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Abstract
This paper proposes the optimal charging and discharging scheduling algorithm of energy storage systems based on reinforce-
ment learning to save electricity pricing of an urban railway system in Korea. Optimization is done through reinforcement 
learning of charging and discharging schedule of energy storage systems according to the unit of electricity pricing rates as 
well as a reduction of peak power demand to save electricity pricing. To do this, modeling of urban railway systems includ-
ing energy storage systems, electricity pricing rates, and changes in rates according to operations of energy storage systems 
are carried out. Reinforcement learning for an agent is also done to reduce peak power demand through DQN algorithm. 
Operation data of actual lines of urban railways operating with energy storage systems are utilized for learning. For this 
reinforcement learning, about 399(45.3%) incorrect data are removed and 481(54.7%) normal data are extracted. Through 
the reinforcement learning, maximum peak power demand is reduced by a targeted amount, 100 kW, from 2,982.4 kW to 
2,882.4 kW. When the peak power demand is under 2,600 kW, charging at times when the power rate is cheaper and discharg-
ing at times when the power rate is more expensive are carried out, thus saving the total electricity pricing.

Keywords Electricity pricing · Energy storage system · Optimal charging and discharging scheduling algorithm · 
Reinforcement learning · Urban railway system

1 Introduction

Urban railway system consists of rolling stock load and sta-
tion load. The greatest amount of power used is for operation 
of large capacity rolling stock load. Power used for roll-
ing stock load depends on the train schedule. Peak power 
demand occurs during rush hours when there are more 
train services but the amount of power used is dramatically 
reduced during the dawn and midnight hours when there 
are fewer train services, which reduces the total load for 
the system.

The industrial pricing rate is applied for the electricity 
pricing of the urban railway system in Korea. This is com-
posed of usage rate calculated from hourly usage and basic 

rate calculated from peak power demand in 15-min peri-
ods. For the basic rate, monthly peak power demand from 
the current month and the past 12 months are compared 
and calculated by setting the biggest value as the standard. 
Therefore, the peak power demand impacts the basic rate for 
12 months henceforth, even if it happened only once [1–3].

Because reducing the amount of power used through 
rolling stock load control has some restrictions, peak power 
demand is being controlled through limiting the power sup-
ply to a load system that uses a relatively larger amount of 
power among the station load system. However, this method 
also has some restrictions in reducing the peak power 
demand because of environmental issues. Therefore, the 
urban railway system manages peak power demand through 
an energy saving device to reduce the peak power demand. 
Charging the energy storage system (Energy Storage System, 
ESS) with power during the light duty times and discharg-
ing it during the peak power times is being used nowadays 
[5–7]. The energy storage system allows charging the power 
and discharging it during the desired times. Therefore, it is 
being used for profit-taking in time-specific rates, volatility 
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control of renewable power generation, and reducing peak 
power demand [8–10].

Previous studies about optimal scheduling methodology 
that establish hourly charging and discharging schedules 
for an energy storage system using the 24-h demand fore-
cast indicated ways to reduce the peak power demand in 
particular. This method uses linear programming or integer 
programming to offer an optimal schedule that can maintain 
low electricity pricing while satisfying all the constraints. 
However, any error in the forecast will be critical in reducing 
the peak power demand. A study is undertaken to control 
the energy storage system through an algorithm that repeats 
short-term forecast and rescheduling in virtual power plants. 
However, this method can prepare for short-term volatility 
but has some restrictions in preparing for long-term changes 
in rates [11–14].

Therefore, this paper focuses on reinforcement learning 
approach among artificial intelligence approaches applied to 
various industries for optimal scheduling of ESS to reduce 
peak power demand. Reinforcement learning is a type of 
machine learning and the agent learns behavior that maxi-
mizes reward through repeating trial and error. It can be 
applied to an environment where mathematical modeling is 
difficult to build [15–17].

This paper proposes an optimal charging and discharging 
scheduling algorithm of ESS to reduce peak power demand 
in urban railway systems using the DQN (Deep Q-Network) 
method. Modeling for the urban railway system including 
ESS is made and a reinforcement learning environment is 
formed to reduce the peak power demand. Then the agent 
learned in the environment and the effect is analyzed. Power 
data from real operation lines with ESS are used for rein-
forcement learning data. Abnormal data are removed and 
preprocessing is performed to make the data suitable for 
learning.

2  Optimization Algorithm for Electricity 
Pricing Using DQN Algorithm

2.1  Urban Railway System Modeling 
for Reinforcement Learning

Electricity pricing for urban railway systems is calculated 
according to pricing rates from the power supplier, which 
depend on the amount of power used by rolling stock loads 
and station loads as shown in Fig. 1. Generally, an indus-
trial pricing rate is applied to urban railways in Korea. The 
industrial pricing rate is composed of a basic rate calculated 
from peak power demand and usage rate calculated from 
hourly usage. A power supplier supplies power to a substa-
tion where the amount of power used by rolling stocks in the 
section and amount of power used by stations that receive 

power from the substation are added to calculate the amount 
of power used by the urban railway system. Recently, an 
energy storage system is applied to use the power at the 
appropriate time for the most effective usage of regenerative 
power and renewable energy. Energy storage systems not 
only reduce peak power demand but also reduce electricity 
pricing by charging power at hours when the rate is cheaper 
and discharging at more expensive hours.

This paper uses reinforcement learning to reduce elec-
tricity pricing of urban railway systems by setting optimal 
charging and discharging schedule with an energy storage 
system. For this we define urban railway system’s environ-
ment state, action, and reward of an urban railway system 
operating energy storage system as shown in Fig. 1 to apply 
reinforcement learning.

First of all, the environment state of the urban railway 
system shown in Fig. 1 can be defined as in Eq. 1.

st stands for the state at time t, PLoad
t

 stands for total 
demand at time t, and total demand is calculated from 
rolling stocks load, stations load, and charge/discharge 
of energy storage system (Total demand = Rolling stocks 
demand + Stations demand + Charge/Discharge of energy 
storage system). SoCt is energy charging ratio to the maxi-
mum capacity of the energy storage system at time t. t stands 
for time. Power consumption and the charging/discharg-
ing pattern of energy storage systems are shown to change 
according to the operation time. Each value shows a certain 
pattern according to the operating time. Lastly, CE

t
 refers to 

the unit cost of power. The power rates may differ depending 
on detailed rates but generally, it is classified into three steps, 
light load, medium load, and heavy load.

The learning agent carries out charge or discharge 
and maintains the present stage through actions. It uses 

(1)s
t
= < P

Load

t
, SoC

t
, t,C

E

t
>

Fig. 1  Urban railway system model for reinforcement learning
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discrete charging/discharging amounts to reduce the com-
plexity of a problem. Real operation lines data is used in 
this paper. The maximum charging/discharging amount 
of the energy storage system in these lines is 200 kW. 
Therefore, Eq. (2) is defined to show a set of actions that 
an agent can take.

Fundamentally, reward has a correlation with electric-
ity pricing rate of each time. To effectively represent the 
actions of energy storage systems, changes in pricing 
rates according to charge/discharge of the energy storage 
system as shown in Eq. (3) is used instead of electricity 
pricing rates.

R
(
St,At

)
 refers to reward when action At is chosen 

for state St at time t  . Ct stands for the rate at each time 
which refers to the actual electricity unit price. However, 
because calculation of peak power demand is done in 
15-min periods in urban railway systems, the reward is 
divided by 4. In addition, if the energy storage system 
repeats charge/discharge in a short period of time when 
the same rate is applied, actual electricity pricing can 
increase due to the losses and it can shorten the life of the 
equipment due to frequent charging/discharging. There-
fore, to prevent frequent charging/discharging, a penalty 
( Φ)is given when the multiples of At and At−1 are less 
than 0 as shown in Eq. (4) which means when an energy 
storage system changes the operation state from charging 
to discharging or discharging to charging. In this way, 
the agent's action can learn in a way for reward to be 
increased.

The state transition from time t to time t + 1 is carried 
out as follows. PLoad

t+1
 Can be provided through external pre-

dicted value. SoCt+1 uses the calculated value from actions 
within the capacity range ( Cap ) of the energy storage sys-
tem at its existing SoCt state as shown in Eq. (5). Time 
t + 1 uses the value next to the current time t value in a 
day cycle. t + 1 is provided after calculating the rate level 
at that time CE

t+1
.

Modeling of reward and state transition way is done 
to carry out the modeling of the urban railway system's 
environment for reinforcement learning.

(2)a
t
= < −200,−100, 0, 100, 200 >

(3)R
(
St,At

)
= CtAt∕4

(4)If)At ∙ At−1 < 0

R
(
St,At

)
+ = Φ

(5)SoCt+1 = SoCt +
At

Cap

2.2  DQN(Deep Q‑Network) Algorithm

DQN algorithm is applied in this paper to learn a learn-
ing agent in the urban railway system’s environment. DQN 
approximates function Q to DNN (Deep Neural-Network). 
There are a lot of state sets so it can solve difficult problems 
that cannot be solved with existing algorithms. It uses CNN 
(Convolution Neural-Network) to carry out reinforcement 
learning with image, voice, and various data. Also, DQN 
uses replay memory to speed up the learning process by 
removing the correlation between samples when carrying 
out reinforcement learning. It also uses a target network to 
increase the efficiency of learning. Figure 2 shows the learn-
ing process of the DQN algorithm. Function Q approximates 
an artificial neural network to carry out learning of function 
Q. Experience replay is used to remove the temporal cor-
relation between samples used for learning. Updates using 
numerous samples are carried out to enable stable learn-
ing. In the DQN algorithm, the solution regarding states 
that have successive values is possible since function Q is 
approximated to an artificial neural network [18–20].

DQN reinforcement learning algorithm is based on the 
Markov decision process. Therefore, it is important to model 
the learning environment, actions that an agent can carry 
out, and the following rewards appropriately. Also, preproc-
essing of learning data is necessary to test and learn from 
data collected from real operation lines.

3  Urban Railway Power Data Preprocessing

3.1  Outlier Elimination Method

Outliers in acquired power consumption data as shown in 
Fig. 3 can occur from various causes such as sensor error 
and communication error in real operating lines. These Out-
liers can occur throughout the day or at a certain time.

In this paper, standard distribution of power data from 
the past 2 years has been proposed and for those that devi-
ate from normal distribution over time in a time series, the 

Fig. 2  DQN algorithm’s learning process
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power consumption data are judged to be outlier data and 
removed.

It is to carry out the reinforcement learning on a day-to-day 
basis. Figure 4 presents an outlier data detection method out 
of time series data. However, actually measured power con-
sumption data by time step do not follow a normal distribution. 
Therefore, daily demand is patterned through normalization 
to judge by focusing on patterns rather than demand values 

by showing data in values between 0 and 1 through data nor-
malization. Equation (6) used min–max normalization method 
and it is a process of finding the normalized values for each 
hour [21].

PLoad
t  is normalized power value from time t , PLoad

max
 and 

PLoad
min

 represents maximum and minimum power values for 
the day. Figure 5 shows standard patterns through normalized 
power data after eliminating outliers.

Preprocessing of learning data is performed by eliminating 
data for the days when data that exceeds the standard value 
occur as shown in Eq. (7) once. The standard power con-
sumption pattern is established as shown in Fig. 5. However, 
the power consumption pattern differs according to seasons. 
Therefore, the standard pattern is continuously updated as 
shown in Eq. (8) using the actually measured data.

(6)PLoad
t =

PLoad
t

− PLaod
min

PLoad
max

− PLoad
min

(7)
|||
|
PLoad
t −

�PLoad
t

|||
|
> 𝜀

Fig. 3  Data samples including abnormal data

Fig. 4  Detecting outliers in time series power data Fig. 5  Standard power data pattern (weekday, weekend)
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� is a factor that takes a value between 0 and 1, and the 
larger the value, the closer the standard pattern is � to the 
recent load pattern.

Figure 6 shows an overall flow chart showing the preproc-
essing process of urban railway power data for reinforcement 
learning.

3.2  Result of Outlier Elimination

Table 1 shows the number of data entries after eliminating 
outliers from the number of daily power consumption data 
from operation lines and percentage of final learning data 
available for learning applying the outlier elimination algo-
rithm. About 45% of all data is eliminated. Figure 7 shows the 
remaining daily learning data samples according to the power 
consumption pattern of summer (August) and winter seasons 
(December). It shows that the amount of power consumption 
increases in daytime during summer and in the evening/night-
time during winter.

(8)P̂Load
t = �PLoad

t + (1 − �)P̂Load
t

4  Electricity Pricing Saving Performance 
Evaluation

4.1  Learning Process

Figure 8 shows the learning process of the reinforcement 
learning method that is applied for optimization of urban 
railway system’s electricity pricing. It consists of environ-
ment, learning agent, and replay memory.

First of all, the reinforcement learning method create a 
learning agent expressed as DNN representing function Q. 
The learning agent should include a neural network as the 
subject of learning and parameters required for learning. 
The learning agent will take an action on the state of the 
urban railway system, calculate the next state according 
to the reward, save the data in replay memory, randomly 
extract samples from stored samples to learn function Q, 
and judge whether to end the learning process or not. If 
learning does not end, the target network is updated, and 
learning is performed repeatedly by proceeding to the next 
step for the new episodes and having the agent perform 
actions according to the state.

Fig. 6  Flow chart of outlier elimination algorithm

Table 1  Outlier elimination ratio

Total data Removed 
data

Remained 
data

Removed 
ratio

Number of 
data

880 399 481 45.3%

Fig. 7  Remained data samples (summer, winter)

Fig. 8  Learning process of DQN algorithm
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Steps and episodes are defined as shown in Fig. 9. Step 
refers to 15-min periods that decide peak power demand. It 
is set for the step to start at 4:00 AM. Episode refers to a set 
of consecutive steps on a daily basis. Episode consists of 
steps until the episode termination condition is met. There-
fore, the step length is different for each episode. In this 
paper, if there is a time period that exceeds the SoC range 
during the operation of energy storage system, control is 
performed until that time and the episode is terminated.

For reinforcement learning, filtered data are used after 
outlier elimination. Two-thirds of total data is randomly 
sampled to be used for agent training and the rest of the 
data are used for verification. 323 days of data are used for 
training and 158 days of data are used for verification.

Among the filtered data used for reinforcement learning, 
daily maximum peak power demand recorded 2,982.8 kW 
and the maximum discharge of energy storage system 
is 200 kW. Therefore, it would be appropriate to target 
2,800 kW. However, if too large a PPeak value is set, the num-
ber of days carrying out discharge will be insufficient and the 
learning may not be carried out properly. Hence, the target is 
set to 2,600 kW so that learning takes place on most meas-
urement days. The penalty is set to 50,000 won(₩) when it 
went out of SoC range constraint. This value is set to a value 
larger than the value obtained by multiplying the maximum 
discharge amount of the energy storage device, 200 kW, and 
the highest rate plan unit price of 189.7 won(₩)/kW, result-
ing in the penalty being set higher than the reward due to 
discharge. The penalty for exceeding peak power demand is 
set to 1,000 won(₩) so that charging and discharging of the 
energy storage system can be performed efficiently. Also, 
the penalty for charging near the peak power demand is set 
to 5,000 won(₩) to prevent the energy storage system from 
charging near the peak power demand.

In this way, the score is calculated according to the learn-
ing agent’s learning of episode. These scores have a differ-
ent demand value for each episode. Therefore, the learning 
agent's level of learning is judged according to the moving 
average of scores instead of individual scores. In this paper, 
it is set to be terminated when the moving average of scores 
exceeds 20,000 won(₩). This takes into an account the case 

of discharging 400 kW which is 89% of total capacity in 
seasons with little difference in rates (spring, fall).

4.2  Learning and Verification Result

Figure 10 shows the learning progress of the reinforce-
ment learning model. It represents the moving average 
scores according to episodes. In the early stage of learning, 
the energy storage system is randomly activated in order 
to accumulate enough data in the replay memory, so the 
episode ends while exceeding the SoC constraints within a 
short period of time and the number of steps in an episode 
is significantly less than in the beginning part of learning. 
The score increased dramatically after learning started and 
we are able to see that it converged toward the target value 
at the 313th episode.

Figure 11 shows changes in peak power demand before 
and after reinforcement learning. The maximum peak power 
demand went from 2,982.4 kW to 2,882.3 kW, which satis-
fied the targeted value of reducing 100 kW. In addition, it is 
trained to reduce the overall electricity pricing by discharg-
ing the power stored in the energy storage system during 
the peak times to reduce the peak power demand on the 
days when peak power demand is over 2,600 kW. While, on 
the days when the peak power demand is under 2,600 kW, 
the system is trained to charge in the morning time, when 
the power unit price is cheaper, and discharge at heavy load 
hours rather than to reduce the peak power demand. Thus, 
the overall daily peak power demand tends to increase in 
days when the peak power demand is lower. This occurs 

Fig. 9  Definitions of step and episode

Fig. 10  Moving average value of scores according to progress of epi-
sodes during learning
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because the energy storage system is set to start charging 
when load exceeds 1,500 kW. On the days when the power 
consumption increases gradually due to low peak power 
demand, it takes about 2 h to fill up SoC. Therefore, it starts 
charging at around 7:00 AM, which is normally during peak 
power demand hours and hence, increases the peak power 
demand. However, an increase in peak power demand does 
not affect overall electricity pricing when the peak power 
demand is low. Hence, the reinforcement learning model 
shows the learning result that reduces overall electricity 
pricing.

Figure 12 shows power consumption graph on the days 
when peak power demand occurred during the entire period. 
When compared with the existing charging and discharging 
scenario to minimize the maximum peak power demand, it 
is confirmed that peak power demand is reduced by starting 
charging at about 6:00 AM and starting discharging at about 
7:30 AM when peak power demand occurred.

Figure 13 shows unit price per time step and ESS SoC on 
the days when peak power demand occurred. Charging started 
at about 6:00 AM and discharging started at about 7:30 AM 
during the peak power demand hours to reduce peak power 
demand. The figure also shows that small charging and dis-
charging is repeated during the medium load and heavy load 
hours to reduce electricity pricing according to electricity pric-
ing rates. And ESS charges and discharges in ways to save 
overall electricity pricing by charging during the medium load 

hours in lunch hours and discharging during the heavy load 
hours in the afternoon.

Figure 14 shows changes in SoC when peak power demand 
did not occur. Spring, fall, and winter seasons have relatively 
lower peak power demand than summer (peal power demand 
is 2,422.8 and 2,425.2 kW respectively). Therefore, charging 
and discharging of the energy storage system is carried out 
in the direction of lowering the electricity pricing rather than 
reducing peak power demand. It is confirmed that charging and 
discharging is generally carried out in the direction of lowering 
the electricity pricing by charging during light load hours or 
medium load hours and discharging during heavy load hours.

5  Conclusion

This paper proposes the optimal charging and discharging 
scheduling algorithm of energy storage system based on 
reinforcement learning to reduce electricity pricing of urban 

Fig. 11  Changes in peak power demand before and after the applica-
tion of reinforcement learning (Unit: kW)

Fig. 12  Power consumption before and after reinforcement learning 
on days when peak power demand occurred (Unit: kW)

Fig. 13  Hourly unit prices and SoC changes on the days when peak 
power demand occurred

Fig. 14  Changes in SoC and hourly unit prices in spring/fall and win-
ter
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railway systems in Korea. To do this, modeling of an urban 
railway system including its energy storage system, electric-
ity pricing rates applied, and changes in rates according to 
actions of the energy storage system are carried out. Rein-
forcement learning agent is also performed to reduce peak 
power demand through DQN algorithm. An energy storage 
device is installed for the purpose of reinforcement learning 
and the actual operating lines data of the urban railway is 
used. For more effective learning, two years data measured 
from real operation lines are preprocessed to present a stand-
ard power consumption pattern, and outliers found out of 
the range of the standard model is eliminated through time 
series comparison.

For the measurement samples, approximately 399 
(45.3%) outliers are eliminated, and 481 (54.7%) normal 
data are extracted and used for reinforcement learning.

Through the reinforcement learning using data from 
actual line operation, the maximum peak power demand 
within the entire period decreased from 2,982.4 kW to 
2,882.4  kW, confirming that the targeted reduction of 
100 kW is successfully accomplished. In addition, it is con-
firmed that the energy storage system operated in the direc-
tion of reducing the overall electricity pricing by discharging 
the power stored in the energy storage system during the 
peak times to reduce the peak power demand on the days 
when peak power demand is over 2,600 kW and by charging 
when the electricity pricing rate is cheaper and discharging 
when the electricity pricing rate is expensive rather than 
reducing the peak power demand on days when the peak 
power is less than 2,600 kW.

The reinforcement learning-based charging/discharg-
ing scheduling algorithm of energy storage system helps to 
derive an optimized charging/discharging scenario in a com-
plex system such as an urban railway, and once the learning 
is completed, immediate results can be derived even if the 
environment changes. It is, therefore, expected to be suitable 
for deriving charging/discharging scenarios for the energy 
storage system in the actual operation lines. However, the 
proposed reinforcement learning model is still under devel-
opment. Thus, future studies with the latest reinforcement 
learning models based on data from various operation lines 
required.
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