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A B S T R A C T   

A microgrid concept is an innovative approach for integrating hybrid and renewable energy sources into the 
utility grid. The uncertainties because of the intermittent nature of renewable energy resources, the load, and 
market price are significant challenges. In the traditional heuristic method, data is forecast but not known 
perfectly. Improving energy storage systems and energy management systems (EMS) development using 
optimization-based methods is a possible solution to improve the performance of microgrid operations. The EMS 
is an essential part of the distributed energy resources in the microgrid system, especially when power gener-
ation, transmission, distribution, utilization, and variable pricing are involved. This optimization process 
developed in this paper uses forecasted costs and loading conditions to store or sell the energy from an integrated 
grid battery system. Two approaches are introduced in this research work: the heuristic method using state flow 
(chart flow) and the optimization method based on linear programming (LP), which minimizes operation costs 
(savings of around 19% cost) subject to operational constraints. The LP optimization saves roughly 3.44–5.01% 
of excess grid energy. Several plausible outcomes of this research study simplify the comprehensive, integrated 
microgrid simulation for EMS optimization algorithm validation. The suggested integrated microgrid manage-
ment system might be a testbed for smart grid technology research.   

1. Introduction 

Nowadays, most countries are focusing on their energy-based in-
dustrial and commercial revolutions. These developments underlay the 
uptake of sustainable and uninterrupted energy production, the first and 
fundamental element. Increasing electricity generation in various 
traditional ways (fossil fuel-based) sometimes leads to unsustainability. 
Scientists and policymakers have to think about the next generation of 
safer technology for human beings and the environment. Using too 
many fossil fuels to generate electricity is harmful to nature because of 
global warming. Therefore, renewable energy harness/utilization and 
proper economic management are prime concerns for energy safety and 
security. Although the renewable source is quickly expanding 
throughout the world, fossil fuels remain the source of the vast bulk of 
global energy consumption. Oil, coal, and natural gas accounted for 84% 
of global energy use in 2020 (Lee et al., 2012). These fossil fuels are not 
inexhaustible, and researchers mention that if fossil fuel burning is kept 
at the current rate, it is generally estimated that all fossil fuels will be 
depleted by 2060 (Gulagi et al., 2020). As a result, there have been few 

international commitments to encourage hybrid or self-sufficient 
renewable generation technology. This endeavor has resulted in the 
spread of renewable energy production’s ability to produce resilient and 
uninterrupted electricity from several renewable energy sources (Yang 
et al., 2019). The biggest challenge is securing and making safer energy 
generation from renewables and utilizing it with a proper and effective 
management system. 

An integrated electrical grid is a network of linked power lines that 
transport energy from renewable generators to consumers. It comprises 
a producing station that generates electricity and substations that scale 
the voltage up or down for transmission or distribution. The rapid in-
crease in the utilization of electrical energy urges low-cost, environ-
ment-friendly electricity generation, transmission, and distribution in 
today’s world. Therefore, smart grid technology has been introduced in 
many parts of the world, which gives advanced automation, communi-
cation, and information technology to the power system that can 
monitor power flows from sites of supply to sites of consumption in real- 
time or near real-time and manage the flow or reduce the demand to 
match generation. Besides, the microgrid concept has become efficient 
and effective for isolated (islands) areas, which gives a collection of 
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interconnected loads and dispersed energy resources (solar, wind en-
ergy, or other renewables) that operate as a single controlled entity in 
reference to the grid. A microgrid may connect to the grid and discon-
nect from it, allowing it to function in grid-connected and island modes 
without any significant changes (Singh and Lather, 2021). The primary 
issues are uninterrupted power balancing from generation to 
demand-side, advanced operation, monitoring, and energy manage-
ment. Hence, the energy management system (EMS) is referred to as an 
intelligent control system designed to reduce energy consumption, 
improve the utilization of the grid system, predict electrical system 
performance, increase reliability, advance demand-side management, 
provide accurate forecast information for renewable energy storage, and 
optimize energy usage to reduce cost. It provides optimum information 
for transmission operators with greater insight into transmission net-
works and sub-transmission power flow paths, with the capability to 
monitor them either as a standalone/island system or as a fully inte-
grated microgrid. For state estimation analysis, load flow, power flow, 
fault calculation, energy storage, contingency analysis, performance 
indices, optimal topology change, and voltage stability applications, 
EMS allows utilities to visualize better, operate, optimize, and maintain 
transmission and sub-transmission networks. 

There are three distinct EMS techniques available: on-grid, off-grid, 
and hybrid EMS. In both on-grid and off-grid EMS, only one dependent 
EMS unit delivers functional analysis and control info on all distributed 
energy resources inside microgrids. Although, the generation balance 
and demand-side management of the on-grid and off-grid are more 
complicated because of their dependence on various control and 
communication mechanisms. Furthermore, on-grid and off-grid man-
agement have a single point of failure, and a problem in an on-grid unit 
would bring the whole system to collapse (Sachs and Sawodny, 2016). 

So, the EMS in energy conversion, generation, and energy storage must 
be sustainable and efficient. Besides, the integrated EMS of hybrid 
microgrids has many advantages over on-grid and off-grid EMS. The 
integrated microgrid’s numerous control systems ensure efficient power 
transmission. As a result of its ability to overcome the limits of both 
on-grid and off-grid EMS, it is gaining appeal. The quick forecast of 
energy scheduling with generation to load balance is one of the signif-
icant benefits of integrated microgrid EMS (Bui et al., 2018). In the in-
tegrated EMS, the microgrid power production planning model and load 
forecast model are always independently maintained and seldom in 
synchronism. A consistent user interface also makes the transition from 
planning to operations of information regarding power system man-
agement much more straightforward. The intermittent renewable 
energy-producing units, conversion units, transmission units, and the 
behavior of different loads at various points in the microgrid (Sahoo 
et al., 2018) all influence the integrated EMS design (Michaelson et al., 
2017); this necessitates a great deal of research and technical attention 
in this sector. 

An integrated microgrid system has gotten much attention in the last 
decade, and it has been used in a variety of places, including residential 
areas, academic campuses, commercial areas, military sites, industrial 
locations, and distant islands (da Silva et al., 2020). It can promote high 
penetration of distributed energy resources, increase energy efficiency, 
and improve grid resilience and dependability as one of the essential 
components of the smart distribution grid. Many academics have been 
drawn to the optimal functioning of EMS through the lowering of power 
production costs, utilizing the maximum energy generation, effective 
demand-side management, and market-clearing prices through the 
greater usage of the renewable energy-based microgrid (Tabar et al., 
2018). Many experimental studies are focused on building distributed 

Nomenclature 

Acronyms 
PV Photovoltaic 
EMS Energy Management System 
ESS Energy Storage Systems 
DG Distributed Generation 
DER Distributed Energy Resources 
BIPV Building Integrated Photovoltaics 
STC Standard Test Conditions 
SCADA Supervisory Control and Data Acquisition 
NPC Net Present Cost 
COE Cost of Energy 
LCOE Levelized Cost of Electricity 
SoC State of charge 
DoD Depth of discharge 
LP Linear Program Optimization 

Symbols 
CPVG,i Cost of each solar system generation unit 
IBatt,char(DC) Battery charging current 
HT Total Horizontal irradiance on PV array plane (Wh/m2) 
GSTC Global irradiance at STC (W/m2) 
a,b, c,d,e Different microgrid components approx. size 
f1, f2, f3 Different microgrid components approx. Weights 
emis,GHG Amount of Greenhouse Gas (GHG) e.g., CO2, CO, etc. 

emitted by the microgrid 
Ctotal,year Yearly Total Cost (USD) 
Ptotal def Total deferrable load 
Egrid,sales Yearly energy sold to the grid 
CRF Capital recovery factor 
i Yearly interest rate 

CBatt(min) Minimum charging capacity of the battery bank 
Pin Input power 
Pmax Output maximum Power 
EA PV Array’s DC energy output (kWh) 
Pload Load or output power (W) 
PPV(total) Rated/installed capacity of the integrated solar PV plant 
VDC DC or Battery voltage (nominal) (V) 
t Backup duration or time in hours 
IDC DC current (A) 
EPV(AC) Energy generated and injected into grid (kWh) 
It Cost of initial investment 
(O&M)t Yearly (t) operation and maintenance expenditure 
r Discount rate (%) 
Et Yearly (t) electrical energy generated (kWh) 
n Yearly (t) lifetime of PV system 
Pnominal Nominal power at STC 
YA Array Yield (h/d) 
YR Reference Yield (h/d) 
NBatt(max) Maximum battery banks required 
NBatt(min) Minimum battery banks required 
Vload(max) Maximum load voltage tolerance (%) 
Vload(min) Minimum load voltage tolerance (%) 
Veodv End of discharge voltage 
PPVG,i Quantity of power produced when the cost of each solar 

system production unit is kept as low as possible 
EDC Total designed energy over autonomy (VAh) 
kaf Battery Aging Factor (%) 
ktcf Temperature Correction Factor (%) 
kcrt Capacity Rating Factor (%) 
kmdod Maximum depth of Discharge (%) 
ksc System Efficiency (%)  
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energy resources and integrated microgrid optimization-based EMS 
systems that employ classical heuristic methods to govern integrated 
microgrid operation (Bellido et al., 2018). This technique requires time 
to adapt to the microgrid’s stability, control system robustness, and 
operational economics. Traditional heuristic approaches cannot simply 
be managed up to a medium-sized or large-scale integrated microgrid 
because each distributed energy resource must be adequately developed 
and operated for stability and economic analysis (Aghdam et al., 2018). 
Optimization-based programming (Rabiee et al., 2018) and artificial 
intelligence EMS (Li et al., 2021) has gotten much attention in the field 
of integrated microgrid control and economic analysis in recent years. 
Such control techniques are generally straightforward for medium-sized 
or large microgrids. In 2013, an intelligent EMS for a microgrid was 
presented, which uses artificial intelligence and multi-objective opti-
mization methods based on linear programming to decrease the oper-
ating cost and environmental effect of a microgrid (Chaouachi et al., 
2013). With the help of a multiperiod artificial bee colony combined 
with the Markov chain method, an optimal EMS is proposed for islanded 
microgrids in 2015 which is quite cost-effective (Marzband et al., 2017). 
Researchers suggested a mix-mode energy management strategy in 
2016, focusing on battery size to keep the microgrid running at the 
lowest feasible cost (Sukumar et al., 2017). For optimization, linear 
programming and mixed-integer linear programming are utilized. The 
particle swarm optimization formula is used to find the best energy 
capacity of battery energy storage in kWh for battery size reasons. 

In 2017, some researchers have suggested an optimally scheduled 
hybrid AC/DC microgrid generation EMS system, which minimizes the 
islanded microgrid operational cost for various DG units (Nagapurkar 
and Smith, 2019). This system was run by receiving and sending forecast 
data to DG units to ensure optimum power each time. Besides, based on 
a regrouping particle swarm optimization energy management formula 
for economic operation is proposed for an industrial microgrid (Gomes 
et al., 2019). This system is also cost-efficient for both isolated and 
grid-connected loads. In 2018, comparative and critical research on 
decision-making techniques for microgrid energy management systems, 
as well as their solution approaches, will be conducted (Zia et al., 2018). 
There are various uncertainty quantification methods of EMS discussed 
which are cost-effective implementation of microgrid EMS. For the 
installation of renewable energy microgrids, the EMS provides accurate 
information on energy storage as well as demand response (Robert et al., 
2018). A building microgrid EMS has been proposed to limit the quan-
tity of power and heat traded with the external system (Bui et al., 2019). 
The strategy can maximize internal energy trading strategies for opti-
mum hierarchical energy management of integrated cooling, heat, and 
power. In 2019, a Double Deep Q-Learning-Based distributed manage-
ment approach for controlling the movement of a residential microgrid 
battery storage system was developed (Bui et al., 2020), which can cope 
with system uncertainties in both on-grid and off-grid scenarios. One of 
the most developing disciplines is load balancing in sustainable EMS for 
a resilient and reliable power grid (Yang et al., 2019), which includes the 
active performance of hybrid microgrid energy storage in batteries 
(Kumar et al., 2020). With the increase in the efficient usage of batteries, 
battery energy management, and demand-side management has come to 
the foreground. With the proper development of battery energy man-
agement, the stored energy will be used in electric vehicles at a low cost 
(Tete et al., 2021). In 2021, some researchers proposed an energy loss 
reduction of the hybrid microgrid system with low-cost battery system 

management where a reinforcement learning-based EMS is applied 
(Rahim et al., 2019). Energy storage technologies include electro-
chemical and battery energy storage, thermal energy storage, thermo-
chemical energy storage, chemical, and hydrogen energy storage 
(Shehzad Hassan et al., 2019), and storage energy management is crit-
ical to improving the safety, reliability, and cost-effective performance 
of storage (battery) systems (W. C Li et al., 2020). Using an efficient 
EMS, the Lead batteries, Li-ion batteries, sodium-sulfur batteries, flow 
batteries, and supercapacitors are all well-known in the automotive, 
residential, and industrial markets, and have been successfully used for 
utility energy storage (Dubarry et al., 2019). In the integrated microgrid, 
generally, four types of management and operational concern are very 
much important.  

• Power Quality:On a short-term basis, generation, power quality, 
frequency, and active/reactive power balance must be maintained 
inside the microgrid.  

• Planning: Energy generation, supply, and storage must be carefully 
designed in relation to microgrid load demand and long-term energy 
balance. 

• Metering and Protection: Microgrid controls should include meter-
ing, control, and protection capabilities based on the SCADA.  

• Economic Performance: Generation schedules, economic dispatch, 
and efficient power flow procedures should all be used to guarantee 
cost-effective operation. 

If power quality, proper planning, metering, protection, and eco-
nomic analysis and control are accurately maintained, then the opera-
tion of an integrated microgrid system will benefit in different aspects. 

In this research work, a microgrid EMS is developed using linear 
programming optimization methods. Compared with the traditional 
heuristic method, the optimization method has less complexity and is 
easy to operate. This method gives a fast analysis response of controlling 
and reducing the energy consumption of residential areas or houses or 
buildings. This method gives accurate control information about the 
planning and operation of energy generation and various consumption 
units. Linear programming optimization has been applied to the inte-
grated microgrid (building, residential, university, factory, commercial, 
etc.) energy management. This EMS performs in a specific selective way, 
which is set by the operator (Fig. 1). Firstly, it collects and checks the 
plant’s capacity, generation, load demand, forecast cost, etc. informa-
tion. Then, it evaluates the demand response and analyzes the efficient 
operation of demand-side management. After analyzing the possible 
efficient operation, it gives control permission for the final operation. It 
also monitors every single data of operation and it also re-checks every 
single step for cost-efficient decision making. The suggested optimum 
EMS may be implemented using either a single-interval day-ahead 
economic dispatch model or a multiple-interval day-ahead economic 
dispatch model for distributed energy resource scheduling. The linear 
programming technique will be used to initiate, monitor, and regulate 
solar energy generation, different load projections, and battery energy 
storage information using the single interval day-ahead mode. This 
optimization produces a distributed energy resource scheme for each 
hour the following day, which is then deployed through economic 
dispatch the following day. The weather variation and the erratic 
behavior of solar PV systems are monitored and studied using data from 
an automated meteorological measurement center. This will aid in the 
control of variable load forecasts and the implementation of effective 
demand-side management. When the solar system provides less power 
than demand, the energy storage system will support the different loads, 
and the grid feed-in mode will activate, allowing energy from the central 
grid to be injected into the integrated microgrid. In real-time, the day- 
ahead mode provides cost-effective and efficient energy management. 

This research work aims to model and analyze a 10 MW solar PV and 
battery-based integrated microgrid system. The traditional heuristic 
method and linear programming optimization method-based EMS have 

Fig. 1. Energy management system (EMS) basic feedback diagram.  
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also been developed to compare their performance in integrated 
microgrid management. Therefore, a cost-effective EMS is proposed to 
maintain the energy balance between the solar-based generation and the 
variable load sides. The main objectives of the proposed linear pro-
gramming optimization-based EMS are to maximize the output power of 
solar energy, minimize the operating costs, increase the lifetime of the 
energy storage system, and ensure uninterrupted power operation and a 
clean environmental balance. Therefore, the suggested renewable-based 
integrated microgrid system can be tested with efficient, optimized en-
ergy management systems in a real-time environment. 

The significant contribution of this research work is the development 
of a constrained linear program-based optimization approach in 
renewable energy and battery-based integrated microgrid energy man-
agement. To assess the performance of the suggested EMS, a comparison 
between the proposed optimum linear programming technique and the 

conventional heuristic approach is shown. The MATLAB Simulink 
simulation results proved the cost-effectiveness and better performance 
of the proposed linear program-based optimization approach by 
comparing it with the heuristic approach using state flow machine logic/ 
strategy. 

The rest of the paper is organized as follows. Section 2 illustrated the 
description and performance indices in detail of the evaluation of solar 
PV and battery-based integrated microgrids. Section 3 described the 
overall methodology, system modeling, control, and operation tech-
niques for performance analysis of integrated microgrid energy man-
agement. Following that, the simulation experiments on the microgrid 
EMS, result analysis, and key findings are discussed in Section 4. Lastly, 
the conclusions and outlook are presented in Section 5. 

Fig. 2. Suggested solar/battery-based integrated microgrids.  

Fig. 3. (a) Power flow diagram of integrated grid system, (b) basic diagram of integrated microgrid EMS.  
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2. Description and performance indices of integrated microgrid 
energy management system 

Fig. 2 represents the suggested smart integrated grids, where the 
combination of roof-top PV, Agro-PV, dual-axis ground-mounted PV, 
and BIPV system makes a smart solar energy hub. In the integrated grid 
system, the distribution network is connected to the AC bus via circuit 
breakers, and the AC bus controls the microgrid operation system 
through the circuit breaker at the point of common coupling (PCC). 
Different solar-based DGs, and ESSs are connected to the DC bus. 
Various loads (e.g., residential, commercial, industrial, hospital, 
educational, agricultural, religious and charitable organizations) are 
connected to the AC bus (Fig. 3). The integrated grid system is inter-
connected to the central AC grid via PCC. Because of the intermittency 
behavior of the solar system, the ESS plays a massive role in feeding 
power into the integrated AC grid when needed. Therefore, the opti-
mized control of ESS is a very critical and prime concern. Though it is a 
multi-DG microgrid, several DGs are present, so coordination and con-
trol of DGs are pretty complex. Depending on the capacity and demand 
parameters, the integrated grid will be able to apply as a corporate, 
feeder area, substation area, or independent microgrid mode. The pre- 
required mode will be assigned according to different consumer de-
mands by smart EMS’s control and monitoring unit. 

2.1. Various performance indices of integrated solar system 

The energy produced by suggested different solar systems PAC, YA,

YR, YAll, PRY , ηinverter, PPV(total), CUF, ηsys(day) and LCOC parameters are 
some of the worldwide performance criteria and standards used in 
assessing the performance of integrated PV systems. These performance 
indices describe integrated solar power plant productivity and make it 
easier to evaluate the characteristics of different solar systems depend-
ing on geography and seasonal variations, accessible solar irradiation 
data monitoring and analysis, grid integration, smart energy-efficient 
innovation, production of renewables, and cost-effective energy 
management. 

Geography and Seasonal Variations: Bangladesh is a country in 
South Asia, bounded on the east, north, and west by India and on the 
south by the Bay of Bengal. Due to its location in the foothills of the 
Himalayas, the climate and temperate is quite noticeable here. As a 
result, there are six seasons throughout the year, but summer, monsoon, 
and winter are the three most significant seasons. Naturally, the total 
solar radiation in summer is more than 11 h per day, while the monsoon 
and winter seasons have around 8 h per day. Therefore, the suggested 
system is assumed to have average solar radiation, where the solar 
power generation duration is around 7 h per day. 

Data Monitoring and Analysis: The Surface Solar Radiation Data-
base - SARAH, provided by the Photovoltaic Geographical Information 
System (PVGIS) of the joint research center of the European Commission 
was used to determine the photovoltaic measurement sites. The PVGIS 
provides accessible solar radiation data (W/m2) for the USA, Europe, 
Africa, and Asia and can be accessed via this link (http://re.jrc.ec.europ 
a.eu/pvgis.html). Besides, the sun’s irradiance, weather conditions, and 
wind pattern statistics are recorded at a shared automated meteoro-
logical measuring center near the integrated microgrid. A central server 
also uses the SCADA approach to analyze the observed statistics. 
Generally, on a minute or hourly basis, the server tracks the various solar 
PV panel data (e.g., current, voltage, efficiency), monitoring sensors 
data, power quality, inverter performance, other device performance, 
and inverter through busbar data. It sends the observed data files 
regularly, and the data is retrieved by the server. In a control booth, the 
server and SCADA system is kept. From those center, experimental solar 
radiation data is collected for Raozan (22.5349◦ N and 91.9104◦ E) in-
tegrated microgrid, Chattogram, Bangladesh. This solar radiation data is 
tested at STC in the Solar Lab, Institute of Energy Technology, 

Chittagong University of Engineering and Technology, Raozan-4349, 
Chattogram, Bangladesh. 

Solar System Indices: The STC is determined by the 25 ◦C ambient 
temperature and 1 kw/m2 solar irradiation. The solar radiation data 
provide global irradiance data (W/m2) for a horizontal surface, for an 
optimal inclined surface, and for a dual-axis sun-tracking surface for 
daily, monthly and annual averaged. For the analysis, the daily solar 
irradiance data (clear day and cloudy day radiation data) on an opti-
mally inclined surface is used, as the measuring stations is optimally 
aligned. Solar panel efficiency is denoted by, 

ηPV =
Output electrical energy per second
Incidned light energy per second

=
Pmax

G or Pin(irra)
=
ISC × VOC × FF
G or Pin(irra)

(1) 

Here, the short circuit current (ISC) is calculated when no-voltage is 
dropped across the circuit. It is depends on solar cell technology, solar 
cell area and amount of solar radiation in a perticular time. The open 
circuit voltage (VOC) is calculated when no-current flows through the 
solar circuit. It is depends on solar cell technology and solar cell tem-
perature. The Fill factor (FF) is indicate the quality/condition of solar 
cell. If its FF value is high, solar cell quality is better. The value of FF lies 
between around 0.8 to 0.9. The avg. global/measured irradiance value 
for this solar PV cell at STC is, G or Pin(irra) = 1000 W

m2 = 1 kW
m2 . Solar PV 

panel having, ISC = 355 A
m2,VOC = 0.74V, FF = 0.81. So, ηPV =

355×0.74×0.81
1000 × 100 = 21.28%. Therefore, the proposed solar PV panel 

area in this experimental microgrid area (APV) is around 2650 m2, and 
the panel array efficiency is = 21.28%. 

The time it takes for the PV panel to perform with optimum solar 
generator power to provide an array’s DC energy output (EA) each day is 
referred to as array yield (YA). The ratio of the entire in-plane irradiation 
(HT) and the PV’s reference irradiance (G) is defined as the reference 
yield (YR). It denotes the best possible circumstances for obtaining solar 
energy. It reflects the amount of peak solar radiation (sun hours) in kW 
h/m2 at STC global irradiance. The solar radiation availability for the PV 
system is also characterized by it at STC. It depends on the location, the 
PV array’s orientation, and weather variations from month to month and 
year to year (Shiva Kumar and Sudhakar, 2015). The ratio of the sys-
tem’s daily, monthly, or yearly net AC power production and the 
installed PV array’s peak power at STC is referred to as the overall yield 
(YAll). It also approves different solar systems in a given region to be 
evaluated (Gong et al., 2020). The overall yield and reference yield ratio 
are referred to as the yield performance ratio (PRY). The correlation 
between real and theoretical system performance is described by PRY (C. 
W Li et al., 2020). It is calculated as the comparison of actual outcomes 
to the output that the plant might have attained if module technology, 
size, radiation, panel temperature, temperature adjustment values, 
mounting system, space area, grid accessibility, and nominal power 
output are all considered (Tang et al., 2021). 

YA=
EA

Pnominal
=
VDC × IDC × t
Pnominal

(2)  

YR=
HT
GSTC

=
kWh
m2

kW
m2

(3)  

YAll=
EPV(AC)
PG,max(STC)

=
kWh
kWpday

(4)  

PRY =
YAll
YR

(5) 

Integrated Solar System Indices: The monocrystalline solar panels 
are used in the dual-axis ground-mounted system (7 MW) and roof-top 
system (1 MW), besides approximately 20% transparent BIPV (Thin- 
Film) panels are used in the BIPV system (1 MW) and Agro-PV System (1 
MW). Therefore, the total integrated solar system generation capacity is 
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about 10 MW. Their combined efficiency is calculated at around 
21.28%. There are different types of loads connected to the smart grid, 
mainly divided into different types: residential (fixed load), commercial, 
industrial, hospital, educational, agricultural, and other loads. The daily 
load curve is analyzed in result part. The forecast grid load or base-load 
is assumed to be 3,600 kW, and the pick-load is around 400 kW. 
Therefore, the total load is calculated at around 4,000 kW (See Table 1). 
The heuristic and linear optimization approaches are applied to the load 
for efficient energy management. There is a combination of four 2 MW 
inverters used, which makes an 8 MW three-phase inverter bank. The 
following equation determines the amount of battery current or DC 
current (IDC) required to fully operate an AC load of 4,000 KW. The ratio 
of the output AC power provided by the inverter to the input DC power 
generated by the integrated PV array system is referred to as the inverter 
efficiency (ηinverter) (Zhang et al., 2021). 

Pload =VDC × IDC (6)  

ηinverter =
PAC
PDC

(7) 

Energy Storage System Indices: Due to its intermittent nature 
generated solar energy must be stored in strong cascaded battery banks 
(Lithium-ion). The storage system is very important for proper demand- 
side management. Suggested integrated microgrids backup storage ca-
pacity (days of autonomy) is around one day. About 250 Ah ranged 
single battery (Battsize(single)) bank is used for better performance. 
Generally, total battery bank size (Battsize(general)), Lithium-ion battery size 
Battsize(li− ion) and Single battery bank capacity, Battcap(single) is determined 
by (Xie et al., 2021), 

Battsize(general) =
Pload × t
VDC

(8)  

Battsize(li− ion) =
100 × IDC × t

100 − Q
(9)  

Battcap(single) =Battsize(single) × VDC (10)  

Battcap(total) =Battcap(single) × NBatt(single) (11) 

In a single li-ion battery, VDC is selected as 48 V, then Battcap(single) is 
calculated as 12 kWh. The number of single battery banks, NBatt(single), is 
measured as 210 times the capacity of Battcap(single) to create the total 
battery bank capacity, Battcap(total). Therefore, Battcap(total) is calculated as 
around 2,520 kWh. Generally, the daily load profile of the battery bank 
is utilized by the autonomy (backup time) method, which is also known 
as the battery bank characteristics. Those different characteristics are 
given by the datasheet of the manufacturer, which are temperature, 
ampere-hour capacities, float voltage, total charge li-ion electrolyte 
density, and cell end-of-discharge voltage type battery bank data. The 
number of battery banks necessary can be determined with greater 
precision to better match the load tolerance (Jordehi et al., 2020a). The 

ratio of battery banks planned to be connected in series or parallel 
should lie between the following two limits: 

NBatt(max) =
VDC

(
1 − Vload(max)

)

VDC
(12)  

NBatt(min) =
VDC

(
1 − Vload(min)

)

Veodv
(13) 

To accommodate the load over the defined autonomy, a minimum 
charging capacity in ampere-hour (Ah) of the battery bank is necessary 
(Cao et al., 2021). The amount of uninterrupted DC current required to 
charge the 2,520-kWh battery bank is defined as the battery bank 
charging current. At the same time, the amount of DC current required in 
the solar panel to adequately run the load and charge the battery is 
defined as the solar panel’s total current (IPV(total)). 

CBatt(min) =
EDC

(
kaf × ktcf × kcrt

)

(VDC × kmdod × ksc)
(14)  

IBatt,char(DC) =
1
10

th

of Battcap(total) (15)  

IPV(total) = IDC × IBatt,char(DC) (16) 

Total solar system power (PPV(total)) or installed capacity of the plant 
identified by, 

PPV(total) =VDC × IPV(total) (17) 

Other Indices of Integrated Solar System: The capacity utilization 
factor (CUF) is the difference between the plant’s actual output energy 
and its potential maximum output energy if it will run at full strength 24 
h a day or 365 days a year (Bansal et al., 2021). The CUF is determined 
by incident irradiance, weather, the number of clear bright days, the 
number of gloomy wet days, grid integration, and energy storage tech-
nology used (Allouhi et al., 2019). The LCOE is directly affected by CUF. 

CUF=
EPV(AC)

365 × 24 × PPV(total)
=

YAll
365 × 24

(18) 

The daily PV module efficiency multiplied by the daily inverter ef-
ficiency represents the daily solar PV system efficiency (ηsys(day)). It also 
indicates the ratio of the energy fed into the integrated grid to the 
irradiation accessible across the whole solar PV system area (Daneshvar 
et al., 2020). Internal PV cell efficiency, inverter and transformer per-
formance, wire losses, system unreliability, and other factors all have an 
impact on it (Gazijahani et al., 2020). 

ηsys(day) = ηPV(day) × ηinverter(day) =
EPV(AC)

APV × Pin(irra)
=
EPV(AC)
APV × G

(19) 

The price of one unit of energy supplied in USD/kWh is known as the 
LCOE. It is a metric for comparing the cost-effectiveness of several power 
generation systems. It is calculated by dividing the entire cost of 
establishing, administering, and servicing the PV system by the total 
electricity produced throughout the project’s lifetime (Sedighizadeh 
et al., 2020). The yearly O & M expenses encompass the annual moni-
toring, maintenance, repair, replacement, labor costs, and renewal pri-
ces of different types of equipment, such as proposed PV modules, 
mechanical supports, connecting cables, bypass diodes, three phase in-
verters banks, battery banks, protectors, etc. costs. 

LCOE=

∑n
t=1

{
It+(O&M)t

(1+r)t

}

∑n
t=1

{
Et

(1+r)t

} (20) 

Evaluating deterioration processes and fault detection involved with 
PV panels in their surroundings is critical for ensuring the long-term 
dependability of solar PV systems (Chen et al., 2020). The yearly en-
ergy degradation rate is affected by a variety of factors, including 

Table 1 
Installation component specification of integrated microgrid system.  

Component Specifications 

Solar Block Total experimental microgrid area (APV) is around 2650 m2, where 
ground-mounted, roof-top, BIPV, and Agro-PV solar systems are 
around 7, 1, 1, and 1 MW, respectively. 

Inverter 
Bank 

About 8 MW three-phase inverter bank is used (Four single-inverter 
capacities are each 2 MW). 

Storage Bank Structure of simplified battery properties, Energy storage rated 
capacity, Battcap(total) = 2, 520 kWh. 
Battery Min Discharge Rate, Pmin = − 400 kW.

Battery Max Charge Rate, Pmax = + 400 kW.

Various Load Around 4,000 kW (including residential, commercial, industrial, 
hospital, educational, agricultural, religious, and charitable 
organizations load).  
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obtainable direct solar radiation, weather conditions, moisture levels, 
implemented PV technology, PV producer, PV module alignment, soil-
ing, mechanical support, the direction of wind patterns, systematic er-
rors, measured failure modes, methodological approach, analytical 
operation, and so on (Moazeni and Khazaei, 2020). The integrated solar 
system’s yearly deterioration is determined by the classical decom-
position/linear regression (regression coefficients such as 
aslope and bintercept of linear trend ) statistical method or the maximum energy 
observed method (Cortés et al., 2020). 

Degradationyear = 100 ×

{
12 × aslope

bintercept of linear trend

}

=
100 ×

(
Pnominal − Ppresent

)

Pnominal × Age of operation
(21) 

Generally, the power produced by the PV system is monitored 
throughout the three-phase inverter output endpoints every minute, 
which is recorded and analyzed for energy management. Those experi-
mental data sets are essential for energy efficiency analysis. It is speci-
fied as the total hourly or daily recorded AC power output, giving the 
monthly AC power generation, distribution, and utilization analysis. 

2.2. Optimal process and measurements of integrated solar system 

Several pre-required optimization factors must be addressed to attain 
the appropriate sizes and numbers of each power-generating integrated 
unit. HOMER provides an optimal COE and NPC for a solar-based inte-
grated system. These metrics provide an accurate economic assessment 
of the microgrid’s operation (Aghdam et al., 2020). The combined 
electricity produced by each resource must be larger than or equal to the 
integrated microgrid’s maximum demand, various losses and energy 
storage (Naik et al., 2021).   

min
emis, f3 ∈ N◦

(
f3
(
emis,GHGmicrogrid

)
)

(24)  

min
f1, f2, f3 ∈ N◦

(f1LCOETotal+ f2NPCTotal+ f3GHGTotal) (25)  

COE=
Ctotal,year

Ptotal load + Ptotal def + Egrid,sales
(26)  

NPC=
Ctotal,year

CRF
(
i,Lmicrogrid

) (27)  

Ptotal max power generation> Ptotal load + Ploss + PBatt (28) 

The economic dispatch schedule provides the output price of all 
available solar generating units in the power system for better optimi-
zation. All generated electricity must be equivalent to the electricity 
demand in order for the solar system to retain its maximum and lowest 
limits (Dey et al., 2021). 

PminPVG,i
∑

i
CPVG,i PPVG,i (29)  

Where, Pmin
PVG,i ≤ PPVG,i ≤ Pmax

PVG,i and. 
∑

i
PPVG,i = Ptotal load 

2.3. Energy management system of integrated microgrid 

Distributed Energy Resources (DER): Microgrid (heterogenous 
energy resources) equipped with energy storage methods presents the 
idea of DER management. It simplifies the reduction of the generation, 
transmission, distribution, operation costs, peak load, and environ-
mental pollution. By offering customers access to real-time information 
and control, the EMS enables active consumer engagement. It also 
provides the capacity to quickly recover from physical or cyber-attacks 
(Kermani et al., 2021). Microgrids are an attractive alternative for 
distributed power systems because they integrate renewable energy 
resources and information and communication technology (ICT) (Kumar 
et al., 2021). The DER are power generation units situated within the 
electrical distribution system area or near the end-user (Jordehi et al., 
2020b). 

The control methods of DER are distinguished in a proposed inte-

grated microgrid by their interface characteristics (input and output 
behavior) in real-time observation. The generation control system is 
divided into rotary DG units and electronic-coupled DER units. Initially, 
different solar systems are connected to the electronic-coupled DER 
units of the microgrid. The electronically-coupled DER units use power 
electronics converters and three-phase inverters to match their various 
features, power production patterns, and energy storage conditions. The 
control system for DER units is built within the integrated microgrid 
management based on the needed functions and likely operational 

Table 2 
Difference between heuristic method and optimum linear programming method.  

Heuristics method Optimum linear programming method 

A heuristic strategy is a problem-solving strategy that employs a practical 
strategy in limited timeframe. 

Optimization is the process of finding the minimal or greatest value of a function by choosing 
variables, subject to constraints. 

Heuristic methods achieve an immediate goal but not necessarily an optimal 
solution. 

The challenge of supply chain scheduling and planning lies at the heart of an optimization strategy. 

These methods are unable to implement an optimal solution (Mansouri et al., 
2021). 

There are several linear programming techniques to solving optimization issues. 

Main advantages of using a heuristic method are that it provides a rapid 
solution/answer that is simple to understand and implement. 

The primary benefit of optimization approaches is that they deliver the best feasible solution to a 
given planning and scheduling problem (Yassuda Yamashita et al., 2021). 

Better output in a short length of time, that makes real-time operational 
settings easier. 

Optimization is a natural choice since solution quality is typically a significant success element for 
tactical and strategic supply chain optimization decisions (De et al., 2021).  

min
a. b, c, d, f1 ∈ N◦

(f1(a, LCOERTPV + b, LCOEAPV + c, LCOEGMPV + d,LCOEBIPV + e, LCOEBatt)) (22)  

min
a. b, c, d, f2 ∈ N◦

(f2(a,NPCRTPV + b,NPCAPV + c,NPCGMPV + d,NPCBIPV + e,NPCBatt)) (23)   
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circumstances. The DER units of the suggested integrated microgrid can 
operate as a grid-forming unit, grid-feeding unit, or grid-supporting unit 
mode when necessary. When the microgrid is in island mode, a grid- 
feeding unit regulates system voltage and frequency by balancing gen-
eration power and load needs. The grid-feeding unit is active when 
adjusting the output active and reactive power based on power dispatch 
techniques or the feeder frequency and voltage fluctuations of the load. 
Besides, the grid-supporting unit is available when it is controlled to 
extract maximum active power and appropriate reactive power from its 
primary energy source to support grid voltage sags and local reactive 
current demands. 

Selection of Optimization Techniques for Energy Management 
System (EMS): It includes modules for human machine interfaces 
(HMI), control, and data collecting, among other things, so that it con-
trols automated energy demand-response system and overall system 
optimization over individual optimization (like energy saving, reduction 
of CO2 emission, cost reduction, etc.) (Lee et al., 2016). Minimizing the 
cost of the system and reducing its negative impacts require optimizing 
the size of the microgrid components and implementing an efficient 
EMS. The EMS is primarily integrated with optimization to assure load 
supply continuity and to decrease the cost of energy generation, pro-
duction to distribution costs (Mosa and Ali, 2021). As a result, the EMS is 
a strategy that analyzes all of the systematic procedures for controlling 
and reducing the amount and cost of energy utilized to meet the needs of 
a certain application. The EMS is mostly determined by the type of 

energy system and the components that make it up. To build an effective 
EMS, various optimization techniques have been applied, where 
near-optimal design variables based on non-conventional techniques (e. 
g., heuristics, meta-heuristics, genetic algorithms) and optimal design 
variables based on conventional techniques (e.g., iterative mathematical 
programming, linear, non-linear, and dynamic programming) are most 
of them (Ahmadi and Rezaei, 2020). Iterative mathematical optimiza-
tion, often known as mathematical programming, is a sophisticated 
analytical methodology for solving complicated microgrid problems and 
making better use of given resources and data. Both linear programming 
optimization and heuristic solutions aim to find the optimal answer, but 
their outcomes are often dramatically different. Some benefits and 
drawbacks of them are attached in Table 2. According to empirical data, 
linear programming optimization techniques are far superior to heu-
ristic methods (See Fig. 4). Linear programming optimization techniques 
have quick optimization tools and techniques for integrated microgrids, 
such as data analysis, data processing, simulation, control, decision 
making, and optimum management models for hybrid systems of energy 
generation. Those strategies aid in justifying the expense of a microgrid 
investment by allowing for cost-effective and predictable resource 
consumption. 

2.4. Control of SoC and DoD for Battery Storage Management 

The SoC of an electric battery is the amount of charge it has in 
relation to its capacity. It is measured in percentage points (0 percent 
equals empty, 100 percent equals full). Besides, the DoD is a different 
way of measuring the same thing (SoC). The DoD is exactly opposite of 
SoC (100 percent equals empty and 0 percent equals full). The SoC is 
most important and commonly seen in this integrated microgrid system 
when discussing the lifetime of a battery after repeated usage, whereas 
DoD is most typically seen while discussing the current status of a bat-
tery in operation (See Fig. 5). 

3. Methodology and modeling for performance analysis 

The recommended solar/battery-based integrated microgrid 

Fig. 4. Working flow of proposed microgrid energy management system.  

Fig. 5. Flowchart of SoC and DoD for battery storage management.  

Fig. 6. (A) Daily load duration curve without solar energy storage, (b) peak demand shift using energy storage in traditional EMS.  
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modeling is illustrated in Fig. 2 based on the installation component 
specifications of Table 1. One whole day is chosen to collect and analyze 
different critical data for three seasons (summer, monsoon, and winter). 
Summer is characterized by long, bright days with average solar radia-
tion of more than 11 h each day. Furthermore, owing to occasional rains 
during the monsoon season, certain variations in the sunshine may be 
seen. As a result, solar radiation is measured for about 7 h every day. On 
the other hand, winter has about the same amount of solar radiation as a 
cloudy day, with roughly 7 h of solar radiation due to the cold tem-
perature. As a result, this experiment counted both the monsoon and 
winter seasons as the same kind of season and the same solar radiated 
day. The solar PV system only creates electricity when the sun shines 
throughout the day. Produced solar energy is immediately injected into 
the grid in an integrated microgrid system. Compared to evening and 
nighttime demand, daytime load demand is exceptionally modest. As a 
result, excess solar electricity must be stored to meet peak load demands. 
As a result, advanced EMS is necessary for quick load demand-side 
response. A significant percentage of excess energy is wasted when a 
renewable energy storage system is not accessible in an integrated 
microgrid due to inefficient energy management. However, effective 
microgrid EMS provides the highest results and renewable energy sav-
ings. This section discusses the advantages of successful EMS. 

Peak demand without solar energy storage (without EMS): Renewable 
energy (solar, wind) systems are directly linked to the grid in a con-
ventional grid system. Due to the lack of energy storage technology, a 
large quantity of surplus renewable energy is squandered, as seen in 
Fig. 6(a). When the sun is available, the solar PV system provides elec-
tricity, and when it is not, the integrated microgrid may collect the 
required energy from the central grid as a grid feed-in system. 

Peak demands with battery-connected solar energy storage (traditional 
heuristic EMS): The solar PV system is linked to the integrated grid 
through energy storage (battery) device. The load power profile is 
relatively low throughout the day; thus, peak demand is shifted or 
altered, but some surplus solar energy is available in grid feed-in mode 
(See Fig. 6(b)). Consequently, surplus solar power is not efficiently used 
in this classic heuristic EMS, and a certain quantity of solar power is 
squandered. This EMS uses the stored solar energy during solar pick-up 
hours. 

Linear optimization EMS (Factoring in variable electricity cost): There 
are two-step-based coordination controls used to maintain microgrid 
EMS stable operation. Initially, in this control logic, various operation 
modes of the solar power generators are determined by the EMS based 
on the system net power (Pnet) measurement and the charging/dis-
charging rate of the battery system with the energy constraints. The 
microgrid control flowchart of linear optimization EMS system is shown 
below in Fig. 7, where net power (Pnet) is calculated from eq. (30). In 
control logic, the energy constraints of the battery are calculated from 
eq. (31) based on the SoC limits (Wang et al., 2021). It should be noted 
that SoC) cannot be measured directly, but can be attained through SOC 
estimation and monitoring methods (Fathima and Palanisamy, 2015). 
Then, the constraint of charging and discharging rate is determined from 
eq. (32). 

Pnet =Ptotal max power generation − Ptotal load − Ploss (30)  

SOCmin< SOC ≤ SOCmax (31)  

Pbatt ≤ Pbatt(max) (32) 

Fig. 7. Microgrid control flowchart of linear optimization EMS.  

Fig. 8. Peak demand shift using energy storage and factoring in variable 
electricity cost. 
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When SoC is in maximum (SoC = maximum SoC) storage condition, 
the individual solar PV power generator operates based on mode com-
mends from the EMS. At that level, either the ground-mounted solar PV 
generator or the roof-top solar generator must operate in the off-MPPT 
mode or the on-MPPT mode for other options. The energy storage sys-
tem (battery) may operate in the idle, charging, or discharging mode for 
the different time situation of the linear optimization method. The linear 
optimization method will operate the battery (storage) to the grid if 
Pnet − Pload is negative or the solar to storage/grid to the storage if Pnet −

Pload is positive. If the power supply is less than demand and the battery 
is at the minimum SoC then load shedding is required to maintain power 
balance. Comparing Fig. 8 with Fig. 6, the peak demand is shifted, and 
the grid replaces surplus solar energy grid feed-in mode with a storage 
grid feed-in mode. This happens during the surplus condition of solar 
power generation because when the battery is not fully charged, the 
battery will consume a charge from solar PV and the grid as well. When 
the battery is fully charged and solar power is not available, at that time 
the grid is used for the battery power. This process battery is operated in 

Fig. 9. (A) Working process of smart home energy management system, (b) development of smart home energy management system.  

Fig. 10. Test model of microgrid energy management system.  
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Fig. 11. Working flow of proposed microgrid energy management system.  

Fig. 12. State flowchart of traditional heuristic method.  
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grid feed-in mode. Furthermore, that is why the total peak demand from 
the microgrid is reduced because the battery is supplying the power. 
Therefore, the total cost is minimized by using the optimization EMS. 
Proposed linear programming optimization EMS will constantly observe 
demand, and they will give a response to that demand to automatically 
perform the overall system optimization. Therefore, the whole system’s 
operating cost is significantly reduced. 

3.1. Residential or home energy management system for roof-top and 
BIPV solar 

The proposed EMS is efficient for residential or home appliances. 
Home EMS is connected to a microgrid with loads. Fig. 9(a) illustrates 
the working process of the smart home EMS. Besides, Fig. 9(b) shows the 
development of smart home EMS, where the home microgrid contains 
various household power electronic systems. These are almost always 
present in every house. Here, the optimal linear EMS is operating step by 
step. First, with the help of a linear optimization algorithm, the pre-
diction process is completed, and the prediction analysis sends the 

forecast data to EMS optimization. Then it takes the forecast data. The 
EMS optimization is performed using the system’s constraints from 
prediction analysis. Finally, the EMS gives an automatic optimal way to 
use all of those together. 

3.2. Optimization-based peak demand shift system 

The demand-side management is necessary to control and shift the 
peak load. An optimization-based peak demand shift system applies the 
optimum linear programming EMS to peak power balance. The objective 
and constraint functions are performed separately for data analysis and 
suitable decision-making. The objective function minimizes the total 
cost of variable-priced electricity from eq. (33). Besides, the total system 
is operated by power input/output for battery control and power bal-
ance optimized management. So, the constraint’s function controls the 
load demand input/output to the battery and power balance of the in-
tegrated microgrid. The power input/output to the battery, Ebatt(k) and 
power balance, Pload(k) optimization is calculated from eqs. (34) and 
(35) respectively. Where, different power generating sources are Ppv(k),
Pgrid(k) and Pbatt(k). And power consuming loads are Pload(k). Pgrid(k) is 
the optimal vector of grid power (kW) usage, Pbatt(k) is the optimized 
battery (kW) usage, and Ebatt(k) is the total battery energy over opti-
mization horizon (Joule). 

Ctot =
∑N

k=o
Cgrid(k) × Egrid(k) (33)  

Ebatt(k) = Ebatt(k − 1)+ Pbatt(k) × ΔT (34)  

Pload(k) =Ppv(k) + Pgrid(k) + Pbatt(k) (35)  

3.3. Formulation of linear program-based optimization 

The cost-effective operation of the suggested solar PV/battery-based 
integrated microgrid is dependent on precise linear function assignment 
and modeling, as well as training them for successful real-time opera-
tion. The standard form of the linear program (LP) optimization function 
(linprog) is analyzed by eq (36). The selection of various state (x) func-
tions is necessary for absolute time generation control, battery energy 
management, pick load shifting, and load response. eq (37) computes 
the state (x) function. The equivalent constraint for LP optimization 
operations is measured by three different bus matrices such as X, γ3×3 

Fig. 13. Measurement of clear and cloudy day (a) solar radiation data, and (b) 
solar PV array power production. 

Fig. 14. Load duration curve.  
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and ∅3×3 in eqs (38)–(40) respectively, where Aeq and beq are equivalent 
matrix parameters that control the solar PV system, load, and battery 
optimization. Besides, the inequality constraints for LP optimization 
operation are calculated by the inequality bus matrix eq (41), where A 
and B are equivalent matrix parameters that control the maximum/ 
minimum power production ratio of the solar PV system and the 
maximum/minimum electricity consumption ratio of various loads. 

min
x .f Tx, Such that

{
A.x ≤ b
Aeq.x = beq

(36)  

x=
[
Pgrid (1 : N)×Pbatt(1 : N)×Ebatt(1 : N)

]
(37)  

Where different states (x) parameters for the LP optimization operation 
are: 

Pgrid (1 : N) = Power from electric grid used from time step 1 to N. 
Pbatt(1 : N) = Power from battery. 
Ebatt(1 : N) = Energy stored in battery. 

Fig. 15. Various parameter measurements of integrated microgrid on heuristic EMS: (a) Clear day, and (b) cloudy day.  
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Fig. 16. Various parameter measurements of integrated microgrid on optimal LP EMS: (a) Clear day, and (b) cloudy day.  

Fig. 17. Set-up of Optimization Parameters of Linear Programming based EMS for Integrated Microgrid.  
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Equivalent constraints for LP optimization operation.   

γ3×3 =

⎡

⎣
0 0 0
ΔT 0 0
0 ΔT 0

⎤

⎦ (39)  

∅3×3 =

⎡

⎣
1 0 0
− 1 1 0
0 − 1 1

⎤

⎦ (40) 

Inequality constraints for LP optimization operation.   

3.4. Modeling and analysis of integrated microgrid EMS 

The proposed integrated microgrid is comprised of a utility point of 
connection, various fixed, static, or primary loads (such as residential, 
commercial, and industrial loads), various solar PV generation systems 
(whose input can be used in various radiant modes such as the clear day 
or cloudy day), inverters, and energy storage systems. The overall test 
model of the EMS is represented in Fig. 10, which is simulated using the 
MATLAB Simulink power systems toolbox. The ESS takes input data 
from the EMS optimization commands and then takes necessary action 
for generation and load balancing in either grid-connected or off-grid 
mode operation. The ESS plays a prime role in controlling demand- 
side management. In this proposed test model, two types of EMS are 
applied, one is the heuristics method, and the other is the linear opti-
mization method. By using these two approaches, the cost is minimized 
significantly from generation to consumer level. The energy storage 

system (battery) is designed for efficient real-time operation for these 
EMS (See Fig. 11). Fig. 11 illustrates the output of energy measures, 
where microgrid voltage (V), output power (kW), ESS SOC (%), and 
electricity price (USD/kWh) will be displayed after the final result 
analysis. The traditional heuristic and optimization methods have 
existed inside the EMS in Fig. 11. Depending on the specific time of the 
day and condition of the battery, the EMS decides whether the battery 
should be charged, discharged, or idle. The state flow chart of the 
traditional heuristic method is shown in Fig. 12, where different states 
are represented in different boxes. Initially, the heuristic EMS observes 
the whole condition of the microgrid operation and then loads the en-
ergy data. This all depends on conditions like the time of the day and the 
SoC condition of the battery. After running the heuristic approach, the 
decision logic will show what is analyzed in the state flow chart step-by- 
step. 

The operational flow of the linear programming optimization 
method is shown in the lower part of Fig. 11, which is more efficient 
compared with the heuristic method. This method is applied in problem- 
based optimization formulations to find out optimal decision variables. 
Initially, battery solar PV optimization logic is applied, which starts with 
constructing the problem. Then the variables are declared one by one, 
like solar PV system, power production, ESS from the grid, power from 
the battery, and energy from the battery condition. Some constraints are 
replaced, like load balance, which will also be declared. The main 
objective of this approach is to minimize the operating cost function. 
After that, energy optimization logic is applied, where every parameter 
is defined, like operating time, solar PV system power production (clear/ 
cloudy day) data, solar PV system energy storage (clear/cloudy day) 
data, ESS condition, various load power data, and other integrated 
microgrid information. Then the linear optimization approach will show 
all the optimization results and cost minimization results graphically. 

4. Result analysis, key findings and discussion 

Daily solar irradiance data (clear day, Irraday(clear) and cloudy day, 
Irraday(clear) radiation) on an ideally inclined surface are utilized and 
examined to analyze the results since the measurement stations are 
optimally aligned (See Fig. 13(a)). The clear, PPV(clear) and cloudy day, 
PPV(cloudy) forecast PV power is represented in Fig. 13(b), which is 
calculated from eq (42) and eq (43), respectively. The various types of 
loads (residential, commercial, industrial, and others) are measured for 
the integrated microgrid system. The overall daily load duration curve is 
evaluated in Fig. 14. 

PPV(clear) = Irraday(clear) × APV × ηPV (42)  

PPV(cloudy) = Irraday(clear) × APV × ηPV (43) 

The battery SoC energy constraints will be kept between 20% and 
80% SoC, which will be good for battery health and life cycle. The initial 
battery energy, Emax is calculated by eq (44), where 50% SoC is assumed 
for the ideal condition. However, a lithium-ion battery is used in this 
suggested microgrid with the lowest 10% SoC energy so that the more 
stored energy will be possible to inject into the microgrid when needed. 
Battery Energy, BattEnergy = Battcap × 3.6 × 106 = 2500 kWh× 3.6×

106 = 9× 109 W, where the energy generated by a kW power source in 
1 h is 1kWh = 3.6 × 106 Joule. When, maximum power, Pmax is around 
+400 kW then SoCmax = 80% and minimum power, Pmin is around − 400 
kW then SoCmin = 20%. 

Emax = SoCmin,max × BattEnergy (44)  

Emax = SoCmax × BattEnergy (45)  

Emax = SoCmin × BattEnergy (46) 

Daily basis analysis is analyzed and evaluated for an integrated 

Table 3 
Electricity price for the various consumer categories of integrated microgrid 
system.  

Consumer sector and 
categories 

Demand 
type and 
range 

Monthly Electricity Price Range $/kWh 
Specification: Specification: 
Transmission line 
(low pressure): 
230/400 V 

Transmission line 
(medium 
pressure): 11 kV 

Electricity supply: 
AC single phase 
230 V and three 
phase 400 V 

Electricity 
supply: AC three 
phase 11 kV 

Frequency: 50 Hz Frequency: 50 Hz 
Load: single phase 
single 0–7.5 kW and 
three 0–100 kW 

Load: 101 
kW–500 kW 

Residential (e.g., 
Private houses, 
Apartments) 

0-400 kWh 0.13 – 
401-600 
kWh 

0.15 – 

More than 
600 kWh 

0.16 – 

Flat hours 0.16 0.17 
Off-peak 
hours 

0.15 0.16 

Peak hours 0.18 0.22 
Commercial and Office 

(e.g., Productive, 
Non-Productive) 

Flat hours 0.18 0.26 
Off-peak 
hours 

0.16 0.22 

Peak hours 0.22 0.30 
Industrial (e.g., 

Productive, Non- 
Productive) 

Flat hours 0.18 0.26 
Off-peak 
hours 

0.16 0.22 

Peak hours 0.22 0.30 
Others (e.g., 

Educational, religious 
and charitable 
organizations, 
hospital and 
Agriculture) 

Flat, off- 
peak and 
peak hours 

0.12 0.16  
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microgrid system for optimal EMS. The number of consecutive few days 
of data is evaluated for optimization factors. The time step for heuristic 
and LP optimization operations is set to a one-day scale (one day or 24 h 
or 1440 min or 86,400 s). 

The heuristic technique employing state flow (chart flow) EMS is 
applied in the solar PV/battery-based integrated microgrid. Fig. 15 
demonstrate the EMS heuristic method outcomes for a clear day and a 
cloudy day. The microgrid voltage (RMS value), solar PV power, ESS 
power, grid power, and various load power curves are investigated. The 
minimum and maximum ranges of the ESS SoC are also investigated. The 
anticipated grid pricing values (cents/kWh), which vary with load de-
mand, are determined. Because the peak of the ESS and SoC is not 
correct when solar power is available, the energy price rate (consumer 
energy rate) is relatively high in this technique, which is not consumer- 

friendly. 
The battery and solar system optimization function is used to opti-

mize the ESS usage for the integrated microgrid. The optimization 
method based on a linear programming approach minimizes the cost of 
the power from the grid while meeting the load with power from solar 
PV, battery, and grid. It will help to minimize the cost of electricity from 
the grid. The battery’s power input and output from solar PV, grid 
power, battery state, and load demand are calculated from eq (47). The 
linear programming optimization routine takes the current state of the 
battery, battery energy (nominal charge), optimization time data, and 
the output data of the forecast algorithm like cost values, solar PV 
power, and load power for its operation, as shown in Figs. 7 and 11. 
Then, optimal linear programming energy management logic is applied. 
The output of this logic is optimized power output, which can run 

Fig. 18. Comparison of cumulative grid cost and grid usage for heuristic and optimization approach (a) clear, (b) cloudy day.  

Table 4 
Comparison of day basis total cost and usage of grid electricity.  

Day 
(Weather) 

Grid cost per day retail ($) % Of cost savings LP 
optimization over Heuristic 

Grid usage per day retail (kWh) % Of cost savings LP 
optimization over Heuristic 

Without 
EMS 

Heuristic LP 
Optimization 

Without 
EMS 

Heuristic LP 
Optimization 

Clear 
(Sunny) 

903.2 728.0 609.1 19.53 4,210.1 4,000.3 3,809.4 5.01 

Cloudy 
(Rainy) 

1,130.0 1,068.3 899.1 19.01 6,290.4 5,993.2 5,794.1 3.44  

A. Shufian and N. Mohammad                                                                                                                                                                                                              



Cleaner Engineering and Technology 8 (2022) 100508

17

supplied back to the model. It will run at different times for different 
forecast profiles. The power electronics components are typically 
running in minimal time steps, and the optimization is much slower on a 
second-time scale. The linear optimization approach results of the EMS 
are illustrated in Fig. 16. With this method, the electricity price rate is 
significantly reduced compared with heuristic methods. The peak of the 
ESS and SoC is found to be significant when solar power is available, 
which is consumer-friendly. For the sunny day optimization, as shown in 
Fig. 16(a). Initially, the battery responds to soft pecks with varying 
demand and price data. The battery gets charged and dis-charged 
accordingly with the solar power availability. The linear optimization 
system quickly evaluates the charge and discharge state for different 
circumstances. As presented in Fig. 16(b), a fluctuation of solar PV 
power is found for cloudy day optimization due to the rainy season. 
Here, the battery is found to be dependent on the demand and price of 
electricity. 

Ppv(k) + Pgrid(k) + Pbatt(k) = Pload(k) (47) 

The overall output of the linear programming optimization function 
is the battery power, grid price, and load demand balance, which is 
defined in Fig. 17. The optimum demand-side management relates to the 
battery power command. This is probably the effect of the system on 
how the battery will operate. So, voltages and low power frequencies 
might fluctuate. It is possibly a good idea and probably helpful to see the 
optimization’s impact on the command. This optimization approach 
ensures that it does not cause any harm to the entire EMS. On the top 
graph, ESS optimization is done over time (kWh), then grid pricing 
(USD/kWh), and power (W) from the solar PV system, battery bank, 
integrated microgrid, and various load demands is measured. With this 
method, the terms of demand response can be predicted. The optimi-
zation logic gives a command to pre-charge the battery while running in 
the higher demand phase and then dis-charge accordingly. With this 
technique, the local demand is reduced from the microgrid, thereby 
reducing the total system cost. The optimization method also controls 
the market price based on the energy demand of baseload and peak load. 
At the bottom of the graph, the output power of the ESS and trading 
power with the microgrid sharply fluctuate from daytime (morning, 8 a. 
m. to noon, 2 p.m.) because of battery charging from the solar PV sys-
tem. The optimal ESS covers the grid energy balance from 1 to 18 h in a 
day. Due to the lowest SoC condition of ESS, the 18-h to 22-h time zone 
is the peak load demand hours. During peak hours, electricity is injected 
from the central grid to the microgrid area to balance the peak hour load 
demands. So, electricity prices are at their highest during peak hours. 

The operations of the heuristic EMS in the integrated microgrid 
system are solely based on market mechanisms. This model does not 
include the impact of intermittent solar systems or the volatility of 
market costs. Furthermore, the best LP EMS actions are determined by 
the actual market value, trading power value, intermittent solar system, 
and microgrid surplus/shortage amount. This optimization method also 
considers the uncertainties of surplus and shortage of electricity in the 
microgrid. The unpredictability of load demand and the solar PV system 
in the microgrid is also evaluated. As a result, the suggested LP opti-
mization EMS can cope with system uncertainties in both grid-connected 
and islanded modes. The electricity price for the various consumer 
categories of the integrated microgrid system is highlighted in Table 3. 

For the sunny day, the heuristic and the linear optimization approach 
cost per day is calculated to be 728.0 and 609.1 USD, respectively, as 
illustrated in Fig. 18(a). For the cloudy day, the heuristic and the linear 
optimization approach cost per day is calculated to be 1,068.3 and 899.1 
USD, respectively, as shown in Fig. 18(b). Finally, comparing results 
with this traditional heuristic and optimization-based methods is eval-
uated in Fig. 18. For the heuristic approach, the result will be going to 
depend on how the heuristic logic parameter responds to the demand, 
load, and various cost data. However, the forecast data will be pre-
dictable quite well concerning time response for the linear optimization 
approach. Using the linear programming optimization approach will be 

more flexible with loads and give a better demand response. Therefore, 
the operating cost will be significantly minimized. Table 4 shows the 
cumulative off-grid cost (USD) and cumulative grid usage (kWh) pro-
jection. The optimization approach reduces both the cost and grid usage, 
respectively, compared to the heuristic approach. If there is a no-storage 
option applied, the grid cost is found to be the highest. Then, if there is a 
traditional heuristic approach applied, the grid cost is found to be 
reduced. However, in the case of the linear optimization approach 
applied, the grid cost was found to be the lowest. The highest rate 
accounted for the no-storage option in actual grid usage. Besides, the 
heuristic and optimization approaches are almost the same for actual 
grid usage. The optimization approach has given an extra advantage 
compared with the heuristic approach in almost every measure. The 
total cost of variable-priced electricity is calculated in $/kWh. In the 
heuristic approach, the EMS cost is found to be $728.0 for sunny days 
and $1068.3 for cloudy days. While in the optimization approach, the 
EMS cost is found to be $609.1 for a sunny day and $899.1 for a cloudy 
day. 

Difference (%)=
Input − Output

Input
× 100%

=
Optimization − Heuristic

Optimization
× 100% (48) 

In percentage, the difference between the two methods is calculated 
to be 19.53% of the cost with a 5.01% grid usage energy savings for a 
clear day and − 19.01% of the cost with a 3.44% grid usage energy 
savings for cloudy days. Compared with the traditional heuristic 
method, the linear optimization method saved almost 19% in electricity 
prices and more than 3.44% in grid energy usage. 

In summary, the advantages of this proposed LP optimization EMS in 
solar/battery-based integrated microgrid systems are as follows. The 
system significantly reduces losses and continuously monitors power- 
sharing in demand-side management. The microgrid’s energy effi-
ciency substantially increases. The proposed model reduces microgrid 
inside and outside grid energy usage. Electricity outage durations are 
reduced by proper management of power balancing and sharing. During 
peak period operation, it optimizes transformer loading. Thus, it im-
proves interconnected grid network operations. Overall, it increases 
customer satisfaction and encourages more customers in self-driven 
EMS. 

5. Conclusion and outlook 

The main purpose of this research study is to minimize the total cost 
of variably priced electricity. The optimization approach based on linear 
programming (LP) is easy to implement, analyze, and evaluate the 
performance and has little computation complexity. The suggested op-
timum LP approach overcomes different types of limitations compared 
with the traditional heuristic approach. The whole process is used to 
develop the linear optimization routine that predicts forecast pricing 
and loading conditions that optimally store or sell energy from a grid- 
scale battery system. The simulation results clearly show that the LP- 
based optimization approach is cost-efficient. Using this optimization 
method, the cost of variable-priced electricity is 19% less when 
compared to heuristic state machine logic. The LP optimization also 
reduces the extra grid energy usage by around 3.44–5.01%. In the 
future, this research study will investigate the performance of con-
strained LP-based optimization approaches for more complex nonlinear 
and binary energy management problems. The focus will be given to 
reducing the dimensionality of the decision variables of the proposed LP- 
based optimization EMS. Furthermore, the microgrid’s current model 
precision will be improved by adding the miles parameter and the 
element into the microgrid configuration. 
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