
Vol.:(0123456789)1 3

https://doi.org/10.1007/s12083-022-01316-5

Blockchain‑based access control for dynamic device management
in microgrid

Kai Zhang1 · Jinhu Yu1 · Chao Lin2,3 · Jianting Ning2,4

Received: 31 December 2021 / Accepted: 16 March 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Microgrid is a self-sufficient grid system that covers one or more kinds of distributed energy, where a variety of terminal
devices collect, transmit and store electricity data based on fog-based network infrastructure. Due to security and privacy
concerns, efficient and secure access control over terminal devices in microgrid is the primary way to prevent unauthorized
access and data breach. Therefore, a number of solutions of device management are proposed. However, they are usually
prone to single point of failure, decision-centralized, over-manual intervened. To address the problem, we introduce a blockchain-
based fast and dynamic access control (FDAC) system for device management in fog-assisted microgrid. In particular,
we adopt an attribute-based access control formula to model a flexible, dynamic and fast fine-grained access control system.
FDAC deploys four smart contracts that dynamically manages devices, which includes user authentication, subject/object
attributes, access policy, decision-making and credit assessment of user behavior. In addition, FDAC employs a Cuckoo
filter to speed up policy search in smart contracts and proposes new credit verification algorithm to improve credit rewards
and punishments. To clarify practical performance, we build a private blockchain platform to simulate FDAC. Compared to
classic traversal approaches for policy search, FDAC maintains higher accuracy and lower time delay.

Keywords Microgrid · Blockchain · Device management · Access control

1 Introduction

Microgrid is a self-sufficient grid system that relies on vari-
ous distributed energy sources to generate electricity, such
as solar panels, wind turbines and cogeneration. To collect,
transmit and store electronic data accurately and efficiently,
a number of terminal devices (e.g., smart meter, wireless
sensors) are widely deployed in microgrid. In particular, the
Internet of Things (IoT) technology [1, 2] enables numerous
devices with cost-effectively implementation and connected
via distributed network infrastructure. Hence, organizations
can access two-way of flows of energy electricity and com-
munication information that provided by intelligent IoT
devices [3]. Once these large-scale connected IoT devices
suffer malicious intrusion, the reliable running of microgrid
will be severely affected.

In December 2015, a cyberattack accident “Ukraine
power grid hack” leads to a large area of power failure [4],
which severely influenced power supply for roughly 230,000
users. According to a released report by Ukrainian TSN tel-
evision, the main reason for this accident is that the distrib-
uted plant’s terminal devices are exposed to unauthorized

 * Jianting Ning
jtning88@gmail.com

Kai Zhang
kzhang@shiep.edu.cn

Jinhu Yu
Coolfish355@gmail.com

Chao Lin
linchao91@fjnu.edu.cn

1 College of Computer Science and Technology, Shanghai
University of Electric Power, 201306 Shanghai, China

2 College of Computer and Cyber Security, Fujian Normal
University, 350117 Fuzhou, China

3 Key Laboratory of Aerospace Information Security
and Trusted Computing, Ministry of Education, Wuhan
University, 430072 Wuhan, China

4 State Key Laboratory of Information Security, Institute
of Information Engineering, Chinese Academy of Sciences,
100093 Beijing, China

/ Published online: 25 March 2022

Peer-to-Peer Networking and Applications (2022) 15:1653–1668

http://orcid.org/0000-0001-7165-398X
http://crossmark.crossref.org/dialog/?doi=10.1007/s12083-022-01316-5&domain=pdf

1 3

access and illegal control. The attackers can thus make
wrong orders, even power equipment shutdown. Different
to classic smart grid, the microgrid composed up of distrib-
uted energy include numerous diverse and complex terminal
devices. Once these devices are hacked due to unauthorized
access, the security and privacy of sensitive information may
be leaked to outsiders. Therefore, the primary goal of device
management in microgrid is to provide authorized, secure
and flexible access control over terminal devices.

Architechture under blockchain‑based paradigm To
enhance the security guarantee, trust transferring and owner-
ship authenticity, the microgrid has been evolved into under
a blockchain-based infrastructure that managed by distrib-
uted peer-to-peer network [5], which is shown in Fig 1. Gen-
erally, the process of accessing devices and tracking records
in a microgrid device management can be well facilitated. In
concrete, the blockchain-based microgrid provides a trusted
environment and manages a variety of nodes that include
terminal device nodes, user nodes and resource computa-
tion nodes. Thus, the information of resource and devices
are recorded into blocks and later accessed by peer nodes,
such as device fingerprint, address, attributes and modes.
Since there are massive and complicated terminal devices
spread over in the blockchain environment, enabling secure,

dynamic and fine-grained access control for device manage-
ment in microgrid is highly appreciated.

Models of access control There have been many traditional
access control models proposed : discretionary access con-
trol (DAC) [6], role-based access control (RBAC) [7], and
capability-based access control (CapBAC) [8]. In particular,
the DAC builds an authorization list for each object where
the subjects without identifiers or sufficient resources can
not access the object, which only works for simple systems.
In RBAC, the entities that described as different roles may
access the resources of the principal. As a result, an amount
of relationship/connection between access rights and sub-
jects are established [9], but it may increase exponentially
due to the growth of entities. In CapBAC, the model distrib-
utes corresponding rights for different entities based on their
capabilities, such as a transferable and unforgeable authori-
zation token [10, 11]. In practical applications, the access
objects cannot be trusted as access verification entities, since
they are usually vulnerable to attacks due to lightweight
capabilities. To summarize, these models can only provide
basic access control characteristics in resource-constrained
systems. In addition, they are prone to single point of failure
due to microgrid’s underlying decentralized and dynamic
architecture characteristics.

Fig. 1 The Blockchain-based
Microgrid

1654 Peer-to-Peer Networking and Applications (2022) 15:1653–1668

1 3

To address the problem, Hu et. al [12] introduced the
model of attribute-based access control (ABAC). In
ABAC, each entity is described by a set of attributes, and
the policy is specified by different attributes and a set of
rules. Thus, only parties whose attributes satisfy the speci-
fied policy can access information [13, 14]. Therefore, the
ABAC model has been widely deployed in practical appli-
cations that require decentralized access control, which
can provide fine-grained access control for device manage-
ment in microgrid.

Blockchain‑based access control To adapt to the blockchain-
based network infrastructure, there are a number of block-
chain-based access control systems [15–19] introduced.
In particular, the work [15–17] employed the distributed
and immutable blockchain paradigm to store access con-
trol policies, but its computation capability is unfortunately
limited. Recently, Zhang et.al, [18] implements smart
contract-based access control in the Internet of Things, which
provide efficient and secure trustworthy managements over
devices. Later, [19] extended [18] to further consider flexible
authorization and authentication of users, and presented a
novel blockchain based access control system that achieves
privacy, efficiency, decentralization and scalability of IoT
network services. Nevertheless, it has not formally con-
sidered a good tradeoff between effectiveness, credibility
and authentication of the system. To detect illegal access
behavior (such as frequent access), [20] proposed an access
control system that can efficiently check user’s behavior and
punish the access user but fail to assess user’s credit. Very
recently, Zhang et.al, [21] introduced a dynamic attribute-
based access control framework based on well-designed
smart contracts, which only focus on managing the process-
ing time period. However, the state-of-the-art solutions of
blockchain-based access control have not formally consid-
ered credit assessment for behaviors of nodes and efficiently
searching for access control policies.

1.1 Our results

To enable such a dynamic, efficient and secure access con-
trol framework for IoT devices, we propose FDAC, a fast
and dynamic access control system for device management
in fog-assisted microgrid. Generally, we revisit blockchain-
based ABAC model with introducing credit assessment
methodology and fast policy searching function. In par-
ticular, we propose new smart contracts to automatically
give a fully dynamic managements over terminal devices.
In addition, we employ Cuckoo filter to speed up the policy
retrieval process that determines whether one entity’s opera-
tions match a specified policy. Concretely, the main charac-
teristics of our FDAC can be summarized as follows:

1. Achieving secure, scalable and fine-grained attribute-
based access control for device management, in which
only authenticated and authorized user nodes can access
information of devices. Based on an underlying block-
chain-based framework, FDAC has well captured the
risk of single point access control and centralized policy
decision-making.

2. Deploying dynamic and efficient smart contracts that real-
izes user authorization and authentication, attribute manage-
ment and access decision-making. By employing Cuckoo
filter to fast search target policies, the running efficiency of
algorithm-functions in FDAC are obviously improved.

3. Configuring credit assessment to monitor malicious
behavior of user nodes, where the decision-making is
dynamically adapted to the sensitivity of resources. With
introducing new credit assessment algorithms, the his-
torical transaction records about access process between
user nodes and terminal nodes are stored in edge nodes.

To illustrate practical utility of our FDAC, we build an
Ethereum blockchain-based platform, and deploy corre-
sponding nodes distribution and smart contracts.

The results show that FDAC can automatically exe-
cute access decision and malicious behavior monitor-
ing. In addition, the policy searching in smart contracts
is much faster than classic traversal approaches, where
the accuracy of the policy search maintains 85% above
and the delay of a single policy search is almost 0.2 mil-
lisecond. As our FDAC considers effective and efficient
credit assessment and policy search, the cost of natural gas
consumed by the deployment of smart contracts and the
execution of the corresponding ��� are slightly increased
by 15%. Although the performance has increased by nearly
30%, which is highly acceptable in practical applications.

Comparison Table 1 shows a general analysis between
state-of-the-art solutions and our FDAC, which includes
feature and cost comparison. As can be seen, the work and
FDAC support tamper-proof [15, 18, 20–22] and privacy
preservation [15, 20, 22]. Although several smart contracts
are all deployed in current solutions, our FDAC provides a
fully dynamic managements of user nodes. In addition, [21,
22] and FDAC adopt the ABAC model to give a more fine-
grained access control for policy managements. Compared
with [18, 20–22], FDAC introduces a credit assessment algo-
rithm to measure the credit rewards and punishments of user
nodes. Furthermore, our FDAC achieves a constant cost of
policy search, while that of other solutions increases with
the number of items in a specified policy. In particular, the
policy searching cost in state-of-the-art solutions [15, 18,
20–22] is linear with the policy scale (i.e., O(n)); while our
FDAC system achieves a constant policy searching cost due
to the adoption of Cuckoo filter in the smart contract ���.

1655Peer-to-Peer Networking and Applications (2022) 15:1653–1668

1 3

1.2 Related Work

Blockchain‑based access control models Ouaddah et al. [23]
presented fairaccess, a blockchain-based authorization
scheme where smart contracts are used to perform access
control policies to exchange access tokens, but the assumed
number of transactions is limited. And [24] adopted smart
contracts to achieve access control for only data records
management. Different from [24], Zhang et al. [18] utilized
Ethereum smart contracts to store ACLs, and thus proposed
an ACL-based access control framework. However, the sys-
tem usually brings about large monetary cost in deploying
the contract since each contract is only designed for each
subject-object pair. Later, Dorri et al. [15] considered the
access control problem in IoT and conducted a case study
with smart home. In the scheme, each block uses a policy
header to store the access control policy to deal with all
access requests that interacted with home devices, which
the critical proof-of-work process in blockchain technol-
ogy is not formally considered. Compared to local private
chain, a novel control chain [25] is proposed for providing
user transparent, user-friendly, completely decentralized and
fault-tolerant. Nevertheless, there are four different block-
chains to perform access control, which are cost-expensively
maintained with. To consider distributed access control in
cloud services [26], a blockchain-based decentralized runt-
ime access monitoring system (DRAMS) is introduced for
federated cloud cooperation. As a result, it provides data
privacy and data secure sharing. In recent years, Novo
et al. [27] proposed an authorization scheme for manag-
ing IoT devices based on distributed blockchain. However,
the two solutions are less practical since the assumed IoT
devices usually suffer from limited computing power. To
effectively protect large-scale IoT devices, Xu et al. [28]
introduced a decentralized and joint capability-based delega-
tion model (FCDM). However, the large storage cost leads
to a high latency to access requests.

ABAC‑based access control Qashlan et al. [22] and Zhang
et al. [21] considered attribute-based access control and
smart contracts for practical IoT applications. In particu-
lar, [22] proposed an authentication scheme for secure IoT

device management in fog-assisted smart home. Neverthe-
less, it cannot effectively monitor illegal behaviors of user
nodes, which limits its practical deployments in privacy-
enhanced environments. Zhang et al. [21] presented some
smart contracts for access control framework for smart city,
which achieves functionalities of managing the attributes
of the subject and object, adding and deleting access poli-
cies, and decision-making. However, the designed access
control only works for dynamic time management, while
not formally considering dynamic managements over termi-
nal devices. In addition, [29] introduced an attribute-based
access control model for blockchain in the open IoT envi-
ronment, where key attribute information is stored on the
blockchain. The system judges the access request through
the attribute-based access control method in the smart con-
tract, and makes access control judgment. However, the anal-
ysis of safety and operating costs is lacking in the scheme.
Later, Zhang et al. [30] formulated an effective attribute-
based collaborative access control scheme to realize con-
trolled access authorization in IoT applications. Although
the scheme guarantees the security of authorized access, the
data integrity and privacy threats of access control have not
formally considered. Recently, Rouhani et al. [31] proposed
an attribute-based access control system in a blockchain to
provide trusted auditing of access attempts. Additionally, the
system provided a degree of transparency that benefited both
access requesters and resource owners, but the user authen-
tication is not integrated into the user authorization phase.

Organization We review some background knowledge in
Sect. 2 and describe the problem formulation in Sect. 3.
Section 4 presents our FDAC system and Sect. 5 gives its
function and security analysis. We implement the system
and show its performance in Sect. 6 and finally concludes
the work in Sect. 7.

2 Background knowledge

In this section, we review some background knowledge
that includes blockchain technology, smart contract,
Cuckoo filter and attribute-based signature.

Table 1 Comparison between
State-of-the-art Work and Our
FDAC

[15] [18] [20] [21] [22] Ours

Tamper-Proof ✓ ✓ ✓ ✓ ✓ ✓

Privacy Preservation ✓ × ✓ × ✓ ✓

Usage of Smart Contract × ✓ ✓ ✓ ✓ ✓

Attribute-Based × × × ✓ ✓ ✓

Credit Assessment × × × × × ✓

Policy Searching Cost O(n) O(n) O(n) O(n) O(n) O(1)

1656 Peer-to-Peer Networking and Applications (2022) 15:1653–1668

1 3

2.1 Blockchain

Blockchain [32] is a distributed ledger that allows data
to be recorded, stored and updated in a distributed man-
ner. In blockchain, the transaction is the most fundamental
activity that created, recorded and approved in the block
by the miner. Based on a consensus algorithm, the miner
who wins bookkeeping rights sends its created block to
the system to each peer node. Other nodes later verify the
hash value, signature and transaction validity of the block,
and finally join in the local after a consensus. Therefore,
blockchain is considered to be a promising architecture
that guarantees security of distributed transactions for all
participants in a public peer-to-peer environment.

2.2 Smart contract

Smart contract [33] is a special account with associated
codes (i.e. functions) and data (i.e. states) in blockchain.
Generally, it is compiled into the bytecode of the specific
binary format of blockchain platform (i.e., Ethereum), and
the account is deployed into the blockchain. Smart contract
provides a number of functions or interactive application
binary interfaces (���s). These ��� s are usually executed
through transactions between accounts or the transmission
of messages between contracts. Moreover, they can also
be executed by simply calling functions without sending
transactions and messages.

2.3 Cuckoo filter

Cuckoo Filter [34] is a variant of Cuckoo hash table, which
supports dynamic addition and deletion of items. For each
item inserted, only its fingerprint (bit string generated by
the hash function) is stored instead of a key-value pair.
A Cuckoo hash table consists of an array of buckets, and
each insertion item is two candidate buckets determined by
hash functions. Among that, one bucket records the item
and the other bucket backups the item. When to construct
a Cuckoo filter, its fingerprint size is determined by the
target false positive rate decision. Note that a smaller false
positive rate requires a longer fingerprint to reject more
false positive queries.

2.4 Attribute‑based signature

The concept of attribute-based signature (ABS) was first
proposed by [35], which allowed a user to sign messages
with any predicate with its attributes that issued from an
authority. The signed message only reveals that the speci-
fied policy but preserves user’s identity information privacy.

Therefore, ABS not only preserves privacy information ano-
nymity for users, but also provides fine-grained access con-
trol over the users.

• ���.����� : The setup algorithm inputs a security param-
eter � , and outputs a system public parameter PP and a
master key MK.

• ���.������ : The key generation algorithm inputs
PP, MK and a user’s attribute set Γ , and finally outputs a
private key SKΓ for the user.

• ���.���� : The signature algorithm input PP, a message
M, a user’s private key SKΓ and a predicate Λ that accepts
Γ , and outputs a signature � of M.

• ���.������ : The verification algorithm inputs PP and
a signature � along with an attribute set Γ , and finally
outputs 1 if � is valid. Otherwise, it outputs 0.

3 Problem formulation

In this section, we formalize the system model, design goals
and threat model of our blockchain-based FDAC for device
management in microgrid.

3.1 System model

Our blockchain-based FDAC system consists of the follow-
ing four entities: Device nodes, User nodes, Edge nodes and
Cloud, which is formally described as in Fig. 2.

• Device nodes: The terminal devices include a variety
of power devices, such as smart meters, wireless sen-
sors, and communication boxes. These devices are used
to collect and store electricity consumption information,
instrument temperature, and network data.

• User nodes: The semi-honest users include different
types of lightweight users, such as clients and organiza-
tions. Based on blockchain-based FDAC system, they
access device information and resource information.

• Edge nodes: The edge node records incoming and out-
going transactions of device running operations, which
usually considered as miners in the blockchain infrastruc-
ture. Note that its capability is stronger than terminal
devices but weaker than cloud server.

• Cloud: It provides highly-efficient, cost-effective and
secure storage services, where its computation and stor-
age resources can be flexibly configured as a number of
nodes on the blockchain.

3.2 System running flow

The running flow of the system is formalized as follows:

1657Peer-to-Peer Networking and Applications (2022) 15:1653–1668

1 3

1. First, a user node is authenticated by the attribute-based
signature(ABS) algorithm in ��� . If it is authenticated,
the ��� returns a unique identification number ID and
blockchain address addr to the user node.

2. Later, a user sends an access request to the smart con-
tract ��� , for accessing device information of terminal
devices that stored in the cloud. If determined as a legal
request by ��� , the ��� returns access authorization
or access block to the user.

3. Then, the ��� sends a user’s misbehavior report MR to
a smart contract �� , where �� assess the credit of user
behavior in MR and returns a credit value ��i to ��� .
Based on different levels of credit, ��� specifies cor-
responding punishments.

4. Finally, receiving a user’s access information records,
the edge nodes package them as transactions into blocks
to get system rewards.

3.3 Design goals

The design goals of our FDAC system are as follows:

• Fine-grained access control. The access rights of each
user is conducted as a subject-object pair, where the
devices and users are all described by a set of attributes.
Note that only users whose attributes satisfy the specified
policy can access the information.

• Automatically-running. Following the inherent policy of
smart contracts, the system can run automatically without
manual intervention and provide fairness for all peer nodes.

• Privacy-Preserving. The signer’s private information
is hidden from verifies and the public when it registers
in the system. That is, the signed request only reveals
that its attributes, while not leaking its identity informa-
tion.

• Constant policy searching cost. The cost of policy search-
ing in smart contracts is constant, where the query time
overhead and storage overhead remains highly efficient.

3.4 Threat model

• Collusion Attack. The terminal device nodes may collude
together to access unauthorized information and lead to the
disclosure of attribute information. That is, the colluded
attackers may try to maliciously collect attributes and sat-
isfy a specified access policy.

• Replay Attack. This attack indicates that the attacker may
intercept the access request that sent by the user and replay
the access request to gain access of device resources.

• Modification attack. This attack indicates that an attacker
may try to modify or delete stored data of a specific user
or device. The attacker compromise the local storage and
learns confidential data information to launch such attack.

• Masquerade Attack. A masquerading attack is per-
formed by an adversary to gain unauthorized access to
the system. This attack usually includes stealing pass-
words, snooping login names and finding loopholes of
the system.

4 The FDAC scheme

In this section, we formally present FDAC, a fast and
dynamic access control for blockchain-based device man-
agement system in fog-assisted microgrid.

4.1 Blockchain structure

The nodes in the blockchain-based FDAC system includes
the following four types of nodes:

Fig. 2 The system model of FDAC system in fog-assisted microgrid

1658 Peer-to-Peer Networking and Applications (2022) 15:1653–1668

1 3

• Light nodes: The light nodes consist of access user
nodes and device nodes, where they only keep transac-
tions information that related to themselves.

• Admin nodes: The admin nodes manage the attributes
of the subject and object, and audit the data in the block-
chain that related to user nodes.

• Edge nodes: The edge nodes, usually acted as miners,
record incoming and outgoing transactions of device run-
ning operations. Note that its capability is stronger than
terminal devices but weaker than cloud server.

• Cloud node: The cloud node provide a secure, flexible
and user-configured data storage services for the system,
which manages the records of user information and data
collected by terminal devices.

4.2 Running flow

There are four phases included in our FDAC system, that
is, initialization, access control management, credit assess-
ment, and access transaction consensus. In particular, Fig. 3
shows concrete running flow of our FDAC.

In addition, we give a more careful explanation on
the interactive process between each smart contract that
deployed used in our FDAC system. In particular, there are
the following four smart contracts (as depicted in Fig. 4)
that are introduced for FDAC: Attribute Management Con-
tract (���), Policy Management Contract (���), Access
Control Contract (���) and Credit Contract (��). In
general, the ��� manages the attributes of subjects and
objects, and the ��� requests that required set of attributes

from the ��� to generate corresponding policies. When
��� determines whether the user’s access policy is legal,
it should match the policy that existed in the ��� . If ���
meets illegal access, it may send a misbehavior report to
the �� , and �� calculates and returns the user’s credit
value to the ��� . Finally, the system formulates the cor-
responding punishment according to the credit value.

4.2.1 Initialization

The attribute-based signature (ABS) is deployed in the
smart contract ��� to assist users to perform user authen-
tication (signature verification) during the system initiali-
zation phase. Generally, an ABS consists of four algo-
rithms ���.����� , ���.������ , ���.���� and ���.������ .
In particular, the admin node first generates the system
parameters PP and a master key MK via running ���.�����
algorithm. Later, it computes a private key SKΓ based on a
user node’s attribute set Γ via running ���.������ algo-
rithm. Then, the user node calls ���.���� algorithm and
outputs a signature � of its message M. Finally, ��� veri-
fies � by calling ���.������ algorithm. As a result, the user
node is successfully registered in the system.

1. Registration. A new user completes the registration and
authentication based on the involving ��� algorithm in
��� . After that, the system grants a corresponding ID
and a unique blockchain account address addr for a user
node, where the user’s ID associates with an attribute

Fig. 3 The running flow of the blockchain-based FDAC system

1659Peer-to-Peer Networking and Applications (2022) 15:1653–1668

1 3

set that implies the subject of ID is equipped with these
attributes. Hence, a registered user can verify its iden-
tity with submitting own ID, addr and the validation
of identity algorithm (as shown in Algorithm 1). Once
a user logs out of the system with canceling its ID, as
a result, its corresponding address is also cleared from
the blockchain network (but the cancellation record is
maintained). In particular, the ��� s of registration in
AMC includes:

• ���������� : verifies whether a user is the member of
the system.

• �������� : a user logs out of the system.

2. Attribute Management. In AMC, the administrator
can execute different ��� s to add, update, and delete
attributes of subjects and objects. Generally, the subject
denotes the accessing user, and the object represents the
resources that provided by terminal devices. The ��� s
of attribute management in AMC includes:

• ���������� : adds the attributes of the subject (user
nodes).

• ��������� : add the attributes of the object (device
nodes).

• ������������� : update the attributes of the subject.
• ������������ : update the attributes of the object.
• ������������� : delete the attributes of the subject.
• ������������ : delete the attributes of the object.

4.2.2 Access control management

The access control management (���) consists of policy
management, policy dynamic search, and access control
execution. In particular, the policy administrator calls cor-
responding ��� s to add, update and delete policies in the
literature. Based on the hash index structure of Cuckoo filter,
the policy search achieves a dynamic and real-time policy
retrieval. The access control execution is used to control
the user’s access request to the resources. In addition, ���
determines whether the access request satisfies the specified
policies. If it is a legal request, ��� sends “access author-
ized” and returns the corresponding resource information
to the users. Otherwise, it sends “request is blocked” and
rejects the user’s access request.

1. Policy Management. In the system, an access policy is
defined as a logical combination of subject attributes,
object attributes, operations, and access time. In par-
ticular, Table 2 gives an example explanation. That is,
the subject attribute consists of user name, user role,
and unique user blockchain address; the object attrib-

Fig. 4 Interactive process
between smart contract

Table 2 An example of an employed ABAC policy in our FDAC system

Subject Attributes Object Attributes Action Time

Name:“Alice” Role:“home user”
addr:“0x19c...” ...

Name:“Smartmeter” Number:“002”
addr:“0x48b...” ...

Read Write Execute... startTime:23456 end-
Time:23800

1660 Peer-to-Peer Networking and Applications (2022) 15:1653–1668

1 3

ute includes terminal device name, serial number, and
device blockchain address. Note that if the user name or
device name is consistent, we can use other attributes
to distinguish individual users or devices. The action of
the subject on the object can be divided into read, write
and execute; the time includes start time and end time,
which is used to control the of time for the user to access
the device. Moreover, we remark that the policy admin-
istrator can give a dynamic policy management, such as
adding, updating, and deleting policies. For example, the
policy administrator may add and configure a new policy
when some resources are newly deployed.

• ��������� : adds the new access policy.
• ������������ : updates the access policy.
• ������������ : removes an inapplicable policy.

Only there is no conflict between existing policies
and newly added policies, the new policies can be suc-
cessfully included in the system. Similarly, a policy
conflict verification is also managed for the condition
of updating and deleting policies.

2. Dynamic Policies Search. To improve the efficiency of
policy search and reduce time consumption, our FDAC
introduces a dynamic retrieval methodology based on
Cuckoo filter that supports both insertion and deletion
policy functions. When a system administrator inserts,
searches, or deletes an access policy, the corresponding
ABIs in the PMC may invoke the Cuckoo filter to complete
corresponding operations. In the Cuckoo filter, the process
of policy insertion, search and deletion proceeds as follows.

• Policy Insertion. When inserting an item x in
a policy, we use two hash functions to calculate
the indexes of the two candidate buckets, i.e.,
h1(x) = hash(x), h2(x) = h1(x)⊕ hash

(

x′s fingerprint
). If there is a conflict between the fingerprint infor-
mation and a previous one, the previously inserted
policy item is moved to the spare bucket. If there is
no room in both buckets, a candidate bucket may be
chosen to kick out the existing item and re-insert the
kicked item into its spare position. Note that this pro-
cess may be repeated until an empty bucket is found.
If there is no empty bucket, it implies that the hash
table cannot be inserted with any new item. When
the number of insertions and the number of buckets
are sufficient, the probability of insertion failure can
certainly be reduced. Figure 5 shows the process of
inserting an item in a policy.

• Policy Search. The search process of the Cuckoo
filter is shown in Algorithm 2. The algorithm first
calculates the fingerprint of policy item x and two

candidate buckets. If any of the existing fingerprints
in the two buckets match, the cuckoo filter returns
true, otherwise the filter returns false.

• Policy Deletion. When deleting an item, the system
automatically checks whether a given policy item
exists in two candidate buckets. If the fingerprints of
x exists in any bucket, the system deletes a copy of
the matching fingerprint from the bucket, as shown
in Algorithm 3. To delete a policy securely and accu-
rately, the policy item should have been inserted
before. Otherwise, deleting a non-existent policy
item may result in unintentionally deleting a differ-
ent policy item that shares the same fingerprint.

3. Access Control. The main function of ��� is to perform
access control and make decisions on access requests,
where the access control algorithm is shown in Algo-
rithm 4. Receiving a request (such as user ID, resource
ID, and action), the ������������� ��� checks if access
request is leagl. Access request includes legal access
and illegal access, which are monitored by ACC. Legal
access refers to the normal access of users according to
the access policy, while illegal access refers to the mali-
cious behavior of users in the access, mainly including
access prohibition of resource information and frequent
access. To allow or deny an access request, ��� finally
outputs the access decision to the access user node. Note
that if malicious access behavior of user is detected,

1661Peer-to-Peer Networking and Applications (2022) 15:1653–1668

1 3

ACC sends a misbehavior report(MR) to CC. Then, the
user will be punished at different levels according to the
credit value ��i returned by CC. The MR mainly contains
the type of misbehavior, number of misbehavior, time of
occurrence and historical record of access behavior.

• ������������� : Make a decision on access request
according to the policies and rules defined in the
contract.

• ���������������� : Check for misbehavior and write
relevant records into MR report.

4.2.3 Credit assessment

There are several inherent malicious behaviors existed in the
implementation of access control, such as frequent requests
for a short period of time, and access to prohibited resources.
However, these malicious behaviors unfortunately generate
excessive blockchain transactions. Thus, this may reduce the
probability of legal transactions that collected by the block-
chain, or prolong the confirmation time. To address it, when
CC receives MR from ACC, it calculates the user’s credibil-
ity based on the MR which involves the types of misbehav-
ior, number of misbehavior and history of access behavior.
The credit assessment algorithm is shown in Algorithm 5 .

1. Credit Calculate Scheme. According to the behavior
of each user node labeled with i, its credit value ��i is
defined by

In particular, ��P
i
 denotes the positive impact fac-

tor where the access nodes have always followed the
specified access policies. And ��N

i
 represents the nega-

��i = �1��
P
i
− �2��

N
i
.

Fig. 5 Access control policy
insertion based on Cuckoo Filter

1662 Peer-to-Peer Networking and Applications (2022) 15:1653–1668

1 3

tive impact factor where the access node has malicious
behavior, which consists of accessing prohibited infor-
mation or sending access requests in a short period of
time. In addition, �1 and �N respectively represents a
corresponding weight that can be dynamically updated
by the system as

where �
(

ti
)

= 1∕� ti . Note that �2 , �N and � are preset
values, ti represents the total time of the access node,
and �

(

ti
)

 represents the time attenuation factor. As ti
increases, the time decay factor �

(

ti
)

 decreases, where
weight �2 also decreases. That is, the influence of mali-
cious behavior on the node gradually decreases, where
the node may thus be punished. The positive influence
function ��P

i
 of reputation value is positively correlated

with the number of legal behaviors (i.e. access request),
which is defined as

Note that ��P
i
max is the upper bound of ��P

i
 , which

is a system-defined threshold (preliminarily set to 0.95)
to prevent the infinite increase of ��P

i
 . And � is the

weight of legal behavior, Ti is the total number of legal
behaviors of user node i and Il is the last legal behavior
index of the last punishment. For the negative influence
function, mi is the total number of malicious behaviors
of node i, k represents the total number of malicious
behaviors of each type, �(�) denotes the penalty coef-
ficient of malicious behavior, which ranges from 1 to
10. Moreover, the value can be adjusted according to the
requirements of sensitivity to malicious behavior, which
is defined as

 where

 Generally, the user’s credit value falls into between
0 and 1, and the punishment varies with the size of the
credit value.

2. Credit Contract. When receiving a misbehavior report
MR from ��� , �� reads the information in MR and
gives the required value to ��������������� ABI, then
calls it to carry out the credit calculation according to
the credit calculation scheme in the previous section,
and finally returns the credit value to ���.

�2 = �N ⋅

�
�

ti
�

∑h

i=1
�
�

ti
�
,

��P
i
= min

(

��P
i
max,

(

Ti − Il
)

�
)

.

��N
i
=

mi
∑

k=1

�(�) ⋅
1

mi − k
,

�(�) =

{

�l if prohibited information accessed

�d if frequent requests sent

• ��������������� : Calculate credit value of user.

4.3 Access transaction consensus

FDAC employs the proof of work (POW) algorithm to model
the access transaction consensus. In particular, an edge node
retrieves a number of transactions in the smart contracts and
tries to gain a block reward for packaging transactions. Later,
the miner broadcasts its solution to the blockchain for letting
other peer node to reach a consensus.

5 Function and security analysis

In this section, we give a function and security analysis of
FDAC respectively according to the design goals and threat
model in Sect. 3.

5.1 Function analysis

• Fine-grained access control. In FDAC, the user nodes
are described by a set of attributes, and the specified
authorization consists of a variety of different attributes
and thresholds. As a result, the subject and the object of
our FDAC system associate with attributes set, which
provides an inherent fine-grained attribute-based access
control over device management.

• Automatically-running. In FDAC, there are several
smart contracts introduced to manage system running.
Our blockchain-based FDAC can be automatically-running
to implement access control according to the logical
order without excessive manual intervention. Hence, the
fairness for all peer nodes is certainly achieved in FDAC.

• Privacy-Preserving. The anonymity of ABS utilized in
FDAC can protect the true identities of users from being
leaked. When to verify the attribute-based signature, the
relevant identity information is kept in privacy from pub-
lic.

1663Peer-to-Peer Networking and Applications (2022) 15:1653–1668

1 3

5.2 Security analysis

• Collusion Resistant. The device nodes may collude
together to exchange their attributes. To satisfy an unau-
thorized access policy, the adversary tries to collect addi-
tional attributes from other devices. However, our FDAC
records the attributes of each user node and device node
in the blockchain, and provides trustworthy for these
digital credentials. As a result, a requester can not use
other attributes that not belongs. If a user maliciously
access unauthorized resources, it may be detected and get
a punishment by the system. For example, Si utilizes Sj ’s
attributes to maliciously construct the attributes
map

{

IDSi
∶ (atti)i∈Si , (attj)j∉Sj

}

.
• Replay attack Resistant. The adversary may intercept

the access request sent by the user and replay the access
request to gain access to device resources. In FDAC, the
access requests are only sorted by RequestID, thus the
adversary cannot send multiple requests with a same
request ID. Therefore, the malicious repeated replays are
eventually blocked permanently according to the condi-
tions built into ��� and ��.

• Modification attack Resistant. The adversary tries to
change or delete the stored data of a particular user or
device. To launch such an attack, the attacker should
compromise the security of the local storage. In FDAC,
only the administrator node can delete and update the
policy according to the designed smart contract. If any
attacker tries to modify the block, the malicious modi-
fication is certainly detected. Since each block includes
the hash value of its previous block Hash(PreBlock), and
any modification on one block may lead to severe break
to the blockchain.

• Masquerade Attack Resistant. The adversary tries to
gain unauthorized access by stealing passwords, login
names, finding program loopholes, and later launch a for-
gery attack. However, our FDAC can resist such attacks
since the adversary cannot be registered as a legal entity.
Moreover, each entity has a unique ID and blockchain
address(addr), as a result, they are verified during system
registration.

6 Performance analysis

To clarify practical performance of our FDAC, we imple-
ment it and employ an Ethereum platform to build an
experiment environment. In particular, we install the geth
client [36] on a laptop, a desktop and a server, and set up
multiple Ethereum nodes. We list the specifications and
configurations of employed equipments in Table 3. To well
write and compile smart contracts, we use the Remix inte-
grated development environment (IDE) [37], where Solidity

is implemented and conducted in a browser-based IDE for
implementing. Moreover, we use web3.js [38] to simulate
the communications among corresponding geth clients.
In particular, the access messages and results are received
based on smart contracts via an HTTP interface. In addi-
tion, we conduct an extensive experimental analysis from
the sides of smart contracts, strategy retrieval and credit
respectively.

6.1 Performance of smart contracts

Here, we give a cost-consuming and time-consuming analy-
sis of the introduced smart contracts in our FDAC system.

• Gas Cost. To measure the workload that perform vari-
ous operations in the Ethereum platform, we employ
the well-known gas to count it. Based on the collected
data in our experiment, the gas that required to deploy
���, ���,��� , and �� are respectively 2,354,612,
3,232,167, 2,939,883 and 2571606, which is shown in
Fig. 6.

• Average Latency. To analyze the average latency of the
deployment and execution of smart contracts, we give a
couple of experiments with simulating different number
of user nodes. As shown in Fig. 7, the consumed time
for smart contract deployment and execution increases,
with the increase of user nodes. However, the time delay
between them also gradually increases.

• Access Result. When receiving a user’s access request,
��� makes a corresponding access decision and returns
the result to the user. In particular, Table 4 and Table 5
respectively shows the returned legal results and illegal
results from the system. As a result, the system grants the
access rights for a user when the user’s access request is
determined as legal. Otherwise, the user’s access request
will be blocked.

6.2 Performance of policy search

Based on the discovered findings of [39], the inherent false
positive rate can reach the best or near the best case under
the condition that: there are two candidate buckets in the

Table 3 Device specifications

Device Model Processor Memory

Laptop AMD Ryzen7 4800H with Graphics2.90
GHz

16GB

Desktop Intel(R)Core™ i5-7500 CPU @3.40GHz 16GB
Server Intel(R)Core™ i5-9100 CPU @3.80GHz 32GB

1664 Peer-to-Peer Networking and Applications (2022) 15:1653–1668

1 3

cuckoo filter and four fingerprints of each bucket. Note that
the fingerprint information of the policy item is only stored
in the bucket. As shown in Table 6, the false positive rate
and the time delay of single policy search increase with the
increase of the number of policies.

In addition, we conduct a comparison of the policy search
efficiency between our FDAC and classic traversal search-
based solutions. In the experiment, we measure the policy
retrieval time based on different policy scales, which is
shown in Fig. 8. Generally, our FDAC certainly reduces time
consumption and greatly improves roughly 3× faster search
efficiency compared to classic solutions.

6.3 Credit assesment analysis

To further clarify behaviors of users nodes, we measure the
proportion of malicious behaviors of all the historical behav-
iors. As shown in Fig. 9, the credit value of user nodes and
the degree of reduction gradually reduces with the increase
of malicious behaviors. Therefore, we may conclude that
the malicious behaviors has a much higher influence on the
reputation of nodes than positive impact factors.

In our experiments, the time factor of credit value changes
from t1 to t10, whose influence is shown in Fig. 10. Figure 10
shows that the positive impact of credit increases regularly,
and the negative impact also increases with a small range.
Finally, the overall credit value can be gradually improved.
In particular, the influence of negative impact has gradually
reduced over time. The primary goal of the system is to pro-
vide misbehavior-resistance and enhanced security against
malicious behaviors. A misbehaved user’s credit value gradu-
ally increases if its misbehavior is corrected, as a result, it can
thus access the resources and information of terminal devices.

Fig. 6 Cost of deploying smart contracts

Fig. 7 Average latency during the deployment and execution of smart
contracts

Table 4 Result of legal

Contract address 0x9ecEA68DE55F316B702f27eE389D-
10C2EE0dde84

Block Number 2301
Tx Hash 0xe3009fcbb791b5b9192a493a44f114a7cf-

5bfeb58033417a89036bb534e7c79a
Block Hash 0x4256997b953a30d7ebf5288fa2a2f297d-

0ca7b088b66bc51ba1454827731d4a0
Message Access authorized!
Result true

Table 5 Result of illegal access

Contract address 0x9ecEA68DE55F316B702f27eE389D-
10C2EE0dde84

Block Number 2500
Tx Hash 0xdd09133ca4416ad3a648bc066a27d082a4e-

0c1f3e6831b957bc0b008336ff1fd
Block Hash 0x347b7cf102df4e6511cad37beed-

6a22d7b2928b9b5fbee11978710b0f1ecf3d1
Message Requests are blocked!
Result false

Table 6 Performance of policy search

Rounds false positive rate(%) Single time
delay (ms)

1000 0.0402 0.115
2000 0.0402 0.115
3000 0.1533 0.116
4000 0.1165 0.125
5000 0.1644 0.134

1665Peer-to-Peer Networking and Applications (2022) 15:1653–1668

1 3

7 Conclusion

This paper has introduced a FDAC system for terminal
device management in blockchain-based microgrid, which
achieves distributed, efficient and fine-grained access con-
trol. In particular, we proposed four smart contracts to
effectively and dynamically mange numerous devices,
introduced Cuckoo filters and new algorithm of credit
assessment to enhance the fine-grained flexibility of the
system. A well-implemented experiment shows that our
FDAC achieves high policy search efficiency, low time
delay of smart contracts running, and dynamic, fine-
grained access control over devices. Nevertheless, the stor-
age cost of policies is a little high due to the discontinuous
access space addresses, which seems an interesting future
work to further improve policy storage efficiency.

Funding information This work was supported by National Natu-
ral Science Foundation of China (61802248, 61972094, 62032005,
62102089), the “Chenguang Program” supported by Shanghai Munici-
pal Education Commission (No.18CG62), Program of Shanghai
Academic Research Leader (No.21XD1421500), the Fundamental
Research Funds for the Central Universities (2042021kf1030).

Declarations

Conflict of interest The authors declare that they do not have any com-
mercial or associative interest that represents a conflict of interest in
connection with the work submitted.

References

1. Yaqoob I, Ahmed E, Hashem IAT, Ahmed AIA, Gani A, Imran
M, Guizani M (2017) Internet of things architecture: Recent
advances, taxonomy, requirements, and open challenges. IEEE
Wirel Commun 24(3):10–16

2. Palattella MR, Dohler M, Grieco A, Rizzo G, Torsner J, Engel
T, Ladid L (2016) Internet of things in the 5g era: Enablers,
architecture, and business models. IEEE J Sel Areas Commun
34(3):510–527

3. D’Orazio CJ, Choo KKR, Yang LT (2016) Data exfiltration from
internet of things devices: ios devices as case studies. IEEE Inter-
net of Things J 4(2):524–535

4. https:// www. sans. org/ indus trial- contr ol- syste ms- secur ity/
5. Underwood S (2016) Blockchain beyond bitcoin. Commun ACM

59(11):15–17
6. Osborn S, Sandhu R, Munawer Q (2000) Configuring role-based

access control to enforce mandatory and discretionary access
control policies. ACM Transactions on Information and System
Security (TISSEC) 3(2):85–106

7. Sandhu R (1998) Role-based access control. vol 46, Elsevier, pp
237–248

8. Sandhu RS, Samarati P (1994) Access control: principle and prac-
tice. IEEE Commun Mag 32(9):40–48

9. Yavari A, Panah AS, Georgakopoulos D, Jayaraman PP, van
Schyndel R (2017) Scalable role-based data disclosure control
for the internet of things. In: 2017 IEEE 37th International Con-
ference on Distributed Computing Systems (ICDCS), IEEE, pp
2226–2233

Fig. 8 Time efficiency comparison of policy retrieval time

Fig. 9 Changes of credit value with different malicious behavior ratio

Fig. 10 Changes of credit value with different time

1666 Peer-to-Peer Networking and Applications (2022) 15:1653–1668

https://www.sans.org/industrial-control-systems-security/

1 3

 10. Gusmeroli S, Piccione S, Rotondi D (2013) A capability-based
security approach to manage access control in the internet of
things. Math Comput Model 58(5–6):1189–1205

 11. Mahalle PN, Anggorojati B, Prasad NR, Prasad R (2013) Iden-
tity authentication and capability based access control (iacac)
for the internet of things. J Cyber Sec Mobility 1(4):309–348

 12. Hu VC, Ferraiolo D, Kuhn R, Friedman AR, Lang AJ, Cogdell
MM, Schnitzer A, Sandlin K, Miller R, Scarfone K et al (2013)
Guide to attribute based access control (abac) definition and
considerations (draft). NIST Spec Publ 800(162):1–54

 13. Ye N, Zhu Y, Wang Rc, Malekian R, Lin Qm (2014) An efficient
authentication and access control scheme for perception layer
of internet of things

 14. Bhatt S, Patwa F, Sandhu R (2017) Access control model for
aws internet of things. In: International Conference on Network
and System Security, Springer, pp 721–736

 15. Dorri A, Kanhere SS, Jurdak R, Gauravaram P (2017) Block-
chain for iot security and privacy: The case study of a smart
home. In: 2017 IEEE international conference on pervasive
computing and communications workshops (PerCom work-
shops), IEEE, pp 618–623

 16. Zyskind G, Nathan O et al (2015) Decentralizing privacy: Using
blockchain to protect personal data. In: 2015 IEEE Security and
Privacy Workshops, IEEE, pp 180–184

 17. Maesa DDF, Mori P, Ricci L (2017) Blockchain based access
control. In: IFIP international conference on distributed applica-
tions and interoperable systems, Springer, pp 206–220

 18. Zhang Y, Kasahara S, Shen Y, Jiang X, Wan J (2018) Smart
contract-based access control for the internet of things. IEEE
Internet Things J 6(2):1594–1605

 19. Sifah EB, Xia Q, Agyekum KOBO, Amofa S, Gao J, Chen R,
Xia H, Gee JC, Du X, Guizani M (2018) Chain-based big data
access control infrastructure. J Supercomput 74(10):4945–4964

 20. Saini A, Zhu Q, Singh N, Xiang Y, Gao L, Zhang Y (2020) A
smart-contract-based access control framework for cloud smart
healthcare system. IEEE Internet Things J 8(7):5914–5925

 21. Zhang Y, Yutaka M, Sasabe M, Kasahara S (2020) Attribute-
based access control for smart cities: A smart-contract-driven
framework. IEEE Internet Things J 8(8):6372–6384

 22. Qashlan A, Nanda P, He X (2020) Security and privacy imple-
mentation in smart home: Attributes based access control and
smart contracts. 2020 IEEE 19th International Conference on
Trust. Security and Privacy in Computing and Communications
(TrustCom), IEEE, pp 951–958

 23. Ouaddah A, Abou Elkalam A, Ait Ouahman A (2016) Fairaccess:
a new blockchain-based access control framework for the internet
of things. Sec Com Netw 9(18):5943–5964

 24. Azaria A, Ekblaw A, Vieira T, Lippman A (2016) Medrec:
Using blockchain for medical data access and permission man-
agement. In: 2016 2nd international conference on open and big
data (OBD), IEEE, pp 25–30

 25. Pinno OJA, Gregio ARA, De Bona LC (2017) Controlchain:
Blockchain as a central enabler for access control authorizations
in the iot. In: GLOBECOM 2017-2017 IEEE Global Communi-
cations Conference, IEEE, pp 1–6

 26. Ferdous MS, Margheri A, Paci F, Yang M, Sassone V (2017)
Decentralised runtime monitoring for access control systems in
cloud federations. In: 2017 IEEE 37th International Conference on
Distributed Computing Systems (ICDCS), IEEE, pp 2632–2633

 27. Novo O (2018) Blockchain meets iot: An architecture for scalable
access management in iot. IEEE Internet Things J 5(2):1184–1195

 28. Xu R, Chen Y, Blasch E, Chen G (2018) Blendcac: A smart con-
tract enabled decentralized capability-based access control mecha-
nism for the iot. Computers 7(3):39

 29. Song L, Li M, Zhu Z, Yuan P, He Y (2020) Attribute-based access
control using smart contracts for the internet of things. Proc Comp
Sci 174:231–242

 30. Zhang Y, Li B, Liu B, Wu J, Wang Y, Yang X (2020) An attribute-
based collaborative access control scheme using blockchain for
iot devices. Electronics 9(2):285

 31. Rouhani S, Belchior R, Cruz RS, Deters R (2021) Distributed
attribute-based access control system using permissioned block-
chain. World Wide Web 24(5):1617–1644

 32. Nakamoto S (2008) Bitcoin: A peer-to-peer electronic cash sys-
tem. Decentralized Business Review p 21260

 33. Introduction to smart contracts, https:// solid ity. readt hedocs. io/ en/
v0.5. 6/ intro ducti on- to- smart- contr acts. html/, [online]

 34. Yang XS, Deb S (2010) Engineering optimisation by cuckoo
search. Int J Math Model Numer Optim 1(4):330–343

 35. Maji HK, Prabhakaran M, Rosulek M (2011) Attribute-based sig-
natures. In: Cryptographers track at the RSA conference, Springer,
pp 376–392

 36. geth-go implementaion of ethereum protocol, https:// github. com/
ether eum/ go- ether eum

 37. remix- ide for smart contract deployment provided by ethereum,
https:// remix. ether eum. org/

 38. web3 javascript api to interact with ethreum nodes, https:// github.
com/ ether eum/ wiki/ wiki/ javas cript- api

 39. Fan B, Andersen DG, Kaminsky M, Mitzenmacher MD (2014)
Cuckoo filter: Practically better than bloom. In: Proceedings of the
10th ACM International on Conference on emerging Networking
Experiments and Technologies, pp 75–88

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Kai Zhang received the Bachelor’s
degree with Computer Science and
Technology from Shandong Normal
University, China, in 2012, and the
Ph.D. degree with Computer Sci-
ence and Technology from East
China Normal University, China, in
2017. He visited Nanyang Techno-
logical University in 2017. He is
currently an Associate Professor
with Shanghai University of Elec-
tric Power, China. His research
interest includes data-driven privacy
enhanced techniques and informa-
tion security.

Jinhu Yu received the bachelor’s
degree from the School of Com-
puter Engineering, Jiangsu Ocean
University, China, in 2020. He is
currently pursuing his master
degree in Department of Com-
puter Science and Technology,
Shanghai University of Electric
Power, China. His research inter-
ests include blockchain and access
control.

1667Peer-to-Peer Networking and Applications (2022) 15:1653–1668

https://solidity.readthedocs.io/en/v0.5.6/introduction-to-smart-contracts.html/
https://solidity.readthedocs.io/en/v0.5.6/introduction-to-smart-contracts.html/
https://github.com/ethereum/go-ethereum
https://github.com/ethereum/go-ethereum
https://remix.ethereum.org/
https://github.com/ethereum/wiki/wiki/javascript-api
https://github.com/ethereum/wiki/wiki/javascript-api

1 3

Chao Lin received the Ph.D.
degree from the School of Cyber
Science and Engineering, Wuhan
University, in 2020. He currently
works with the College of Math-
ematics and Informatics, Fujian
Normal University, China. His
research interests mainly include
applied cryptography and block-
chain technology.

Jianting Ning received the Ph.D.
degree from the Department of
Computer Science and Engineer-
ing, Shanghai Jiao Tong University,
in 2016.He is currently a Professor
with Fujian Provincial Key Labora-
tory of Network Security and Cryp-
tology, College of Computer and
Cyber Security, Fujian Normal Uni-
versity, China. Previously, he was a
Research Scientist at the School of
Computing and Information Sys-
tems, Singapore Management Uni-
versity. He has published papers in
major conferences/journals, such as
ACM CCS, ASIACRYPT, ESO-

RICS, ACSAC, IEEE TIFS, and IEEETDSC. His research interests
include applied cryptography and information security.

1668 Peer-to-Peer Networking and Applications (2022) 15:1653–1668

	Blockchain-based access control for dynamic device management in microgrid
	Abstract
	1 Introduction
	1.1 Our results
	1.2 Related Work

	2 Background knowledge
	2.1 Blockchain
	2.2 Smart contract
	2.3 Cuckoo filter
	2.4 Attribute-based signature

	3 Problem formulation
	3.1 System model
	3.2 System running flow
	3.3 Design goals
	3.4 Threat model

	4 The FDAC scheme
	4.1 Blockchain structure
	4.2 Running flow
	4.2.1 Initialization
	4.2.2 Access control management
	4.2.3 Credit assessment

	4.3 Access transaction consensus

	5 Function and security analysis
	5.1 Function analysis
	5.2 Security analysis

	6 Performance analysis
	6.1 Performance of smart contracts
	6.2 Performance of policy search
	6.3 Credit assesment analysis

	7 Conclusion
	References

