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Abstract This paper proposes a deep reinforcement learning-based approach to optimally manage

the different energy resources within a microgrid. The proposed methodology considers the stochas-

tic behavior of the main elements, which include load profile, generation profile, and pricing signals.

The energy management problem is formulated as a finite horizon Markov Decision Process (MDP)

by defining the state, action, reward, and objective functions, without prior knowledge of the tran-

sition probabilities. Such formulation does not require explicit model of the microgrid, making use

of the accumulated data and interaction with the microgrid to derive the optimal policy. An efficient

reinforcement learning algorithm based on deep Q-networks is implemented to solve the developed

formulation. To confirm the effectiveness of such methodology, a case study based on a real micro-

grid is implemented. The results of the proposed methodology demonstrate its capability to obtain

online scheduling of various energy resources within a microgrid with optimal cost-effective actions

under stochastic conditions. The achieved costs of operation are within 2% of those obtained in the

optimal schedule.
� 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/

4.0/).
1. Introduction

A microgrid is defined as a group of loads and micro-sources

operating under the control of one system [1]. The microgrid
could operate in parallel with the utility grid to optimally con-
sume local power generation sources, or in islanded mode in
case of failure in the main grid, thus enhancing overall reliabil-
ity of local service. Many benefits are realized by adopting

microgrids, including the reduction of greenhouse gases emis-
sion, improving voltage profiles, decentralization of power
supply and reducing line losses [2]. It also allows customers

to actively participate in the microgrid operation [3].
The decrease of renewable generation costs has driven the

adoption of microgrid schemes. For example, the cost of man-
ufacturing solar PV has seen noticeable reduction over the past

years, which was accompanied by a huge increase in installa-
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Nomenclature

PDGd

min The minimum active power output of generator d

PDGd
max The maximum active power output of generator d

SDGd
max The maximum apparent power output of genera-

tor d
QDGd

t The reactive power output of generator d, at time t

CDGd
t The cost of operating conventional generator at

time t
Dt Time period

PE
t Charging or discharging power of energy storage

device at time t
PE
max The maximum charging/discharging power of en-

ergy storage device
Et Energy level of energy storage device or state of

charge
Emin Minimum energy level of energy storage device

Emax Maximum energy level of energy storage device
gch Charging efficiency of energy storage device
gdis Discharging efficiency of energy storage device

PU
t Active Power exchange of microgrid with grid at

time t

PU
max Maximum active power exchange of microgrid

with grid at time t
QU

t Reactive power exchange of microgrid with grid at
time t

SU
max Maximum complex power exchange of microgrid

with grid at time t
CU

t Cost of purchase of electricity from grid at time t
Rt Price of electricity from grid at time t

PPV
t Power output from solar PV at time t

PW
t Power output from wind at time t

H Neural Network parameters

a Learning rate
r Gradient
S State Space
R Reward function

Y Discount factor
p RL policy
Qp s; að Þ State-action value function that follows policy p
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tions. As a matter of fact, the global solar PV energy capacity
grew nearly ten times within one decade, from 72 GW in 2011
to more than 707 GW in 2020 [4]. Nonetheless, there are sev-

eral challenges to integrate renewable distributed generation
resources, which mainly stem from their intermittent nature,
making it difficult to optimally schedule generation as prac-
ticed in a conventional grid. Unforeseen power variations

would necessitate the commitment of expensive reserve or
ancillary services, making the microgrid operation
uneconomical.

Many studies have been conducted to overcome such chal-
lenge. For instance, [5] and [6] present a two-stage stochastic
programming methodology to optimize the operation costs.

Also, [7] considers different cost variations and adopts a
risk-averse stochastic programming method. However, the
aforementioned papers require information of the uncertainty

statistical distribution beforehand. To work around the
unavailability of statistical distributions, [8,9] use robust opti-
mization to derive an optimal solution from possible worst-
case conditions. However, these studies derive fixed schedules

that do not respond to unplanned variations in real time.
The use of energy storage systems (ESS) can mitigate the

issues of matching generation and demand variations. ESS

allow the system operator to have more flexibility over the
microgrid resources, and to shift the intermittent renewable
generation to peak hours, thus earning from energy arbitrage

[10]. Many other benefits can be realized by having ESS, which
include providing ancillary services, such as load following,
voltage support and frequency regulation [11]. Additionally,

the use of energy storage systems helps increasing the reliabil-
ity of power delivered to customers during disturbances from
supply side [12]. However, ESS management is complex as it
is not operated like conventional generation by making eco-

nomic dispatch or unit commitment. Efficient operation of
ESS requires an energy management system (EMS) that max-
imizes the operation benefits of distributed generation with
energy storage and considers long-term time varying prices,
demands, and renewable generations [13].

In conventional methods, the microgrid energy manage-

ment problem is generally solved using a model-based frame-
work to formulate the dynamics of the microgrid. Then, the
uncertainties are estimated using a predictor, and the optimal
schedule is obtained using an optimization problem solver

[14,15]. Examples include the use of rolling horizon method
[16], in which a mixed integer optimization formulation is
solved for each decision step. Additionally, [17] develops a

convex Model Predictive Control (MPC) methodology for
dynamic optimal power flow in multiple battery storage sys-
tems in a microgrid. Others [18,19] designed a hierarchical con-

trol structure to integrate the operation management of
multiple interconnected microgrids, with a central controller
overseeing all microgrids, and secondary controllers which

implement different model predictive strategies to manage
the local operation.

Although such methods proved their effectiveness in the
energy management domain, they highly depend on an expert

to accurately model the dynamics of the microgrid. Since the
scale, capacity, and dynamics of the microgrid could change
with time, the uncertainty profiles of generation and demand

will change significantly [20]. This may limit the applicability
of these methods with large-scale microgrid energy problem
in real-time. Moreover, building a generalized framework

using these methods for different environments is a challenging
task [21]. This leads to increasing the complexity and cost asso-
ciated with implementing EMS for different microgrids, which

could hinder the adoption of such grid schemes.
To work around this problem, learning based methodolo-

gies have been proposed in the literature to resolve microgrid
management difficulties. Such methods do not require explicit

model of the microgrid, making use of the accumulated data
and interaction with the system to derive the optimal control
policy [22]. For example, [23] presents an energy management



Fig. 1 Reinforcement learning process.
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system using batch reinforcement learning. Additionally, [24]
develops a solution to microgrid energy management using
evolutionary adaptive dynamic programming and reinforce-

ment learning. Also, [25] uses reinforcement learning frame-
work to design a multiagent system that aims to optimize the
microgrid energy management. Although, aforementioned

works present novel ways to handle the energy management
problem, they struggle with high dimensional state variables
due the curse of dimensionality.

Alternatively, deep reinforcement learning (DRL) has been
introduced in the literature in recent years [26], which tackle
the problem of high dimensional state spaces. It makes use
of deep neural network to extract important features of the

high dimensional state as the agent is exposed to experiences
from the interaction with the environment, with no prior
knowledge of the system. The agent does not need a separate

model to obtain a forecast or a probability distribution to
the changing variables. Rather, the agent makes full use of
the available set of collected data to learn the optimal policy

that achieves optimal results. The deep reinforcement learning
methodologies can be implemented to achieve autonomous
real time control and decision making in different power sys-

tem applications. For example, [27] applied DRL in strategic
bidding and equilibrium analysis in electricity markets. Also,
[28] adopted DRL to power management in distribution sys-
tems with bi-level power management of cooperatives that

has several networked microgrids. Reference [29] applied
DRL to optimize the demand side peak to average ratio in
multi microgrids. Moreover, reference [30] developed an adap-

tive emergency control scheme based on DRL. Other applica-
tions include voltage control [31], control for multi energy
systems [20] and others.

In terms of energy management applications, several works
have been reported in the literature that make use of DRL. For
example, [32] formulates the microgrid management as a

sequential decision-making problem under uncertainty. A con-
volutional NN is used to extract important features and output
Q-values that are used by the reinforcement policy. The study
proved effective in a case study, though, it only considered a

simple network with no constraints such as power flows, or
real time electricity prices. Additionally, [13] devises a method
for real time economical operation of a microgrid using

approximate dynamic programming. It considers system con-
straints and uncertainties in the load and generation as well
as a variable pricing of electricity. A deep recurrent neural net-

work is used to predict the changing variables, which in turn is
used to obtain the value function approximation. However, the
work is formulated to have a predictor to solve the formula-
tion, which opposes the model-free paradigm. Reference [22]

formulates deep Q-networks (DQN) to manage energy
resources in a low voltage network. Though, the work consid-
ers a simple objective of minimizing costs due grid exchanges

and conventional generation. It also ignores power flow con-
straints in the network, which will likely result in violating net-
work constraints.

This paper considers a learning based methodology based
on deep Q-networks to optimally manage the different energy
resources in a realistic model of microgrids. The methodology

considers the stochastic behavior of different elements of a
microgrid, including loads, generations, and electric prices. It
also models different grid elements using equivalent models
and considers the various power flow constraints in a realistic
setting.

The paper is organized as follows: section II briefly intro-

duces the basis and formulation of deep reinforcement learning
framework. Section III provides the problem formulation and
implementation of the microgrid energy management problem

in the context of deep reinforcement learning. A case study is
presented in Section IV. Section V discusses the results
obtained for the case study. Finally, section VI concludes the

work and provides recommendations for future work.

2. Reinforcement learning

2.1. Overview

Reinforcement learning (RL) relates to sequential decision
making in which an agent interacts with an environment so
that cumulative reward signals are optimized. The interaction
occurs in a trial–error basis, and the agent learns a good

behavior from previous experiences [33]. Formally, the rein-
forcement learning can by described by a discrete time stochas-
tic control process. An agent starts in a state s0 2 S, and

makes an initial observation x0eX. The agent makes an action
at time step t, at 2 A. Then, the agent obtain a reward rt 2 R,
the state transitions to stþ1 2 S , and a new observation is

obtained xtþ1eX, as shown in Fig. 1.
This formulation can be viewed as a Markov Decision Pro-

cess (MDP) if the Markov property is satisfied. This entails

that future states depend only on current observation, and
no full history is required. A fully observable MDP means that
the observation matches the state, xt ¼ st. An MDP is
described by the following:

S: state space
A: action space
T: transition function T : S�A�Sð Þ ! ½0; 1�
R: reward function R : S�A�Sð Þ ! R, where R is a

continuous set of possible rewards
Y: discount factor, Y 2 ½0; 1Þ
Under this formulation, an agent selects an action dictated

by policy p. Such policy can be either stationary (time depen-
dent), or non-stationary (time independent). It can also be
either deterministic or stochastic. An RL agent aims to find

a policy pðs; aÞ, so that the expected return is optimized. The
return can be expressed as a Q-value function as follows:

Qp s; að Þ ¼ E
X1
k¼0

ckrtþkjst ¼ s; at ¼ a; p

" #
ð1Þ



Fig. 2 DQN algorithm flowchart [34].
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rt ¼ E½R st; a; stþ1ð Þ�
This equation can be expressed recursively (using Bellman’s

equation) as:

Qp s; að Þ ¼
X

s
0 2STðs; a; s

0 ÞðR s; a; s
0� �þ cQpðs0 ; a ¼ pðs0 ÞÞÞ

ð2Þ
The optimal Q-value function Q� s; að Þ, can be expressed as:

Q�ðs; aÞ ¼ max|ffl{zffl}
p2P

Qpðs; aÞ ð3Þ

Additionally, the optimal policy can be defined as:

p�ðsÞ ¼ argmax|fflfflfflffl{zfflfflfflffl}
a2A

Q�ðs; aÞ ð4Þ

The optimal Q-value function Q� s; að Þ represents the
expected discounted return in state s, and following action

a that is dictated by policy p�. One straight way to obtain
Qp s; að Þ is to use Monte Carlo to estimate the values from
many simulations following a given policy. Practically, this

is not an efficient method to learn the value functions [34].
A simple Q-learning algorithm keeps a lookup table for

each corresponding state and action. The optimal Q value is

learned through the Bellman equation, but such method is
inapplicable with a high-dimensional state-action space. Alter-
natively, the value function can be parametrized Qðs; a; hÞ, in
which h represents the parameters defining the Q values. This
gives rise to variation of Q-learning algorithms such as DQN,
which has proved its effectiveness and superior performance
[26].

2.2. Deep reinforcement learning

Deep learning provides several advantages in the context of

reinforcement learning. Many real practical problems are com-
plex with a high dimensional continues state space, and so neu-
ral networks are well suited for high-dimensional inputs. They

can also be trained incrementally and learn progressively as
they are provided with more data. We discuss an off-policy
DRL methodology based on Q-learning.

In fitted Q-learning [35], a dataset D is constructed using

past experiences in the form of ðs; a; r; s0 Þ, in which reward r,
and next state s0 follow state-action ðs; aÞ. The Q-value
Qðs; a; hkÞ is updated at each iteration k to a target value Yk,
where:

Yk ¼ rþ cmaxa
0Q s

0
; a

0
; hk

� � ð5Þ

hk represents the parameters that define the Q-values at iter-
ation k.

Such formulation can be applied in a neural network, where
states can be provided as inputs to the neural network, and the
outputs give the Q-values for each state-action. The network

parameters hk are updated using methods such as stochastic
gradient descent which minimizes the square error:

L ¼ Qðs; a; hkÞ � Ykð Þ2 ð6Þ

Hence, to update parameters at the next iteration, we apply
the following:

hkþ1 ¼ hk þ a Yk �Q s; a; hkð Þð ÞrhkQðs; a; hkÞ ð7Þ
where a is a scaler value defining the learning rate. Iterating
through this update process should in hypothesis converge to
an optimal solution. However, such formulation could suffer

from slow convergence and possible instability, mainly due
to propagated errors from the neural network generalization
property, and the simultaneous update of the target network

parameters [34].
To bridge the gaps found in aforementioned Q-learning

algorithms, deep Q-learning network (DQN) presented by

[36] makes use of a separate target network with parameters
h�k ; that are updated every C iterations with hk parameters.

This method results in preventing divergence and reducing
instabilities of learnt Q values. This is represented in the fol-
lowing equation:

Yk ¼ rþ cmaxa
0Q s

0
; a

0
; h�k

� � ð8Þ
Additionally, a reply memory is used to keep the last Nreplay

steps experiences in the form ðs; a; r; s0 Þ . Such that it spans

across the state action space, and have less variance as opposed
to making a single step update. The algorithm is illustrated in
Fig. 2. To further illustrate the steps needed to implement

DQN, we provide algorithm 1, which provides a pseudo code
for DQN as presented in [36].

Input: Microgrid observed states (e.g. SOC, Load MW,

Generation MW, etc.)
Output: Q action values that determine policy to selection

action (e.g. controlling energy resources)
Initializing replay memory D

Initialize Q-network with random weights h
Initialize target Q-network with weights h� ¼ h
For episode ¼ 1toM do:

Initialize sequence s1 ¼ fx1g
For t ¼ 1toT do:

While following �-greedy policy, choose action

at ¼
randomactionwithprobablity�

argmaxaQ st; a; hð Þotherwise
�

Execute action at in environment and observe reward rt and

next state stþ1

Store transition st; at; rt; stþ1ð Þ in replay memory D
Sample random batches of transitions sk; ak; rk; skþ1 from D

Set yk ¼
rkifterminalstateisreached

rk þ cmaxa
0Q skþ1; a

0
; h�

� �
otherwise

�
Perform gradient descent step on yk �Q sk; ak; hð Þð Þ2 with

respect to q-network parameters h
Set h� ¼ h at every C steps
End

End

Algorithm 1: DQN algorithm implementation as per [36]
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To further enhance the DQN algorithm convergence and
stability, the following heuristics are considered.

2.2.1. E. Priority replay memory

Experience replay allows an RL agent to make use of past
experiences. In the previous DQN algorithm, sampling occur
uniformly from the replay memory, while ignoring how impor-

tant the sampled transitions. Reference [37] developed a
method to prioritize experience replays, so that significant
transitions are more frequently replayed to learn more effec-

tively. The method uses importance sampling based on tempo-
ral difference error to select significant transitions and thus
enhance overall performance.

2.2.2. Double DQN

In the discussed DQN algorithm, the max operator is used
to select and evaluate an action as detailed in algorithm 1.

Consequently, overestimated values are likely to be selected.
Reference [38] proposed double DQN (DDQN) to solve this
overestimate issue. To do so, the paper proposed the eval-

uation of greedy policy according to the online network
(with parameters hkÞ , while using the target network (h�k Þ
to estimate its value. The target value is then expressed as
follows:

Yk ¼ rþ cQ s
0
; argmax

a
Q s

0
; a; hk

� �
; h�k

� �
ð9Þ
2.2.3. Linear annealed exploration

As opposed to using a fixed low � value while following an �-
greedy policy, we can start training using a high � value, and
then decrease it linearly as we continue training, arriving to
a low � value. Such way ensures the agent makes a lot of explo-

ration earlier, while exploiting the accumulated information at
the end [33].

3. Problem formulation

When it comes to developing the framework of the microgrid
environment, there are plenty of options to consider. Several
papers adopted different elements of the microgrid such as lim-

itation on the demand side as well as constraints on the gener-
ation side [39]. Reference [40] considers operation constraints
in the microgrid as well as limits in renewable generation.

Other papers looked into energy storage constraints such as
charging and discharging rates, limits on electricity prices, or
carbon emissions [41]. This paper considers the most critical

constraints of microgrid, namely constraints on the power
exchange with external grid, power output constraints from
different distributed generation devices, and power flow con-

straints. The adopted model of microgrid is interconnected
with the utility at PCC, and has some conventional distributed
generators, energy storage systems, solar PV, wind turbines,
and variable loads.

The proposed formulation considers conventional genera-
tors that are constrained by the following equations:

PDGd
min � PDGd

t � PDGd
max ð10Þ

PDGd
t

2 þQDGd
t

2 � SDGd
max

2 ð11Þ
In which PDGd
t ;QDGd

t represent the active and reactive power

output of generator d, at time t. Rating of the generator is

given by SDGd
max . The cost function of operating conventional

generators is given by a quadratic function as shown in the fol-
lowing equation:

CDGd
t ¼ ad PDGd

t

� �2 þ bdP
DGd
t þ cd

h i
Dt ð12Þ

ad; bd; andcd are constants.
Additionally, energy storage devices are constrained by the

following equations:

0 � PE
t � PE

max ð13Þ

Emin � Et � Emax ð14Þ

Et ¼ Et�1 þ gchutP
E
t Dt � 1� utð ÞPE

t Dt=gdis ð15Þ
In which the charging or discharging power is represented

by PE
t , and the energy level (SOC) is given by Et. A binary vari-

able ut is used to indicate if the ESS is charging, ut ¼ 1, or dis-
charging, ut ¼ 0. We use gch and gdis to represent the charging/

discharging efficiencies accordingly. The time period of charg-
ing/discharging is represented by Dt:

The power exchange with the utility is considered, governed

by the following equations:

�PU
max � PU

t � PU
max; 8t ð16Þ

PU
t

2 þQU
t

2 � ðSU
maxÞ

2 ð17Þ
In which PU

t and QU
t represent the active/reactive power

exchanges with the utility. The maximum exchange of complex

power is given by SU
max. The cost of purchasing power from the

utility is given by the following equation, in which Rt is the real
time price.

CU
t ¼ PU

t � Rt � Dt ð18Þ
Additionally, power flow constraints are considered while

controlling the energy resources. This is represented by power
flow limits at each branch ij, as shown below:

Pij
t

2 þQij
t

2 � Sij
max

2 ð19Þ
To ensure voltage limits are within standard values, the

voltage is constrained as follows:

Vi
�� ��

min
� Vi

t

�� �� � Vi
�� ��

max
ð20Þ

where Vi
t is the voltage at bus i at time t is limited by given

minimum and maximum values.
Using the aforementioned model of the microgrid, an MDP

is formulated as follows. The state variables at each time step t

is given by PPV
t ;PW

t ;P
D
t ;Q

D
t ;Rt;Et

� �
, in which PPV

t is the power

output from the solar PV plant, PW
t is the power output of the

wind turbine, PD
t andQ

D
t are the loads active and reactive pow-

ers, Rt is the real time price of electricity, and Et is the energy
level of the energy storage system. The model can be formu-
lated to take only current state variables, or past historical

variables.

The action space is given by PDGd
t ;Q

DGd

t ;PE
t

	 

, in which

PDGd
t ;Q

DGd

t are the active/reactive power from conventional

generators, and PE
t is the charging/discharging power of the



Fig. 4 Architecture of DQN for microgrid energy management.
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energy storage system. The action space is developed to be dis-
crete in order to be compatible with the DQN algorithm.

In terms of reward function, the main objective is to opti-

mize the operational costs while adhering to system con-
straints. Hence, the reward function is formulated to
correlate with the microgrid operational costs. These include

the costs of operating the conventional generators, and power
purchases from utility. Equation (21) provides a simple formu-
lation of the reward function at each time step.

rt ¼ �
X

CDGd
t þ CU

t

	 

ð21Þ

In addition, the reward function considers any violation to
the power flow constraints, by providing a negative reward,
and terminating the training episode. It also has a negative

reward whenever an action violates energy storage constraints,
so that violating actions are discouraged.

These formulation steps are summarized in Fig. 3, which

shows a high-level flowchart of the different steps taken to
solve the problem.

The interaction of agent with the environment, and the
overall flow of training is illustrated in Fig. 4. The state vari-

ables of the microgrid are provided to the q-network, which
in turn makes a decision based on �-greedy policy that maxi-
mizes the q-value. The interactions between the environment

and the agents are collected and saved in a replay memory,
to be used for training the online network, and the target net-
work. This process continues until episodes end, or termina-

tion conditions are met.

4. Case study

To study the proposed methodology, we implement a MV
CIGRE microgrid as illustrated in Fig. 5. The different param-
eters used to implement this network can be found in [42]. The

microgrid has different conventional and non-conventional
Fig. 3 Flowchart of proposed methodolgy.

Fig. 5 CIGRE MV Microgrid.
distributed power generation units including PV, wind, diesel

generators, and energy storage units. It is also connected to
an external grid through a PCC.

The microgrid environment is set up using OpenAI Gym
library [43] to provide RL interface framework. We use Pan-

dapower toolbox [44] to run power flow calculations and
ensure that constraints are not violated. Stable baselines [45]
is used to implement the DQN agent to solve the set up

environment.
A feedforward NN is used to map the different states at any

given time to their corresponding state action value function

for each action akt . The network takes as an input the past

24 h values of the different variables (e.g. PV, wind, grid prices,



Fig. 7 Learning curve of NN with 3 hidden layers.
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etc), and outputs the Q-Value for each possible action (e.g.
charging/discharging, etc) at current state. Rectified linear
units (ReLU) are used as the activation function in the hidden

layers.
The target network is constructed with a similar structure

to the training Q-network and is updated frequently. A replay

memory of size 50,000 is constructed to store ðs; a; r; s0 Þ transi-
tions at each step. Initially, the agent is allowed to take ran-
dom actions for the first 1000 steps before the learning
starts. The performance of the training network is logged, with

parameters being saved periodically. The parameters of the
best performing network are saved to be used for testing.

5. Results & discussions

Several experiments are conducted to fine tune the NN differ-
ent hyperparameters. Since training computation can take

long hours (it takes around 24 h to run the training of 1 mil-
lion steps with I7-8700 K CPU @ 3.7 GHz with 16 GB
RAM), the various parameters are tuned manually, guided
by intellectual intuition and literature findings. This shall

not be an obstacle in real deployments, since advances in
GPU and cloud computing can enhance this training time
significantly.

Additionally, the date is divided in two sets: training (75%)
and testing (25%). The agent is allowed to train in the devel-
oped framework for 500 K time steps in each network config-

uration. The results are then benchmarked to those obtained in
the optimal case. While running the simulation on the test
data, each time step takes around 0.01 s. Overall, it takes
around 22 s for the 2160 h simulation steps. This demonstrates

the ability of such method to conduct real time scheduling of
energy resources.

5.1. Hyperparameter tuning

To find a suitable NN structure, simulations are conducted
for different layers and number of nodes per hidden layers.

It is observed that having two layers with at least 256 is effi-
cient to reach acceptable reward levels. Figs. 6 & 7 show the
learning curve for various number of NNs with two and

three hidden layers. Using 3 layers is observed to have no
Fig. 6 Learning curve of NN with 2 hidden layers.
advantage over 2 layers, and it might occasionally perform
worse than two hidden layers. A larger network will result
in less weight sharing, giving more learning stability. How-

ever, a larger network could result in more weights that
needs to be changed, leading to deteriorating the policy
performance.

In terms of the tuning the learning rate, it was found that a
learning rate between 0.001 and 0.0001 achieved best results.
Moreover, we study the effect of the discount factor (cÞ used
in updating the target network value. The discount factor

has a direct effect on the objective of the agent performance.
Since a main part of the reward function depends on the
stochastic electricity prices, which makes predicting the future

harder. Hence, lowering discount factor is more beneficial in
optimizing the reward accumulation. Fig. 8 shows the learning
curves for different agents with different discount factors.

Having gamma values below 0.5 performed much better than
higher values. This means that current actions only affect
shorter time periods in the future.

In terms of the effect of the size of batches used to apply

gradient descent to update the training network weights, it is
observed that the larger the batch size the better learning per-
formance, though batch sizes larger than 256 had no signifi-

cant improvements.
Fig. 8 Discount factor effect on training performance.



Fig. 10 DG and energy storage hourly schedules, and external

grid power exchange.

Fig. 11 Benchmarking DQN agent daily operating costs with

optimal solution time horizon.
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5.2. Energy schedules

In order to examine the performance of the developed agent,
scheduling is simulated for the energy resources in the micro-
grid. The simulation is done in a test environment that uses

historical data for 3 months. Fig. 9 shows the total charging/
discharging schedules and SOC for the energy storage devices.
The agent is allowed to charge/discharge the energy storage
devices, as long as it does not violate specified dynamic con-

straints of the energy storage. The agent tries to maximize
the benefits of controlling the energy storage by accounting
for different variables including external grid electric prices,

and available resources withing the microgrid. Fig. 10 shows
the generation schedules for the diesel generators and energy
storage devices, and external grids. Similar to energy storages,

the agent tries to optimize the operation of the DG units tak-
ing into account the costs of operating the units, as well as
other state variables.

To benchmark the performance of the developed agent, we
compare the daily costs incurred by following the agent
actions, and the optimal solution obtained by a mix integer lin-
ear programming methodology (MILP). As opposed to pro-

posed methodology, the MILP solver has access to future
variable values across the time horizon, and hence does not
account for uncertainty. Fig. 11 shows the daily incurred costs

for both solutions during the test period. To further show the
differences, Fig. 12 shows the difference in daily costs between
the optimal and DQN solution.

To illustrate the performance of the developed DQN
method, we plot the accumulated costs along the test period
in Fig. 13. We provide two DQN agents next to the optimal
solution, one with untuned hyperparameters, and another with

tuned hyperparameters. Overall, DQN showed its capability to
conduct energy management, with results that are comparable
to those obtained in the optimal solution. Additionally, when

computing the actions in the testing set, it only took 0.01 s per
step for the DQN agent, compared to 2.4 s with the MILP
solver.
Fig. 9 Energy storage hourly schedule with SOC.

Fig. 12 Daily costs difference between optimal solution and

DQN solution.



Fig. 13 Accumulated operating costs for optimal solution,

untuned DQN agent, and tuned DQN agent.
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6. Conclusion

This paper proposed the use of deep reinforcement learning
methodology based on deep Q-network algorithm to solve
the energy management problem formulation of a given micro-
grid. The methodology considered the stochastic behavior of

different elements of a microgrid, and modeled different grid
elements while adhering to the various power flow constraints
in a realistic setting. Such formulation tackles some gaps that

exist in conventional methods, such as dependability on
experts to model the dynamics of the microgrid, achieving
real-time scheduling, and providing a generalized framework

for different environments. The developed framework can be
adjusted for different microgrid architectures providing flexi-
bility to test the set-up for different types of electrical grids.

In this study, it was demonstrated that the deep reinforcement
learning methodologies as implemented can obtain near opti-
mal results. The methodology can conduct online scheduling
of the various energy resources within a grid and make cost

effective actions under stochastic conditions. The results were
benchmarked with the optimal results obtained by MILP sol-
ver that had full knowledge of the different stochastic vari-

ables. The costs of operation achieved are within 2% of the
optimal case scenario. Additionally, the computation time of
the developed method is on average 0.01 s per step compared

to 2.4 s with the MILP solver. Therefore, the potential of the
proposed approach for real-time implementation is quite
significant.

Further work can investigate the use of alternative net-
works to map states to Q-values such as convolutional or
recurrent neural networks. Additionally, other studies can
benchmark other reinforcement learning methods based on

policy optimization to solve the problem, as opposed to
value-based optimization methods.
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