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Abstract The striking results of deep neural networks (DNN) have motivated its wide acceptance to tackle
large datasets and complex tasks such as natural language processing, facial recognition, and artificial image
generation. However, DNN parameters are often empirically selected on a trial-and-error approach without
detailed information on convergence behavior. While some visualization techniques have been proposed to
aid the comprehension of general-purpose neural networks, only a few explore the training process, lacking
the ability to adequately display how abstract representations are formed and represent the influence of
training parameters during this process. This paper describes neural network training fingerprint (NNTF), a
visual analytics approach to investigate the training process of any neural network performing classification.
NNTF allows understanding how classification decisions change along the training process, displaying
information about convergence, oscillations, and training rates. We show its usefulness through case studies
and demonstrate how it can support the analysis of training parameters.

Keywords Neural network visualization � Neural network training � Deep learning � Visual analytics �
Visualization

1 Introduction

Deep neural networks (DNNs) are currently among the state-of-the-art for analyzing large-scale and
complex datasets due to their ability to abstract high-level patterns and model data beyond most heuris-
tics (Goodfellow et al. 2016; LeCun et al. 2015). They are widely used for natural language processing, face
and speech recognition, and artificial data generation. One common application for DNNs is data classifi-
cation consisting of inferring a model f : X ! Y to correctly label unknown data based on a set of known
labeled examples ðxi; yiÞ 2 X � Y, in which xi is a set of features in X, and yi is its corresponding label in Y.
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Although it is well established in the literature that DNNs yield outstanding results in classification for
different domains, even with fixed architectures, training parameters are usually empirically selected based
on time-consuming trial-and-error strategies (Goodfellow et al. 2016; Krizhevsky 2010; Krizhevsky et al.
2012; LeCun et al. 2015; Srivastava et al. 2014).

These parameters strongly influence the training process in terms of convergence speed and overfitting,
such as the learning rate and the momentum of error derivatives (Goodfellow et al. 2016; LeCun et al.
2015), and they weigh heavily in how training advances through the optimization space, often impacting the
difference between good results and failures.

Novel DNN techniques make use of even more parameters. Regularization methods (Srivastava et al.
2014; LeCun et al. 2015), for instance, are designed to avoid overfitting by controlling how many iterations
or data instances steer the model in specific directions. The weight decay regularization term (Goodfellow
et al. 2016; Krogh and Hertz 1992; LeCun et al. 2015) is an example of a method to improve generalization
while training DNNs. Still, it adds costs to the parametrization process since more elements need to be set
and tested by users every time a new network is trained.

Many visual approaches were proposed to aid the comprehension of general-purpose neural networks
focusing on the abstract representations generated by a model and the behavior of the filters (Mahendran and
Vedaldi 2016; Zeiler and Fergus 2014). Only, a few attempts to represent the training process itself, and
those dedicated to it, focus on single regularization terms or convergence values (Cantareira et al. 2020;
Rauber et al. 2017; Srivastava et al. 2014; Yosinski et al. 2015), lacking the ability to display how abstract
representations are formed and to express the influence of training parameters during this process.

Aiming at filling this gap, we propose neural network training fingerprint (NNTF), a visual analytics
approach to improve analysis and understanding of the training process of neural networks with a particular
interest in deep neural networks (DNNs). Although NNTF can be applied to any classification model that
uses an iterative training process, we focus on DNNs due to their popularity, shedding some light on the
complex convergence process and decision boundary formation. Our approach is presented as a complement
to usual quality metrics, such as accuracy or confusion matrices, providing information about the conver-
gence behavior not conveyed by such metrics to aid in understanding training parameters and observing
their effects in the convergence process.

The analysis supported by NNTF provides information about the relationship between consecutive
training iterations, allowing the study of the learning progress, existing patterns, loops, robustness, and
potential pitfalls. NNTF makes it possible to understand the influence of training parameters, convergence,
and even how network complexity and training parameters impact the learning process by combining
visualization techniques with methods from dynamic systems. Our approach is independent of the model
architecture, as it only relies on network outputs and training iterations.

In summary, the main contributions of this paper are as follows:

– A new visual analytics framework to support the interpretation of DNNs learning processes, being non-
intrusive and simple to use. It can be employed with well-established network implementations, such as
the TensorFlow (Abadi et al. 2016), without requiring changes in code;

– The use of recurrence quantification analysis (RQA), a widely known dynamical system tool, to support
the analysis of the training process of DNNs.

The remainder of this paper is organized as follows. In Sect. 2, we discuss related work and present
techniques with similar goals to our approach. In Sect. 3, the proposed visualization method is described,
showing how to analyze the network training behavior. In Sect. 4, case studies are discussed, and in Sect. 5
the limitations of our approach are outlined. Conclusions are drawn in Sect. 6.

2 Related work

Over the past few years, several visual analytics tools and techniques have been devised to support the
understanding of artificial neural networks (ANNs) (Hohman et al. 2018; Liu et al. 2017) primarily focusing
on the analysis of filter activations and features. For filter analysis, Samek et al. (2017) proposed a quan-
titative evaluation of representing activations throughout heatmaps. They compare three heatmap algo-
rithms, concluding that the layer-wise relevance propagation (LRP) (Bach et al. 2015) is the best choice to
reveal filter information of Deep Neural Networks (DNN). Shang et al. (2016) also proposed a visual
representation to compare filters resulting from different activation functions.
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Although useful, filter visualizations cannot be used to show what is modeled by an artificial neural
network. Aiming to overcome such limitations, some visualization techniques give support to understand the
produced features. A well-known example is the Deconvnet (Zeiler and Fergus 2014), which assists the
analysis of Convolutional Neural Networks (CNN) architectures, helping to understand the reasons behind
the attained results and to improve their performances. Deconvnet reconstructs input data (images) at each
CNN layer to show the features extracted by filters, supporting the detection of incidental problems based on
user inspections. (Simonyan et al. 2014) developed two visual representations to support image segmen-
tation based on Deconvnet, allowing feature inspection after the execution of the back-propagation algo-
rithm and the summarization of the features produced for each dataset class. Another feature-based
visualization tool is introduced in Zintgraf et al. (2017), which helps to identify the impact of filter sizes on
classification tasks and how the decision process is conducted.

Supporting both filter and feature analysis, Erhan et al. (2009) proposed a strategy to identify the features
detected by filters after their activation functions, allowing visual inspection of the impact of model ini-
tialization and if features are humanly understandable. Similarly, Mahendran and Vedaldi (2016) proposed a
method to inspect images and check whether they are understandable using three different visualizations:
one for reconstructing image representations, one for presenting filter activations, and another to improve
the stimulus of the feature extractor. Babiker and Goebel (2017) also proposed a visualization tool to
understand features by supporting the identification of unnecessary features filtered along with layers.
Kahng et al. (2018) introduced a method to explore features produced by CNNs through projecting the
activation distances using the t-Distributed Stochastic Neighbor Embedding (t-SNE) Van Der Maaten
(2014). Finally, Gu et al. (2020) proposed a visualization tool to interpret the relevance of the internal
features in the classification results, supporting diagnosis tasks conducted by experts. Although relevant,
those visualization techniques present information about the features and filters of a network. They cannot
give insights into the influence of the training parameters and the overall learning process.

There are a few visualization techniques designed to support the training process analysis. Yosinski et al.
(2015) proposed a framework to support the study of DNN architectures, i.e., the number of layers and filters
per layer and the weight decay regularization term (Krogh and Hertz 1992; LeCun et al. 2015). Two visual
metaphors are proposed, providing features and filter activation visualizations. Both allow the analysis of the
training process states to support the interpretation of the influences resultant from the training parameters.
However, they do not offer any insight regarding the convergence of the learning generalization. Our
approach allows the study of network convergence and generalization easily and intuitively while also aids
the analysis of individual training parameters.

Liu et al. (2017) proposed DGMTracker, a visualization method for exploring relationships between
neuron output, loss function, and data flow for generative networks. While informative, DGMTracker can be
costly, as it saves a snapshot for the entire model for every observed iteration. Liu et al. (2018) is another
approach focused on the evolution of neuron outputs, allowing the observation of weights for different
neurons over training epochs, different data instances, and the correlation between the two. Other models
dedicated to showing specific network structures over time exist, such as Wang et al. (2018), a visualization
that can display the evolution of movement-reward patterns in Q-networks during reinforcement training.

To avoid overfitting while combining different architectures, Srivastava et al. (2014) introduced the
Dropout regularization method. They used visual representations to evaluate the dropout impact on the
filters and CNN features after the training process. Such visualizations allow inspecting the generalization
process and the study of the dataset size. However, the supported analysis is simplistic, missing information
about essential training parameters, such as learning rate and momentum. In our approach, we also allow a
refined analysis of all critical training parameters with the visual interpretation of the learning process.

Rauber et al. (2017) also presented a visualization approach for analyzing the learning evolution and
training convergence by showing the relation among features extracted by DNNs and processing units. The
method consists of projecting the filters activation and layers before and after the training process using
t-SNE and multidimensional scaling (MDS) (Borg and Groenen 2003) techniques. Despite allowing the
comparison between different networks at a certain level, the proposed strategy does not offer enough
information to thoroughly analyze how parameters affect the training stage or how and when convergence is
achieved.

DeepEyes, developed by Pezzotti et al. (2018) provides an overview of DNNs, being capable of iden-
tifying when a network architecture requires more or fewer filters and layers. DeepEyes provides the
identification of filter problems and unnecessary layers with a progressive visualization. It employs scat-
terplots and heatmaps to show filter activations and analyze the feature space. On the other hand, Cantareira
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et al. (2020) introduced a novel approach to investigate neural networks structure through vector fields,
representing the general flow of information. Such vector fields are obtained from the trajectories produced
by projections of multiple stages of the model.

Finally, there are a few approaches dedicated to visualizing the properties of training data. The
OoDAnalyzer, by Chen et al. (2020), is dedicated to investigating the properties of data outliers and how
they differ from other training samples. Gschwandtner and Erhart (2018) proposed a model to explore
potential quality problems for time-series data. Ma et al. (2019) presented an approach to visualize
adversarial vulnerabilities in training data. Hohman et al. (2020) presented a visualization approach to
analyze evolving training data sets. These approaches aim to provide a better understanding of the rela-
tionship between training data and model behavior.

All of the discussed techniques for training visualization rely on displaying elements from the internal
structure of neural networks. In general, they are essentially directed at analyzing network architecture,
giving little support to guide users to evaluate the impact of the training parameters on the convergence
process of an ANN model, which is directly associated with the network generalization. To the best of our
knowledge, our approach is the first that combines dynamic system measures with visualization techniques
to guide the parametrization process of ANNs, with the potential to reduce their overall complexity, while
keeping as model-agnostic as possible, using only model outputs.

3 Neural network training fingerprint

The artificial neural network (ANN) structure was inspired by the mammals’ cortex, composed of simple
and complex visual cells. Simple cells are responsible for extracting basic features, while the complex ones
combine local features producing representations (Scherer et al. 2010). This structure hierarchically
manipulates the data through layers (complex cells), each having a set of processing units (simple cells) to
extract local features.

In ANN classification tasks, each processing unit divides the data space using a linear function (a.k.a.
hyperplane), which is placed to obtain the best separation between different class labels. The connections
among processing units are responsible for combining the half-spaces built up by those linear functions to
produce nonlinear separability of data spaces in an attempt to produce good classification results (Good-
fellow et al. 2016; LeCun et al. 2015). The learning process requires labeled examples to measure error and
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Fig. 1 Overview of our approach to generating the neural network training fingerprints. Every k iterations, the network output
is saved in the form of snapshots Ui, resulting in p classifications Ŷi. Then, for every pair of classifications (Ŷi; Ŷiþ1), a transition
matrix di is obtained, in which an entry dmn is the number of elements classified as m in Ŷi and n in Ŷiþ1. Those matrices
represent the network learning progress along with the k iterations. Finally, we compute the ðp� 1Þ � ðp� 1Þ distance
fingerprint matrix D, which contains the dissimilarity levels between all matrices di. This process is non-intrusive, given it uses
only the network outputs
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perform training by adapting the weights associated with those processing units. Such adaptation follows the
gradient descent of some loss function measured regarding the expected and the obtained network out-
puts (Goodfellow et al. 2016; LeCun et al. 2015).

In this paper, our goal is to help machine learning experts to understand the network training process and
the impact of different parameterizations on it. The proposed approach assists in the visualization of
convergence details, something that accuracy or loss cannot provide since even for stable accuracy,
instances may still be transitioning between classes, indicating that there are still uncertain on these
instances’ classification despite the model convergence. While it is possible to use information from every
training iteration in this process, we use model snapshots taken every k iterations that represent 1 epoch.
Parameter k determines the visualization resolution, and although our choice for it is empiric, k may also be
set to match certain relevant aspects of the training data. If k corresponds to less than one epoch, a more
detailed view is presented, showing the impact that the batch caused to the model. On the other hand, if k is
larger than one epoch, an overview of the model convergence is provided, showing its robustness and
stability. Our approach only requires the labels (classes) produced by the network along learning iterations
to assess how classifications evolve, so it is a non-intrusive process that can be used coupled to any existing
available code without requiring drastic changes. However, it is worth mentioning that our approach cannot
provide information when there are no transitions between classes, i.e., instances do not move from one
class to another along iterations.

Our approach is summarized in Fig. 1. Considering Ŷi to be the network output labels for training set in
snapshot Ui, at the training iteration i � k, a transition matrix di is computed between Ŷi and Ŷiþ1. This
transition matrix is represented as a matrix C � C, in which C is the total number of labels. Each entry dnm
summarizes the number of instances classified as n at snapshot Ui and classified as m at snapshot Uiþ1. In a
converging scenario, the dis should approach more and more to a diagonal matrix as iterations are executed.
The transition matrix provides valuable information on how training evolves and can be seen as a feature
vector containing values for every possible class transition in the system. However, such a matrix cannot
provide an overview of the entire convergence process. Based on that, we construct a distance matrix D to
capture similarity patterns among transition matrices, allowing the analysis of cyclic or repetitive patterns
and abrupt changes in classification. D contains the pairwise distance between all transition matrices di
ordered from left-to-right, top-to-bottom, from the first to the last transition matrices produced as the
network training evolves. In our model, each entry dij 2 D is calculated using a function dij ¼ dðdi; djÞ that
seeks to reflect the flow between labels in absolute terms over time, i.e., the actual number of instance
transitions that are different between matrices.

As a requirement, dij should be independent of the dataset size, that is, the total number of possible
transitions. Additionally, we want to capture the dissimilarity between transition matrices with small and
large inter-class transitions. As the amount of inter-class transitions is expected to reduce over time as the
network converges, each transition’s relative importance must increase. With this in mind, we developed a
simple function based on the Manhattan (city block) distance to ignore the diagonal elements of di that is
normalized by the total number of inter-class transitions.

dij ¼
P

m6¼n jdimn � djmn j
P

m6¼nðdimn þ djmnÞ
; ð1Þ

where dimn and djmn are the elements in row m, column n of dimn and djmn and 1�m; n�C. If both di and dj are
diagonal matrices, we assume dij ¼ 0.

Other options of distance formulations were tested, such as the Earth Mover’s Distance. However, we
opted for simplicity so that the interpretation of the conveyed information is as straightforward as possible.
Another possibility is the Hamming distance between raw classification data from the network at iterations
i � k. Still, there would be no normalization factor, and the relative aspect of the distance matrix would be
lost. Also, other normalizations can be used instead of the one employed in Eq. (1), adjusting the proposed
requirement according to different analytical perspectives. For instance, the distance could be divided by the
number of samples to give insights into the training process considering data sets sizes.

Once a distance matrix D is produced, it can be analyzed to discover features regarding the training
process behavior, as discussed in the next section. Another possibility is the comparison between two
distance matrices to understand the differences in their convergence progressions. While many conclusions
can be drawn by observing the matrices side by side, we also use a differentiation matrix to highlight
differences that may not be as easy to perceive. For two distances matrices DA and DB, the differentiation
matrix is given by:
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D̂AB ¼ DA � DB ð2Þ

Although a simple idea, such a matrix allows various analytical scenarios, such as comparing different sets
of training parameters or analyzing differences in convergence for training and test sets. It is worth men-
tioning that the differentiation matrix does not represent a distance metric, as D̂AB ¼ �D̂BA, but it is not
required to be.

3.1 Fingerprint visualization

To illustrate how the visualization of these matrices as heatmaps can reflect relevant information about ANN
training, we introduce some examples generated with synthetic datasets. Here we consider a single-layer
network with one processing unit, which linearly separates the space using one hyperplane. The produced
datasets are composed of 200 elements using two attributes (points in 2D) also divided into two classes. We
considered two scenarios, A and B, in which the first is linearly separable, the second presents class
overlapping. Figure 2 presents these two synthetic datasets.

The network is expected to converge in scenario A since classes are linearly separable. Figure 3 shows
the visualization obtained for the first 200 iterations, with k ¼ 10. Figure 3a consists of the distance matrix
D, representing the distances between class transitions, which show a burst of high dissimilarity before
reaching a zone that is completely similar to itself but dissimilar to everything else. It is safe to assume that
this constant zone is where the network has stabilized, and no more transitions are happening. Figure 3b
consists of the transition matrices di, whose transformation into diagonal matrices confirms the network has
indeed stabilized—the only transitions observed are from/to every class to itself.

Figure 4 illustrates the visualization obtained for dataset B, which contains class overlapping. The
visualization corresponds to 6000 training iterations with k ¼ 50. In this example, the hyperplane dividing
the space cannot completely separate the classes, resulting in oscillations. Such oscillations result in
diagonal patterns in the dissimilarity matrix (Fig. 4a), indicating similarities among current and past net-
work states, which may also be seen in the transition matrices themselves (Fig. 4b). In summary, similarities
among states reveal that the optimization follows a repeating pattern, possibly indicating that processing
units are not complex enough to separate the data space. Another factor that may result in repeating patterns
is an excessively large learning rate, making it difficult to find the minimum of some error function while
computing the gradient descent method.

In general, these heatmap visual representations present the classification behavior along with iterations,
which relies on network weight adaptation. This behavior may reveal some insights into the decision process
and network complexity. The dissimilarity matrix presents an overview of the learning process, indicating
whether an ANN model requires changes in its architecture or training parameters.

Fig. 2 Two dimensional synthetic datasets used to exemplify our approach. Different scenarios to show the resulting visual
representations for a simple linearly separable case and another much more complex
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3.2 Recurrence quantification analysis

Beyond visual inspections, distance and differentiation matrices can be assessed quantitatively to give
insights into the training process. Here, we use recurrence quantification analysis (RQA) to aid in this
process. In the context of dynamical systems, RQA provides measures to evaluate time-series patterns
taking as input recurrence plots (RP) and cross-recurrence plots (CRPs) (Webber and Zbilut 1994). RQA
supports analyzing recurrent patterns present in a given time series.

Here, we introduce the CRP as a generalization of RPs, which extends this ability of analyzing recurrent
patterns while comparing two time series. Consider two time series s ¼ s1; s2; . . .; sn and t ¼ t1; t2; . . .; tm
reconstructed in phase spaces using Takens’ embedding theorem (Takens 1981). The CRP computes sim-
ilarities among all phase space states obtained from s and t and produces an n� m-binary matrix, in which

Fig. 3 Network visualization for scenario A. The network quickly converges to an optimal result, correctly classifying all
training instances. In the dissimilarity matrix, it is possible to see that after a burst of transition dissimilarities, around the 80th
iteration, no more transitions happen (a). The transition matrices confirm that indeed no more inter-class transitions are
detected (b)

Fig. 4 Network visualization for scenario B. According to the distance matrix, the network convergence is stuck into a loop, in
which the dark diagonal lines highlight that transition sequences repeat themselves (a). This is expected, since the data is not
linearly separable. Repeating patterns are noticed in the transitions matrices as well (b)
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Bi;j corresponds to the comparison of state i from s with j from t. In summary, when Bi;j ¼ 1, states i and
j are similar enough in terms of an open-ball defined in the phase space. When the CRP is applied to
compare a time series to itself, we have the RP in which the principal diagonal of B is filled out with 1s.

By considering the distance matrix D as the RP of a time series representing the transitions in an ANN,
the RQA can be used to perform quantitative analysis to assist its interpretation. However, the distance
matrix D needs to be binarized to represent the similarities and dissimilarities. To perform this binarization,
ranges of values ½bi; bj� are transformed into 1, while the remaining values are set as 0. In our case, those
ranges are used to study the network convergence regarding the probability of classification transitions. This
probability tends to one when the classification result for a given example continually changes along with
training iterations, approaching zero when training stabilizes.

Firstly, in this process, the RQA identifies all nonzero diagonals present in the binarized version of D.
Next, the entropy ent is computed over the identified diagonals on matrix B (binarized D), as defined in
Eq. (3), in which p is the frequency distribution of a diagonal at length v, lmin is the minimum value of
length for a diagonal, and L is the total number of diagonals (Webber and Zbilut 1994).

ent ¼ �
XL

v¼lmin

ðpðvÞlogðpðvÞÞÞ ð3Þ

Another measure that can be computed from the diagonals is the laminarity lam. Laminarity is defined in
Eq. (4), where p is the frequency distribution of a diagonal length v, with lmin being the minimum value of
length obtained and L the total number of diagonals. Laminarity (Webber and Zbilut 1994) counts the
number of vertical lines present in the binary matrix according to the provided band. In our case, laminarity
can be used to analyze training convergence since each line represents a significant, somewhat unique
transition matrix.

lam ¼
PL

v¼lmin vpðvÞPL
v¼1 vpðvÞ

ð4Þ

In our model, we obtain ent and lam values for different value ranges of the matrices summarizing clas-
sification transitions. We then save pairs ðbent; entÞ and ðblam; lamÞ, being the lowest ranges considered more
valuable since they are related to steady classification models, i.e., when classification transitions stabilize.

Considering all this information, images producing high laminarity at lower ranges offer the best
scenario since they indicate that the classification transitions stabilized while at smaller learning steps rather
than jumping to some overfitting solution. A lower entropy at a lower range is also associated with the best
possible scenario once it indicates the network found a learning setting with a small uncertainty with a slow
enough convergence, meaning it finds a good solution.

4 Results

In this section, we present different usage scenarios for two different popular network architectures, showing
how to use the neural network training fingerprint (NNTF)1 to understand the training process and estimate
parameters.

4.1 Usage scenario with Lenet architecture

In the first scenario, we investigate training parameters and the overall convergence of Lenet-5 (LeCun et al.
1999), a well-known CNN architecture. Lenet-5 is composed of seven layers, leading to a relatively fast
training process that allows us to swap and assess parameters quickly.

We use the Cifar-10 (Krizhevsky 2010) dataset to proceed with experiments, which is widely known in
the field of object recognition. Moreover, the Cifar-10 dataset is a complex enough dataset to explore the
features provided by our approach. Results with the Cifar-10 dataset are typically reported using pre-defined
50, 000-RGB images for training and 10, 000 for testing (Krizhevsky 2010; Srivastava et al. 2014). We
follow the same protocol.

Par39 Source code available at https://github.com/marthadais/NeuralNetworkTrainingFingerprint.
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Given the employed CNN, it is important to introduce some of its parameters to make our analysis
clearer to the reader. The CNN update rule is defined in Eq. (5), which is used to adapt filter weights to
minimize classification error. Term wi corresponds to the filter weight at iteration i, wiþ1 is the weight but at
the next iteration, LðwÞ is the loss function, k represents the weight decay, g is the learning rate, c represents
the momentum, rLðwÞ is associated with the gradient, and vi is the weight adaptation step.

viþ1 ¼cvi � g rLðwÞ þ 1

2
kkwk

� �

wiþ1 ¼wi þ viþ1

ð5Þ

In this context, the learning rate is responsible for the gradient step size, the momentum is used to maintain a
percentage of the past gradient information, and the weight decay is a regularization term to make the
average of weight values be around zero, helping to bring weights back to the quasi-convex region of the
error function. We attempt to assess the impact of those parameters, setting them to g ¼ 0:01, c ¼ 0:9 and
k ¼ 0:005 as found in the literature (Krizhevsky et al. 2012; LeCun et al. 2015). We collect results for
Lenet-5 considering 50 epochs with a step of 1, resulting in a distance matrix with 50� 50 transition states.
In terms of iterations, we set 128 as batch size, producing approximately 19, 532 iterations and leading to a
k � 391 iterations that represent 1 epoch.

4.1.1 Assessing the weight decay parameter

The first parameter we analyze is weight decay. Experiments were performed with a fixed learning rate of
g ¼ 0:01 and a fixed momentum set to c ¼ 0:9. The weight decay was set using one of the values in
f0; 0:001; 0:005; 0:01; 0:05g, allowing enough changes to be pointed out by our approach.

Our first step is to observe the training process setting the weight decay to zero for the Cifar-10 dataset.
Figure 5 shows the attained results. In Fig. 5a, the distance matrix D is presented, along with a heatmap of
the difference between classification results at each iteration. In Fig. 5b, the transition and accuracy plots to
support insights drawn from analyzing the matrix are displayed. Since the weight decay is responsible for
slowing down the rate at which the training process converges to avoid overfitting, this example stabilizes
relatively quickly, attaining an accuracy value approximately to one (virtually 100%) for the training set
itself and the transition count dropping in later iterations.

However, a small number of transitions between classes are still happening, even when the loss function
is closed to zero, indicating uncertainty in the model. This is an example of how NNFT can provide more
details on the training process, besides the accuracy and loss function, allowing a better analysis of the
model optimization. The distance matrix illustrates this process by showing some similarities and repetitions
at the beginning, leading to more yellow zones that are entirely dissimilar to each other toward the end.
From a pure optimization point of view, highly dissimilar areas are good since they mean the objective
function quickly navigates through an area that has never been before and likely reaches a minimum.

However, this does not necessarily mean that the accuracy results will be as positive for the test set since
it may indicate overfitting. Running this network through the test set yields an accuracy value of 0.5672.
Figure 6 presents different distance matrices varying k values. Although composed of highly dissimilar
segments, the matrix for the large k value (0.05) does not show the yellow zones, meaning a sequence that is
dissimilar in its components but repeats itself over and over. The addition of cyclic elements to the process
gives the network more time to fine-tune its filters, possibly resulting in better generalization.

At first glance, the differences between the distance matrices are not expressive. However, we can
subtract one matrix from another to better understand what has changed as the weight decay increase, as
presented in Fig. 7. It is worth mentioning that the larger parameter value shows more transitions in the
training process than the lower parameter value since more reddish colors are observed close to the main
diagonal. The first noticeable thing is that when the weight decay increases too much, the number of
transitions seems to stabilize, indicating a slower convergence. This can be further confirmed by counting
transitions. Transitions tend to happen in bulk with lower weight parameters values at the beginning of the
training process (represented in the top-left of the figure).

RQA results for the matrices generated in this experiment are summarized in Table 1. According to the
interpretation discussed in Sect. 3, we can analyze these values in the following manner: the distance matrix
generated from the weight decay k ¼ 0 has the lowest entropy value, meaning that convergence is attained
in an orderly manner. However, laminarity along low bands is also small, meaning that if convergence is
attained, there is no evidence of it being achieved through small changes. The matrix generated from
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k ¼ 0:001 has a high laminarity score. However, it also provides a high entropy. Such high entropy means
that the convergence process contains too much noise, indicating a poor parametrization choice for training.
The matrix obtained from weight decay value k ¼ 0:01 seems to generate good results on both fronts,
suggesting that it is a better choice if the goal is to obtain a well-balanced training process. Notably,
k ¼ 0:005 offers a good laminarity result without sacrificing much in entropy and band location, matching
the parameter commonly employed in the literature.

4.1.2 Assessing learning rate parameter

The learning rate was also analyzed considering a fixed momentum set to c ¼ 0:9 and weight decay set to
k ¼ 0:005. Four CNNs were trained considering the following learning rates f0:0005; 0:001; 0:005; 0:01g.
Figure 8 presents the obtained results. The network was not capable of converging for g ¼ 0:01 and
g ¼ 0:005. The transition counts for such matrices confirm this claim, showing a repeating pattern and small
accuracy values even for the training set. While we conclude that we have a bad parameter choice by simply
analyzing accuracy plots, network training information points out a locking state, such as a loop, which is
relevant to studying and exploring the learning rate mechanism itself. Since those steps are too large for this
scenario, the weights heavily influence the gradient adaptation steps and, therefore, get off the minimum
region.

Fig. 5 Visual analysis of Lenet-5 training process using the CIFAR-10 dataset. In a, the distance matrix shows that highly
dissimilar transitions happen toward the end of the training process, culminating in a completely similar spot. In b, the total
number of transitions as iterations go by (in orange) and the accuracy of network classifications considering the training set (in
green) are shown. While the later iteration transitions are highly dissimilar, the actual amount of transitions is considerably
low, meaning that the network is stabilizing. High dissimilarity areas like the ones shown in this image indicate the objective
function is navigating through a new region in the solution space
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RQA results for the matrices obtained while analyzing learning rates are shown in Table 2. While the
slow process shown by the learning rate g ¼ 0:005 could seem like a promising approach for training at
first—assuming the running time is not an issue—the RQA results show that the optimization is not good
enough (high entropy) and that low band laminarity is not as high as expected. This looks to be related to
bumps present in the error function so that the optimization gets stuck at a local minimum at certain points.
Learning rates closer to g ¼ 0:001 seem to be a better choice, which is also what we found in the literature.

4.1.3 Assessing momentum parameter

The momentum was the third parameter analyzed. Learning rate and weight decay were set as g ¼ 0:01 and
k ¼ 0:005, respectively. The momentum values analyzed were f0:5; 0:7; 0:9; 0:95g, leading to 4 CNN
executions. In this case, a large momentum usually brings more past gradient information to smooth the
error function and avoid local minima. However, this also leads to slower convergence.

The results provided by the visualization in Fig. 9 confirm that lower momentum values generate images
that exhibit a more texture-like appearance, shaped like grids. Dark diagonals are also more pronounced,
indicating that classification goes through more repeating patterns as the network converges. Lower
momentum values lead to less predictable matrix behaviors, with sharp and bright lines that appear less
periodically.

Fig. 6 Distance matrices D for different weight decay regularization values. As weight decay increases, the highly dissimilar
areas give way to cyclic patterns that slow down the training process to avoid overfitting. With large weight decay values, only
the cyclic pattern remains, hindering convergence
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One interesting element of this view is that the horizontal and vertical lines are clearly visible in these
examples, indicating high transition values, showing that the network abruptly changes the classification.
Those aspects are more easily perceived on the matrices corresponding to small momentum values, resulting
in more aggressive optimization steps.

RQA results for the momentum parameter are shown on Table 3. Parameter c ¼ 0:9 seems to be the best
choice for a balanced approach since it offers a reasonable combination of laminarity and entropy values. It
is worth mentioning that this value is the same usually employed in the literature.

Fig. 7 Differentiation matrices D̂AB, D̂BC , D̂CD and D̂DE between the distance matrices in Fig. 6

Table 1 RQA results for Weight Decay parameter experiments

wd blam lam bent ent Acc

0.05 0.30–0.35 0.0761 0.00–0.05 0.0794 0.6733
0.01 0.25–0.30 0.2453 0.00–0.05 0.0794 0.6344
0.005 0.25–0.30 0.3125 0.00–0.05 0.0794 0.6098
0.001 0.00–0.05 0.6694 0.00–0.05 0.52094 0.5882
0 0.25–0.30 0.1429 0.00–0.05 0.0794 0.5672

From left to right, the columns describe the weight decay value used to generate the distance matrix analyzed, the band in
which the laminarity value blam was obtained, the lam value itself, the band in which entropy bent was obtained, the entropy
value ent, and the accuracy in the test set Acc
They represent the most adequated values according to the analysis
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4.2 Usage scenario with VGG16 architecture

In this scenario, we evaluate training parameters for the VGG16 (Simonyan and Zisserman 2014), a well-
known CNN architecture, using NNTF. VGG16 is composed of 16 layers and presents positive results for
large datasets such as Imagenet (Krizhevsky et al. 2012). We once again used the Cifar-10 data set and
collected results for every epoch in 50 total epochs for this experiment.

4.2.1 Assessing the weight decay parameter

As performed in the LeNet architecture evaluation, the first parameter analyzed for VGG16 is weight decay.
Similarly, we use a fixed learning rate of g ¼ 0:001 and a fixed momentum of c ¼ 0:9. Five CNNs were
trained, each one using one of the values in f0:05; 0:01; 0:005; 0:001; 0g as weight decay. RQA results for
the matrices generated in this experiment are shown in Table 4. In this scenario, the most suitable values for
laminarity and entropy were generated using the weight decay k ¼ 0, which is not similar to the one
obtained for LeNet architecture and the typical value used in literature. However, the standard value
k ¼ 0:005 also presented a good balance between laminarity and entropy.

Fig. 8 Distance matrices DA, DB, and DC for different learning rate parameters in the first row and differentiation matrices D̂AB

and D̂BC between them in the second row. The effect of reducing learning rates can easily be seen as the concentration of
brighter areas shifts from the first rows/columns of the matrix in g ¼ 0:01 to covering most of its length in g ¼ 0:001. The
differentiation matrices show exactly this trend between matrices, as well as the absence of certain sudden steps as can be seen
by the blue lines in D̂AB

Table 2 RQA results in the learning rate parameter

lr blam lam bent ent Acc

0.01 0.00–0.05 0.1266 0.00–0.05 0.0794 0.1000
0.005 0.00–0.05 0.2353 0.00–0.05 0.2955 0.1000
0.001 0.20–0.25 0.3125 0.00–0.05 0.0794 0.6098
0.0005 0.3–0.35 0.1500 0.00–0.05 0.0794 0.6299

From left to right, the columns describe the learning rates used to generate the distance matrices, the band in which the
laminarity value blam was obtained, the lam value itself, the band in which entropy bent was obtained, the entropy value ent, and
the accuracy in the test set Acc
They represent the most adequated values according to the analysis
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Figure 10 shows fingerprints for the conducted training, while Fig. 11 presents the differences between
these fingerprints. As the weight decay parameter increases, concentrated areas disappear, and the heatmaps
become more homogeneous but noisier as well. Lines indicating rifts in the similarity between epochs also
become absent, indicating that larger weight decay values inhibit leaps in optimization. In the last image, the

Fig. 9 Distance matrices D for different momentum values on the top and a differentiation matrix D̂ between lower and greater
values parameters the bottom. Lower momentum values result in almost texture-like images, as there are many bright areas but
at the same time many diagonals. In later areas, the diagonals and grid-like bright squares do not seem as pronounced,
suggesting less periodic convergence

Table 3 RQA results for the momentum parameter

mnt blam lam bent ent Acc

0.5 0.40–0.45 0.2013 0.00–0.05 0.0794 0.6114
0.7 0.35–0.40 0.0625 0.00–0.05 0.0794 0.6403
0.9 0.25–0.30 0.3125 0.00–0.05 0.0794 0.6098
0.95 0.20–0.25 0.2353 0.00–0.05 0.0794 0.6167

From left to right, the columns describe the value of c used to generate the distance matrix, the band in which the laminarity
value blam was obtained, the lam value itself, the band in which entropy bent was obtained, the entropy value ent, and the
accuracy in the test set Acc
They represent the most adequated values according to the analysis

Table 4 RQA results for weight decay parameter considered the VGG16 architecture

wd blam lam bent ent Acc

0.1 0.00–0.05 0.5200 0.00–0.05 0.3898 0.1000
0.05 0.00–0.05 0.4647 0.00–0.05 0.4540 0.1000
0.01 0.25–0.30 0.0833 0.00–0.05 0.0794 0.7274
0.005 0.30–0.35 0.1111 0.00–0.05 0.0794 0.7438
0.001 0.00–0.05 0.3623 0.00–0.05 0.3772 0.7883
0 0.30–0.35 0.2500 0.00–0.05 0.0794 0.7803

From left to right, the columns contain, the employed weight decay value used to generate the distance matrices, the band in
which the laminarity value blam was obtained, the lam value itself, the band in which entropy bent was obtained, the entropy
value ent, and the accuracy in the test set Acc
They represent the most adequated values according to the analysis
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value k ¼ 0:05 inhibits convergence, getting the model stuck in a state where any optimization attempt
would cause it to shift classification for all data instances.

4.2.2 Assessing learning rate parameter

The learning rate was analyzed considering a fixed momentum set to c ¼ 0:9 and weight decay set to
k ¼ 0:005. Four CNNs were trained considering the following learning rates f0:0005; 0:001; 0:005; 0:01g.
RQA results for the matrices generated in this experiment are shown in Table 5. In this scenario, the most
suitable values for laminarity and entropy were generated using the learning rate g ¼ 0:001, which is similar
to the one obtained for the LeNet architecture. As VGG16 is a more complex network, we believe that the
produced error function is slightly wide and smooth, leading to g ¼ 0:005, a suitable value for the learning
rate.

Figure 12 shows the different training behaviors for each g value. Despite producing similar results, it is
possible to notice that g ¼ 0:005 produces an image with several horizontal and vertical yellow lines when
compared to g ¼ 0:001, indicating a less steady convergence that is not visible by just comparing accuracy
curves. At g ¼ 0:01, this increase becomes excessive, as certain iterations generate huge shifts in the
classification that the model has difficulties recovering from.

Fig. 10 Fingerprints for VGG16 training with varying weight decay parameters k. As k increases, concentrated areas disappear
and the heatmaps gain noise. Lines indicating rifts in similarity between epochs also become less frequent, indicating that
larger weight decay values inhibit leaps in optimization. In the last image, the value k ¼ 0:05 inhibits convergence, getting the
model stuck in a state where any attempt of optimization would cause it to shift classification for all data instances
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4.2.3 Assessing momentum parameter

Momentum was also analyzed for the VGG16, fixing the learning rate and weight decay to g ¼ 0:01 and
k ¼ 0:005, respectively. The momentum values analyzed were f0:5; 0:7; 0:9; 0:95g, resulting in 4 CNN
executions. RQA results for the matrices generated in this experiment are shown in Table 6. In this scenario,
the most suitable values for laminarity and entropy were generated using the momentum c ¼ 0:9, similar to
the one obtained for LeNet architecture and found in the literature.

Figure 13 shows training fingerprints for different c values. Lower values generate more vibrant colored
heatmaps (highly different transitions), indicating that transitions at every iteration follow very particular
patterns that do not repeat often. As c increases, the central diagonal of the heatmaps starts to become darker
since the iterations immediately close to one another move in a more similar direction in the solution space
and generate more similar transitions.

Fig. 11 Differentiation matrices D̂AB, D̂BC , D̂CD and D̂DE between the distance matrices in Fig. 6

Table 5 RQA results varying the learning rate parameter considering VGG16

lr blam lam bent ent Acc

0.01 0.30–0.40 0.2778 0.00–0.05 0.0794 0.3367
0.005 0.25–0.30 0.1477 0.00–0.05 0.0794 0.8004
0.001 0.25–0.30 0.2000 0.00–0.05 0.0794 0.7438
0.0005 0.35–0.40 0.1190 0.00–0.05 0.0794 0.7153

From left to right, the columns describe the learning rates used to generate the distance matrices, the band in which the
laminarity value blam was obtained, the lam value itself, the band in which entropy bent was obtained, the entropy value ent, and
the accuracy in the test set Acc
They represent the most adequated values according to the analysis
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In summary, while the proposed visual approach can support the optimization analysis, showing the
impact of the learning parameters in the convergence, the RQA measures assist in understanding model
uncertainty (entropy) and how stable and robust the convergence is (laminarity). Therefore, their combi-
nation shows to be a powerful tool for understanding the convergence behavior, showing abrupt changes in
the classification, repetitive patterns, uncertainty, and robustness.

5 Discussion and limitations

The neural network training fingerprint (NNTF) offers information that can support the configuration of
training parameters and the analysis of network and data complexity. It allows assessing the impact of
parameter changes and how they relate to network convergence, which is not supported by the usual loss/
accuracy values. NNTF describes transitions in the classification of instances during training, which shows
how the decision changes over time as the model is adapted using training data. It is worth mentioning that
the decision boundaries changes as the model converges toward the loss function derivative. Thus, the
transitions will stop occurring if the model achieves a minimal region in the loss function, indicating an
overfitting or a local minimum that does not ensure the learning.

Fig. 12 Fingerprints for different learning rates g for VGG16 training with CIFAR10 dataset. Despite increasing step size,
g ¼ 0:005 shows a smoother heatmap, indicating steady convergence. The image on the right, depicting g ¼ 0:01, shows that
excessively large steps may result in erratic movement through solution space

Table 6 RQA results for the momentum parameter considering VGG16

mnt blam lam bent ent Acc

0.5 0.35–0.40 0.0714 0.00–0.05 0.0794 0.6896
0.7 0.45–0.50 0.2093 0.00–0.05 0.0794 0.7103
0.9 0.25–0.30 0.2000 0.00–0.05 0.0794 0.7438
0.95 0.20–0.25 0.0833 0.00–0.05 0.0794 0.7706

From left to right, the columns describe the value of c used to generate the distance matrices, the band in which the laminarity
value blam was obtained, the lam value itself, the band in which entropy bent was obtained, the entropy value ent, and the
accuracy in the test set Acc
They represent the most adequated values according to the analysis
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Moreover, the proposed approach is a non-intrusive visualization framework to support the interpretation
of artificial neural networks. As it only relies on model outputs after training iterations, it can be easily
extended to any classifier based on an iterative learning process. The visualization can indicate when the
optimization is undergoing oscillation caused by bad parametrization or when the model is not complex
enough to deal with the input dataset. Information about the convergence is also provided, indicating when it
is too fast, too slow, or not happening at all. Loops and repeating patterns are visible, meaning that the
network is oscillating toward the gradient.

Considering the RQA measure, it is possible to conduct a quantitative evaluation of the produced
visualizations, leading to a better analysis of the optimization process. RQA is a well-known metric
employed on dynamical systems that measure the similarity of RPs and CRPs. The proposed visualization is
similar to the matrices produced by RP and CRP methods, making it possible to apply the same measures.
The results obtained with RQA show that our approach can support the understanding of ANNs training and
assist in the analysis of the parameters, in which the entropy represents the uncertainty of the training
process and the laminarity of how stable and robust is the convergence.

In summary, NNTF can be applied to any classifier to assist in evaluating the optimization process,
indicating cyclic and repetitive patterns, abrupt changes in classification, uncertainty, and robustness. NNTF
supports understanding the training parameters’ impact, helping users get insights on selecting adequate
values. However, despite the promising results, our technique presents two main limitations: (i) the visual
tool cannot provide information when there are no transitions, and (ii) the proposed solution to compare
iterations with no transitions can be visually confusing. In these cases, other tools are preferred.

6 Conclusions

A visual approach, called neural network training fingerprint (NNTF), was proposed to better understand the
training process of artificial neural networks used to classify complex and large datasets. NNTF does not
require information about the architecture or the model’s internal features, being characterized as a non-
intrusive method. The only information needed to perform the network analysis is the classification outputs

Fig. 13 Training fingerprints for different c values in VGG16 using Cifar-10 data. Images on the left side are more vibrant
(highly different transitions), indicating that transitions at every iteration follow very particular patterns that do not repeat often
(smaller steps in different directions in solution space). As c increases, the central diagonal starts to become darker, as solution
space movement becomes smoother and iterations immediately close to one another generate more similar transitions
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for each instance during the training, which allows the observation of many supervised models and their
learning process.

We presented and discussed the application of NNTF for neural network classification. As future work,
we plan to use the repeating sequence patterns identified during the training process to investigate their
impact (if there is any) in the context of DNN optimization, including an analysis on validation and test sets.
Also, we plan to adapt the NNTF to understand the training process of non-classification-focused tasks, such
as regression or natural language processing, which allows the analysis for different datasets domains, such
as signals and text. The challenge is to derive a measure to replace the class changing to represent the
network transitions. Another aspect to check in the future is the impact of uncertainty in true labels and
multi-label classification tasks on the training process of DNNs. Finally, we plan to investigate the use of
RQA in the analysis of other visual representations to quantify changes, for instance, in time-varying
dimensionality reduction visualizations (Alencar et al. 2012; de Araújo Tiburtino Neves et al. 2021).
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de Araújo Tiburtino Neves TT, Martins RM, Coimbra DB, Kucher K, Kerren A, Paulovich FV (2021) Fast and reliable

incremental dimensionality reduction for streaming data. Comput Graph. https://doi.org/10.1016/j.cag.2021.08.009
Erhan D, Bengio Y, Courville A, Vincent P (2009) Visualizing higher-layer features of a deep network. Univ Montr 1341(3):1
Goodfellow I, Bengio Y, Courville A, Bengio Y (2016) Deep learning. MIT Press, Cambridge
Gschwandtner T, Erhart O (2018) Know your enemy: identifying quality problems of time series data. In: 2018 IEEE Pacific

visualization symposium (PacificVis). IEEE, pp 205–214
Gu D, Li Y, Jiang F, Wen Z, Liu S, Shi W, Lu G, Zhou C (2020) Vinet: a visually interpretable image diagnosis network. IEEE

Trans Multimedia 22(7):1720–1729
Hohman F, Kahng M, Pienta R, Chau DH (2018) Visual analytics in deep learning: an interrogative survey for the next

frontiers. IEEE Trans Vis Comput Graph 25(8):2674–2693
Hohman F, Wongsuphasawat K, Kery MB, Patel K (2020) Understanding and visualizing data iteration in machine learning.

In: Proceedings of the 2020 CHI conference on human factors in computing systems, pp 1–13
Kahng M, Andrews PY, Kalro A, Chau DHP (2018) Activis: visual exploration of industry-scale deep neural network models.

IEEE Trans Vis Comput Graph 24(1):88–97
Krizhevsky A (2010) Convolutional deep belief networks on cifar-10. Unpublished manuscript 40(7):1–9
Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances

in neural information processing systems, pp 1097–1105
Krogh A, Hertz JA (1992) A simple weight decay can improve generalization. In: Advances in neural information processing

systems, pp 950–957
LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436
LeCun Y, Haffner P, Bottou L, Bengio Y (1999) Object recognition with gradient-based learning. In: Shape, contour and

grouping in computer vision. Springer, Berlin, Heidelberg, pp 319–345. https://doi.org/10.1007/3-540-46805-6_19
Liu D, Cui W, Jin K, Guo Y, Qu H (2018) Deeptracker: visualizing the training process of convolutional neural networks.

ACM Trans Intell Syst Technol (TIST) 10(1):1–25
Liu M, Shi J, Cao K, Zhu J, Liu S (2017) Analyzing the training processes of deep generative models. IEEE Trans Vis Comput

Graph 24(1):77–87
Liu S, Wang X, Liu M, Zhu J (2017) Towards better analysis of machine learning models: a visual analytics perspective. Vis

Inf 1(1):48–56
Ma Y, Xie T, Li J, Maciejewski R (2019) Explaining vulnerabilities to adversarial machine learning through visual analytics.

IEEE Trans Vis Comput Graph 26(1):1075–1085
Mahendran A, Vedaldi A (2016) Visualizing deep convolutional neural networks using natural pre-images. Int J Comput Vis

120(3):233–255
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