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SUMMARY

Mitigating and adapting to climate change requires decarbonizing electricity while
ensuring resilience of supply, since a warming planet will lead to greater extremes
in weather and, plausibly, in power outages. Although it is well known that long-
duration outages severely impact economies, such outages are usually not well
characterized or modeled in grid infrastructure planning tools. Here, we bring
together data and modeling techniques and show how they can be used to charac-
terize and model long-duration outages. We illustrate how to integrate outages in
planning tools for one promising mode of resilient energy supply—microgrids.
Failing to treat these extremes in models can lead to microgrid designs (1) that
do not realize their full value of resilience, since models do not see the benefits
of protecting against extremes, and (2) that appear reliable on paper yet do not
actually protect against extremes. Although utilities record power interruptions,
lack of access to that data is hindering research on resilience;making datasets avail-
able publicly would substantially aid efforts to improve grid planning tools.

INTRODUCTION

The electric power system is on the cusp of two revolutions. The first is decarbonization—the transition to

carbon-free supplies of electricity (National Academy of Sciences, 2021a). At the same time, these new car-

bon-free energy resources are downsizing and increasingly being deployed as decentralized supplies at

the ‘‘grid edge’’ (National Academy of Sciences, 2021b). The transition to decarbonized, decentralized

electricity is creating enormous opportunities for customer-sited energy resources like solar photovoltaics,

batteries and electric vehicles (Hanna and Victor, 2021). It is also creating opportunities for new grid archi-

tectures, like microgrids, that can keep energy from these sources reliable (Gholami et al., 2016) (National

Academy of Sciences, 2017). The opportunities are substantial: since 2014 US microgrid deployments have

increased year over year, boosted by government support following Superstorm Sandy. The year 2019

alone saw nearly 550 new installations, a record high (Wood Mackenzie, 2021a, 2021b). With technology

costs falling rapidly (Way et al., 2021), capital markets, too, are backing the project: since 2018 US private

equity firms have committed over $1 billion for newmicrogrids, including a $500 million investment in 2021,

the largest ever (Greentech Media, 2021) (UtilityDive, 2021).

Microgrids promise to address what are, arguably, the two principal challenges facing the electric power indus-

try: the need to decarbonize while maintaining or even increasing today’s levels of reliability and resilience (Par-

hizi et al., 2015). By utilizing renewable and other resources, microgrids can shield customers from outages by

disconnecting from the grid during disruptions and operating autonomously, reducing the number and dura-

tion of interruptions that customers experience (Hussain et al., 2019). Hence microgrids have a ‘‘value of resil-

ience’’—they avoid the economic, health, safety, and security losses caused by power outages (Anderson et

al., 2019) that cost the US economy billions each year (LaCommare et al., 2018) and are projected to cost

$1.5–3.4 trillion through mid-century (Larsen et al., 2018). The massive size of the market for resilience—esti-

mated in one recent study as a $500 billion resilience investment gap across US utilities (Bruzgul andWeisenfeld,

2021)—helps explain the recent substantial investments inmicrogrids as well as utility spending on system hard-

ening and other resilience measures (Georgia Power, 2019) (ConEd, 2021).

Efforts to deploy resilient infrastructure in the real world, however, face numerous challenges. First, unlike reli-

ability, resilience is still an emerging concept in power systemplanning (Panteli andMancarella, 2017), and there
iScience 25, 103630, January 21, 2022 ª 2021 The Authors.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1

mailto:rehanna@ucsd.edu
https://doi.org/10.1016/j.isci.2021.103630
https://doi.org/10.1016/j.isci.2021.103630
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2021.103630&domain=pdf
http://creativecommons.org/licenses/by/4.0/


ll
OPEN ACCESS

iScience
Perspective
are no agreed-upon frameworks for measuring it (Zamuda et al., 2019). Second, even if a framework were stan-

dardized, calculations of reliability and resilience are methodologically demanding. Investments increase reli-

ability and resilience, but increases are nonlinear and eventually they diminish (Billinton and Allan, 1996).

Knowing how much improvement the next dollar of investment buys requires detailed characterization of the

many types of outages, particularly extremes that are rare but impactful, known to occur. Third, extremes are

growing in number and severity (Larsen et al., 2020) (Zamuda et al., 2018) and are outpacing the planning tools

used to design infrastructure, as others have recently highlighted (Brockway and Dunn, 2020) (McCollum et al.,

2020) (Otto et al., 2020). Microgrids planning tools—our focus—help determine the set of investments, like gen-

eration sources and energy storage, that maximize a microgrid’s financial benefits over its lifetime. But models

make ‘‘correct’’ investment decisions only insofar as they knowhow costs are incurred andwhere benefits can be

derived; they must therefore know about the full nature of disruptions, from momentary to sustained to long-

duration outages, that cause economic losses.

Thispaper focuseson these two latter challenges—theneedtoupdateplanning tools to includebetter andmore

thorough calculations of reliability and resilience. Addressing these challenges will require better characteriza-

tion of long-duration outages and, in turn, we argue, new research efforts on two fronts: data analysis and

modeling.

First, fresh analysis of raw power outage data is needed to generate reliability functions (i.e., probability

distributions) for the likelihood and duration of different types of disruptions. Ideally, one would construct

distributions by aggregating data from a wide cross-section of individual outage events and customer in-

terruptions, as in Hossein Afsharinejad et al. (2021) and Dunn et al. (2019). Although utilities record these

granular data, they are not typically available for public use. (Utilities, with the help of regulators and indus-

try, could domuchmore to release granular, anonymized interruption data for public use.) Since those data

are not commonly available, a next-best approach is to use aggregated interruption data that electric util-

ities report as annual reliability indices. We present these data and discuss how they can be worked into

distinct classes of outages that can be included in models.

On the second front, complementary efforts, similar to Bennett et al. (2021), are needed to assimilate

outage distributions in planning tools. This will require expanding the suite of existing tools or building

new tools altogether. Tools today are typically built as linear programs, which are computationally efficient

but limited in their ability to capture the diversity of events that impair reliability. Reliability is a nonlinear

function of investment, so linear models must make a number of simplifying linearizations. One limitation,

for example, is the small number of outage events that they can efficiently analyze. With changes, however,

or new approaches altogether, a fuller spectrum of outages, including extremes, can be modeled concur-

rently. (Nonlinear approaches, in theory, allow one to model any number or combination of failure, main-

tenance, and restoration events, provided there are sufficient data to characterize them.)

Although a number of factors affect the resilience of electricity service, long-duration outages—our focus

here—merit special attention. These extremes have an outsized impact on reliability, and omitting them

from planning tools carries two fundamental risks. First, whenmodels are not given the full spectrum of out-

ages that degrade utility service, they may underestimate a microgrid’s resilience benefits. That is impor-

tant because a microgrid’s ability to add value by improving reliability and resilience is the principal driver

of investment in these systems. Second, because investment is required to protect against outages, models

risk under-designing microgrids when they do not know about the full spectrum of outages, leading to

designs that are reliable on paper but vulnerable in the real world. For example, as the US Department

of Defense has documented, not modeling reliability fully has led to microgrid deployments at military in-

stallations that do not meet requirements for surviving long-duration outages (Marqusee et al., 2020).

Failing to model extremes therefore has two main potential consequences: it leads to fewer investments

being made, since, on paper, microgrids appear to have a lesser value of resilience and hence lesser value

overall; and, for those investments that are made, deployments evoke a false sense of security, since they

appear reliable in the modeling world yet may not stand up to extremes in reality. We therefore expect that

efforts to integrate long-duration outages in models would yield larger market potentials for new deploy-

ments while also preventing unresilient deployments from reaching final investment decision.

With a growing emphasis on resilience-based planning (Rickerson et al., 2019) (Moreno et al., 2020) (Rat-

nam et al., 2020) and plausible new waves of investment in resilient infrastructure in the pipeline (Wood
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Figure 1. The number and duration of power outages experienced by customers across the nine largest US

utilities over 2014–2020, inclusive and exclusive of MEDs

(A) SAIFI, in units of interruptions per customer per year.

(B) SAIDI, in units of hours of interruption per customer per year. Each of the nine largest utilities (by number of customers;

utilities are listed in Figure 2) serves over two million customers. Data are reported annually via Form EIA-861.
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Mackenzie, 2021a, 2021b), it is imperative that research efforts address model design challenges related to

reliability, resilience, and the effects that long-duration outages have on these; it is also imperative that,

with help from stakeholders in industry and government, they have the outage data needed to support

these modeling efforts.
POWER OUTAGE DATA AND CHARACTERIZATION

Electric power outages vary in magnitude and duration, in space, and over time (Larsen et al., 2020) (Dunn

et al., 2019). Resilience planning, which seeks to mitigate the effects of high-impact low-probability ex-

tremes, should capture this variation as thoroughly as possible. There are at least three approaches for

characterizing variation. Ideally, one would adopt a bottom-up approach that uses individual interruptions,

their duration, and the number of customers they impact. With sufficient number, individual interruption

data can be combined to generate expected values as well as entire probability distributions for the likeli-

hood and duration of interruptions. Although some studies have been given proprietary access to high-res-

olution data (Kankanala et al., 2014) (Nateghi et al., 2014) (Ji et al., 2016), such detailed data are held by

utilities and generally not available. A second approach, with foresight, is to scrub interruption data

from public-facing utility webpages in real time until a sufficiently large dataset is collected (Dunn et al.,

2019). A third approach—themost accessible and general—is to use averaged interruption data filed annu-

ally by electric utilities while making assumptions about the shape of the underlying distribution of inter-

ruptions. US electric utilities are required to measure and report the reliability of their service territory using

three metrics (U.S. EIA, 2021) (IEEE, 2012):

� System Average Interruption Frequency Index, or SAIFI, which describes how often the average

customer experiences a service interruption exceeding five minutes;

� System Average Interruption Duration Index, or SAIDI, which describes for how long the average

customer experiences interruptions; and

� Customer Average Interruption Duration Index, or CAIDI, which represents the average time a

customer is without power before service is restored.

(A fourth metric, Momentary Average Interruption Frequency Index, or MAIFI, describes the frequency of

momentary interruptions, i.e., those lasting less than 5 minutes, and is a complement to SAIFI.) These

indices capture the average reliability experience across a utility’s service territory each year. They are point

values, so using them in probabilistic analysis of resilience requires making assumptions about the wider

distribution of interruptions, as we will discuss.

Utilities report SAIFI, SAIDI, and CAIDI in two ways: with and without so-called major event days (MEDs;

Figure 1). MEDs are days with ‘‘major events’’ that stress the electric grid beyond expected performance

and degrade service reliability considerably (IEEE, 2012) (Eto et al., 2017); often they indicate extreme

events like severe weather. For example, for the nine largest US utilities, which collectively serve over 32

million customers, major events from 2014 to 2020 were responsible for only 24% of the total number of

customer interruptions yet 70% of total service downtime.
iScience 25, 103630, January 21, 2022 3



Figure 2. The average duration of interruptions, i.e., CAIDI, experienced by customers across the nine largest US

utilities over 2014–2020, inclusive and exclusive of MEDs

Indices are annual averages over the utility’s service territory. The percentages at right give the mean difference in CAIDI

with and without MEDs over 2014–2020 for each utility. Each of these utilities serves over 2 million customers; altogether

the data capture the experience of over 32 million customers. In total, electric utilities that collectively serve over 95% of

US customers report these data.
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Reporting MEDs segments a utility’s reliability performance, isolating the effects of MEDs from normal

days, and hence provides a formal basis for defining extremes. When indices are reported with and without

MEDs, one can characterize the likelihood and duration of two distinct classes of interruption: moderate

interruptions (which are the non-MED indices) and long-duration interruptions (which are the difference be-

tween non-MED andMED indices). The threshold outage duration that delineates normal andmajor days is

derived statistically for each utility, varies by utility, and varies over time based on past utility performance

(Eto et al., 2017).

Long-duration outages are revealed in the differences between non-MED and MED indices (Figure 2). Ma-

jor events, which are rare, do not much increase SAIFI. But they can significantly increase average service

downtimes (i.e., SAIDI andCAIDI), in several cases more than doubling them, as the percentages in Figure 2

indicate.

Utility-reported indices are averages—they capture the reliability experience of the average customer

but do not reveal the wider range of interruptions that occur. When the shape of these wider probability

density functions (pdf) is not known, it is typical in reliability analysis to assume that event frequency and

duration follow standard fits, such as exponential or log-normal distributions (Billinton and Allan, 1996)

(Billinton and Allan, 1992). However, real data can reveal other fits. In the pdf for interruption duration

(Figure 3), moderate interruptions constitute the body (left of the hatched area in Figure 3) and typically

follow a normal or log-normal distribution; however, long-duration interruptions, which constitute the

tail, typically follow a power law (Kancherla and Dobson, 2018). For instance, data from several countries

suggest that the frequency of large blackouts follows a power-law tail (Dobson et al., 2007). In addition,

the size of large-scale power outages, measured as the number of customers N impacted by an outage,

decays as a power law N–z, where z is estimated to be less than 2, typically 1.9 (Carreras et al., 2016). Bulk

power transmission restoration times t also decay slowly via the power law t–z, where z z 1.84 (Kancherla
4 iScience 25, 103630, January 21, 2022



Figure 3. Stylized probability density function (pdf) for the duration of interruptions, i.e., CAIDI, that customers

experience

The vertical hatched area depicts a range of typical thresholds for outage duration, derived statistically (IEEE, 2012), that

delineate MEDs from normal days. Events to the left of the hatch indicate moderate outages on normal days; to the right

of the hatch, the tail of the pdf indicates rare but impactful long-duration outages and decays slowly as a power law.

Interruption duration pdfs vary by utility and over time.
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and Dobson, 2018). Because customer interruptions stem from both transmission and distribution

outages, it is expected that the duration of interruptions that customers experience similarly follows

the power law t–z, where z is again less than 2; an initial estimate based on two years of US data (Power-

Outage.us, 2021) finds z z 1.9.

The power tail implication is significant because power tails, or ‘‘fat’’ tails, decay more slowly than exponen-

tial fits, implying that extreme events, although rare, occur with much greater frequency than suggested by

often-assumed exponential fits (Kancherla and Dobson, 2018) (Hines et al., 2009). It is therefore crucial that

tails are properly represented, since using the lower likelihoods embodied in exponential statistics could

lead to infrastructure designs that appear reliable in models but cannot withstand real-world extremes,

especially as tails plausibly become fatter as the climate warms.

Resilience investments, such as microgrids, shuffle system costs: new infrastructure carries upfront capital

costs, but over time it avoids losses caused by interruptions. It generates a net financial benefit—a resil-

ience value—when avoided interruption costs exceed investment costs (Figure 4A). Long-duration out-

ages, embodied in the slow decay of the outage duration pdf in Figure 3, can profoundly impact this

shuffling of costs and benefits, since the resilience value that can be banked depends on the

magnitude of interruption costs that can be avoided. Including long-duration outages in models adds

new baseline interruption costs and, with them, the opportunity to avoid such costs through investment

(Figure 4B). In modeling that omits long-duration outages, investments have smaller resilience values;

and in the most acute cases, resilience values can appear negative, suggesting that investment costs

would eclipse avoided interruption costs and that investment would be, from a resilience standpoint,

uneconomic.

Including long-duration outages in models can fundamentally reshape the cost-benefit calculus, making

apparently uneconomic investments appear, correctly, economic. Moreover, the additional investment

needed to protect against extreme multi-day outages, relative to protecting against moderate multi-

hour outages, can be modest, such as when uninterruptible natural gas supply is available (Bohman

et al., 2021). As Figure 4 illustrates, including long-duration outages can lead to moderate shifts in invest-

ment but large increases in resilience value. In some circumstances, resilience benefits can grow faster than

the costs of protecting against long-duration outages. This can happen when the outage duration pdf tail

decays more slowly than t�2, as data suggest it does, and cumulative economic losses from outages grow at

least linearly with outage duration. The potential losses from outages (and hence resilience benefits) are, in

theory, unbounded. In practice, outages have finite duration, and it is the full set of outages that customers

experience, along with customers’ value of lost load, that shapes whether resilience benefits outstrip new

costs of investment.
iScience 25, 103630, January 21, 2022 5
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Figure 4. Waterfall chart of the costs and benefits of a resilience investment, showing the interruption cost,

investment cost, and value of resilience

(A and B) Shown are two model configurations that differ only in the breadth of grid outages input into the model: in (A),

only moderate outages are included; in (B), moderate and long-duration outages are included. Interruption costs

(leftmost bar) are the economic losses a customer incurs due to outages, which depend on the customer’s value of lost

load. In (B), the hatched bar indicates additional interruption costs that the model sees once long-duration outages are

included. The three rightmost bars illustrate how costs shift following investment. The dashed (rightmost) bars indicate

the resilience value (i.e., the difference between the costs of investment and costs of interruption that the investment

avoids) determined by the model. Investment costs in the two cases could be very different (for example, if energy-limited

resources are used) or largely similar (for example, if uninterruptible fuel supplies, like natural gas, are available).
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INTEGRATING POWER OUTAGES IN PLANNING TOOLS

For resilience-based planning and modeling, the first step is to characterize distinct types of disruptions,

such as for long-duration, moderate, and momentary outages, by generating probability distributions

for their likelihood and duration. The second step is to design planning tools that can actually assimilate

these distributions. We describe two broad design approaches—linear and nonlinear—and their merits

and demerits.

Microgrid planning tools, which determine the set of DER investments that minimize a microgrid’s total life

cycle cost (thereby maximizing its financial return), have been under development since the mid-1990s (Lil-

ienthal et al., 1995), spearheaded by US National Laboratories (Marnay et al., 2001) (Feng et al., 2018)

(Cutler et al., 2017) and later picked up by industry (Pecenak et al., 2019). A general, stylized model formu-

lation is given in Equation 1, where C denotes cost, x the set of DER investments, and y DER operation; and

where the investment cost comprises that of distinct DERs and related gear, the operating cost includes

electricity, fuel, maintenance, and emissions components, and interruption costs are the economic losses

from power outages. (For a complete formulation see, for example, Cutler et al. (2017).
minimize Ctotal(x,y) := Cinvestment((x) + Coperation(x,y) + Cinterruption(x,y)subject to

physical constraints (energy flow, DER capabilities and limitations, fuel availability)financial

constraintsemissions constraintsreliability and resilience constraints

(Equatio
n 1)
Although model development has been directed chiefly toward modeling energy flows, supplies, and de-

mand (and not reliability per se), recent development has pivoted toward issues of resilience. For example,

recent work has looked at probabilistic resilience calculations (Hanna et al., 2018; Dong et al., 2018; Ander-

son and Mishra, 2021), resilience-based business cases for microgrids (Hanna et al., 2017), household re-

quirements for resilience (Bohman et al., 2021), how better resilience can lower insurance premiums (An-

derson et al., 2018), and how to model time-varying losses from outages (Anderson et al., 2021). One

study modeled intentional utility power shutoffs in California aimed at preventing wildfires—a particular

instance of long-duration outage with a distinctive duration fingerprint (Hanna, 2021). Yet development

has not tackled long-duration outages generally, their fat-tailed distributions, or the effects they have on

optimal DER selection in microgrids and on system reliability and resilience.

The central modeling challenge with reliability is the structural model complexity that outages introduce,

since reliability is a nonlinear function of investment (Billinton and Allan, 1996). Reliability, a probabilistic
6 iScience 25, 103630, January 21, 2022
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Figure 5. Microgrid planning tool architecture for linear and nonlinear modeling approaches for integrating long-

duration outages

(A) Linear models accept a single set of pre-defined grid outages in the core MILP module and represent the interruption

cost linearly as the product of value of lost load and unsupplied energy. Post-processing routines can be added to analyze

other outages and resilience in greater detail and, with iteration, used to inform new DER investment.

(B) Nonlinear models delegate cost calculations to various subroutines, which can include conventional linear models and

MCS reliability evaluation algorithms. When integrating MCS, nonlinear models simulate and capture thousands of

combinations of DER and grid failure scenarios before calculating system resilience and interruption cost using customer

damage functions.
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measure of how often electricity supply meets demand, follows the binomial distribution R(N,x) f

Ax(1–A)N–x, where N is the number of thermal generators, of which x is the number that must operate

concurrently for the system to function and A is the generator’s availability (Billinton and Allan, 1992).

Nonlinear complexities are thus present even for simple power systems, such as those comprising only a

set of N thermal generators. Yet microgrids can be complex, host to a diverse array of DERs. Other events,

like DER failures, also degrade system reliability and further complexify calculations of reliability. Assuming

perfect DER reliability, as studies often do, leads to overestimates of system reliability, in particular during

long-duration outages when DERs serve as the last line of defense against outage (Marqusee et al., 2021a,

2021b). In addition, some DERs are energy-limited, others depend on weather, and many must be routinely

removed from service for maintenance. Backup generators can fail to start (Marqusee and Jenket, 2020)

and switchgear can fail to isolate critical loads. Meanwhile, extreme events can take down multiple DERs

simultaneously in common-cause failures (Mosleh, 1991). All of these phenomena planning models should,

ideally, capture.

There are, broadly, two modeling approaches that can be taken to address these challenges while also

integrating long-duration outages (Figure 5). The first is to stick with conventional linear models. As the

basis for existing planning tools, this approach would retain substantial prior model development and

know-how. Linear models do well with the costs and benefits associated with energy flows, which are

easy to linearize. However, to treat outages and reliability they require a number of simplifying lineariza-

tions and are commonly parameterized with assumptions of perfect DER reliability or a single prescribed

(e.g., average) grid outage frequency and duration (Marnay et al., 2008) (Simpkins et al., 2014). It is known

that these simplifications introduce inaccuracies in model results for optimal investment and resilience

benefits (Marqusee et al., 2021a, 2021b). More detailed reliability calculations can be made aside linear

models, for example, via pre-processing (Laws et al., 2018) or post-processing (Mishra et al., 2021) routines

that permit simulation of a wider array of moderate and long-duration outages, parameterized with full

pdfs, or that ensure resilience constraints are met. Nevertheless, because these finer resilience calculations
iScience 25, 103630, January 21, 2022 7
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are not integrated within the optimization framework (Figure 5A), they do not inform the inherent trade-off

between investment costs and resilience benefits; thus it is not clear whether these coupled models pro-

duce optimal investment choices.

The second approach prioritizes reliability above all else by maintaining the fidelity of the nonlinear reli-

ability term. Instead of linear models, this approach uses heuristic optimization methods that can inte-

grate nonlinear reliability calculations, even entire simulation subroutines, alongside conventional linear

programs (Figure 5B) (Hanna et al., 2019). Indeed, with simulation-based methods for calculating

reliability, notably sequential Monte Carlo simulation (MCS) (Billinton and Allan, 1996), modelers can

characterize any event known to impair reliability—DER failures, maintenance downtime, common cause

failures, etc.—provided sufficient data are available to characterize it. That includes long-duration out-

ages, defined by pdfs for likelihood and duration (as discussed in the previous section), as well as anal-

ogous distributions for momentary and sustained outages. Moreover, this diversity of outages directly

informs DER investment, since investment choices, operation decisions, and reliability calculations are

housed in a single, integrated optimization framework. The trade-off is greater model complexity and

computational complexity, but the advantages include more comprehensive and accurate estimates of

reliability and resilience benefits.

A comprehensive comparison of these two approaches, to our knowledge, has not been undertaken. The

effects of using one approach or another on optimal system design, costs, and benefits are therefore not

well established. What limited evidence does exist suggests that differences may be very large. One

study, adopting both approaches separately, found 50% difference in investment for key DERs like

gas generators, leading to nearly 50% difference in perceived cost-effectiveness and, remarkably,

600% difference in system reliability (Hanna et al., 2019). In other words, a simplified linear approach

for reliability yielded optimal microgrid designs that were 600% less reliable than those found by models

that maintained the reliability nonlinearity. These results underscore the importance of properly charac-

terizing reliability in models, but further research is needed to draw general conclusions about these

large differences.

FUTURE NEEDS FOR DATA AND MODELING

Extremes are important to examine because they are known to severely impact society and human welfare

(Taleb, 2010). In different ways, they pose challenges for grid regulators responsible for maintaining

resource adequacy as well as for individual customers and firms seeking higher levels of electric reliability

than those provided by local utility service. Yet long-duration outages are usually not well characterized in

the tools used to plan resilient grid infrastructure.

We have discussed how certain barriers, like lack of access to comprehensive power outage datasets and

ill-suited tools, make it difficult to analyze complex interactions between long-duration outages and resil-

ience. Approaches for characterizing outages are possible, for example, by using annual average reliability

indices reported by utilities while making assumptions about the wider spread of interruptions. Fundamen-

tally, however, improving estimates of the economics and resilience of grid investments will require wider

access to the granular interruption data that underlie rare events and fat tails.

We conclude by highlighting three ongoing challenges related to data andmodeling of resilient decentral-

ized energy systems that could be emphasized in future efforts to improve grid planning tools. These chal-

lenges are large but tractable and may require collaboration among researchers, utilities, industry, and

government. The consequences of not improving planning tools, ahead of plausible waves of investment

in new resilient infrastructure, include potentially long-lived investments that prove unresilient, uneco-

nomic, or both.

Historical outage data and future projections

Customer interruption pdfs can have power law tails that define rare events. Characterizing these pdfs re-

quires large datasets on individual interruptions that span many years. However, access to interruption

data is limited to the average metrics reported annually by utilities via Form EIA-861 (Figures 1 and 2)

or records maintained by the North American Electric Reliability Corporation on the size and duration

of large transmission-level outages (NERC, 2021). Neither are sufficient to characterize customer interrup-

tion pdfs. Only in select cases have utilities published comprehensive datasets on customer interruptions
8 iScience 25, 103630, January 21, 2022
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(Chowdhury and Doostan, 2017) (Jaech et al., 2019) (Mukherjee et al., 2018), but pdfs and power law tails

are difficult to characterize with small data sets—annual average outage duration, for example, can vary

substantially year to year (Kancherla and Dobson, 2018). Utilities maintain large interruption datasets in

outage management systems, but these have been mostly untapped by researchers. With appropriate

safeguards to maintain anonymity and protect sensitive information, access to these data repositories

would be hugely beneficial to researchers. Utilities could likewise benefit through more sharing; even

only a handful of utilities engaging in sharing would open up substantial opportunities for new resilience

research, which could eventually diffuse into utility integrated resource and other procurement planning.

Yet historical data alone are insufficient to characterize interruptions. New resilient infrastructure is ex-

pected to last decades, yet extreme weather, a non-stationary process, is shifting quickly owing to global

warming (Larsen et al., 2020). Advances in climate research are making it possible to predict how ex-

tremes may shift in the future; it is equally vital to translate this improving ability to predict shifting base-

lines for extreme weather into shifting baselines for power outages and other energy system impacts

(Brockway and Dunn, 2020) (Perera et al., 2020). Also needed is an understanding of how various reli-

ability markers are or are not affected by shifting extremes. It is plausible, for example, that more ex-

tremes will lead to many more long-duration outages while not much affecting rates of short-lived

outages.
Value of resilience during long-duration outages

Long-duration outages have outsized economic impact on modern societies. Calculating the resilience

value of new infrastructure—i.e., the margin between new costs of investment and avoided costs of inter-

ruption—requires modeling how well infrastructure protects against outages. It also requires knowing how

outages lead to economic losses, a relationship that is nonlinear and varies by customer, outage type, and

outage duration (Thomas and Wilhelm, 2015) (Sullivan et al., 2018). Although substantial work has been

done to characterize such values of lost load (VoLL), almost all estimates are restricted to shorter duration

outages of less than 12 h (Sullivan et al., 2015) (Anderson, 2020). Moreover, planning tools often treat VoLL

as a scalar dollar-per-kWh value when in actuality VoLL is known to vary with outage duration (Thomas and

Wilhelm, 2015) and a number of other factors. What is needed are estimates for VoLL over multi-day out-

ages (Larsen et al., 2019) (Baik et al., 2020), which may require new approaches since most customers have

limited experience with long-duration outages (Zamuda et al., 2019) (Baik et al., 2020). Establishing VoLL is

particularly difficult when other infrastructures are simultaneously damaged and requires intimate knowl-

edge of the correlations between power outages and other infrastructure damages.
Power component reliability

In microgrids, bulk grid reliability is the chief determinant of overall service reliability. DER reliabilities are

second in importance and, although they have modest impact on overall system reliability during short-

duration outages, they can have a material effect during long-duration outages, since a component’s likeli-

hood of failing increases with its time in service. However, the last major efforts to collect power component

reliability data were arranged over 20 years ago. Although those efforts yielded a huge resource—the Insti-

tute of Electrical and Electronics Engineers (IEEE’s) Standard 3006.8, which enumerates component reli-

ability data and recommends best practices (IEEE, 2018)—the resulting data are now outdated. What is

lacking and needed are data on many modern power components, such as lithium-ion batteries, fuel cells,

renewable DERs, andmodern inverters and generators. The existing IEEE resource holds great value as the

chief source of data, but without updates to include modern equipment we are left guessing at the reli-

ability of our evolving power system.
ACKNOWLEDGMENTS

This work received no direct or dedicated source of funding. R.H. draws funding in part from the Electric

Power Research Institute, a nonprofit R&D organization focused on the electric power sector.
AUTHOR CONTRIBUTIONS

R.H. and J.M. jointly conceived and formulated the work, gathered data, created illustrations, and wrote the

paper.
iScience 25, 103630, January 21, 2022 9



ll
OPEN ACCESS

iScience
Perspective
DECLARATIONS OF INTERESTS

R.H. draws funding in part from the Electric Power Research Institute, a nonprofit R&D organization focused

on the electric power sector. The authors declare that they have no known competing financial interests or

personal relationships that could have appeared to influence the work in this paper.

REFERENCES

Anderson, K. (2020). When the lights go out. Nat.
Energy 5, 189–190.

Anderson, K., and Mishra, S. (2021). Probabilistic
Resilience of DER Systems–A Simulation Assisted
Optimization Approach (IEEE).

Anderson, K., Hotchkiss, E., and Murphy, C.
(2019). Valuing Resilience in Electricity Systems
(NREL).

Anderson, K., Laws, N., Marr, S., Lisell, L.,
Jimenez, T., Case, T., Li, X., Lohmann, D., and
Cutler, D. (2018). Quantifying and monetizing
renewable energy resiliency. Sustainability 10,
933.

Anderson, K., Li, X., Dalvi, S., Ericson, S., Barrows,
C., Murphy, C., and Hotchkiss, E. (2021).
Integrating the value of electricity resilience in
energy planning and operations decision. IEEE
Syst. J. 15, 204–214.

Baik, S., Davis, A.L., Park, J.W., Sirinterlikci, S., and
Morgan, M.G. (2020). Estimating what US
residential customers are willing to pay for
resilience to large electricity outages of long
duration. Nat. Energy 5, 250–258.

Bennett, J., Trevisan, C., DeCarolis, J., Ortiz-
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