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Abstract

Selection of condenser cooling technology can affect the financial as well as technical
viability of concentrating solar power (CSP) plants. Detailed comparative assessment of
three cooling technologies, i.e., wet, dry, and hybrid, is therefore desirable so as to facili-
tate selection of optimum cooling technology for the plant. Despite the high efficiency of
wet cooling technology, considering the fact that the potential plant locations are gener-
ally in arid regions suffering from water scarcity, it is imperative to explore and consider
other water conserving condenser cooling options. A review and comparison of techni-
cal, economic, and environmental aspects of the three condenser cooling technologies for
CSP plants have been presented. Adoption of dry or hybrid technology as against wet cool-
ing technology may lead to reduced thermal performance and increased parasitic power
requirement resulting in the high cost of electricity generation. However, the same also
results in reduced cooling water requirement up to 92% and thus increase the potential of
solar thermal power generation considerably as sites in arid areas can also be utilized.

Keywords Concentrating solar power - Condenser cooling technology - Wet cooling - Dry
cooling - Hybrid cooling
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CTR Central tower receiver
DNI Direct normal irradiance
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GHG Greenhouse gas

ITD Initial temperature difference
LCOE Levelized cost of electricity
LFR Linear Fresnel reflector

MACC Modular air-cooled condenser
NTU Net transfer unit

PM Particulate matter

PD Parabolic dish

PTC Parabolic trough collector

PV Photovoltaic

TTD Terminal temperature difference

1 Introduction

Environmental concerns along with the uncertainty regarding the availability and price
of fossil fuels during the last few decades have created significant interest in renewable
energy-based power generation options (Edenhofer et al., 2015; Frisvold & Marquez,
2013). Solar power generation (both photovoltaic and thermal routes) is being promoted
across the globe as an environmentally sustainable renewable energy option (DOE,
2009; Kalogirou, 2004). In solar thermal power generation, the incident solar radiation
is first converted into heat, and the same is then utilized in the power cycle to produce
electricity (Timilsina et al., 2012). A schematic of a solar thermal power plant with
indirect (two-tank) thermal energy storage is shown in Fig. 1. A solar thermal power
plant can be divided into three sub-systems, namely solar energy collection sub-system,
thermal energy extraction and storage sub-system, and power generation sub-system
(Herrmann et al., 2004; Kuravi et al., 2013; Praveen et al., 2018). The solar energy col-
lection system consists of solar concentrators for concentrating the incident solar radia-
tion onto the receiver. Accordingly, solar thermal power plants are also referred to as
concentrating solar power (CSP) plants (Trinh et al., 2014). The concentrators used in a
CSP plant can be either line focus or point focus (Behar et al., 2013; Desai & Bandyo-
padhyay, 2017). The line focusing solar collectors include parabolic trough collectors
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Fig.1 Schematic of a CSP plant with indirect (two-tanks) thermal energy storage
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(PTC) and linear Fresnel reflector (LFR). The point focusing collectors include central
tower receiver (CTR) and parabolic dish (PD). Salient features of PTC, LFR and CTR
technologies based CSP plants are summarized in Table 1. Due to dual-axis tracking,
the point focused CSP systems can achieve relatively higher concentration ratio leading
to higher operating temperatures than the line focused (single-axis tracked) concentra-
tors. Around 114 CSP plants (including commercial, demonstration, prototype, research
and development type) with a cumulative installed capacity of 6.5GW are reportedly
operational at present in different parts of the world (Aqachmar et al., 2019; CSP.guru,
2020; SolarPACES, 2020). Relevant details of some operational and under construction
CSP plants are given in Tables 9 and 10, respectively of Appendix 1.

As mentioned earlier, the heat collected by the solar concentrators is utilized to gen-
erate steam that can be used directly for power generation or can be stored for use in off
sunshine hours (Jegadheeswaran & Pohekar, 2009; Jian et al., 2015; Kuravi et al., 2013;
Laing et al., 2006; Xu et al., 2015a, b). The steam is usually expanded in a steam turbine
(usually in a Rankine cycle) to produce electricity (Besarati & Goswami, 2017; Stein &
Buck, 2017). The exhaust steam from the turbine is fed into a condenser in which the
latent heat of vaporization of steam is transferred to the available cooling medium (Hol-
bert & Haverkamp, 2009). Based on the approaches used for cooling the exhaust steam,
the condenser cooling technologies can be termed as wet, dry, and hybrid cooling.

High annual direct normal irradiance (DNI), adequate land area, and sufficient water
availability are some of the essential requirements for the deployment of CSP plants
(Bouhal et al., 2018; Broesamle et al., 2001; Chien & Lior, 2011; Corral et al., 2012;
Fluri, 2009; Hinkley et al., 2013; Sharma et al., 2015a, b; Sundaray & Kandpal, 2014).
While the first two requirements are more likely to be satisfied in arid regions, sufficient
water availability may not be possible due to low rainfalls (Meyer et al., 2012; Xu et al.,
2016). This fact can also be observed from Table 2 that summarizes the characteris-
tics (such as annual DNI and rainfall) of few potential locations in the world. In such
locations, the CSP plants with wet cooling technology may not be feasible. Hence it is
imperative to explore and consider alternative condenser cooling options that are water
conserving (Colmenar-Santos, et al., 2014a, b; Macknick et al., 2012; Shirazi, 1972).

One of the possible approaches to reduce the water requirement in CSP plants is the
use of dry cooling technology (also referred to as air-cooling system or air-cooled con-
denser) (Wagner & Kutscher, 2010a). Alternatively, a hybrid cooling technology that
partially combines the desirable features and characteristics of both wet and dry cooling
technologies could also be considered for CSP plants in arid regions (Hu et al., 2018;
Turchi et al., 2010a, b).

In view of the above discussion, the present paper aims to present a detailed review
of available literature to examine the suitability of condenser cooling technologies for
CSP plants in different climatic zones. Various aspects of condenser cooling technolo-
gies, including technical characteristics, water requirements, thermal performance (in
terms of energy and exergy), as well as economic and environmental implications have
been included in the review.

The organization of the paper is as follows: Sect. 2 presents the classification of
three condenser cooling technologies. Detailed comparison of the cooling technolo-
gies based on technical characteristics, water requirement, thermal performance, eco-
nomic and environmental aspects is presented in different sub-section of Sect. 3. Recent
advancements reported in the literature for condenser cooling technologies is presented
in Sect. 4, followed by conclusion drawn from the study in Sect. 5.
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Table2 Few potential locations across the globe with the availability of annual DNI and annual rainfall

Country Location Annual DNI  Annual References
(kWh/m,)  Rainfall
(mm)
Algeria Sahara Desert 2661 12 (Boukelia & Mecibah, 2013; NASA, 2020)
Australia Wheatbelt 2332 337 (Clifton & Boruff, 2010; NASA, 2020)
Chile Atacama Desert 2814 15 (Corral et al., 2012; NASA, 2020)
China Qinghai 2329 191 (Liet al., 2014; NASA, 2020; Zhang et al.,
Xinjiang 2237 125 2009)
India Barmer 2051 221 (NASA, 2020; Purohit & Purohit, 2017,
Kutch 2037 304 Ramachandra et al., 2011; Sundaray &
Thar desert 2049 189 Kandpal, 2014)
Kenya Marsabit 2307 315 (Gathu et al., 2017)
Mongolia Gobi Desert 2223 260 (NASA, 2020; Zhang et al., 2009)
Oman Duqum 2581 34 (Charabi & Gastli, 2010; NASA, 2020)
Pakistan Quetta 2544 167 (Bhutto et al., 2012; NASA, 2020)
Saudi Arabia Riyadh 2438 38 (Kassem et al., 2017; NASA, 2020)
Tabuk 2665 15
South Africa  Kalahari Desert 2510 386 (NASA, 2020; Zhang et al., 2013)
Turkey Adana 2329 593 (Kaygusuz, 2011; NASA, 2020)
USA Mojave Desert 2554 171 (NASA, 2020; Zhang et al., 2013)

2 Condenser cooling technologies

As mentioned earlier, the condenser cooling technologies can be classified as wet, dry, and
hybrid types. Each technique can further be divided into different sub-categories as pre-
sented in Fig. 2. The details of various condenser cooling technologies are presented in the
following sub-sections.

2.1 Wet cooling technologies

Due to high heat capacity and the possibility of re-use, water has been traditionally used
as a cooling medium in wet cooling technology. Wet cooling technology requires sub-
stantial amount of water (3.5 — 4.0 m3/MW/h) for condenser cooling (CEA, 2012; Martin
& Martin, 2013). The wet cooling technology can be the open-loop type or closed-loop
type (Fig. 3). The open-loop wet cooling technology makes use of water from an open-
source (such as a river or a lake) in the vicinity of the plant. The water at a relatively lower
temperature than the ambient temperature is fed directly into the condenser for cooling
and after the use, relatively warmer water is fed back into the source. There may be envi-
ronmental restrictions on the use of open-loop wet cooling technology due to its adverse
effects on the water body owing to the elevated temperature of the return water from the
condenser (Kablouti, 2015). The closed-loop wet cooling technology requires evaporative
cooling towers to cool the warm water prior to its re-circulation into the system. Majority
of the wet-cooled thermal power plants are closed-loop type (CEA, 2012; Martin & Mar-
tin, 2013).
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The cooling tower in a closed-loop type wet-cooled technology can be based on
(a) mechanical draft (forced or induced) and (b) natural draft (Fig. 4). In the case of the
mechanical draft-based cooling tower, the hot water enters from the top of the tower in
the form of a spray (using nozzles) and flows downwards through the tower. The fill is uti-
lized to enhance heat and mass transfer by providing large contact surface area and enough
contact time for water and air within the limited area of the wet cooling tower. Based on
the location of fans deployed (at top or bottom) to draw the ambient air, the tower can
be termed as induced draft or forced draft. Ambient air is drawn into the tower with the
help of fans and flows in a counter or cross-current manner to the water stream and based
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Fig.4 Schematics of closed-loop a counterflow mechanical (induced) draft and b counterflow natural draft,
¢ crossflow mechanical (induced) draft and d crossflow natural draft wet cooling technologies

on this flow direction, the tower may also be classified as counterflow type or crossflow
type. However, the natural draft cooling towers do not use fans and make use of the buoy-
ancy effect of the heated air, generated due to the hyperbolic shaped structure of the cool-
ing tower (Basu & Debnath, 2015). Figure 4 shows schematics of closed-loop wet cool-
ing technologies involving mechanical and natural draft type systems with counterflow and
crossflow arrangements. Since in the wet cooling technology, the cooling process is gov-
erned by many factors that include thermodynamic properties of the surrounding air, the
heat rejection process inside the cooling tower occurs in two modes: (i) sensible heat mode
and (ii) latent heat mode (Duan et al., 2012; Rubio-castro et al., 2011). The latent heat of
vaporization accounts for 80-90% of the total heat removal from the system (Colmenar-
Santos, et al., 2014a, b).

2.2 Dry cooling technologies

In this type of cooling, the warm water and the ambient air do not have direct contact
with each other (as in wet cooling). Since there is no loss/evaporation of water in the dry
cooling approach, the same is suitable for arid regions (Hooman et al., 2017). Dry cooling
technology is expected to be relatively less expensive to maintain as compared to wet cool-
ing technology since the requirement of chemical additives for water treatment is substan-
tially reduced (Chou, 1973; Gonzélez-Roubaud et al., 2017; Kutscher & Costenaro, 2002).
Increasing restrictions (through environmental legislations) on thermal pollution caused by
open-loop wet cooling, blow-down pollution, fogging and icing with the use of wet cooling
towers have further necessitated the need for considering deployment of dry cooling tech-
nology (Hu & Englesson, 1977; Tyagi et al., 2012).
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A dry-cooled heat exchanger usually consists of several finned tubes arranged in a row
of A-frame (or delta) configuration, and each row consists of numerous cells. Each cell
has several bundles of finned tubes arranged in parallel (Yang et al., 2011a). In dry cool-
ing, heat is rejected to the surroundings by convection via extended or finned surfaces or
tubes (Turchi et al., 2010a, b; Xiao et al., 2016). The dry cooling technologies can be clas-
sified as natural draft or forced draft and further into direct and indirect types (Duniam
et al., 2018; Preez & Kroger, 1995; Vosough et al., 2011). Schematics of three forced draft
A-frame type (direct and indirect type) and two natural draft indirect dry cooling tech-
nologies (crossflow and counterflow) are presented in Fig. 5. In the direct forced draft dry
cooling technology (Fig. 5a), the steam exhaust from the turbine enters directly into the
steam header through large pipes and flows down through the array of finned tubes (Zhang
et al., 2015). The heat is rejected directly to the surroundings and hence no cooling water
is needed. The direct dry-cooled technology does not require a separate surface condenser.
However, the requirement of large header pipes and large capacity vacuum pumps limits its
suitability for small capacity thermal power plants.

In an indirect forced draft dry cooling technology, two heat-exchangers operate simulta-
neously in series, as shown in Figs. 5b, c. The exhaust steam from the turbine is condensed
in the non-contact type heat exchanger (Fig. 5b) or direct contact type heat exchanger
(Fig. 5¢) with the help of continued supply of cold water from the dry-cooled towers. The
natural draft cooling tower does not require active fans like force draft cooling towers and
works on the principle of buoyancy effect. The natural draft cooling tower can have coun-
terflow (Fig. 5d) and crossflow (Fig. Se) configurations.

The terminal temperature difference (TTD), defined as the temperature difference between
the steam inlet temperature and outlet temperature of condensed water at the condenser, is
used to assess the effectiveness of a condenser cooling technology. TTD plays a vital role in
lowering the condenser pressure and subsequently, the efficiency of the power cycle of the
plant. A direct contact type condenser system is capable of achieving very low TTD (~0.5
°C) as compared to non-contact type surface condenser (~3-4 °C) due to thermodynamic
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Condensed Cool water Condensed Cool water @
water water

Finned tube

Steam

_ condenser

Steam
condenser

Fig.5 Types of dry cooling technologies: a direct type forced draft, b indirect type forced draft with non-
contact type surface condenser, ¢ indirect type forced draft with direct-contact type surface condenser, d
indirect type counterflow natural draft e indirect type crossflow natural draft cooling tower
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irreversibility involved (Balogh & Szabo, 2005). Such irreversibility (essentially due to addi-
tional heat exchanger) is likely to increase turbine back-pressure resulting in reduced power
cycle efficiency (Stallings, 2012). Moreover, the capital cost as well as the cost of operation
and maintenance also increases. In the direct contact type condenser, as shown in Fig. 5(c), the
exhaust steam is condensed by the spray of cold water received from the dry-cooled condenser.

While the thermal performance of wet-cooled plants depends on wet bulb temperature and
moisture content of the ambient air, the performance of dry-cooled plants depends on several
factors including dry bulb temperature of the ambient air. Thus, the year-round variation in dry
bulb temperature significantly affects the performance of a dry-cooled condenser (Conradie &
Kroger, 1996; Kashani et al., 2013; Kroger, 2004a, b; Kuppan, 2000; Duniam et al., 2018;
SPX, 2013; Wei et al., 2017; Xi et al., 2014). On days with relatively higher ambient tem-
peratures, the condenser temperature is comparatively higher, resulting in higher condenser
pressure and lower turbine efficiency, consequently leading to lower net electricity generation
(Gao et al., 2010; Kong et al., 2017; Su et al., 1999; Xia, et al., 2017; Zhao et al., 2015a, b;
Zou & He, 2015).

2.3 Hybrid (wet/dry) cooling technologies

The hybrid cooling technology reduces water consumption significantly as compared to that
of wet cooling plants, whereas the extent of reduction in electricity output is also much lower
as compared to that with dry cooling plants (Rezaei et al., 2010). Hybrid cooling technolo-
gies can be divided into two broad categories: series type (plume abatement) and parallel type
(water conservation). In the series type hybrid cooling technology (Fig. 6a), the steam first
enters the dry cooling section where it loses its heat to the incoming ambient dry air, and then
it enters the wet cooling section (Barigozzi et al., 2011). On the other hand, in the parallel
cooling hybrid technology (Fig. 6b), there are separate sections for dry and wet cooling (Poul-
likkas et al., 2011). However, the dry cooling section remains the primary heat rejection sec-
tion to be used for majority of the time. The percentage of hybridization represents the opera-
tional hours of the dry cooling technology as a fraction of the total annual operating hours
of the plant (Golkar et al., 2019). The stand-alone operation of either wet cooling tower or
dry cooling tower is possible only in parallel type hybrid cooling technology. In other words,
on days with comparatively higher ambient temperature, the performance of the plant can be
enhanced by routing a major fraction of the steam leaving the turbine to the wet cooling tower.
By reducing the load on the dry-cooled condenser, the wet cooling tower can bring the value
of condensate water temperature more closer to the design value to achieve design operating
conditions of the power cycle (Delgado, 2012; Pistocchini et al., 2011). However, due to the
involvement of both wet and dry cooling technologies, hybrid cooling technology has double
thermal irreversibility and is relatively more expensive (Sarker et al., 2009). The same also
leads to lower plant performance (though better than dry cooling technology alone) and higher
parasitic consumption (but lower than dry cooling technology) as compared to a wet-cooled
CSP plant (Heyns, 2008; Owen et al., 2017; Timur et al., 2012).
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3 Comparison of condenser cooling technologies

The condenser cooling technologies (i.e., wet, dry, and hybrid) have variety of design, con-
struction, operational, and performance related differences (Guerras & Martin, 2020). A
comparison of different condenser cooling technologies on above-mentioned aspects as
reported in the literature is presented in the following sections.

3.1 Technical characteristics

The suitability of a condenser cooling technology for CSP plants at any location primarily
depends on the required temperature of cooling water (in the condenser) and availability of
water (Palenzuela et al., 2013). Other factors that are significant in selecting an appropriate
cooling technology include operational parameters of the power block, cost of operation

@ Springer



Condenser cooling technologies for concentrating solar power...

and maintenance, parasitic energy consumption etc. (Carter & Campbell, 2009). Further,
the PM,, pollution associated with wet cooling towers and high noise of fans of dry cool-
ing condensers are typical environmental issues that also need to be considered before
selecting a cooling technology (WorleyParsons, 2008). It is worth mentioning that PM,,
are particulate matter having diameter less than or equal to 10 uym and the same can be
inhaled by humans leading to adverse health impacts.

A comparison of some of the relevant technical characteristics of cooling technologies
is presented in Table 3. While comparing the cooling technologies, the wet cooling tech-
nology has been assumed as the base case owing to its relatively superior thermodynamic
performance. The positive (+) sign shows the additional requirement of that parameter/
component as against its value in the base case, and the negative (-) sign indicates a cor-
respondingly reduced requirement of that parameter/component. The details of different
components required in wet, dry, and hybrid cooling technologies are presented in Table 4.
A hybrid cooling technology requires relatively larger infrastructure as it comprises of
components of both wet and dry cooling technologies. Unlike wet cooled plants, the dry
cooled plants do not require waterside infrastructure and other related components such
as water supply network, evaporation ponds, storage ponds, large treatment plants for con-
denser cooling water. As a consequence, for the dry-cooled plants, capital and operation
and maintenance costs of these components are not involved (Fares and Abderafi 2018).
However, dry cooling technology requires much larger amounts of steel and aluminum,
thus increasing the cost of the system. Selection of a condenser cooling option for CSP
plants requires consideration of variety of technical parameters (Tables 3 and 4) (Asdrubali
et al., 2015; Lechén et al., 2008).

3.2 Water requirement

The water requirement of a power plant primarily depends on the type of condenser cool-
ing technology used, plant design, quality of available water, and ambient conditions (Fares
and Abderafi 2018). In wet cooling technology, evaporation, drift, and blowdown affect
the water requirement. The range of water consumption in different cooling technologies
i.e., closed-loop wet, open-loop (once-through) wet, hybrid (wet and dry), and dry type
for coal-based, natural gas-based, and CSP based thermal power plants is shown in Fig. 7.
Significantly large range of reported amounts of water requirement can be attributed to the
variation in plant capacity, location of plant (hot, moderate or cold region), operating tem-
perature (sub-critical, critical or super-critical) of power cycle, source and quality of water
(surface water or groundwater) (Hashemi et al., 2021; He et al., 2014a, b; Kong et al.,
2018; Kopac & Hilalci, 2007; Ma et al., 2015; Ming et al., 2012; Papaefthimiou et al.,
2012; Valencia, 2011; Yang, et al., 2012a, b, c). It is worth mentioning that a CSP plant
requires additional water for mirror washing and dust suppression (of solar field) (Hirbodi
et al., 2020; Sharma et al., 2018). The water requirement in a dry-cooled CSP plant is for
auxiliary purposes such as cleaning of cooling tower (finned tubes), steam cycle makeup,
washing of mirrors in the solar field besides potable and service use (Boukelia et al., 2020).
The water requirement of hybrid cooling technology depends on the mode of operation
(i.e., series or parallel cooling).

A typical breakup of water requirement for different activities in coal-based plants and
CSP plants is presented in Table 5. It may be noted that steam condensing in wet cool-
ing technology consumes more than 80% of the total water required in conventional and
CSP plants primarily due to continuous evaporation of water in the cooling tower (Pieve &
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Table 4 Hardware comparison between different cooling technologies for thermal power plants (NETL,
2011; Turchi, 2010, 2010a, b; Wolfe, 2007)

Component(s) Type of condenser Remark (s)
cooling technology

Wet Dry Hybrid

Condensate tank Needed indirect dry-cooled condenser

Tower basin -
Steam surface condenser Needed in indirect dry-cooled condenser

Steam duct support

SOX LU X

Cleaning system For circulating water system in wet cooling

For finned tube surfaces in dry cooling

Large-sized fan

Water supply/intake structure

XX L LU X L

Cooling water treatment/
blowdown discharge

AU S SO NG S S S S S

<o < =X

Large water storage pond(s) X Relatively smaller size needed in a hybrid cooling
technology
Drift eliminator X Required only in parallel mode of hybrid cooling

technology

Salvadori, 2011). The activities such as sludge removal, coal dust suppression, and clean-
ing of electrostatic precipitators that require water in coal thermal power plants are not
applicable for CSP plants (Weinrebe et al., 2014). To avoid scaling and corrosion of con-
denser tubes, cooling water containing dissolved solids is to be replaced with fresh makeup
water. In coal thermal power plants, the blowdown water is likely to be used for the dis-
posal of ash hence the same is not considered as water consumptive activity (CEA, 2012).

It is worth mentioning that the performance and plant output of the dry-cooled CSP
plant is considerably lower than a wet-cooled plant. However, the same can be compen-
sated by deploying additional solar collector field so as to generate nominal power output
(Yilmazoglu, 2016; Zeyghami & Khalili, 2015). It is also worth mentioning that such an
increase in the solar field would essentially require a relatively higher amount of water
for washing of mirrors and steam-cycle make-up in the dry-cooled plants (Table 5) (Aseri
et al., 2020b; DOE, 2006).

3.3 Thermal performance of condenser cooling technologies

The power output and consequently the efficiency of a thermal power plant is also gov-
erned by the operating temperature and pressure conditions of the condenser (Damerau
et al., 2011; Delgado & Herzog, 2012; Deng & Boehm, 2011; Fthenakis et al., 2010; Wolfe
et al., 2009; Xia et al., 2017). The effect of ambient wind direction and speed on the ther-
mal performance of the cooling tower has been investigated by the researchers (Bender
et al., 1996a, b; Derksen et al., 1996; Gao et al., 2008; Wang & Li, 2011). Some factors
that decide the condenser operating temperature (or turbine backpressure) include ambient
temperature of the location and the approach, cooling range and TTD of cooling towers
(Fig. 8) (Tang et al., 2013). The approach of the cooling tower is the temperature differ-
ence between the circulating water at the condenser inlet (or cooling tower outlet) and the
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Fig.7 Water consumption in different cooling technologies (Ali & Kumar, 2016; Carter & Campbell, 2009;
CEA, 2012; Cohen et al., 1999; Dawson & Schlyter, 2012; DOE, 2006; IT Power, 2011; Macknick et al.,
2012; Meldrum et al., 2013; NETL, 2011; Poullikkas et al., 2013a; Purohit et al., 2013; Sharma et al.,
2015a, b; TCEL, 2014; Turchi, 2010, a, b;Turchi et al., 2010a, b; DOE 2009; WorleyParsons et al. 2008)

wet-bulb temperature (for wet cooling technology) or dry bulb temperature (for dry cooling
technology) of the surrounding. The cooling range of any cooling tower is the temperature
gain by circulating cooling water across the condenser or in other words, the temperature
difference between hot water inlet and cold-water outlet of the cooling tower under design
conditions. The sum of TTD, approach, and cooling range is termed as initial tempera-
ture difference (ITD) (Mittelman & Epstein, 2010). To obtain better performance from a
cooling tower, the range should be high, and the value of the approach, ITD, and TTD
should be low(Baker et al., 2014; O’Donovan & Grimes, 2014; Poullikkas et al., 2013a, b,
c; Wagner & Kutscher, 2010b). The design values of ITD govern the size (or surface area)
of cooling system and the same can be optimized by economic and performance analy-
sis between the primary energy source, cost of cooling technology, parasitic load and net
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Table 5 Break-up of water requirement in different activities of coal thermal and PTC based CSP plants
(CEA, 2012; TCEL, 2014; Turchi, 2010, 2010a, b)

Activity Coal thermal power plant PTC based CSP plant
Wet cooling Wet cooling Dry cooling
(litre/MWh) (litre/MWh) (litre/MWh)
Steam condensing 3450 3465 -
Blowdown 70 68 -
Steam-cycle make-up 40 39 56
Cleaning of cooling tower - - 9
Mirror washing - 119 129
Clarified sludge 110 - -
Coal dust suppression 70 - -
Electrostatic precipitator cleaning 5 - -
Raw water loss due to evaporation 139 139 -
Potable and service water 250 250 250
Total water requirement 4134 4080 444
Exhaust steam
from turbine
Water —¢ _ Terminal
temperature
I —> H‘?t Water —pr——————————— === difference

received from

condenser and .

fed to cooling e Cr(::;elg

Cold water received system
from cooling system
i > Approach
Ambient air >
Condenser Cooling system

Fig. 8 Temperature terminologies used in close-loop condenser cooling technology

power output from the power plant (Bustamante et al., 2016). In case of dry-cooled heat
exchanger based cooling technologies, larger the surface area (and/or more airflow rate),
smaller the ITD and consequently lower condensing temperature. On the other hand, the
increased surface area implies an increase in capital and operational costs (Wilber & Maul-
betsch, 2005). Though to achieve lower condenser pressure, smaller ITD is desirable, the
same is expected to increase the number of cells resulting in higher parasitic load (Kelly
2006; Village, 2006).

3.3.1 Thermal performance of wet cooling technologies
Investigations on the thermal performance of wet cooling technologies have been
reported in the literature (Khan et al., 2004; Lemouari et al., 2007; Muangnoi et al.,

2008; Zheng et al., 2012). A preliminary thermodynamic investigation of a wet cooling
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tower was undertaken by Walker et al. (1923). In 1925, a numerical model was pro-
posed by Merkel (Merkel, 1925) to evaluate the thermal performance of a counter-flow
type wet cooling tower. Since then, this model has been widely used with few modifica-
tions by the researchers for analysing the thermal performance of the wet cooling towers
(Baker & Shryock, 1961; Guo et al., 2017; Mesarovic, 1973; Osterle, 1991; Spangema-
her, 1958; Stabat & Marchio, 2004; Xia et al., 2011). The Merkel theory (Merkel, 1925)
was relatively simple and is based on several assumptions such as (a) the loss of water
mass due to evaporation is negligible, (b) the air exiting the tower is fully saturated with
water vapor, and (c) the Lewis number (Ley) is equal to the unity (Kloppers & Kroger,
2005a, b, c; Kloppers & Kroger, 2004). The Lewis number is the ratio of thermal diffu-
sivity to mass diffusivity and is used to characterize fluid flows (water and air in a cool-
ing tower) for correlating heat and mass transfer between fluids (Lewis, 1922; Yarin,
2012). However, the predicted performance of cooling towers using Merkel theory was
observed to be less reliable and less accurate (Gudmundsson, 2012; Ibrahim et al., 1995;
Kloppers & Kroger, 2005a; Lucas et al., 2009; Papaefthimiou et al., 2006; Wu et al.,
2010). Apart from these observations, the Merkel theory is still in practice and used
by several researchers to predict the thermal performance of wet cooling towers (Chen
et al., 2020; Wei et al., 2020; Zhang et al., 2020).

The other proposed models for analysing the thermal performance are (a) e-NTU model
(Jaber & Webb, 1989) and (b) Poppe model (Poppe & Rogener, 1991). These models take
into account the rate of change of air temperature, water temperature, humidity ratio and
water mass flow rate along the height of the cooling tower to estimate its overall thermal
effectiveness. The detailed procedure to solve governing equations of the Merkel, e-NTU
and Poppe methods was presented by Kloppers and Kroger (2005b) for wet cooling tower.
Recently, the artificial neural networks (ANN) approach has also been applied with a rea-
sonably high degree of accuracy to predict the thermal performance of wet cooling towers
(Abbassi & Bahar, 2005; Gao et al., 2009; Hosoz et al., 2007; Islamoglu, 2005; Qi et al.,
2008; Wu et al., 2018). It is reported that the ANN approach is appropriate to model and
solve complex problems using input and output variables without taking into account com-
plex thermodynamic correlations (Anderson, 1995; Samarasinghe, 2006; Song et al., 2021;
Wu et al.,, 2011; Xu et al., 2015a, b).

Many researchers have presented numerical and experimental analyses to investigate
the thermal performance and heat and mass transfer mechanism of wet cooling technology
(Bernier, 1994; Bernier & Braun, 1995; Braun et al., 1989; Cortinovis et al., 2009; Fisenko
& Petruchik, 2005; Fisenko et al., 2004; Goshayshi & Missenden, 2000; Goshayshi et al.,
1999; Hajidavalloo et al., 2010; Haussler & Karl-Marx-Stadt, 1977; Inazumi & Kageyama,
1975; Lucas et al., 2009; Martin & Martin, 2017; Naik et al., 2017; Xuan et al., , 2012a,
b; Zhao et al., 2016). Numerical studies have investigated the interaction between water
and air (Al-Waked & Behnia, 2006; Dessouky et al., 1997; Gan et al., 2001; Goodarzi &
Ramezanpour, 2014; Khan & Zubair, 2001; Klimanek & Biatecki, 2009; Klimanek et al.,
2015), whereas the experimental studies emphasized the interaction between falling water
film, fill packing geometry, water—air interaction, and rising air stream inside the cooling
tower (Heidarinejad et al., 2009; Khalifa, 2015; Kim et al., 2011). In a wet cooling tower,
the amount of heat transferred (heat lost by the hot water stream and the heat gained by air
stream) is characterized by tower characteristic number, i.e., Merkel number (Me,,) and
the ratio of mass flow rates of hot water received from the condenser and that of the ambi-
ent air stream (liquid-to-air mass flowrate ratio, L/G) (Lemouari et al., 2007). Under the
given set of operating conditions, Merkel number correlates the cooling tower design and
operating parameters to the amount of heat (sensible and latent) that could be removed
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(Dessouky et al., 1997; Khan et al., 2004; Kloppers & Kroger, 2003). With an increase in
L/G ratio, Merkel number decreases leading to lower performance of the cooling tower (El-
Dessouky, 1993).

To ensure quality standards of cooling towers for wet cooling technology, the techni-
cal guidelines for testing and rating of thermal performance of open-loop and close-loop
wet cooling towers (natural and mechanical) have been developed by International Organi-
zation for Standardization, Switzerland in 2014 and published as ISO 16,345:2014(ISO,
2014). Cooling Technology Institute (CTIL, 2016), a USA based organization has also
developed a standard namely CTI Standard 201 for testing and rating wet cooling tow-
ers on various characteristics including thermal performance, sound test, drift emissions,
plume abatement etc.

Exergy analysis has also been undertaken by the researchers to compare the thermal
performance of different condenser cooling technologies (Ataei et al., 2008; Ghazani et al.,
2017; Wepfer et al., 1979). Muangnoi et al. (2007) compared experimental results with
analytical results to predict the exergy performance of a counterflow wet cooling tower.
The study provides a systematic approach to predict the exergy of water and air along the
tower height considering the effects of inlet dry bulb temperature and relative humidity.
Qureshi and Zubair (2007) have performed a parametric study to estimate the exergy effi-
ciency and exergy destruction as a function of wet bulb temperature of inlet air for a coun-
ter-flow wet cooling tower.

It was observed that most of the studies dealt with the effect of design and thermo-
dynamic parameters such as water to air mass flow rate ratio, ambient conditions, type
of packing material, water spray conditions etc. on the outlet water temperature and the
thermal effectiveness/ behavior of the cooling tower. It has been observed that with the
increase in contact time between water and air, increase in packing layer (or density),
decrease in ambient temperature (in winters), the performance of wet cooling towers is
likely to enhance.

3.3.2 Thermal performance of dry cooling technologies

Several studies have investigated experimentally and numerically the thermal performance
of dry cooling tower considering the effect of surrounding wind characteristics, physical
size of tower, nearby building structures, and plume recirculation (Al-waked, 2010; Al-
Waked & Behnia, 2004; Borghei & Khoshkhoo, 2010; Bredell et al., 2006; Chen et al.,
2016a, 2016b; Ghasemi et al., 2016; Gu et al., 2015, 2016; Lu et al., 2016; Reshadatjoo
et al., 2011; Seifi et al., 2018; Yang et al., 2011b, 2013; Zhao et al., 2015a, b; Zhou et al.,
2018). It has been reported that in order to assess thermodynamics performance, the flow
pattern of ambient wind and its visualization is necessary, and the same can be accom-
plished by using iterative procedures or numerical simulations (Goodarzi, 2010; Lin et al.,
2020; Wu et al., 2014; Yang et al., 2012a, b, c; Yanget al., 2012a, b, c; Zhai & Fu, 20006).
The effect of the height to diameter ratio of the tower on its thermal performance is also
studied using computational fluid dynamics (Liao et al., 2015). The study observed that for
the same heat transfer surface area, the performance of a tower with lower height to diam-
eter ratio is relatively better than a tower with higher height to diameter ratio under high
wind speeds (15 — 20 m/s).

The effects of crosswinds on the performance of an indirect natural draft dry-cooled
condenser have been analyzed by (Li et al., 2017a, b, c). Another study suggested that
increasing the wind-wall height and accelerating the rotational speed of the fans near the
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edge of dry-cooled heat exchanger reduces the exhaust plume recirculation, effectively
leading to enhanced heat transfer (Liu et al., 2009). The effect of wind speed and wind
direction on the flow field near the direct type dry-cooled condenser platform has also been
tested experimentally based on wind tunnel simulation (Gu et al., 2007). It is reported that
the plume re-circulation caused by interference from nearby buildings and structures could
significantly reduce the performance of dry-cooled condenser. However, by raising the
height of the platform, recirculation can be reduced by 30% for wind speeds between 4
and 10 m/s. The effect of cross-flow wind on intake flow of air has also been studied by
researchers (He et al., 2014a, b; Hotchkiss et al., 2006; Meyer, 2005). Zhang and Chen
(2015) measured the thermo-flow characteristics of direct dry-cooled condenser using
windbreak mesh by considering variation in ambient wind velocity. By installing rectan-
gular type windbreak mesh below the platform, and nearby steel supporting structure of
condenser, the volumetric effectiveness of fan improves due to protective effect. Yang et al.
(2010) have presented the effect of back pressure on the performance of a direct type dry-
cooled condenser under different wind conditions. It is observed that a significant reduc-
tion in re-circulation of the exhaust plume is possible by extending windscreen, using flow
guiding devices and by increasing peripheral edge of a dry-cooled condenser. The results
show that using the above mentioned measures, a reduction of the order of 1-6-5.0 kPa in
back pressure of the turbine could be achieved.

For the sizing and designing of dry cooling technology, the selection of appropriate
mathematical expressions and empirical correlations for non-dimensional numbers is criti-
cally important (Kumar et al., 2015; Zheng et al., 2015). The choice of design parameters
and material to be used for finned tube heat exchanger is based on the fluid temperature,
fouling and cleanability, nature of environment, and cost. Flow parameters govern the con-
vection mode of heat transfer on either side of finned tubes and the same is characterized by
Reynolds number, bulk mean temperature of the fluid, and overall heat transfer coefficient
(Cengel & Ghajar, 2015). The operational performance of a dry cooling technology can be
estimated by a non-dimensional number termed as Colburn factor (Moore et al., 2014a, b),
whereas the heat transfer performance is characterized by the Nusselt number and friction
factor (Lu et al., 2015). While the value of the Reynolds number helps to define the flow
regimes of the fluid (water/steam) inside of the finned tubes, Colburn factor, Nusselt num-
ber and friction factor usually denote heat, momentum, and mass transfer for finned tubes
of dry-cooled condenser (Kim & Bullard, 2002; Pongsoi et al., 2013; Ryu & Lee, 2015;
Wen & Ho, 2009; Wongwises & Chokeman, 2005). The detailed design of dry-cooled heat
exchangers and cooling towers has also been reported (Kloppers and Kroger, 2004a, b;
Kloppers & Kroger, 2004).

To ensure the quality standards of dry-cooled heat exchangers likely to be used in pet-
rochemical industries, the International Organization for Standardization, Switzerland has
developed technical guidelines for design, fabrication, inspection and testing in the year
2000 (ISO 13,706). The latest applicable revision for the same is ISO 13,706:2011 and the
same is applicable for horizontal finned tube bundle heat exchanger also. The basic concept
can also be used for dry-cooled heat exchanger for different orientations of bundled tubes
(IS0, 2011).

The natural draft dry cooling system is gathering considerable attention due to no active
power consumption involved. Several studies have been reported considering effect and
characteristics of ambient wind on thermo-flow performance of natural draft dry cooling
tower (Al-Waked & Behnia, 2004; Goodarzi, 2010; Goodarzi & Keimanesh, 2013). Chen
et al. (2016b) have investigated the effect of windbreakers (exterior and interior) on ther-
mal performance of natural draft tower considering different ambient wind conditions. The
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study suggested that the exterior windbreakers are relatively more effective than the inte-
rior wind breaker and help in reducing turbine back pressure. Lu et al., (2013 and 2014)
have studied small (15 m) natural draft dry cooling towers without windbreakers with prev-
alent unfavourable behaviour of crosswind (with different directions and attack angles) and
proposed that installing windbreakers against the zero and sixty degree angle of wind, the
negative impact turns into positive and enhances thermo-flow performance. The Khi Solar
One’ plant installed in South Africa and operational since 2015 is one of its kind as it inte-
grates receiver tower on to a natural draft air-cooled condenser (Yang et al., 2017).

Though several studies have been reported that deal with the exergy analysis of dry-
cooled power plants including coal (Al-Soud & Hrayshat, 2009; Kotas, 1980), geothermal
(DiPippo, 2004; Kamel Hooman, 2010; Kanoglu & Bolatturk, 2008; Kanoglu & Cengel,
1999; Walraven et al., 2015; Yari, 2010), cogeneration (Colpan & Yesin, 2006)) plants,
limited literature is available for solar thermal power plants with dry-cooling technology.
Blanco-Marigorta et al. (2011) presented an exergetic comparison for a 50 MW CSP plant
with wet-cooled and dry-cooled condenser. The study estimated that at a condenser pres-
sure of 0.063 bar, the exergy destruction in the wet-cooled condenser is only 1.7% whereas
the same for dry-cooled condenser is more than 7%. Another study (Habl et al., 2012) with
same kind of plant configuration has assessed energy, exergy, and exergo-economic analy-
sis for wet and dry-cooled CSP plants. From an energetic point of view, the study estimated
that output of the plant with dry-cooled condenser is 2.54 MW lower than that with wet-
cooled plant due to three times more parasitic load in dry-cooled condenser. The study
also estimated the exergy efficiency for a plant with wet cooling and dry cooling as 79.8%
and 74.5% respectively. Component wise energy loss and exergy destruction for dry-cooled
condensers have been estimated by Aljundi (2009) under varying ambient temperatures
from 10 to 45 °C. The study observed that two-thirds of the fuel energy is lost to the envi-
ronment via condenser. However, exergy destruction is more in boiler (77%) followed by
turbine (13%), and dry-cooled condenser (9%).

3.3.3 Thermal performance of hybrid cooling technology

Hybrid cooling technology comprises characteristics of both wet cooling, and dry cool-
ing technologies, and individual performance of wet and dry cooling technologies are also
applicable for hybrid cooling technology. Therefore, the percentage of hybridization of wet
and dry cooling technologies depends on design parameters, the methodology adopted to
use cooling system to save envisaged annual condenser cooling water requirement. Wagner
and Kutscher (2010a)have assessed the performance of hybrid-cooled (parallel type) CSP
plants and compared the results with the traditional wet-cooled CSP plant. The study has
considered 85% and 50% hybridization of dry cooling technology. The study concluded
that with 85% hybridization, the plant would generate 2.33% less electricity with a sav-
ing of 85% in the cooling water requirements. On the other hand, with 50% hybridization,
there is only 1.67% performance penalty in terms of electricity produced and the reduction
in water requirements is 52% as compared to the wet-cooled CSP plant. Similarly, Asfand
et al. (2020) have evaluated thermodynamic performance and water consumption of a CSP
plant with hybrid cooling in different configurations of wet-dry systems (series, parallel,
series—parallel and parallel-series). The study suggested that in comparison to wet-cooled
based plant, 50% and 30% water can be saved with series—parallel and parallel operating
hybridization of a wet-dry cooling systems based plant. The performance of series and par-
allel type hybrid cooling systems was experimentally evaluated by Rezaei et al. (2010).
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The study identified that series type hybrid cooling system performs better in summer than
the parallel type hybrid cooling system.Effects of variations in ambient temperature and
relative humidity on the thermodynamic performance of fossil fuel based thermal power
plant with wet, dry and hybrid cooling systems have been investigated by Hu et al. (2018).
Authors reported that the thermal performance of the cooling systems is more depend-
ent on ambient temperature than the relative humidity. The study concluded that hybrid
cooling system can not operate above and below certain value of ambient temperature and
relative humidity of the surrounding. Sarker et al. (2009) have experimentally investigated
the performance of the hybrid cooling system with finned tubes and found that the cool-
ing capacity was 22% and 260%higher as compared to wet and dry cooling systems with
bare tubes.Asvapoositkul and Kuansathan (2014) have proposed a computational approach
to predict the performance of series type hybrid cooling tower and concluded that rate of
air flow through the cooling tower has a major role and the same needs to optimized to
enhance the performance. Nourani et al. (2019)have carried out comparative study between
wet and hybrid cooling technology based refinery and thermal power plant and concluded
that the hybridization up to 44% of dry colling tower with wet cooling tower can save water
by 38%.

The thermal performance of hybrid cooling system depends on various factors includes
liquid-to-air flow rate ratio, surrounding ambient conditions, type of hybridization (series
or parallel) and seasons (winter and summer). It has been observed from the literature that
under controlled conditions, hybrid cooling system can save significant amount of water in
winter seasonby shifting more fraction of total cooling load towards dry cooling tower to
acquire benefits of lower ambient temperatue. It is also worth mentioning that the capital as
well as operating costs of hybrid cooling systems are relatively higher than the individual
wet or dry cooling systems.

3.4 Economic considerations

Installation of dry or hybrid cooling technologies in place of wet cooling technology results
in lower plant efficiency and a higher cost of electricity delivery (Aseri et al., 2020c; J.
Hinkley et al., 2011). However, the extent of these penalties significantly depends on the
ambient design conditions of the CSP plant (Baweja & Bartaria, 2013; Henry & Diemuo-
deke, 2021; Margolis et al., 2012; Musi et al., 2017; Patnode, 2006). Table 6 presents a
comparison of the cooling options in terms of overall plant performance, capital cost, and
levelized cost of electricity (LCOE) for PTC and CTR based CSP plants as reported in the
literature. The dry and hybrid cooling options for PTC and CTR based plants have been
compared with wet cooled PTC and CTR based plants. It is observed that a dry-cooled
PTC based plant would deliver 3-10% less annual electricity output and would cost 4%
to 10% more than a wet-cooled plant resulting in 2% to19% increase in LCOE. It was also
observed that due to large differences in operating temperature of power cycle (560°C for
CTR based plants and 391°C for PTC based plants), the reduction in net electricity output
for CTR based plants is less as compared to PTC based plants (Sau et al., 2016).

Efforts have also been made to assess the techno-economic feasibility of wet-cooled and
dry-cooled CSP plants in different parts of the world (Anders et al., 2005; DOE and EPRI
1997; Kelly 2006; Moser et al., 2014). Turchi (2010, 2010a, b) presented a detailed com-
parison of PTC based wet and dry-cooled CSP plants using System Advisor Model simu-
lation tool developed by National Renewable Energy Laboratory, USA. It was observed
that by replacing wet cooling with dry cooling technology, the cost of the plant increases
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by 10%, and LCOE increases by 7%. Liqreina and Qoaider (2014) studied the competi-
tiveness of dry cooling in comparison to wet cooling in the arid zone of the Middle East
and North Africa using Greenius software developed by the German Aerospace Centre
(DLR), Germany. The study reported that the energy yield is reduced by 10.2% and LCOE
is increased by 14.8% with the adoption of dry cooling. It is worth mentioning that there
is significant difference in the reported LCOE of wet-cooled and dry-cooled plants for the
two studies mentioned above. The reason for the same can be attributed to the fact that the
nominal capacities, technical assumptions and financial parameters for the two studies are
significantly different. Further, both the studies have used different simulation tools for the
analysis.

The financial viability of selected cooling technology in CSP plants would also depend
on the price of water in the area where the plant is proposed. The effect of the cost of
water on LCOE for a PTC based plant with wet cooling and indirect dry cooling has been
analyzed by Dersch and Richter (2007). Turchi et al., (2010a, b) presented an analysis of a
PTC based plant located in Las Vegas, Nevada, USA. The study observed that the overall
increment in capital cost (for a plant without storage) is only 4.2% and 6.9%, respectively
for dry and hybrid-cooled plants. A lower increment in the capital cost of dry and hybrid
plants is due to the fact that the cooling water storage pond and water treatment plant that
are essential for a wet-cooled plant are not required in dry-cooled plant and only partially
required in the hybrid-cooled plant. Moreover, the increment in capital cost would further
reduce to 2.2% and 3.7% respectively, for dry and hybrid-cooled plants with six hours of
storage capacity. The authors also reported that LCOE is increased by 8.1% for dry-cooled
plant and 6.4% for the hybrid-cooled plant without thermal energy storage. In addition,
the inclusion of thermal energy storage in the dry or hybrid cooling plant can reduce the
overall penalty of LCOE considerably (8.1% to 6.3% for dry-cooled and 6.4% to 3.2% for
hybrid cooled plants) as compared to wet-cooled plants.

3.5 Environmental considerations

Studies on life cycle assessment and CO,_, emissions mitigation potential of power plants
have also been reported in the literature (Burkhardt III et al. 2011; Corona et al., 2014;
Heath et al., 2009; Lechén et al., 2008; Viebahn et al., 2011). Table 7 summarises the life
cycle GHG emissions (gCO,_./kWh) of different technologies used for electricity genera-
tion. As expected, the life cycle GHG emissions of renewable energy-based electricity gen-
eration options are significantly lower than those based on fossil fuel. However, environ-
mental impacts of the solar field on humans and wildlife (such as glaring, killing of birds,
etc.) may also need consideration (Ho et al., 2015). The other likely adverse effects of CSP
plants on the environment arise from the use of hazardous materials, hydraulic fluids (cool-
ants, lubricants, thermal oils and/or molten-salts) etc. (Hondo, 2005; Kommalapati et al.,
2017; Xu et al., 2016).

The choice of condenser cooling technology may also have its implications. Cooling
technologies may have adverse effects on nature (air, water, and land) and human health.
For example, fine water droplets, visible plume formation, noise pollution, and humid
environment would affect the ecology in the vicinity of the cooling towers (Richter,
2011). Moreover, the return of water into nearby lake or river at an elevated temperature
in open-loop cooling technology is also a source of potential environmental hazard and
could adversely affect the aquatic life and ecosystem (Bailey, 2012). As a consequence
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Table 7 Reported lifecycle GHG emissions for different electricity generation options

Technology Life cycle GHG Reference(s)
emissions (gCO, oo/
kWh)

Conventional thermal power plants

Coal 975.2-1001 (Hondo, 2005; Whitaker et al., 2013)

LNG 518—607 (Hondo, 2005)

Natural gas—combined cycle 480 (Whitaker et al., 2013)

Nuclear 2224 (Hondo, 2005)

Renewable energy-based power plants

Amorphous PV 16-50 (Sherwani et al., 2010)

Central tower receiver dry-cooled 32—42 (Whitaker et al., 2013)

Crystalline silicon PV 44—53 (Hondo, 2005; Whitaker et al., 2013)

Geothermal 15 (Hondo, 2005)

Hydro 11 (Hondo, 2005)

Parabolic trough dry-cooled 28 (Burkhardt III et al., 2012; Kommalapati
etal., 2017)

Parabolic trough wet-cooled 26 (Kommalapati et al., 2017)(Burkhardt IIT
etal. 2011)

Parabolic dish 24 (Kommalapati et al., 2017)

poly-crystalline PV 10—54 (Sherwani et al., 2010)

Solar chimney 34 (Kommalapati et al., 2017)

Wind 11—29 (Hondo, 2005; Whitaker et al., 2013)

the same may not be legally allowed in several countries. Bloemkolk and Schaaf (1996)
have reported that suction of live organisms (microorganisms, fish, etc.) with the cool-
ing water is also observed.

Consumption of water for a long time for condenser cooling may also affect local
hydrology and eco-system (Carter & Campbell, 2009; Hernandez et al., 2014). As men-
tioned earlier, evaporation, blowdown, and drift in wet cooling towers leads to water
loss, and evaporation accounts for significant loss of water (Uzgoren & Timur, 2015).
The water loss due to blowdown is driven by the cycle of concentration (COC) in the
cooling tower, which is defined as the ratio of the concentration of dissolved solids in
the blowdown water and make-up water. The value of COC essentially defines the fre-
quency of replacement of the circulating water in the cooling technologies with fresh
(makeup) water. (Frayne, 2010; Pan et al., 2018). The same is a potential environmental
hazard and is also likely to increase the operational cost as additional treatment of water
is required to maintain the desired cooling water quality. Blowdown rates are set so as
to limit the accumulation of impurities in the circulating water within prescribed limits
(Kumar, 2017). Cooling tower operated at higher COC reduces blowdown losses but
results in increased accumulation of impurities in the cooling water (Rubio-castro et al.,
2011).

The water droplets (PM;, and PM, ) that leave the cooling tower are considered
as drift loss. The drift losses are relatively small, but the water droplets may contain
impurities of circulating water at significantly higher concentrations (Lamnatou &
Chemisana, 2017). The droplet completely evaporates, but the contaminants remain in
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the atmosphere as fine particulate matter (PM,,), thus adversely affecting ambient air
quality (Abbey et al., 1995; DiFilippo & Maulbetsch, 2003). A plume of water vapor
emitted from the wet cooling tower is also considered a visible disturbance (Asvapoosit-
kul & Kuansathan, 2014; Backer & William, 2003; Deng & Boehm, 2011).

A wet cooling tower may also suffer from ‘Legionnaires disease’ due to the formation of
legionella bacteria in the water storage pond and inside the tower (Bentham & Broadbent,
1993; Lucas et al., 2012; Naik & Muthukumar, 2017; Ruiz et al., 2016). Humans are likely
to inhale legionella in the form of aerosol-sized droplets of water that contain these bac-
teria in the surroundings of the cooling tower. The dry cooling technologies do not suffer
from such a problem (Micheletti et al., 2002). Large numbers of cooling fans used in dry
cooling technologies contribute to noise pollution (Bustamante et al., 2016). Noise levels
depend on the size and types of fans used in the cooling systems. The use of ultra low-
noise fans can significantly reduce noise pollution though the cost of cooling technology
will increase (EPRI, 2002).

Life cycle GHG emissions and cumulative energy demand of dry-cooled plants are
expected to be higher as compared to wet-cooled plants. The use of more energy-intensive
materials, increased number of solar collectors, and correspondingly increased amount of
heat transfer fluid contribute to relatively higher GHG emissions from dry cooled power
plants (Burkhardt III et al. 2011). On the other hand, for a wet-cooled plant, the consump-
tions of significant amounts of water and the requirement of a large waterside structure
contribute to GHG emissions. Out of a total value of GHG emissions, 1.35 gCO,_, per
kWh (0.30 gCO,_, per m®) may be attributed to water consumption in wet-cooled plants
(M. Martin, 2015; Whitaker et al., 2013). Overall, the GHG emissions were observed to be
5% less for the wet-cooled plant as compared to the dry-cooled plant (M. Martin, 2015).

Comparing the three condenser cooling technologies on technical, economic and envi-
ronmental aspects, it is observed that before deployment of thermal power plant, a location
specific study is required considering long term resource availability. Preliminary observa-
tions suggest that the performance and cost of wet-cooled condenser technology are more
favorable than the other condenser cooling options but at the same time it requires around
50-90% more water for cooling. Additionally, the environmental issues associated with
wet-cooling technology are to be taken into consideration. From the viewpoint of solar
thermal power plants, since these plants are likely to be installed in arid regions where
adequate water may not be available for wet cooling technology, dry cooling is likely to
replace wet cooling technology. Though presently the capital cost of dry cooled plant is
higher and their electricity output is lower as compared to wet cooled plants, continuous
efforts towards technological improvements along with cost reduction possibilities is likely
to make dry-cooling technology more competitive in future as compared to wet cooling
technology.

4 Recent advances in condenser cooling technologies

Significant efforts are being made to improve the efficiency of cooling technologies used in
power plants. Several parameters have been identified (such as reduced water requirement
and lower condenser temperature) that are expected to provide better efficiency and perfor-
mance of these cooling technologies. Besides these, few advanced designs have also been
proposed for wet, dry, and hybrid cooling technologies. For example, in wet cooling plants,
modifications in the design parameters of wet cooling tower (such as range, approach,

@ Springer



Condenser cooling technologies for concentrating solar power...

water-to-air flow rate ratio (L/G), etc.) are expected to vary the ratio of sensible to latent
heat, resulting in reduction in evaporation losses (Fares and Abderafi 2018). Similarly, for
dry cooling plants, methods have been proposed to achieve lower ITD (or lower condenser
temperature) by improving the air-side heat transfer coefficient without increasing size of
the condenser and parasitic load. The details of few advances in cooling technologies are
presented in the following paragraphs.

4.1 Advances in wet cooling technology

The reduction in condenser pressure and water requirement in a cooling tower are two key
areas of research to achieve better thermal performance. Several components of wet cool-
ing towers such as drift eliminator and packing fill are likely to have scope for improve-
ment. Design of an efficient drift eliminator can significantly reduce the amount of water
losses that are carried by saturated air to the environment in the form of PM,, emission.
However, it also tends to increase the pressure loss of air stream resulting in an imbalance
of water to airflow ratio leading to increase in parasitic power requirements (Velandia et al.,
2016). Based on shape, material and number of passes of the air stream, various kinds of
drift eliminators have been tested and reported (Ruiz et al., 2017). Results show that a drift
eliminator keeps drift losses typically in the range of 0.002% to 0.005%. Recently, Brent-
wood Industries, Inc, USA has developed a drift eliminator named as “CFUltra” that is
expected to reduce drift losses up to 0.00025% (Brentwood, 2020). SPX Cooling Tech-
nologies, Inc. USA (Mortensen, 2009) has developed Air2Air™, a water conservation sys-
tem, to recover water vapor in the wet-cooled tower. It is expected that with the use of
Air2 Air™ technology, around 10% to 15% water can be recovered depending on the local
climate.

To reduce the evaporation losses and to increase the water—air contact area, Electric
Power Research Institute, USA, has developed a ‘dew point cooling tower’ that helps in
lowering cooling water outlet temperature and integrates plume abatement by modifying
the flow path arrangement of air (Kozlov & Glanville, 2014). With this approach, water
and parasitic power requirements are reported to be reduced by 45% and 74%, respectively
(Glanville et al., 2011).

Fill or packing media in the wet cooling towers is another crucial component that has
received significant attention of researchers and has been studied to assess the heat transfer
performance of wet cooling towers (Lemouari & Boumaza, 2010; Lemouari et al., 2011;
Smrekar, et al., 2011a, b; Smrekar, et al., 2011a, b). The packing media/fill is a porous/cor-
rugated material and is used to enhance heat and mass transfer by providing large contact
surface area and enough contact time for water and air within the limited space of the wet
cooling tower. Based on the function, the fills can be broadly classified as splash, film, and
trickle type (He, et al., 2015a, b; Khater, 2014). Splash fill is intended to break the large
size water droplets into smaller water droplets while film fill converts thick water film into
thin films, and trickle fill changes large water streams into small streams (Heet al., 2015a,
b).

Several researchers have studied the thermal performance of mechanical draft wet cool-
ing tower using addition of nanofluids in the inlet water so as to improve the heat removal
phenomenon (Imani-Mofrad et al., 2016, 2018; Xie et al., 2017). Experimentally, the
effects of carbon nanotubes and nanoporous graphene based nanofluids mixed with inlet
water in the mechanical wet cooling tower have been investigated for thermal perfor-
mance (Askari et al., 2016). Results show that under design conditions such as inlet water
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temperature (45°C) and L/G ratio (1.37), the range of cooling tower can be enhanced by
40% with carbon nanotubes and 67% with nanoporous graphene nanofluids. It was also
found that with these nanofluid the water consumption is also reduced up to 19%. A rota-
tional splash type fill in mechanical draft counterflow wet cooling tower is experimentally
evaluated by Amini et al. (2020) using aluminium oxide and copper oxide as nanofluid
with distilled water as base fluid. The study found that the performance of tower under
design conditions can be improved up to 11% and 5% by adding 0.1% (by weight) of alu-
minium oxide and copper oxide as nanofluid, respectively. It was observed that the thermal
performance of tower can be improved with the use of nanofluid, and it depends on ther-
mal and rheological properties of nanofluid alongwith operating conditions of the cooling
tower. Recently, effects of zinc oxide as nanoparticles with three packing media on the
thermal performance of wet cooling tower have been experimentally investigated by Rah-
mati (2021). In comparison to distilled water, authors have found that with increased layer
of packing media (or density) along with addition of nanofluids by 0.1% (by weight), the
cooling efficiency of tower can be increased by 11.1% under design conditions.

The thermodynamic performance of the wet cooling tower is also governed by water
and airflow rates. Excessive water flow blocks the opening of the fill media and conse-
quently restricts the flow of incoming air. On the other hand, reduced water flow leaves the
fill media partially dry, causing a reduction in the performance of the cooling tower (Lem-
ouari et al., 2009; SCT, 2020). Therefore, the cooling efficiency provided by the manufac-
turer under standard specific conditions for selected fill/packing media is applicable for
cooling towers.

4.2 Advances in dry cooling technology

The performance of a dry cooling technology depends on the air-side convective heat trans-
fer coefficient. Several advanced techniques have been reported to achieve lower condenser
temperatures by improving the air-side heat transfer coefficient (Deziani et al., 2017).
These include wetting of fins (Kroger, 2004a), spraying water on incoming dry ambient
air (Xuan et al., 2012b) and introducing wetted media at the air inlet section (He, et al.,
2015a, b). All these techniques are expected to increase the water content in the incom-
ing air leading to enhanced sensible and latent heat transfer. Experiments and numerical
studies dealing with different relevant aspects such as different finned-tube configurations,
spray water density, air velocity, the pressure drop across the bank of tubes, etc. have also
been reported in the literature (Dreyer et al., 1992; Kosky, 1976; Mednick & Colver, 1969;
Pawlowski & Siwon, 1988; Wen-Jei & Clark, 1975; Wilson & Jones, 1978).

Effect of different shapes of fins such as plain (Bhuiyan et al., 2013, 2014), wavy (Bhui-
yan et al., 2015), corrugated louvers (Moosavi et al., 2021), offset strip (Kim et al., 2020),
perforated (Bhambere et al., 2019), spiral (Kiatpachai et al., 2015) on the thermo-hydrau-
lic performance of dry-cooled heat exchangers has also been evaluated by researchers.
Bosnjakovic and Muhic (2020) have evaluated heat transfer performance using perforated
star-shaped finned-tube. Author found that with these types of fins, the mass of fins can be
reduced up to 17.6% and heat transfer can be increased up to 11.3%. Effect of circular and
elliptical fins have been estimated to optimize the shape of finned-tube bundle (Nemati
et al., 2020). The study found that with combination of circular fins at entrance region and
elliptical fins at middle region can reduce pressure drop and fin weight up to 31% and 23%,
respectively. A numerical comparison of thermal performances of finned tube annuli with
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various types of fin shapes have been presented by Kim (2021). The study concluded that
the fin with variable thickness provides improved thermal performance as compared to the
fins of other shapes considered.

Studies show that spraying of water on the bank of finned tubes enhances thermal per-
formance by 5 to 16 times in comparison to dry cooling without wetting of fins (Dreyer
et al., 1992; Kosky, 1976). Water droplets are introduced in a controlled manner in the
incoming dry air by appropriate spray technique to achieve the lowest possible ambient
temperature (i.e., wet bulb) by taking the heat of vaporization from the incoming dry air
(Dreyer et al., 1992; Kosky, 1976). The performance of dry cooling tower by considering
different types of nozzles for water spray, effect of water density, effect of droplet size,
variation in air-water flow rate, and change in interfacing time between water and air also
been estimated (Campbell, 2013; Sun et al., 2017a, b, ¢; Sun, et al., 2017a, b, ¢; Sun, Guan,
Gurgenci, Li, et al., 2017a, b, ¢; Zhang et al., 2014). By pre-cooling of inlet air, the cooling
performance can be reportedly enhanced in the range of 15% to 20% leading to a reduction
in the parasitic load and consequently increase in the plant output by 2% to 4% (Alkhedhair
et al., 2015, 2016; Sadafi et al., 2015).

The wet media refers to the cooling pad, packages, and fills with corrugated and porous
material that can hold the water while allowing the incoming air to pass through. The prin-
ciple of wet media is similar to the pre-cooling of air in the desert (evaporative) coolers.
Studies pertaining to the use of cellulose medium (He et al., 2014a, b), munter media (He
et al., 2013), and trickle media (He et al., 2015a, b) for pre-cooling of inlet air for natural
draft dry cooling tower have also been reported. It is also noted that (i) the performance of
the cooling tower cannot be improved significantly by pre-cooling of inlet air below a spe-
cific temperature (ii) there is always a trade-off between achievable cooling potential and
pressure drop imposed by the use of wet media (He et al., 2015a, b).

Use of flutter reeds mechanism is another technique to increase vorticity so as to
enhance the air-side heat transfer coefficient (Hidalgo et al., 2015; Li et al., 2019). Flutter
reeds are flag like structure that deform due to body force imparted by the flow of fluid and
the same are classified as active and passive types (Hidalgo et al., 2010, 2015). The effects
of flutter reeds on the air-cooled power plant efficiency have been evaluated experimentally
by Mabhvi et al. (2021). Considering specific optimized parameters for pitch of fin, length
of fin and air flow rate, it was reported that though the power plant efficiency is slightly
lowered (0.89%) with the use of flutter reeds, the same reduces significant amount of sur-
face area of heat exchanger that leads to reduction in capital cost.

An air-cooled condenser equipped with the latest electronics actuating devices named as
a modular air-cooled condenser (MACC) has also been developed (Moore, et al., 20144, b).
The sensors embedded in MACC detect the changes in ambient conditions and accordingly
control the fan speed for optimal power output from the turbine (Moore, et al., 2014a, b).
Several different configurations of MACC have been tested for techno-economic feasibility
by (Poullikkas et al., 2012, 2013b, c¢). From these studies, it was inferred that MACC could
become a cost-competitive alternative to wet or dry-cooled condenser technologies. How-
ever, with MACC, the plant output increases up to a certain point by increasing fan speed
and afterwards plant output is offset by the power consumption of fans (O’Donovan et al.,
2013). Hence, it is essential to identify optimal operating parameters and configuration in
order to achieve increased power output and the lowest unit cost of electricity from the
plant (Muiioz et al., 2012).

Recently, Camba and Petrakopoulou (2020) have numerically investigated that with the
use of earth-tube (PVC pipe) heat exchangers installed 3 m below ground level, the tem-
perature of ambient air before feeding it to dry-cooled heat exchanger of CSP plant can be
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reduced from 35°C to 25.13°C. The decrease of air temperature definitely increases the per-
formance of dry cooled heat exchanger. However, considering the cost of pipe, trenching
and parasitic power required to pump the air through PVC pipe will affect the economics of
the cost of electricity delivered from the CSP plant.

Considering above mentioned advancements in the field of condenser cooling technolo-
gies, it seems that efforts toward promising significant technological improvements have
already been initiated. Further, for wet cooling technology, the techniques to improve lig-
uid—air interaction, ways to reduce the drift emissions are also required reduce parasitic
power requirement, and ease of operation and maintenance. In case of dry-cooling technol-
ogy, more efforts are required to obtain finned-tube heat exchanger having minimum fin
area pressure drop across the finned-tube rows for enhanced heat transfer and reduction in
parasitic power requirements.

5 Conclusions

Availability of the required quantity and quality of water may be a formidable challenge in
most of the locations with high annual availability of DNI. The reported values of water
requirement for condenser cooling in concentrating solar power (CSP) plants is higher
than other electricity generation options besides the incremental water requirement for
mirror cleaning etc. Alternative water conservative condenser cooling options such as dry
or hybrid for CSP plants, especially for arid/desert regions are therefore necessary. The
alternative cooling options could have a variety of design, operational, performance and
economics related differences in comparison to the plants with wet cooling. A detailed
comparison of three condenser cooling technologies on various attributes is summarised
in Table 8. Though the wet cooling technology provides most favourable attributes that are
responsible for lower cost of electricity delivered from the plant, the same may not be fea-
sible in arid regions due to inadequate availability of water. Additionally, being a relatively

Table 8 Attribute wise
comparison of condenser cooling
technologies

Attribute Condenser cooling tech-
nology

Wet  Hybrid Dry

Thermal performance High Medium Low
Water consumption High Medium Low
Parasitic power requirement Low Medium High
Power block efficiency High Medium Low
Capital cost requirement Low High Medium
Operating and maintenance requirements High High Low
Environmental emissions Low High Medium
Suitability in arid zone Low Medium High
Potential of performance improvement Low Medium High
Potential of cost reduction Low Medium High
LCOE Low Medium High
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more mature technology, the potential for likely performance improvement and capital cost
reduction is lower for wet cooling technology as compared to the dry cooling technology.
On the other hand, adopting dry cooling in the plants require a relatively much larger heat
exchanger along with large capacity fans thus increasing both the capital investment as well
as auxiliary power requirement. Another impact of adopting dry cooling in a CSP plant
is the reduction in the gross electricity output due to reduced power cycle efficiency (as
the condenser operates at a high temperature). As cumulative impact of these penalties,
the LCOE delivered by dry-cooled CSP plants may increase considerably. With the use of
hybrid-cooled technology, such adverse implications (in terms of performance and LCOE)
are likely to be lower than that for dry-cooled plants. From the perspective of environ-
mental sustainability, the dry cooling and hybrid cooling options for CSP plants also have
several associated adverse impacts as they are more material-intensive than the wet cool-
ing technology. The need for adopting dry cooling is likely to adversely affect the finan-
cial attractiveness of CSP plants against other solar based electricity generation options.
However, as most of the locations suitable for CSP generation are likely to be in arid areas,
dry cooling and hybrid cooling could be only water conserving feasible options to opt for.
Thus, there is a need to explore and investigate opportunities for capital cost reduction and
performance improvement to improve the techno-economic feasibility of plants with alter-
native condenser cooling options.

Appendix 1

See Tables 9 and 10.
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