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Abstract
Accurate power load forecasting is the key foundation and important premise of urban power system planning. Considering
that urban power load demand is closely related to economic development and meteorological conditions, and with the
application and promotion of various energy coupling equipment and the promotion of electric energy substitution policy,
the relationship between gas load and power load demand is increasing. However, most of the existing load forecasting
methods only consider a single economic factor or a single meteorological factor, and fail to combine the coupling and
complementarity between loads. Based on this, this paper first analyzes the coupling characteristics between power load and
urban economic, meteorological, and gas load with Copula theory; Secondly, the key parameters of the least squares support
vector machine (LSSVM) are solved by using the salp swarm algorithm (SSA), and the urban monthly power load forecasting
model based on SSA-LSSVM is established; Finally, based on the macroeconomic data, meteorological observation data and
monthly electrical load of a city in North China, the predictionmodel is verified. Through comparisonwith different prediction
scenarios, it is confirmed that the built model can effectively improve the prediction accuracy and has good application effects.

Keywords Economic development · Meteorological load · Electrical coupling · Load forecasting

1 Introduction

The construction of a new power system with new energy
as the main body, serving carbon peaks and carbon neutral
goals means that wind power and photovoltaic power gen-
eration will gradually become the main body of the power
system in the future. Fundamental changes will take place in
the energy and power system, which will not only promote
the clean power supply, intelligent power grid and electrifi-
cation of users, but also change the operation characteristics
of power grid [1]. At the same time, reasonable and accurate
load forecasting plays an important role in power system pro-
duction arrangement, economic dispatch, power generation
planning, safe operation, and system security evaluation [2].
The monthly power load forecast data is an important input
data for formulating the planning and dispatching scheme of
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the urban power system within one year, which can directly
affect the development direction and optimization direction
of the future power system and even the city. For the short
term, monthly power load forecast is conducive to the safe
and stable operation of the power system and effectively
reduces operation and maintenance costs. For the medium
and long term, it provides a reliable basis for power com-
panies to formulate monthly and annual power generation
plans, and has important guiding significance for economic
dispatch control of power systems.

The electricity consumption behavior and the load of
power users are affected by a variety of factors, such
as weather change, seasonal alternation, macroeconomic
development, urban expansion, energy structure adjustment,
photovoltaic power generation, wind farm, start-up and shut-
down of large power users, equipment maintenance, large-
scale activities, etc. [3].Studying the relationship between
economic development and power demand is the basis of
many current power load forecasting methods. The main
research methods include elastic coefficient, grey correla-
tion theory, economics, and other theories. In the research
of Neera et al. [4], the irregular and noisy behavior in the
observed data makes it difficult to achieve better forecast-
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ing accuracy. To handle this, we propose a new model,
named singular spectrum analysis-long short- term memory
(SSA-LSTM). SSA is a signal processing technique used
to eliminate the noisy components of a skewed load series.
LSTM model uses the outcome of SSA to forecast the final
load. Huang et al. [5] analyzed the change of power demand
in Liaoning under the new normal, studied the impact of eco-
nomic situation change on power demand, and forecasted
the power demand in Liaoning in the near future. Xu and
Zhu [6] took the time series of GDP and regional electric-
ity consumption of four provinces in Central China as the
analysis object, and used H-P filtering method, cointegra-
tion test and spectral analysis method to analyze the change
characteristics of electricity demand in Central China and its
relationship with economic development. According to the
research by Han et al. [7], a power load forecasting model
considering economic transformation index was constructed
by constructing an index system to measure the degree of
economic transformation. Jin et al. [8] established the index
system of endogenous characteristics and electricity demand
externality suitable for judging the saturation stage of large
regional development, constructed the electricity demand
externality model by cointegrationmethod, and predicted the
saturation demand.

2 Related works

For a long time, many domestic and foreign experts and
scholars have conducted extensive research on the influence
of meteorological conditions on the electrical load of differ-
ent cities. Masoud Sobhani et al. [9] put forward that weather
is a key factor affecting electricity demand. Many load fore-
casting models rely on weather variables. Weather stations
provide point measurements of weather conditions in a ser-
vice area. Gilkeson [10] pointed out that adverse weather
caused heavy losses to the power industry, and made a sci-
entific analysis on how to use weather forecast to reduce
losses. According to Peng et al. [11], the sensitivity model
of meteorological factors to load change was obtained by
support vector regression. Chen et al. [12] and Cong et al.
[13] put forward the Grey Combination Model Based on
the optimal weight combination, and personalized intelli-
gent power consumption package, respectively. Considering
the coupling effect and cumulative effect of meteorological
factors on daily electricity consumption, Wang et al. [14]
analyzed the relationship between meteorological indexes
and daily electricity consumption, and established a single
prediction model of daily electricity consumption.

In the study of load coupling characteristics, the cur-
rent analysis mainly focuses on the coupling characteristics
between cooling, heat and electricity. Wang et al. [15]
proposed an integrated energy system short-term load fore-

casting method considering the coupling characteristics of
cooling, thermal and electrical loads as well as the time
dynamics. Chen et al. [16] investigated the spatial and tempo-
ral variation of electrical load characteristics due to cold and
thermal load variations. Wang et al. [17] considered the cou-
pling characteristic curves between multiple energy sources
such as cooling, heat and electricity to reflect the chang-
ing characteristics of the load. Chen et al. [18] analyzed
the nonlinear relationship between cold and thermal loads
and electrical loads, and proposed a multi-energy synergistic
electric load forecasting model. Lv et al. [19] consider the
coupling characteristics between central energy station, dis-
trict heating network (DHN) and building loads, which can
better cope with the load uncertainty. Qi et al. [20] demon-
strated the existence of coupling between loads usingPearson
correlation coefficients and extracted the characteristic quan-
tities of the coupling characteristics using a convolutional
neural network (CNN) for load prediction.

In terms of other factors, the existing literature mainly
analyzes and forecasts the urban power load due to special
events and changes of cooling and heating load, while there
is less research on urban gas and power load forecasting. A
forecasting method of coupled thermal and electrical load is
proposed by Luo et al. based on Elman neural network and
grey neural network [21]. In the study of Quan et al. [22],
the correlation between heat and cooling load is considered,
and the corresponding load forecasting model is constructed.
According to He et al. [23], the risk factors affecting power
load fluctuation include land use change, load density per
unit area and so on. Secondly, based on the basic principle
of cellular automata, the law and model of land use change
considering risk factors are established. After comprehen-
sively considering the impact of risk factors on load density
fluctuation, an urban power load forecasting model is estab-
lished based on the risk analysis of land use change and load
density. Moreover, Barman M et al. offered a novel method
of power system load forecasting (PSLF) for regional special
event days (RSEDs) when the load demand is highly prej-
udiced by societal considerations like cultural or religious
rituals. These rituals abruptly change the consumer behav-
iors (demand variations) and it makes the load profile of such
RSEDs more complex and nonlinear than normal holidays.
Therefore, during RSEDs, an accurate PSLF method must
integrate these consumer behaviors in the forecasting pro-
cess [24]. In the process ofmultiple load forecasting, scholars
have adopted a variety of research model methods, such as
deep learning [25], multi-task learning [26, 27], long-term
and short-term memory neural network [28, 29], and Copula
theory [30]. The above models and methods based on the
multi load of integrated energy system characteristics pro-
vide reference value and guidance for further research.

The above-mentioned literature mainly focuses on the
coupling characteristics between cold, heat and electric loads
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in short-term load forecasting and the influence of elec-
tric demand by weather factors, etc., while relatively little
research has been done on the relationship between monthly
electric load and meteorological factors and macroeconomic
indicators and on the establishment of monthly electric
load forecasting models. The forecast of monthly electric-
ity load is the basis and important indicator for the short- and
medium-term operation planning of the power grid. And a
single type of load forecasting model is difficult to reflect the
coupling relationship among economic development, mete-
orological changes, and multiple loads. Based on this, this
paper comprehensively considers the coupling characteris-
tics between power load and urban economic,meteorological
and gas load, and constructs a load correlation calculation
model based on Copula theory; Secondly, the RBF function
is used as the kernel function of LSSVM model to con-
struct LSSVM urban monthly power load forecasting model,
and the SSA method is used to find the optimal parameters;
Finally, a case study of a city in North China is carried out to
verify the model. The results indicate that the model is able
to effectively enhance the accuracy of urban monthly power
demand forecasting.

3 Analysis of load coupling characteristics
based on Copula theory

Coupling means that two or more elements or systems inter-
actwith each other. In the urban power system, the correlation
between power load and urban economic, meteorological,
and gas load is defined as economic coupling degree, meteo-
rological coupling degree, and gas demand coupling degree,
respectively.

Copula function is a tool used to study the correlation
between variables. It can establish a certain mathemati-
cal relationship between the joint distribution function and
its marginal distribution function. The domain defined by
Copula function is [0, 1]. By estimating the distribution of
the edge of each random variable, the results are obtained
respectively. Finally, a model can be built to help calculate
the relationship between the two variables. If F is a func-
tion containing several n-dimensional random variables and
G1,G2, ...Gn are the marginal distribution of marginal dis-
tribution function C , then there exists Copula function

F(x1, x2, ..., xn) � C(G1(x1),G2(x2), ...,Gn(xn)). (1)

Thismethod is suitable formultivariatemodel distribution
and stochastic simulation and can be used as a model tool for
correlation analysis and model research of urban monthly
power load forecasting.

Although the joint distribution function can precisely
portray the association relationship between variables, the

expression of the distribution function is more complex and
lacks a certain intuitive. In order to compare and analyze the
economic coupling degree, meteorological coupling degree,
and gas load coupling degree more intuitively, the Spearman
rank correlation coefficient, which can describe the nonlin-
ear correlation among variables, is selected in the correlation
measure derived from Copula function ρ as the final evalua-
tion index of nonlinear correlation.

For two random variables X and Y, their corresponding
distribution functions are G(x) and H (y). There must be a
Copula function C(a, b) that can pass the Spearman rank
correlation coefficient ρ. To characterize the nonlinear corre-
lation between X and Y , that is, we can use Copula function
C(a, b) to derive ρ. Namely:

ρ � 12
∫ 1

0

∫ 1

0
abdC(a, b) − 3

� 12
∫ 1

0

∫ 1

0
C(a, b)dadb − 3, (2)

where a, b are the marginal distribution functions of two
variables X and Y respectively G(x) and H (y).

There are five frequently used Copula Functions, which
are t-Copula, Gumbel–Copula, Clayton–Copula, Frank—
Copula and normal-Copula [31]. The Spearman rank cor-
relation coefficient derived from the same Copula function is
fixed andunique.However, due to the variety ofCopulaFunc-
tions, the correlation coefficient values derived fromdifferent
Copula Functions are different. Therefore, the accuracy of
correlation analysis based onCopula function depends on the
selection of the optimal Copula function. In this paper, the
empirical Copula function Ĉ(a, b) is defined, and by compar-
ing the Euclidean distance between each alternative Copula
function and the empirical Copula function, the optimization
of the Copula function is realized.

The empirical Copula function Ĉ(a, b) is defined as fol-
lows: let xi , yi (i � 1, 2, · · · , n) take samples of variables X
and Y , respectively, and Fx (x), Fy(y) take empirical distri-
bution functions of variables X and Y respectively:

Ĉ(a, b) � 1

n

n∑
i�1

I[Fx (xi )≤a] I[Fy (yi )≤b]], (3)

where I(i f ) is an indicative function, when the condition if
holds, I(i f ) � 1, otherwise it is 0.

The Euclidean distance between the empirical Copula
function and each alternative empirical Copula function is
as follows:

d j �
n∑

i�1

∣∣∣Ĉ(ai , bi ) − Ĉ j (ai , bi )
∣∣∣, (4)
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where ai is the empirical distribution function value Fx (xi )
corresponding to xi ; bi is the empirical distribution func-
tion value Fy(yi ) corresponding to yi ; C j (·) is an alternative
empirical Copula function.

The steps of coupling analysis using Copula theory are as
follows: firstly, the kernel density estimation method is used
to obtain the marginal distribution of the variable, and the
Maximum Likelihood Method (MLM) is used to calculate
the unknown parameters of each candidate Copula function
according to the marginal distribution. The empirical distri-
bution function of the variable is calculated according to the
sample point data, and then the spline interpolation method
is used to obtain the empirical distribution function value
corresponding to each sample point, and calculate the corre-
sponding empirical Copula function value and the candidate
Copula function value from the empirical distribution func-
tion value according to formula (3) and the candidate Copula
function. According to formula (4), calculate the Euclidean
distance between the alternative copula function and the
empirical copula function, and select theminimumEuclidean
distance as the optimal copula function. on the basis of for-
mula (2), the Spearman correlation coefficient can be derived
through the corresponding integral calculation of the optimal
Copula function.

4 Urbanmonthly power load forecasting
model based on SSA-LSSVM

The time series of actual data can show the development
trend and law of the research object in a certain period, so we
can find out the characteristics, trend and development law
of variable change from the time series, so as to effectively
predict the future change of variables. Based on the analysis
of historical data, it is found that urban power load has two
peak periods in winter and summer, and its change shows
obvious periodic fluctuation. Therefore, this paper selects the
time series forecasting model based on least squares support
vector machine for urban power load forecasting.

It should be pointed out that the time series prediction
method has the defect of prediction error because it high-
lights that the time series does not consider the influence of
external factors temporarily. When there are large changes in
the outside world, there will often be large deviations. The
effect of time series prediction method onmedium and short-
term prediction is better than that of long-term prediction.
Therefore, this paper comprehensively considers the impact
of external factors such as economic development, meteo-
rological changes and natural gas demand on urban power
load, and establishes an urban monthly power load forecast-
ing model based on the coupling of economy, meteorology
and gas demand.

4.1 Building LSSVM predictionmodel

Least squares support vector machine (LSSVM) is a com-
puting model of support vector machine under quadratic
probability loss function, which can help solve optimization
problems by solving linear model. The main principles are
as follows.

Assuming that the sample set S � (xi , yi )Li�1, xi ∈ X ∈
Rn is input vector and yi ∈ R is the corresponding output
value of the sample, the decision function can be constructed
as follows:

f (x) � ωϕ(x) + b, (5)

where ϕ(x) is a nonlinear high dimensional mapping of xi ∈
X ∈ Rn ; ω is the weight; b is the offset value.

The structural risk function is as follows:

R � 1

2
‖ω‖2 + 1

2
c · Remp, (6)

where ‖ω‖2 is the accuracy and complexity of the model; c
is the regularization parameter;Remp is an empirical risk.

In the process of modeling, Remp �
L∑

i�1
ζ 2
i , the decompo-

sition formula is as follows:

min R � 1

2
ωTω +

1

2
c ·

L∑
i�1

ζ 2
i , (7)

s.t . yi � ωiϕ(xi ) + b + ζi , (8)

where ζi is the error relaxation variable, i � 1, 2, . . . , L .
Then the optimization problem is shown in Eqs. (7)—(8)

can be expressed as:

[
0 ITv
Iv � + c−1 I

][
b
λ

]
�

[
0
y

]
, (9)

where Iv � [1, 1, . . . , 1]T , and there are l elements in total,
�i j � K

(
xi , y j

)
i, j � 1, 2, 3, . . . , l.

The kernel function itself is the internal machine of the
mapping relationship. In LSSVM model, the adaptability of
the RBF kernel function is that the number of setting param-
eters is small. Therefore, the RBF function is used as the
kernel function in this paper.

K (xi , y j ) � exp

(
−

∥∥xi − y j
∥∥2

σ 2

)
. (10)
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By solving the above equation, the decision function is
obtained directly:

f (x) �
L∑

i�1

λi K (xi , x) + b. (11)

4.2 Finding optimal parameters by SSAmethod

On the premise of determining the regularization parameters
and kernel function parameters, this paper improves the tra-
ditional LSSVM method using the network cross validation
method for parameter selection, and uses the bottle ascidian
group optimization algorithm to find the best parameter value
and reduce the error automatically.

Styela Corylifolia is a group of deep-sea organisms. In
daily predatory and other ecological activities, Styela Coryli-
folia aggregation group formed by group movement is called
ascidian chain. Australian researcher Mirjalili s proposed an
algorithm for optimization of Salp swarm algorithm (SSA)
[32]. In SSA, the target group can be divided into leaders
and followers. The role of the leader is to guide the SALP
group and each follower follows the former. It is assumed
that the target source exists in the planning scope. The spe-
cific optimization methods based on the change of behavior
are as follows.

(1) Parameter setting. Parameter settings. Including the
number of groups, the number of influencing factors, the
maximum number of iterations and the upper and lower
limits of the variables.
(2) Species initialization. The following matrix is shown.

S � [si j ]n×d , (12)

where si j represents the j-th variable value of the i-th bottle
ascidian,i � 1, 2, . . . , n, j � 1, 2, . . . , d .

si j � rand(i, j) × [ub(i) − lb(i)] + lb(i), (13)

where rand(i, j) is a randommatrixwhose element domain is
[0,1]. ub(i) and lb(i) represent the maximum and minimum
values of the i-th bottle ascidian, respectively.

(3) Construct fitness function. The fitness function is used
to calculate, and the matrix OS is set to store the value:

OS �

⎡
⎢⎢⎢⎣

OS1
OS2
...

OSn

⎤
⎥⎥⎥⎦ �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f
[(
s11 s12 · · · s1d

)]
f
[(
s21 s22 · · · s2d

)]
...

f
[(
sn1 sn2 · · · snd

)]

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (14)

In matrix OS, the target source F is the one with the best
fitness, and its position is determined by the influence of the
bottle ascidian chain. Therefore, the optimal value can be
solved by changing the position of the target source F .

(4) Determine the number of iterations. In order to avoid
local optimal solution, all elements need to be updated and
iterated by function operation. Among them, the formula
of leader’s positioning and updating to target source is as
follows:

x1j �
{
Fj + c1

[(
ub j − lb j

)
c2 + lb j

]
, c3 ≥ 0

Fj − c1
[(
ub j − lb j

)
c2 + lb j

]
, c3 < 0

, (15)

where x1j is the position of the first leader, namely the bottle
ascidian, in the j-th dimension, and Fj is the coordinate of
the target source. ub j and lb j are upper and lower limits,
respectively. c1, c2, c3 are random numbers generated by
setting. c2 and c3 are in the range of [0,1] to determine the
position change. c1 is

c1 � 2e
−

(
4l
L

)2
, (16)

where L and l are the maximum and current iterations,
respectively. The location of followers is updated as follows:

xij � 1

2

(
xij + xi−1

j

)
. (17)

All steps are iterated until the end.

4.3 Model checking

In this paper, posterior tests were performed after the calcu-
lation to verify the accuracy of the prediction model using
the small error probability (P) and the posterior error ratio
(c). The posterior difference test is a method of testing the
model based on the statistics between the predicted and actual
values of the model, which is transposed from the probabilis-
tic prediction method. It is based on the residuals (absolute
error) ε and according to the absolute value of the residual
in each period, the probability of the occurrence of points
with smaller residuals and the magnitude of the indicators
related to the variance of the prediction error are examined.
The specific steps are as follows:

Set the historical load sequence.

x (0) � {x (0)(1), x (0)(2), · · · , x (0)(n)}. (18)

Set the sequence of predicted values.

x̂ (0) � {x̂ (0)(1), x̂ (0)(2), · · · , x̂ (0)(n)}. (19)

123



Electrical Engineering

The difference between the actual value x (0)(k) and the
calculated value (predicted value) x̂ (0)(k) at time k is ε(k),
which is called the time k residual.

ε(k) �
∣∣∣x (0)(k) − x̂ (0)(k)

∣∣∣ (k � 1, 2, · · · , n). (20)

Let the average of the actual value x (0)(k)k � 1, 2, · · · , n
be. That is

x � 1

n

n∑
k�1

x (0)(k). (21)

Let the mean value of residual ε(k)k � 1, 2, · · · ,m be ε,
where

ε � 1

m

m∑
k�1

ε(k), (22)

where m is the number of predicted residual data, generally
with m ≤n.

Note that the variance of the historical data (actual values)
is S21.

S21 � 1

n

n∑
k�1

(x (0)(k) − x)2. (23)

Let that the residual variance is S22 , and there is

S22 � 1

m

m∑
k�1

(ε(k) − ε)2. (24)

Then the posterior error ratio C and the small error prob-
ability P are obtained.

C � S2
S1

P � P{|ε(K ) − ε|< 0.6745S1}.
(25)

The value of Index C is greater than 0, and the value of
index p is [0,1].

The smaller the indicator C, the larger the S1 and the
smaller the S2. a large S1 indicates a large variance in the
historical data and a large degree of dispersion in the histori-
cal data. a small S2 indicates a small variance in the residuals
and a small degree of dispersion in the residuals. a small C
indicates that although the historical data are discrete, the
difference between the predicted and actual values obtained
by themodel is not too discrete. The larger the indicator P, the
greater the number of points where the difference between
the residuals and the mean of the residuals is less than the
given value of 0.6745S1. Based on C and P, the accuracy of
the prediction model can be evaluated comprehensively, and
the evaluation criteria are shown in Table 1.

4.4 Overall process of themodel

Themain factors that affect urbanpower loaddemand include
temperature, humidity and other meteorological factors, as
well as economic development, industrial structure, power
substitution and other social environmental factors. In urban
power load forecasting, it is necessary to deeply consider the
coupling relationship between power load and urban econ-
omy, meteorology, and gas demand. Based on this, this paper
establishes a Copula based load correlation analysis model
to calculate the economic coupling,meteorological coupling,
and gas coupling characteristics of the urban power system.
Secondly, the bottle ascidian algorithm is used to solve the
optimization problem of regularization parameters and ker-
nel function parameters in LSSVM. In the prediction model,
the factors such as temperature and economic development
are considered, and the coupling relationship between gas
and power load is taken as the influencing factor to build a
multiple load prediction model based on SSA-LSSVM, as
shown in Fig. 1.

5 Case analysis

5.1 Basic data

In the case analysis, this paper selects a city in North China
for medium and long-term power load forecasting. By fore-
casting and analyzing the monthly load of the city in a year,
the rationality and accuracy of the model are verified. This
city is a major economic center and power load center in
North China, and its data is relatively complete and repre-
sentative. At the same time, the data usedmainly comes from
the relied fund projects and the electricity consumption infor-
mation collection systemof the StateGrid. By forecasting the
monthly electricity load, the city’s grid planning scheme can
be optimized, thereby helping to build a smart city (Figs. 2,
3, 4, 5).

The data used in this paper can be divided into four cat-
egories: meteorological, power load, macroeconomic and
natural gas load. The data from 2010 to 2018 is the basic
data set, and the data from 2019 is the verification set. The
monthly average values of average high temperatures, aver-
age low temperatures and average temperatures are extracted
from the meteorological data of the city.

Taking the historical economic, meteorological, power
load and gas load data as the input data of the model can
realize the quantitative transformation of energy policy, eco-
nomic policy and other factors, so as to consider the impact
of social and scientific factors affecting urban power load
demand.

Macroeconomic data are extracted from the monthly
statistical reports published by the Municipal Bureau of
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Table 1 Small error probability
(P) and posterior error ratio (c)
of comprehensive evaluation
prediction model

Prediction accuracy
level

P C Prediction accuracy
level

P C

Level I >0.95 <0.35 Level III 0.5≤C<0.7 0.5≤C<0.65

Level II >0.8 0.35≤C<0.5 Level IV ≥0.7 ≥0.65

Fig. 1 Monthly urban power
load forecasting process based
on SSA-LSSVM model
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Total electricity consumption, monthly average load,
monthly average peak value, and monthly average valley

value are extracted from the database of power supply com-
pany and natural gas company in the city.
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Fig. 4 Electricity load data of S
city
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Fig. 5 Gas load data of S city
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5.2 Load coupling analysis

Spearman rank correlation coefficients can be derived from
Frank-Copula, t-Copula, and normal-Copula, and the selec-
tion of the optimal Copula function is shown in Table 2. It can
be seen that the Euclidean distances between the three alter-
native Copula Functions and the empirical Copula function
are different. The smaller the Euclidean distance, the closer
the alternative Copula function is to the empirical Copula
function, and the more accurately the correlation coefficient
describes the correlation between the variables. Bold values
indicate that this result is better than other Copula functions.

The results of the correlation analysis derived from the
optimal Copula function are shown in Table 3. From Table
3, it can be seen that there is a high degree of nonlinear
correlation between electricity load and GDP, GDP of pri-
mary industry, GDP of secondary industry, GDP of tertiary
industry, average high temperature, average low tempera-
ture, average temperature, averagemonthly gas load, average
monthly gas peak, and average monthly gas valley, but the
degree of correlation varies. The correlation between the city
power load and Secondary Industry GDP, Tertiary Industry
GDP, average temperature average high temperature, average
low temperature, monthly average gas load, and the monthly
average gas peak value is higher than 0.5. The correlation
between s city power load and GDP of secondary industry,

average high temperature, and monthly average gas load is
even higher than 0.8. The analysis results of the coupling
characteristics between power load and macro-economy,
meteorological conditions, and urban gas load show the sys-
tematicness of urban economy, meteorology and energy and
the indivisibility of the prediction process. The influence of
the above factors on the prediction results can not be ignored,
and it also offers a theory basis for the construction of the
prediction data set. Therefore, in purpose of improving the
accuracy of urban power load forecasting, this paper takes
the GDP of secondary industry, GDP of tertiary industry, the
average high temperature, the average low temperature, the
average temperature, the average monthly gas load, the aver-
age monthly gas peak and other factors with high correlation
as the influencing factors of the forecastingmodel, and forms
the input sample set of urban power load forecasting model
together with the power load data.

5.3 Forecast results and analysis

To verify the effectiveness of the load forecasting method of
the SSA-LSSVM model proposed in this paper, we set up
the following three scenarios.

Scenario 1: considering the coupling of economy and
meteorology, LSSVM model is selected;
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Table 2 Calculation results of Euclidean distance

Frank–Copula t-Copula Normal-Copula

Electricity load—GDP 0.6995 0.2226 0.2560

Electricity
load—primary
Industry GDP

0.7359 0.6393 0.6940

Electricity
load—secondary
Industry GDP

0.9389 0.1090 0.8294

Electricity
load—tertiary
Industry GDP

0.9396 0.7188 0.6384

Electricity
load—average high
temperature

0.9391 0.6005 0.0664

Electricity
load—average low
temperature

0.1675 0.0349 0.4809

Electricity
load—average
temperature

0.1749 0.2305 0.7630

Electricity
load—monthly
average gas load

0.7905 0.3054 0.3427

Electricity
load—monthly
average gas peak
value

0.6457 0.4006 0.4294

Electricity
load—monthly
average gas valley
value

0.4527 0.0853 0.9136

Table 3 Results of correlation analysis with electricity load

Factors Relevance Factors Relevance

GDP 0.26132 Average low
temperature

0.53026

GDP of primary
industry

0.39566 Average
temperature

0.78064

GDP of secondary
industry

0.84917 Monthly average
gas load

0.94390

GDP of tertiary
industry

0.67433 Monthly average
gas peak

0.78339

Average high
temperature

0.85710 Monthly average
gas valley

0.43785

Scenario 2: considering the coupling of economy and
meteorology, SSA-LSSVM model is selected;

Scenario 3: considering the coupling of economy, mete-
orology and gas demand, the prediction model combining
SSA-LSSVM is selected.

Under scenario 1, scenario 2 and scenario 3, the monthly
power load forecasting curve and forecasting error percent-
age of s city are shown in Fig. 6. Compared to the actual

Table 4 Posterior error test and small error probability of each scenario

Scenario Scenario 1 Scenario 2 Scenario 3

C P C P C P

Value 0.2203 95.64% 0.1914 96.22% 0.1563 98.36%

load, the percentage of forecast error for each scenario is
1.93%, 1.43% and 0.52%, respectively. In Scenario 3, the
percentage of monthly load forecast error less than 2% is
50%, while Scenario 1 and Scenario 2 account for 0% and
33.33%, respectively.

It can be seen from Table 4 that when using SSA-LSSVM
model for load forecasting, the posterior error test of scenario
3 is 0.1563, less than 0.35, and the small error probability
is 0.9836. The forecasting result belongs to the first level,
and the overall forecasting accuracy is high. Therefore, the
SSA-LSSVM model constructed in this paper has good pre-
diction accuracy in the urbanmonthly power load forecasting
model. This shows that considering the coupling of econ-
omy, meteorology, and gas demand can effectively improve
the effectiveness of monthly electricity load forecasting.

6 Conclusion

This paper mainly establishes the urban monthly power load
collaborative forecasting model based on Copula theory and
SSA-LSSVM.Based onCopula theory, themodel focuses on
the interaction between economic development, meteorolog-
ical conditions, natural gas demand and power load, which
makes up for the deficiency of the existing load forecasting
models in the interaction of internal and external factors. Sec-
ondly, SSA algorithm is used to optimize the key parameters
of LSSVM to further improve the accuracy of load fore-
casting. The prediction accuracy of the prediction model is
verified by an example. Take the research results as a new
service means to provide more professional and quantitative
service products for the power industry, provide scientific
basis for power grid operation and dispatching, and enhance
the vitality of professional meteorological services.

However, there are many factors affecting urban power
load, and the relationship between the factors is very com-
plex. The model established in this paper has not considered
the influence of power substitution policy, energy conser-
vation and carbon reduction policy and other factors, and
has less consideration of air humidity, sunshine conditions
and other factors in terms of Meteorological factors. In the
next research, we can consider how to further refine the eco-
nomic, meteorological, gas and other factors, and consider
the empirical mode decomposition of urban power load to
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Fig. 6 Load forecasting results
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stabilize each component and further improve the accuracy
of load forecasting.
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