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Abstract
Microgrid is a self-sufficient grid system that covers one or more kinds of distributed energy, where a variety of terminal 
devices collect, transmit and store electricity data based on fog-based network infrastructure. Due to security and privacy 
concerns, efficient and secure access control over terminal devices in microgrid is the primary way to prevent unauthorized 
access and data breach. Therefore, a number of solutions of device management are proposed. However, they are usually  
prone to single point of failure, decision-centralized, over-manual intervened. To address the problem, we introduce a blockchain- 
based fast and dynamic access control (FDAC) system for device management in fog-assisted microgrid. In particular,  
we adopt an attribute-based access control formula to model a flexible, dynamic and fast fine-grained access control system. 
FDAC deploys four smart contracts that dynamically manages devices, which includes user authentication, subject/object 
attributes, access policy, decision-making and credit assessment of user behavior. In addition, FDAC employs a Cuckoo 
filter to speed up policy search in smart contracts and proposes new credit verification algorithm to improve credit rewards 
and punishments. To clarify practical performance, we build a private blockchain platform to simulate FDAC. Compared to 
classic traversal approaches for policy search, FDAC maintains higher accuracy and lower time delay.
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1 Introduction

Microgrid is a self-sufficient grid system that relies on vari-
ous distributed energy sources to generate electricity, such 
as solar panels, wind turbines and cogeneration. To collect, 
transmit and store electronic data accurately and efficiently, 
a number of terminal devices (e.g., smart meter, wireless 
sensors) are widely deployed in microgrid. In particular, the 
Internet of Things (IoT) technology [1, 2] enables numerous 
devices with cost-effectively implementation and connected 
via distributed network infrastructure. Hence, organizations 
can access two-way of flows of energy electricity and com-
munication information that provided by intelligent IoT 
devices [3]. Once these large-scale connected IoT devices 
suffer malicious intrusion, the reliable running of microgrid 
will be severely affected.

In December 2015, a cyberattack accident “Ukraine 
power grid hack” leads to a large area of power failure [4], 
which severely influenced power supply for roughly 230,000 
users. According to a released report by Ukrainian TSN tel-
evision, the main reason for this accident is that the distrib-
uted plant’s terminal devices are exposed to unauthorized 
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access and illegal control. The attackers can thus make 
wrong orders, even power equipment shutdown. Different 
to classic smart grid, the microgrid composed up of distrib-
uted energy include numerous diverse and complex terminal 
devices. Once these devices are hacked due to unauthorized 
access, the security and privacy of sensitive information may 
be leaked to outsiders. Therefore, the primary goal of device 
management in microgrid is to provide authorized, secure 
and flexible access control over terminal devices.

Architechture under blockchain‑based paradigm To 
enhance the security guarantee, trust transferring and owner-
ship authenticity, the microgrid has been evolved into under 
a blockchain-based infrastructure that managed by distrib-
uted peer-to-peer network [5], which is shown in Fig 1. Gen-
erally, the process of accessing devices and tracking records 
in a microgrid device management can be well facilitated. In 
concrete, the blockchain-based microgrid provides a trusted 
environment and manages a variety of nodes that include 
terminal device nodes, user nodes and resource computa-
tion nodes. Thus, the information of resource and devices 
are recorded into blocks and later accessed by peer nodes, 
such as device fingerprint, address, attributes and modes. 
Since there are massive and complicated terminal devices 
spread over in the blockchain environment, enabling secure, 

dynamic and fine-grained access control for device manage-
ment in microgrid is highly appreciated.

Models of access control There have been many traditional 
access control models proposed : discretionary access con-
trol (DAC) [6], role-based access control (RBAC) [7], and 
capability-based access control (CapBAC) [8]. In particular, 
the DAC builds an authorization list for each object where 
the subjects without identifiers or sufficient resources can 
not access the object, which only works for simple systems. 
In RBAC, the entities that described as different roles may 
access the resources of the principal. As a result, an amount 
of relationship/connection between access rights and sub-
jects are established [9], but it may increase exponentially 
due to the growth of entities. In CapBAC, the model distrib-
utes corresponding rights for different entities based on their 
capabilities, such as a transferable and unforgeable authori-
zation token [10, 11]. In practical applications, the access 
objects cannot be trusted as access verification entities, since 
they are usually vulnerable to attacks due to lightweight 
capabilities. To summarize, these models can only provide 
basic access control characteristics in resource-constrained 
systems. In addition, they are prone to single point of failure 
due to microgrid’s underlying decentralized and dynamic 
architecture characteristics.

Fig. 1  The Blockchain-based 
Microgrid
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To address the problem, Hu et. al [12] introduced the 
model of attribute-based access control (ABAC). In 
ABAC, each entity is described by a set of attributes, and 
the policy is specified by different attributes and a set of 
rules. Thus, only parties whose attributes satisfy the speci-
fied policy can access information [13, 14]. Therefore, the 
ABAC model has been widely deployed in practical appli-
cations that require decentralized access control, which 
can provide fine-grained access control for device manage-
ment in microgrid.

Blockchain‑based access control To adapt to the blockchain-
based network infrastructure, there are a number of block-
chain-based access control systems [15–19] introduced. 
In particular, the work [15–17] employed the distributed 
and immutable blockchain paradigm to store access con-
trol policies, but its computation capability is unfortunately  
limited. Recently, Zhang et.al,  [18] implements smart  
contract-based access control in the Internet of Things, which  
provide efficient and secure trustworthy managements over 
devices. Later, [19] extended [18] to further consider flexible 
authorization and authentication of users, and presented a 
novel blockchain based access control system that achieves 
privacy, efficiency, decentralization and scalability of IoT 
network services. Nevertheless, it has not formally con-
sidered a good tradeoff between effectiveness, credibility 
and authentication of the system. To detect illegal access 
behavior (such as frequent access), [20] proposed an access 
control system that can efficiently check user’s behavior and 
punish the access user but fail to assess user’s credit. Very 
recently, Zhang et.al, [21] introduced a dynamic attribute-
based access control framework based on well-designed 
smart contracts, which only focus on managing the process-
ing time period. However, the state-of-the-art solutions of 
blockchain-based access control have not formally consid-
ered credit assessment for behaviors of nodes and efficiently 
searching for access control policies.

1.1  Our results

To enable such a dynamic, efficient and secure access con-
trol framework for IoT devices, we propose FDAC, a fast 
and dynamic access control system for device management 
in fog-assisted microgrid. Generally, we revisit blockchain-
based ABAC model with introducing credit assessment 
methodology and fast policy searching function. In par-
ticular, we propose new smart contracts to automatically 
give a fully dynamic managements over terminal devices. 
In addition, we employ Cuckoo filter to speed up the policy 
retrieval process that determines whether one entity’s opera-
tions match a specified policy. Concretely, the main charac-
teristics of our FDAC can be summarized as follows: 

1. Achieving secure, scalable and fine-grained attribute-
based access control for device management, in which
only authenticated and authorized user nodes can access
information of devices. Based on an underlying block-
chain-based framework, FDAC has well captured the
risk of single point access control and centralized policy
decision-making.

2. Deploying dynamic and efficient smart contracts that real-
izes user authorization and authentication, attribute manage-
ment and access decision-making. By employing Cuckoo
filter to fast search target policies, the running efficiency of
algorithm-functions in FDAC are obviously improved.

3. Configuring credit assessment to monitor malicious
behavior of user nodes, where the decision-making is
dynamically adapted to the sensitivity of resources. With
introducing new credit assessment algorithms, the his-
torical transaction records about access process between
user nodes and terminal nodes are stored in edge nodes.

To illustrate practical utility of our FDAC, we build an 
Ethereum blockchain-based platform, and deploy corre-
sponding nodes distribution and smart contracts.

The results show that FDAC can automatically exe-
cute access decision and malicious behavior monitor-
ing. In addition, the policy searching in smart contracts 
is much faster than classic traversal approaches, where 
the accuracy of the policy search maintains 85% above 
and the delay of a single policy search is almost 0.2 mil-
lisecond. As our FDAC considers effective and efficient 
credit assessment and policy search, the cost of natural gas 
consumed by the deployment of smart contracts and the 
execution of the corresponding ��� are slightly increased 
by 15%. Although the performance has increased by nearly 
30%, which is highly acceptable in practical applications.

Comparison Table  1 shows a general analysis between 
state-of-the-art solutions and our FDAC, which includes 
feature and cost comparison. As can be seen, the work and 
FDAC support tamper-proof [15, 18, 20–22] and privacy 
preservation [15, 20, 22]. Although several smart contracts 
are all deployed in current solutions, our FDAC provides a 
fully dynamic managements of user nodes. In addition, [21, 
22] and FDAC adopt the ABAC model to give a more fine-
grained access control for policy managements. Compared 
with [18, 20–22], FDAC introduces a credit assessment algo-
rithm to measure the credit rewards and punishments of user 
nodes. Furthermore, our FDAC achieves a constant cost of 
policy search, while that of other solutions increases with 
the number of items in a specified policy. In particular, the 
policy searching cost in state-of-the-art solutions [15, 18, 
20–22] is linear with the policy scale (i.e., O(n) ); while our 
FDAC system achieves a constant policy searching cost due 
to the adoption of Cuckoo filter in the smart contract ���.
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1.2  Related Work

Blockchain‑based access control models Ouaddah et al. [23] 
presented fairaccess, a blockchain-based authorization 
scheme where smart contracts are used to perform access 
control policies to exchange access tokens, but the assumed 
number of transactions is limited. And  [24] adopted smart 
contracts to achieve access control for only data records 
management. Different from [24], Zhang et al. [18] utilized 
Ethereum smart contracts to store ACLs, and thus proposed 
an ACL-based access control framework. However, the sys-
tem usually brings about large monetary cost in deploying 
the contract since each contract is only designed for each 
subject-object pair. Later, Dorri et al. [15] considered the 
access control problem in IoT and conducted a case study 
with smart home. In the scheme, each block uses a policy 
header to store the access control policy to deal with all 
access requests that interacted with home devices, which 
the critical proof-of-work process in blockchain technol-
ogy is not formally considered. Compared to local private 
chain, a novel control chain [25] is proposed for providing 
user transparent, user-friendly, completely decentralized and 
fault-tolerant. Nevertheless, there are four different block-
chains to perform access control, which are cost-expensively 
maintained with. To consider distributed access control in 
cloud services [26], a blockchain-based decentralized runt-
ime access monitoring system (DRAMS) is introduced for 
federated cloud cooperation. As a result, it provides data 
privacy and data secure sharing. In recent years, Novo 
et al. [27] proposed an authorization scheme for manag-
ing IoT devices based on distributed blockchain. However, 
the two solutions are less practical since the assumed IoT 
devices usually suffer from limited computing power. To 
effectively protect large-scale IoT devices, Xu et al. [28] 
introduced a decentralized and joint capability-based delega-
tion model (FCDM). However, the large storage cost leads 
to a high latency to access requests.

ABAC‑based access control Qashlan et al. [22] and Zhang 
et al. [21] considered attribute-based access control and 
smart contracts for practical IoT applications. In particu-
lar, [22] proposed an authentication scheme for secure IoT 

device management in fog-assisted smart home. Neverthe-
less, it cannot effectively monitor illegal behaviors of user 
nodes, which limits its practical deployments in privacy-
enhanced environments. Zhang et al. [21] presented some 
smart contracts for access control framework for smart city, 
which achieves functionalities of managing the attributes 
of the subject and object, adding and deleting access poli-
cies, and decision-making. However, the designed access 
control only works for dynamic time management, while 
not formally considering dynamic managements over termi-
nal devices. In addition, [29] introduced an attribute-based 
access control model for blockchain in the open IoT envi-
ronment, where key attribute information is stored on the 
blockchain. The system judges the access request through 
the attribute-based access control method in the smart con-
tract, and makes access control judgment. However, the anal-
ysis of safety and operating costs is lacking in the scheme. 
Later, Zhang et al. [30] formulated an effective attribute-
based collaborative access control scheme to realize con-
trolled access authorization in IoT applications. Although 
the scheme guarantees the security of authorized access, the 
data integrity and privacy threats of access control have not 
formally considered. Recently, Rouhani et al. [31] proposed 
an attribute-based access control system in a blockchain to 
provide trusted auditing of access attempts. Additionally, the 
system provided a degree of transparency that benefited both 
access requesters and resource owners, but the user authen-
tication is not integrated into the user authorization phase.

Organization We review some background knowledge in 
Sect. 2 and describe the problem formulation in Sect. 3. 
Section 4 presents our FDAC system and Sect. 5 gives its 
function and security analysis. We implement the system 
and show its performance in Sect. 6 and finally concludes 
the work in Sect. 7.

2  Background knowledge

In this section, we review some background knowledge 
that includes blockchain technology, smart contract, 
Cuckoo filter and attribute-based signature.

Table 1  Comparison between 
State-of-the-art Work and Our 
FDAC

[15] [18] [20] [21] [22] Ours

Tamper-Proof ✓ ✓ ✓ ✓ ✓ ✓

Privacy Preservation ✓ × ✓ × ✓ ✓

Usage of Smart Contract × ✓ ✓ ✓ ✓ ✓

Attribute-Based × × × ✓ ✓ ✓

Credit Assessment × × × × × ✓

Policy Searching Cost O(n) O(n) O(n) O(n) O(n) O(1)

1656 Peer-to-Peer Networking and Applications (2022) 15:1653–1668



1 3

2.1  Blockchain

Blockchain [32] is a distributed ledger that allows data 
to be recorded, stored and updated in a distributed man-
ner. In blockchain, the transaction is the most fundamental 
activity that created, recorded and approved in the block 
by the miner. Based on a consensus algorithm, the miner 
who wins bookkeeping rights sends its created block to 
the system to each peer node. Other nodes later verify the 
hash value, signature and transaction validity of the block, 
and finally join in the local after a consensus. Therefore, 
blockchain is considered to be a promising architecture 
that guarantees security of distributed transactions for all 
participants in a public peer-to-peer environment.

2.2  Smart contract

Smart contract [33] is a special account with associated 
codes (i.e. functions) and data (i.e. states) in blockchain. 
Generally, it is compiled into the bytecode of the specific 
binary format of blockchain platform (i.e., Ethereum), and 
the account is deployed into the blockchain. Smart contract 
provides a number of functions or interactive application 
binary interfaces ( ���s). These ��� s are usually executed 
through transactions between accounts or the transmission 
of messages between contracts. Moreover, they can also 
be executed by simply calling functions without sending 
transactions and messages.

2.3  Cuckoo filter

Cuckoo Filter [34] is a variant of Cuckoo hash table, which 
supports dynamic addition and deletion of items. For each 
item inserted, only its fingerprint (bit string generated by 
the hash function) is stored instead of a key-value pair. 
A Cuckoo hash table consists of an array of buckets, and 
each insertion item is two candidate buckets determined by 
hash functions. Among that, one bucket records the item 
and the other bucket backups the item. When to construct 
a Cuckoo filter, its fingerprint size is determined by the 
target false positive rate decision. Note that a smaller false 
positive rate requires a longer fingerprint to reject more 
false positive queries.

2.4  Attribute‑based signature

The concept of attribute-based signature (ABS) was first 
proposed by [35], which allowed a user to sign messages 
with any predicate with its attributes that issued from an 
authority. The signed message only reveals that the speci-
fied policy but preserves user’s identity information privacy. 

Therefore, ABS not only preserves privacy information ano-
nymity for users, but also provides fine-grained access con-
trol over the users.

• ���.����� : The setup algorithm inputs a security param-
eter � , and outputs a system public parameter PP and a
master key MK.

• ���.������ : The key generation algorithm inputs
PP, MK and a user’s attribute set Γ , and finally outputs a
private key SKΓ for the user.

• ���.���� : The signature algorithm input PP, a message
M, a user’s private key SKΓ and a predicate Λ that accepts
Γ , and outputs a signature � of M.

• ���.������ : The verification algorithm inputs PP and
a signature � along with an attribute set Γ , and finally
outputs 1 if � is valid. Otherwise, it outputs 0.

3  Problem formulation

In this section, we formalize the system model, design goals 
and threat model of our blockchain-based FDAC for device 
management in microgrid.

3.1  System model

Our blockchain-based FDAC system consists of the follow-
ing four entities: Device nodes, User nodes, Edge nodes and 
Cloud, which is formally described as in Fig. 2.

• Device nodes: The terminal devices include a variety
of power devices, such as smart meters, wireless sen-
sors, and communication boxes. These devices are used
to collect and store electricity consumption information,
instrument temperature, and network data.

• User nodes: The semi-honest users include different
types of lightweight users, such as clients and organiza-
tions. Based on blockchain-based FDAC system, they
access device information and resource information.

• Edge nodes: The edge node records incoming and out-
going transactions of device running operations, which
usually considered as miners in the blockchain infrastruc-
ture. Note that its capability is stronger than terminal
devices but weaker than cloud server.

• Cloud: It provides highly-efficient, cost-effective and
secure storage services, where its computation and stor-
age resources can be flexibly configured as a number of
nodes on the blockchain.

3.2  System running flow

The running flow of the system is formalized as follows: 
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1. First, a user node is authenticated by the attribute-based
signature(ABS) algorithm in ��� . If it is authenticated,
the ��� returns a unique identification number ID and
blockchain address addr to the user node.

2. Later, a user sends an access request to the smart con-
tract ��� , for accessing device information of terminal
devices that stored in the cloud. If determined as a legal
request by ��� , the ��� returns access authorization
or access block to the user.

3. Then, the ��� sends a user’s misbehavior report MR to
a smart contract �� , where �� assess the credit of user
behavior in MR and returns a credit value ��i to ��� . 
Based on different levels of credit, ��� specifies cor-
responding punishments.

4. Finally, receiving a user’s access information records,
the edge nodes package them as transactions into blocks
to get system rewards.

3.3  Design goals

The design goals of our FDAC system are as follows:

• Fine-grained access control. The access rights of each
user is conducted as a subject-object pair, where the
devices and users are all described by a set of attributes.
Note that only users whose attributes satisfy the specified
policy can access the information.

• Automatically-running. Following the inherent policy of
smart contracts, the system can run automatically without
manual intervention and provide fairness for all peer nodes.

• Privacy-Preserving. The signer’s private information
is hidden from verifies and the public when it registers
in the system. That is, the signed request only reveals
that its attributes, while not leaking its identity informa-
tion.

• Constant policy searching cost. The cost of policy search-
ing in smart contracts is constant, where the query time
overhead and storage overhead remains highly efficient.

3.4  Threat model

• Collusion Attack. The terminal device nodes may collude
together to access unauthorized information and lead to the
disclosure of attribute information. That is, the colluded
attackers may try to maliciously collect attributes and sat-
isfy a specified access policy.

• Replay Attack. This attack indicates that the attacker may
intercept the access request that sent by the user and replay
the access request to gain access of device resources.

• Modification attack. This attack indicates that an attacker
may try to modify or delete stored data of a specific user
or device. The attacker compromise the local storage and
learns confidential data information to launch such attack.

• Masquerade Attack. A masquerading attack is per-
formed by an adversary to gain unauthorized access to
the system. This attack usually includes stealing pass-
words, snooping login names and finding loopholes of
the system.

4  The FDAC scheme

In this section, we formally present FDAC, a fast and 
dynamic access control for blockchain-based device man-
agement system in fog-assisted microgrid.

4.1  Blockchain structure

The nodes in the blockchain-based FDAC system includes 
the following four types of nodes:

Fig. 2  The system model of FDAC system in fog-assisted microgrid
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• Light nodes: The light nodes consist of access user
nodes and device nodes, where they only keep transac-
tions information that related to themselves.

• Admin nodes: The admin nodes manage the attributes
of the subject and object, and audit the data in the block-
chain that related to user nodes.

• Edge nodes: The edge nodes, usually acted as miners,
record incoming and outgoing transactions of device run-
ning operations. Note that its capability is stronger than
terminal devices but weaker than cloud server.

• Cloud node: The cloud node provide a secure, flexible
and user-configured data storage services for the system,
which manages the records of user information and data
collected by terminal devices.

4.2  Running flow

There are four phases included in our FDAC system, that 
is, initialization, access control management, credit assess-
ment, and access transaction consensus. In particular, Fig. 3 
shows concrete running flow of our FDAC.

In addition, we give a more careful explanation on 
the interactive process between each smart contract that 
deployed used in our FDAC system. In particular, there are 
the following four smart contracts (as depicted in Fig. 4) 
that are introduced for FDAC: Attribute Management Con-
tract ( ��� ), Policy Management Contract ( ��� ), Access 
Control Contract ( ��� ) and Credit Contract ( �� ). In 
general, the ��� manages the attributes of subjects and 
objects, and the ��� requests that required set of attributes 

from the ��� to generate corresponding policies. When 
��� determines whether the user’s access policy is legal, 
it should match the policy that existed in the ��� . If ��� 
meets illegal access, it may send a misbehavior report to 
the �� , and �� calculates and returns the user’s credit 
value to the ��� . Finally, the system formulates the cor-
responding punishment according to the credit value.

4.2.1  Initialization

The attribute-based signature (ABS) is deployed in the 
smart contract ��� to assist users to perform user authen-
tication (signature verification) during the system initiali-
zation phase. Generally, an ABS consists of four algo-
rithms ���.����� , ���.������ , ���.���� and ���.������ . 
In particular, the admin node first generates the system 
parameters PP and a master key MK via running ���.����� 
algorithm. Later, it computes a private key SKΓ based on a 
user node’s attribute set Γ via running ���.������ algo-
rithm. Then, the user node calls ���.���� algorithm and 
outputs a signature � of its message M. Finally, ��� veri-
fies � by calling ���.������ algorithm. As a result, the user 
node is successfully registered in the system.

1. Registration. A new user completes the registration and
authentication based on the involving ��� algorithm in
��� . After that, the system grants a corresponding ID
and a unique blockchain account address addr for a user
node, where the user’s ID associates with an attribute

Fig. 3  The running flow of the blockchain-based FDAC system
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set that implies the subject of ID is equipped with these 
attributes. Hence, a registered user can verify its iden-
tity with submitting own ID, addr and the validation 
of identity algorithm (as shown in Algorithm 1). Once 
a user logs out of the system with canceling its ID, as 
a result, its corresponding address is also cleared from 
the blockchain network (but the cancellation record is 
maintained). In particular, the ��� s of registration in 
AMC includes:

• ���������� : verifies whether a user is the member of
the system.

• �������� : a user logs out of the system.

2. Attribute Management. In AMC, the administrator
can execute different ��� s to add, update, and delete
attributes of subjects and objects. Generally, the subject
denotes the accessing user, and the object represents the
resources that provided by terminal devices. The ��� s 
of attribute management in AMC includes:

• ���������� : adds the attributes of the subject (user
nodes).

• ��������� : add the attributes of the object (device
nodes).

• ������������� : update the attributes of the subject.
• ������������ : update the attributes of the object.
• ������������� : delete the attributes of the subject.
• ������������ : delete the attributes of the object.

4.2.2  Access control management

The access control management ( ��� ) consists of policy 
management, policy dynamic search, and access control 
execution. In particular, the policy administrator calls cor-
responding ��� s to add, update and delete policies in the 
literature. Based on the hash index structure of Cuckoo filter, 
the policy search achieves a dynamic and real-time policy 
retrieval. The access control execution is used to control 
the user’s access request to the resources. In addition, ��� 
determines whether the access request satisfies the specified 
policies. If it is a legal request, ��� sends “access author-
ized” and returns the corresponding resource information 
to the users. Otherwise, it sends “request is blocked” and 
rejects the user’s access request. 

1. Policy Management. In the system, an access policy is
defined as a logical combination of subject attributes,
object attributes, operations, and access time. In par-
ticular, Table 2 gives an example explanation. That is,
the subject attribute consists of user name, user role,
and unique user blockchain address; the object attrib-

Fig. 4  Interactive process 
between smart contract

Table 2  An example of an employed ABAC policy in our FDAC system

Subject Attributes Object Attributes Action Time

Name:“Alice” Role:“home user” 
addr:“0x19c...” ...

Name:“Smartmeter” Number:“002” 
addr:“0x48b...” ...

Read Write Execute... startTime:23456 end-
Time:23800
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ute includes terminal device name, serial number, and 
device blockchain address. Note that if the user name or 
device name is consistent, we can use other attributes 
to distinguish individual users or devices. The action of 
the subject on the object can be divided into read, write 
and execute; the time includes start time and end time, 
which is used to control the of time for the user to access 
the device. Moreover, we remark that the policy admin-
istrator can give a dynamic policy management, such as 
adding, updating, and deleting policies. For example, the 
policy administrator may add and configure a new policy 
when some resources are newly deployed.

• ��������� : adds the new access policy.
• ������������ : updates the access policy.
• ������������ : removes an inapplicable policy.

Only there is no conflict between existing policies
and newly added policies, the new policies can be suc-
cessfully included in the system. Similarly, a policy 
conflict verification is also managed for the condition 
of updating and deleting policies. 

2. Dynamic Policies Search. To improve the efficiency of
policy search and reduce time consumption, our FDAC
introduces a dynamic retrieval methodology based on
Cuckoo filter that supports both insertion and deletion
policy functions. When a system administrator inserts,
searches, or deletes an access policy, the corresponding
ABIs in the PMC may invoke the Cuckoo filter to complete
corresponding operations. In the Cuckoo filter, the process
of policy insertion, search and deletion proceeds as follows.

• Policy Insertion. When inserting an item x in
a policy, we use two hash functions to calculate
the indexes of the two candidate buckets, i.e.,
h1(x) = hash(x), h2(x) = h1(x)⊕ hash 

(

x′s fingerprint
). If there is a conflict between the fingerprint infor-
mation and a previous one, the previously inserted 
policy item is moved to the spare bucket. If there is 
no room in both buckets, a candidate bucket may be 
chosen to kick out the existing item and re-insert the 
kicked item into its spare position. Note that this pro-
cess may be repeated until an empty bucket is found. 
If there is no empty bucket, it implies that the hash 
table cannot be inserted with any new item. When 
the number of insertions and the number of buckets 
are sufficient, the probability of insertion failure can 
certainly be reduced. Figure 5 shows the process of 
inserting an item in a policy.

• Policy Search. The search process of the Cuckoo
filter is shown in Algorithm 2. The algorithm first
calculates the fingerprint of policy item x and two

candidate buckets. If any of the existing fingerprints 
in the two buckets match, the cuckoo filter returns 
true, otherwise the filter returns false. 

• Policy Deletion. When deleting an item, the system
automatically checks whether a given policy item
exists in two candidate buckets. If the fingerprints of
x exists in any bucket, the system deletes a copy of
the matching fingerprint from the bucket, as shown
in Algorithm 3. To delete a policy securely and accu-
rately, the policy item should have been inserted
before. Otherwise, deleting a non-existent policy
item may result in unintentionally deleting a differ-
ent policy item that shares the same fingerprint.

3. Access Control. The main function of ��� is to perform
access control and make decisions on access requests,
where the access control algorithm is shown in Algo-
rithm 4. Receiving a request (such as user ID, resource
ID, and action), the ������������� ��� checks if access
request is leagl. Access request includes legal access
and illegal access, which are monitored by ACC. Legal
access refers to the normal access of users according to
the access policy, while illegal access refers to the mali-
cious behavior of users in the access, mainly including
access prohibition of resource information and frequent
access. To allow or deny an access request, ��� finally
outputs the access decision to the access user node. Note
that if malicious access behavior of user is detected,
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ACC sends a misbehavior report(MR) to CC. Then, the 
user will be punished at different levels according to the 
credit value ��i returned by CC. The MR mainly contains 
the type of misbehavior, number of misbehavior, time of 
occurrence and historical record of access behavior. 

• ������������� : Make a decision on access request
according to the policies and rules defined in the
contract.

• ���������������� : Check for misbehavior and write
relevant records into MR report.

4.2.3  Credit assessment

There are several inherent malicious behaviors existed in the 
implementation of access control, such as frequent requests 
for a short period of time, and access to prohibited resources. 
However, these malicious behaviors unfortunately generate 
excessive blockchain transactions. Thus, this may reduce the 
probability of legal transactions that collected by the block-
chain, or prolong the confirmation time. To address it, when 
CC receives MR from ACC, it calculates the user’s credibil-
ity based on the MR which involves the types of misbehav-
ior, number of misbehavior and history of access behavior. 
The credit assessment algorithm is shown in Algorithm 5 . 

1. Credit Calculate Scheme. According to the behavior
of each user node labeled with i, its credit value ��i is
defined by

In particular, ��P
i
 denotes the positive impact fac-

tor where the access nodes have always followed the 
specified access policies. And ��N

i
 represents the nega-

��i = �1��
P
i
− �2��

N
i
.

Fig. 5  Access control policy 
insertion based on Cuckoo Filter
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tive impact factor where the access node has malicious 
behavior, which consists of accessing prohibited infor-
mation or sending access requests in a short period of 
time. In addition, �1 and �N respectively represents a 
corresponding weight that can be dynamically updated 
by the system as 

where �
(

ti
)

= 1∕� ti . Note that �2 , �N and � are preset
values, ti represents the total time of the access node, 
and �

(

ti
)

 represents the time attenuation factor. As ti
increases, the time decay factor �

(

ti
)

 decreases, where
weight �2 also decreases. That is, the influence of mali-
cious behavior on the node gradually decreases, where 
the node may thus be punished. The positive influence 
function ��P

i
 of reputation value is positively correlated 

with the number of legal behaviors (i.e. access request), 
which is defined as 

Note that ��P
i
max is the upper bound of ��P

i
 , which 

is a system-defined threshold (preliminarily set to 0.95) 
to prevent the infinite increase of ��P

i
 . And � is the 

weight of legal behavior, Ti is the total number of legal 
behaviors of user node i and Il is the last legal behavior 
index of the last punishment. For the negative influence 
function, mi is the total number of malicious behaviors 
of node i, k represents the total number of malicious 
behaviors of each type, �(�) denotes the penalty coef-
ficient of malicious behavior, which ranges from 1 to 
10. Moreover, the value can be adjusted according to the
requirements of sensitivity to malicious behavior, which 
is defined as 

 where 

 Generally, the user’s credit value falls into between 
0 and 1, and the punishment varies with the size of the 
credit value.

2. Credit Contract. When receiving a misbehavior report
MR from ��� , �� reads the information in MR and
gives the required value to ��������������� ABI, then
calls it to carry out the credit calculation according to
the credit calculation scheme in the previous section,
and finally returns the credit value to ���.

�2 = �N ⋅

�
�

ti
�

∑h

i=1
�
�

ti
�
,

��P
i
= min

(

��P
i
max,

(

Ti − Il
)

�
)

.

��N
i
=

mi
∑

k=1

�(�) ⋅
1

mi − k
,

�(�) =

{

�l if prohibited information accessed

�d if frequent requests sent

• ��������������� : Calculate credit value of user.

4.3  Access transaction consensus

FDAC employs the proof of work (POW) algorithm to model 
the access transaction consensus. In particular, an edge node 
retrieves a number of transactions in the smart contracts and 
tries to gain a block reward for packaging transactions. Later, 
the miner broadcasts its solution to the blockchain for letting 
other peer node to reach a consensus.

5  Function and security analysis

In this section, we give a function and security analysis of 
FDAC respectively according to the design goals and threat 
model in Sect. 3.

5.1  Function analysis

• Fine-grained access control. In FDAC, the user nodes
are described by a set of attributes, and the specified
authorization consists of a variety of different attributes
and thresholds. As a result, the subject and the object of
our FDAC system associate with attributes set, which
provides an inherent fine-grained attribute-based access
control over device management.

• Automatically-running. In FDAC, there are several
smart contracts introduced to manage system running.
Our blockchain-based FDAC can be automatically-running 
to implement access control according to the logical
order without excessive manual intervention. Hence, the
fairness for all peer nodes is certainly achieved in FDAC.

• Privacy-Preserving. The anonymity of ABS utilized in
FDAC can protect the true identities of users from being
leaked. When to verify the attribute-based signature, the
relevant identity information is kept in privacy from pub-
lic.
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5.2  Security analysis

• Collusion Resistant. The device nodes may collude
together to exchange their attributes. To satisfy an unau-
thorized access policy, the adversary tries to collect addi-
tional attributes from other devices. However, our FDAC
records the attributes of each user node and device node
in the blockchain, and provides trustworthy for these
digital credentials. As a result, a requester can not use
other attributes that not belongs. If a user maliciously
access unauthorized resources, it may be detected and get
a punishment by the system. For example, Si utilizes Sj ’s 
attributes to maliciously construct the attributes
map

{

IDSi
∶ (atti)i∈Si , (attj)j∉Sj

}

.
• Replay attack Resistant. The adversary may intercept

the access request sent by the user and replay the access
request to gain access to device resources. In FDAC, the
access requests are only sorted by RequestID, thus the
adversary cannot send multiple requests with a same
request ID. Therefore, the malicious repeated replays are
eventually blocked permanently according to the condi-
tions built into ��� and ��.

• Modification attack Resistant. The adversary tries to
change or delete the stored data of a particular user or
device. To launch such an attack, the attacker should
compromise the security of the local storage. In FDAC,
only the administrator node can delete and update the
policy according to the designed smart contract. If any
attacker tries to modify the block, the malicious modi-
fication is certainly detected. Since each block includes
the hash value of its previous block Hash(PreBlock), and
any modification on one block may lead to severe break
to the blockchain.

• Masquerade Attack Resistant. The adversary tries to
gain unauthorized access by stealing passwords, login
names, finding program loopholes, and later launch a for-
gery attack. However, our FDAC can resist such attacks
since the adversary cannot be registered as a legal entity.
Moreover, each entity has a unique ID and blockchain
address(addr), as a result, they are verified during system
registration.

6  Performance analysis

To clarify practical performance of our FDAC, we imple-
ment it and employ an Ethereum platform to build an 
experiment environment. In particular, we install the geth 
client [36] on a laptop, a desktop and a server, and set up 
multiple Ethereum nodes. We list the specifications and 
configurations of employed equipments in Table 3. To well 
write and compile smart contracts, we use the Remix inte-
grated development environment (IDE) [37], where Solidity 

is implemented and conducted in a browser-based IDE for 
implementing. Moreover, we use web3.js [38] to simulate 
the communications among corresponding geth clients. 
In particular, the access messages and results are received 
based on smart contracts via an HTTP interface. In addi-
tion, we conduct an extensive experimental analysis from 
the sides of smart contracts, strategy retrieval and credit 
respectively.

6.1  Performance of smart contracts

Here, we give a cost-consuming and time-consuming analy-
sis of the introduced smart contracts in our FDAC system.

• Gas Cost. To measure the workload that perform vari-
ous operations in the Ethereum platform, we employ
the well-known gas to count it. Based on the collected
data in our experiment, the gas that required to deploy
���, ���,��� , and �� are respectively 2,354,612,
3,232,167, 2,939,883 and 2571606, which is shown in
Fig. 6.

• Average Latency. To analyze the average latency of the
deployment and execution of smart contracts, we give a
couple of experiments with simulating different number
of user nodes. As shown in Fig. 7, the consumed time
for smart contract deployment and execution increases,
with the increase of user nodes. However, the time delay
between them also gradually increases.

• Access Result. When receiving a user’s access request,
��� makes a corresponding access decision and returns
the result to the user. In particular, Table 4 and Table 5
respectively shows the returned legal results and illegal
results from the system. As a result, the system grants the
access rights for a user when the user’s access request is
determined as legal. Otherwise, the user’s access request
will be blocked.

6.2  Performance of policy search

Based on the discovered findings of [39], the inherent false 
positive rate can reach the best or near the best case under 
the condition that: there are two candidate buckets in the 

Table 3  Device specifications

Device Model Processor Memory

Laptop AMD Ryzen7 4800H with Graphics2.90 
GHz

16GB

Desktop Intel(R)Core™ i5-7500 CPU @3.40GHz 16GB
Server Intel(R)Core™ i5-9100 CPU @3.80GHz 32GB
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cuckoo filter and four fingerprints of each bucket. Note that 
the fingerprint information of the policy item is only stored 
in the bucket. As shown in Table 6, the false positive rate 
and the time delay of single policy search increase with the 
increase of the number of policies.

In addition, we conduct a comparison of the policy search 
efficiency between our FDAC and classic traversal search-
based solutions. In the experiment, we measure the policy 
retrieval time based on different policy scales, which is 
shown in Fig. 8. Generally, our FDAC certainly reduces time 
consumption and greatly improves roughly 3× faster search 
efficiency compared to classic solutions.

6.3  Credit assesment analysis

To further clarify behaviors of users nodes, we measure the 
proportion of malicious behaviors of all the historical behav-
iors. As shown in Fig. 9, the credit value of user nodes and 
the degree of reduction gradually reduces with the increase 
of malicious behaviors. Therefore, we may conclude that 
the malicious behaviors has a much higher influence on the 
reputation of nodes than positive impact factors.

In our experiments, the time factor of credit value changes 
from t1 to t10, whose influence is shown in Fig. 10. Figure 10 
shows that the positive impact of credit increases regularly, 
and the negative impact also increases with a small range. 
Finally, the overall credit value can be gradually improved. 
In particular, the influence of negative impact has gradually 
reduced over time. The primary goal of the system is to pro-
vide misbehavior-resistance and enhanced security against 
malicious behaviors. A misbehaved user’s credit value gradu-
ally increases if its misbehavior is corrected, as a result, it can 
thus access the resources and information of terminal devices.

Fig. 6  Cost of deploying smart contracts

Fig. 7  Average latency during the deployment and execution of smart 
contracts

Table 4  Result of legal

Contract address 0x9ecEA68DE55F316B702f27eE389D-
10C2EE0dde84

Block Number 2301
Tx Hash 0xe3009fcbb791b5b9192a493a44f114a7cf-

5bfeb58033417a89036bb534e7c79a
Block Hash 0x4256997b953a30d7ebf5288fa2a2f297d-

0ca7b088b66bc51ba1454827731d4a0
Message Access authorized!
Result true

Table 5  Result of illegal access

Contract address 0x9ecEA68DE55F316B702f27eE389D-
10C2EE0dde84

Block Number 2500
Tx Hash 0xdd09133ca4416ad3a648bc066a27d082a4e-

0c1f3e6831b957bc0b008336ff1fd
Block Hash 0x347b7cf102df4e6511cad37beed-

6a22d7b2928b9b5fbee11978710b0f1ecf3d1
Message Requests are blocked!
Result false

Table 6  Performance of policy search

Rounds false positive rate(%) Single time 
delay (ms)

1000 0.0402 0.115
2000 0.0402 0.115
3000 0.1533 0.116
4000 0.1165 0.125
5000 0.1644 0.134
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7  Conclusion

This paper has introduced a FDAC system for terminal 
device management in blockchain-based microgrid, which 
achieves distributed, efficient and fine-grained access con-
trol. In particular, we proposed four smart contracts to 
effectively and dynamically mange numerous devices, 
introduced Cuckoo filters and new algorithm of credit 
assessment to enhance the fine-grained flexibility of the 
system. A well-implemented experiment shows that our 
FDAC achieves high policy search efficiency, low time 
delay of smart contracts running, and dynamic, fine-
grained access control over devices. Nevertheless, the stor-
age cost of policies is a little high due to the discontinuous 
access space addresses, which seems an interesting future 
work to further improve policy storage efficiency.
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