Gauss2) 2% 31% 58%
LSTM 2% 21% 42%
WNN (LSTM & Gauss1) 1% 18% 37%
WNN (LSTM & Gauss2) 1% 21% 39%
WDNN (Level 5) 1% 2% 5%

Notes: MLP: multilayer perceptron; LSTM: long short-term memory; WDNN: wavelet
decomposition neural network; WNN: wavelet neural network.

do not consistently produce better forecasting results. Although WDNN
(Level 5) achieves good results in a few cases, the time required by
the network for training is increased significantly to the point that
the respective cost–benefit ratio no longer matches that of the other
topologies (e.g. MLP or LSTM).

Further, considering Norvig’s remark, namely, that better data is
more important than simply more data, we must discuss whether
the data that a WDNN additionally receives is really better data. By
performing low-pass filtering during decomposition, smoothing10 (see
ig. 6) of the input data sets occurs, as illustrated in Fig. 5. However,
his is a correction of the data by high-frequency price fluctuations.
et, it contrastingly represents a falsification of the actual true dataset.
hus, the possibility of mutually offsetting effects must be considered.
herefore, we assume that the increase in quantity per se does not
nsure better results if the added data do not increase the overall
ata quality. Furthermore, predictions of MLPs, which receive only a
ingle time series as input, are not significantly worse in comparison
ith those that process four or more time series. By contrast, the
erformance in many cases is even better, as can be seen, for example,
n the analysis of Alphabet Inc. and Microsoft Corp.

Moreover, we assess whether a larger dataset leads to better long-
erm predictions. We explicate a former presupposition by the two
horter time series such as Facebook Inc. (since 2012) and Alibaba
roup (since 2014). Complementing the latter comparison, the longest
ata sets, namely Johnson & Johnson and JP Morgan Chase (both since
980), are noted. Considering the longest prediction periods of 25 to
0 days, Facebook Inc. and Alibaba Group show interval widths in
he range of 30% to 40%; hence, they are significantly less accurate
redictions than the other datasets. However, smaller intervals only
ccur for one of the previously mentioned stocks with a long data
eriod, namely, Johnson & Johnson. The inaccuracy of the Johnson &
ohnson predictions lies within the range of less than 20%. However,
he JP Morgan Chase predictions resemble the short data sets at ap-
roximately 30%. Thus, we cannot currently conclude that longer input
eriods also lead to more accurate long-term forecasts. Simultaneously,
egarding the referred data sets, whether greater input with respect

10 That is, denoising the time series (Torrence & Compo, 1998).
9

to the data period leads to an increase in performance in general is
yet to be discussed. We exclude the Apple Inc. data set, which is
the least predictable across all NNs. Nevertheless, for the other stocks
and indices, no clear relation between the length of a data set and
the quality of the prediction is visible. Predominantly, one-day-ahead
forecasts range within 6% and 8% fluctuations around the true value.

Exceptions can be determined for three data sets, namely, Amazon
Inc. with 10% interval width, Johnson & Johnson with 3%, and EURO
STOXX50 with 4%. Some of the longer price time series, such as
Microsoft Corp., result in accuracy intervals around 5% to 6%. Data
sets that consider 30 to 40 years of data show an average fluctuation of
around 7%, while those displaying only less than 20 years of data points
also present the same fluctuation. This finding leads to the conclusion
that a longer data period is not necessarily advantageous compared to
shorter data sets. Moreover, Walczak’s (2001) claim that larger data
amounts do not enhance NN forecasts is substantiated. Referring to the
most similar publication to this present study, namely, the forecasting
results of Bao et al. (2017), showing NNs with wavelet pre-processed
input to be at an advantage against other networks, for example, LSTM,
are proven.

Agreeing with the presupposition of Bao et al. (2017) that NNs with
wavelet components can outperform classical topologies, our study
reveals that not only intermediate procedures outperform classical
topologies; the presented WNNs developed from the generalisation
methodology perform at an even higher precision compared to the
respective intermediate results. Therefore, more innovative WNNs (as
proposed and elaborated on Yang & Wang, 2021) are preferred over
WDNNs in the majority of time horizons and data sets. The discussion
envisages the attempt to understand and render the functioning of NNs
comprehensible by proven methods to reach its limits in many cases.
Therefore, we cannot confirm some detailed aspects (e.g. the outperfor-
mance of WNN over MLP as stated by Zhang et al., 2001 derived from
the literature in this study). Consequently, it is particularly difficult
to grasp the performance of NNs from a big picture perspective. The
methods in the research area of explainable AI, that is, the investigation
of how NNs achieve results as stated in Adadi and Berrada (2018),
should begin at this point and gain further importance and necessity
in the future, while employing an increasing number of applications of
AI.

We evaluate the precision of the NNs under analysis, as far as exact
predictions are concerned, as is not completely practical so far. As
only a single digit percentage of the prediction results can be found
within 0.1% of the exact value, we neglect the execution of these
models as a sole prediction tool. As a workaround, we suggest training
multiple NNs of a topology on the same data set and then consider and
evaluate multiple predictions in the same period, which may optionally
average the latter to achieve higher accuracy. This may mitigate the
stochastic aspect to which NNs are fundamentally subject, even though
this increases the already high expenditure on computational resources
even further. Alternatively, the presented networks are suitable as a
complement to the tools applied in fund management practices so far.
Reducing the black-box problem with the aforementioned explainable
AI is expected to help in terms of understanding and acceptance (Remus
& O’Connor, 2001). This development can already be seen in Zhou
et al. (2019), implementing NNs in terms of predictive algorithms,
while Li and Kuo (2008) generally show that wavelet algorithms help
to maximise returns on given timescales for financial institutions. More-
over, we state Puchalsky et al. (2018) proposing several optimisation
algorithms for WNNs, which can be seen as direct enhancement of our
findings in terms algorithmic improvement possibilities. In addition,
Kanarachos et al. (2017) applies WNNs to detect successfully real-time
anomalies within markets, which our findings are capable of displaying
further improvement capabilities due to the comparability character
of our study. Regarding the generalisability of our findings, WNNs are
also applied in different scientific domains facing the same optimisation
problems. For example, Alexandridis and Zapranis (2013, 2014) imple-

ment the discussed WNN solutions for financial, chaotic, wind (refer to
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Table 9
Best network topology for a one-day predictive period (pred. = 1 day) and for longer periods (pred. > 1
day) for each selected data set within our respective analysis.

Name Best network (pred. = 1 day) Best network (pred. > 1 day)

Stocks

Alibaba Group MLP WDNN (Level 5)
L’Oréal S.A. MLP WNN (LSTM & Gauss1)
LVMH SE MLP LSTM
Allianz SE WDNN (Level 1) WNN (LSTM & Gauss1)
Linde plc WNN (MLP & Gauss1) WNN (LSTM & Gauss1)
SAP SE WNN (MLP & Gauss1) LSTM
Siemens WNN (MLP & Gauss1) LSTM
Apple Inc. MLP WDNN (Level 5)
Alphabet Inc. C WNN (MLP & Gauss2) WNN (LSTM & Gauss1)
Amazon Inc. WNN (MLP & Gauss1) WNN (LSTM & Gauss1)
Facebook Inc. WNN (LSTM & Gauss2) LSTM
Johnson & Johnson LSTM LSTM
Johnson & Johnson LSTM LSTM
JP Morgan Chase LSTM WDNN (Level 1)
Microsoft Corp. WNN (MLP & Gauss1) WNN (LSTM & Gauss1)
Visa Inc. WNN (MLP & Gauss1) WNN (LSTM & Gauss1)

Indices

China Securities Index 300 WNN (MLP & Gauss1) WDNN (Level 1)
EURO STOXX 50 MLP WDNN (Level 5)
DAX 30 MLP WNN (LSTM & Gauss1)
Dow Jones Industrial Average MLP LSTM
NASDAQ 100 MLP LSTM

Notes: MLP: multilayer perceptron; LSTM: long short-term memory; WDNN: wavelet decomposition neural
network; WNN: wavelet neural network.
Fig. 6. Example for the pre-processed input sequence into wavelet decomposition neural networks, demonstrating the low-pass smoothing characteristics.
Doucoure et al., 2016; Liu et al., 2013) or breast cancer datasets and
can further be applied to image processing, signal denoising, density
estimates and time-scale decomposition (see Berghorn, 2015).

6.2. Performance comparison ‘‘buy-and-hold’’

Especially in the financial domain, the discussion of the necessity of
advanced algorithms and neural network solutions in comparison with
‘‘buy-and-hold’’ investment strategies is ongoing (Couillard & Davison,
2005; Vogl, 2021). The reason of the prominence of ‘‘buy-and-hold’’ or
passive investment strategies, as introductory mentioned, lays within
the still broadly stated efficient market hypothesis (EMH), which in
short states that financial market data is obliged to randomness and
forecasting attempts, thus, are futile in their nature (Fama, 1965a,
1965b; Fama & French, 1989). The EMH is vastly critiqued by Man-

delbrot (1963) and Mandelbrot and Taylor (1967) and faced with the

10
existence of stylised facts (i.e. empirical observations) such as dynam-
ical nonlinearity (see Alexandridis et al., 2017), volatility dynamics
(see Adams et al., 2017) or momentum-induced (multi-)fractal trends
(e.g. Berghorn, 2015 or Daniel & Moskowitz, 2016). Even if the EMH
is questioned further in its entirety due to stated deterministic chaotic
characteristics (see Vogl & Rötzel, 2022), the implications and base-
line comparisons of respective back-tests (see López de Prado, 2018)
still level around beating ‘‘buy-and-hold’’ scenarios, although not all
institutional trading facilities propagate such passive investments. Fur-
thermore, following Berghorn (2015) states the theoretical possibility
of outperformance, contrasting the EMH. Comparing the performance
of NNs or advanced machine learning algorithms with ‘‘buy-and-hold’’
strategies in the literature can be seen, for example, in Nobre and Neves
(2019) proposing hybrid AI models for trade signal generation for
intra-day trading funds. In addition, Chalvatzis and Hristu-Varsakelis

(2020) state NN outperformance over ‘‘buy-and-hold’’ strategies in
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automated asset trading scenarios, which our results may propose a
solid groundwork for further return maximisation. Moreover, Sezer
et al. (2017) state outperformance of machine learning algorithms,
while Mitra (2009) shows higher risk-adjusted returns by ANNs than
via ‘‘buy-and-hold’’, which also is of interest to institutional entities.
Finally, referring to the encompassing review of Kumbure et al. (2022),
show advanced algorithms to be capable to deal with complex system
dynamics such as financial markets and propose detailed comparisons
of methodologies and evaluations, while conclusively stating NNs to be
capable of further prospering.

6.3. Ethical considerations

As AI and advanced technology is incorporating more space in our
reality, a short debrief on ethical considerations in terms of its imple-
mentation is deemed relevant. AI technologies in general represent dual
use, namely, the incorporation in peaceful civilian as well as military-
driven systems, which is mostly ignored (de Ágreda, 2020). To cope
with such a realisation, a ban of research activity is neither favourable
nor is it possible to stop respective activities, thus, the need for ethical
principles guiding such endeavours in imminent (de Ágreda, 2020).
Said principles should follow two characteristics, namely, the algorithm
functionality is understood and humans retain enough system control to
intervene if required, since nefarious deployment of data is possible and
AI is developed at a rapid growth rate (de Ágreda, 2020). Therefore, a
vast discussion on ethical frameworks for advanced technology exists
(e.g. AI4PEOPLE, EAD2, COMEST or DEEPMIND), revelling around
the dimensions of beneficence, human dignity, privacy, human au-
tonomy, fairness and explainability (de Ágreda, 2020; Parasuraman
et al., 2000). Building upon these insights, AI provides high benefits
for humans in general, yet, can be jeopardised without implementation
of formerly denoted ethical codes and security measures (de Ágreda,
2020). Thus, following Yu et al. (2018), AI systems render themselves
increasingly ubiquitous, which in the public experience, AI governance
incorporating ethical standards become more relevant. Yu et al. (2018),
therefore, propose a taxonomy incorporating the dimensions of ethical
dilemmas, individuality in ethical decisions, given frameworks and
human AI interaction. Moreover, owing to AI structuring, historical
data application in social life applications often result in unjust biases
and discrimination by machine learning algorithms, raising discussions
about fairness and debiasing (Birhane, 2021). Especially, social sys-
tems are vulnerable due to the increase in mathematicalisation and
formalisation of social issues owed to the advanced propositions of AI
systems, leading to operations characterisable as value-free, neutral or
even amoral (Birhane, 2021). Further following Birhane (2021) state a
historical discussion about the roots of these developments and offers
guidance on the ‘‘correctness’’ of biases in terms of their definition.

Due to the lack of a moral agent in machines, Etzione and Etzione
(2017) propose reasons for their incorporation in AI systems, yet, stat-
ing the risk of the latter drawing on extreme outliers, which would lead
to fatal errors, labelling this occurrence as outlier fallacy. Therefore,
Banerjee (2020) suggests a computational framework for engineering
intelligence to understand the concept of machine consciousness better.
Moreover, Gruson et al. (2019) discuss the generating process of AI
systems in the dimensions of ethics, legal predicaments, privacy and
financing in terms of tailor-made versus off-the-shelf AI solutions,
while discussing its implications regarding augmented reality. Gal et al.
(2020) show the discourse of AI in people analytics, especially pointing
out its impact in management support systems, stressing bias-free and
lack of ethics. Building upon the moral agent in AI systems, Nath and
Sahu (2020) state its inexistence due to the lack of the answer to the
questions of ‘‘why being moral matters’’ in terms of a moral agent to
be functional in AI systems. Ashok et al. (2022), therefore, propose
generalised digital ethical frameworks for AI and digital technologies.

Referring to the implementation of WNNs and advanced algorithms

in financial disciplines or practical processes, the authors state the

11
management decision problem as given. Furthermore, black-box sys-
tems, such as NN solutions, render a full ‘‘understanding’’ merely
impossible. Autonomous trading systems are prone to outliers as well
as possible to investments in morally discussable assets and market
regimes. Biases in investment decisions are reflected potentially in AI
system once past trading results (originally conducted by a human)
is applied for training purposes. Presupposing AI systems to become
more autonomous or even sentient in the future, the authors see the
potential implementation of investment guidelines (e.g. CFA code of
conduct) into such AI systems conducted for trading and forecasting as
favourable to prevent misuse or fraud. Nonetheless, a formal framework
for AI forecasts in the financial domain is still lacking.

6.4. Limitations and future research

This study has several shortcomings. First, we focus only on a few
indices and stocks as a singular asset class and neglect a broader pool
of available financial market data (e.g. commodities and bonds). Fur-
thermore, we only analyse daily-frequented data sets and disregard an
elaboration on higher frequencies (e.g. intraday data sets). Moreover,
we do not discuss in detail the implications stemming from the choice
of price versus different returns on the research questions at hand.
Furthermore, we note that in this study, we focus mainly on plain or
standard NN implementations in terms of topology selection (e.g. LSTM
or MLP) and do not discuss or test our wavelet decomposition approach
with more complex topologies (as proposed in Yang & Wang, 2021)
that are currently discussed in AI research. In addition, we do not
elaborate on the potential of customised wavelet functions, which we
deem to be interesting in combination with more sophisticated network
topologies. One aspect that has hardly been addressed recently is the
real-time application and usability of NNs in the field under discussion
(refer to Kanarachos et al., 2017). Thus, we note that the training of
all implemented NN topologies requires a high amount of time and
computational effort (Bao et al., 2017). Further, practical research
should focus on improving efficiency and simplifying handling in terms
of NNs (Remus & O’Connor, 2001). Making AI accessible to groups
without an affinity for computer science should be brought into focus to
promote more widespread adoption of its advantageous applicability.
In addition, the dissemination and execution of AI methods in criti-
cal research fields (e.g. quantitative finance) pose further challenges
in risk management and associated legal consequences, which must
be addressed (Adadi & Berrada, 2018). In particular, regarding the
described fluctuations in the quality of the results of the discussed
network topologies, risk management should not be neglected. Regard-
ing methodological restrictions, the application of WNNs is limited
to applications of small input dimensions owing to computationally
expensiveness if facing high dimensional input vectors, even if capable
of handling nonlinear and non-stationary datasets (Alexandridis & Za-
pranis, 2013). Finally, training of WNNs with backpropagation requires
storage and inversion of some matrices, which in case of larger datasets,
grow fondly large and, thus, computationally expensive (Alexandridis
& Zapranis, 2014).

6.5. Concluding remarks

In this study, we demonstrate experimentally that hybrid models
(e.g. WNNs and WDNNs) have advantages over classical topologies
(e.g. LSTM) regarding financial market predictions. However, adding
more data does not necessarily improve prediction performance be-
cause the increased data quantity in the given case is accompanied by a
loss of data quality and leads to cancellation effects. The implemented
wavelet functions may be partially recommended as an alternative
to the sigmoid activation function; however, the choice is dependent
on the respective data set. Hypotheses that both approaches, namely,
intermediate and generalisation, lead to an increase in forecasting
performance compared to classical NNs, can be reinforced, apart from
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the MLP, which is the best predicting NN with regard to one-day-ahead
forecasts. Therefore, WNNs are preferable for longer-term forecasts.
To apply the presented concepts in economic practice and better as-
sess the risks for investment fund practice, additional tests on further
data sets and a significant increase in precision are required, which
reflects the state-of-the-art goal within our sampled literature since
outperformance of ‘‘buy-and-hold’’ strategies are already partially ap-
plicable. Nevertheless, following the conclusions in academic literature,
the proof-of-concept concerning NNs with wavelet components is fully
substantiated for the presented models. Therefore, we propose our
findings as generalised basis and solid groundwork for future studies,
as help to select an optimised combination of topology versus wavelet
as well as within other optimisation procedures.
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