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H I G H L I G H T S  

• An online two-level HEMS to reduce operation cost and power consumption peaks. 
• Identification of load flexibility in MG using Non-Intrusive Load Monitoring (NILM). 
• Automated extraction of the occupants’ power consumption patterns and preferences. 
• Analyzing the performance of the proposed NILM-assisted HEMS in an AC/DC Microgrid. 
• Validating the coordination of optimization and forecast systems with NILM modules.  
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A B S T R A C T   

Traditional electric energy systems are experiencing a major revolution and the main drivers of this revolution 
are green transition and digitalization. In this paper, an advanced system-level EMS is proposed for residential 
AC/DC microgrids (MGs) by taking advantage of the innovations offered by digitalization. The proposed EMS 
supports green transition as it is designed for an MG that includes renewable energy sources (RESs), batteries, 
and electric vehicles. In addition, the electricity consumption behaviors of residential users have been auto
matically extracted to create a more flexible MG. Deep learning-supported Non-intrusive load monitoring (NILM) 
algorithm is deployed to analyze and disaggregate the aggregated consumption signal of each household in the 
MG. A two-level EMS is designed that coordinates both households and MG components using optimization, 
forecasting, and NILM modules. The proposed system-level EMS has been tested in a laboratory environment in 
real-time. Experiments are performed considering different optimization periods and the effectiveness of the 
proposed EMS has been shown for different optimization horizons. Compared to a peak shaving strategy as a 
benchmark, the proposed EMS for 24-hour horizon provides a 12.36% reduction in the residential MG daily 
operation cost.   

1. Introduction 

During the last decade, with the increasing integration of residential 
wind turbines (WTs) and photovoltaic panels (PVs) as well as electric 
vehicles (EVs), electricity consumers have found a new role as pro
sumers. The possibility of locally generating and storing power along 
with the introduction of smart home appliances (washing machines, 
dishwashers, cloth dryers, electric water heaters, air conditioners, etc.) 
has considerably increased the flexibility on the consumer side being 

able to manage their power consumption pattern and participate in 
demand response programs. This active participation benefits both the 
consumers and the electricity grid in several ways. From the consumers’ 
point of view, a lower energy cost and higher utilization of renewable 
energy can be expected while electricity utilities can flatten the grid load 
curve and reduce the stress on the system equipment, thereby increasing 
the system efficiency, reliability, and lifetime. 

However, to exploit this flexibility, advanced home energy man
agement systems (HEMSs) are required for monitoring and control of 
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energy production, storage, and consumption in smart houses taking 
into account consumers’ comfort as well as their economical and envi
ronmental concerns [1]. Accordingly, many studies have been dedicated 
to HEMSs and residential energy management over the last decade. The 
developed strategies are either for a single house [2–4] or multiple 
households in a residential area [5,6]. Moreover, demand-side flexibility 
management can be achieved through an aggregator as an intermediary 
entity between consumers and distribution system operators [7,8]. 

In [2], an energy management strategy for a residential microgrid 
(MG) is proposed to reduce the system costs and obtain a smoother grid 
power profile. Instead of appliance-level analysis, the aggregated energy 
consumption profile is forecasted and optimization is performed. In [3], 
given the uncertainty of customers’ behavior, a load scheduling method 
is proposed taking into account energy cost and a satisfaction function 
through the robust intervals of different appliances. Customers are 
required to preset the start and end times of the interval that the 
appliance can be scheduled in. In [4], a two-stage HEMS is proposed that 
aims at minimizing the deviation of electricity demand from a reference 
trajectory received from the aggregator. To reduce the computational 
complexity, hourly and intra-hourly appliance scheduling are performed 
at the first and second stages, respectively. In [5], a HEMS is proposed 
for multiple houses with EVs, PVs, air conditioners, and water heaters. 
The problem is formulated as a multi-objective optimization problem to 
maximize consumer satisfaction (in terms of room and water tempera
ture) and minimize energy cost and the load peak-to-average ratio. A 
Pareto tribe evolutionary algorithm is used to find the solution set. 

In general, HEMSs deal with a load management problem that is 
formulated in the form of a multi-criteria optimization problem subject 
to several technical and operational constraints derived from the 
available flexibility resources and user preferences. In this regard, 
different controllable appliances should be identified and their power 
consumption, operating interval, and possibility for operation inter
ruption should be provided to the HEMS. Given the varying power 
consumption patterns of residential consumers in different hours of the 
day, days of the week, and times of the year, adjusting these settings 
manually is a tedious task. In [6], given the difficulty of a priori setting 
of customer comfort without distinguishing among different customers 
with various needs, a HEMS with profile characterization of smart ap
pliances is proposed. The goal is to minimize the household energy costs 
and users’ annoyance levels using a quality of experience-driven 
approach. Consumers are asked to register their tendency to shift the 
loads or changing the temperature settings over a training period. 
However, automating this process will minimize user intervention by 
adaptively learning occupants’ power consumption patterns and pref
erences. Equipping HEMSs with this capability requires advanced 
learning techniques and power consumption data acquisition of 
different household appliances. In this regard, Non-Intrusive Load 
Monitoring (NILM), also referred to as energy disaggregation, provides a 
promising solution. 

1.1. Literature review for NILM 

NILM, first proposed by Hart [9], is a technique to identify the power 
consumption of different appliances and their activation intervals by 
disaggregating the power consumption profile of the house, thereby 
avoiding the installation and maintenance cost of separate sensors for 
single appliances that are needed in intrusive techniques [10]. Having 
appliance-level data allows customers to have detailed information 
about their consumption and thus make more informed decisions. On 
the other hand, electricity utilities might benefit from the knowledge of 
appliance-level consumption preferences to estimate the potential ca
pacity for demand response programs and adjusting their pricing stra
tegies as well as policymaking [11]. 

NILM analysis can be performed with both high and low sampling 
frequency measurements [12]. But there are already thousands of smart 
meters installed. To exploit this potential, recent NILM studies are 

focusing on low sampling frequency measurements. NILM analysis is 
performed in two different ways: non-event-based (state-based) and 
event-based. Non-event-based approaches represent the appliances as 
finite state machines. The operation of the devices is modeled by 
designing state transition models. One of the most widely used non- 
event-based approaches is the Hidden Markov Model (HMM) and its 
variants such as Factorial HMM, Conditional Factorial HMM, Additive 
Factorial HMM, Hierarchical HMM, and Super-state HMM [13–17]. The 
most important disadvantage of HMM-based methods is that, as the 
number of appliances increases, the complexity of the model increases 
exponentially [18]. On the other hand, event-based approaches rely on 
event detection and feature extraction. The authors of [19] have 
developed an event-based appliance recognition algorithm working in 
the frequency domain and deployed a filtering process to detect state 
transitions. To extract high-level features, a multiscale wavelet packet 
tree has been used. In [20], the detection of simultaneous switching 
devices, which is one of the important research topics of NILM analysis, 
has been evaluated. An adaptive-window-based detection approach is 
applied to detect the events, and a deep dictionary learning model is 
used in the real-time load monitoring architecture. In order to increase 
the quality of extracted features, appliance power signals have been 
transformed into 2D space and short histograms representing individual 
appliance consumption have been extracted in [21]. However the 
aforementioned event-based methods need event detection and feature 
extraction process which might be time-consuming. Besides, they are 
designed only for load identification. However, to design an effective 
EMS, it is necessary not only to identify the loads but also to extract their 
power consumption. 

With the increasing availability of public datasets, machine learning 
methods started to be applied frequently in the field. Convolutional 
neural networks (CNNs), recurrent neural networks (RNNs), and 
Generative Adversarial Networks are the most widely used deep 
learning methods in the literature [22–25]. RNNs are used to analyze 
time series because they can analyze temporal dependencies. This 
feature is significant for NILM because the energy consumption of the 
devices is a time series and is related to the past consumption profile 
[26]. CNNs, on the other hand, can extract features hierarchically from 
raw data [27]. Therefore, it enables the analysis of smart meter signals 
without exhausting preprocessing. In order to increase the generaliza
tion of deep learning models, the authors of [28] have used data 
augmentation to generate synthetic data for training a CNN-based NILM 
model. The proposed data augmentation technique works by combining 
on and off-durations of a target appliance from various datasets. 
Considering that having a large amount of labeled data might not be 
always practical, the authors of [29] have used a spiking neural network 
that only requires the user to label one instance for each appliance while 
adapting to a new household. 

1.2. Literature review for NILM assisted HEMS 

Given the ability of NILM to identify appliance usage patterns in a 
non-intrusive manner, deploying it in a HEMS will help improve its ef
ficiency and autonomy [30]. However, this is a rather new concept that 
has been investigated in few studies. In [31], a NILM-based HEMS is 
proposed in which NILM is used to identify the preferred usage time of 
different appliances and their wattage. Day-ahead load scheduling is 
formulated in the multi-objective optimization framework with con
flicting objectives of cost and residents’ comfort. It is shown that total 
electricity payments and load peak-to-average ratio are reduced with 
deploying this method. Moreover, authors in [32] propose a deep neural 
network-based NILM integrated with EMS. Power consumption and 
operating status of different appliances are identified using a multi-task 
neural network. Afterward, average power consumption, operation 
cycle, daily usage frequency, and desired usage periods for different 
appliances are estimated. The proposed method is evaluated for the EMS 
of a household MG with WT, PV, and energy storage system (ESS). 
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According to the results, operation cost and customer satisfaction have 
been considerably improved. Incorporating NILM for demand response 
flexibility estimation is analyzed in [33]. An unsupervised NILM algo
rithm based on a combinatorial optimization problem is proposed to 
disaggregate the power consumption of residential consumers. The de
mand response flexibility of a region is quantified by comparing the load 
patterns before and after implementing demand response programs. 
According to their study, EVs provide the most flexibility for the demand 
response programs. Another residential energy flexibility study sup
ported by NILM is proposed in [34]. An unsupervised algorithm is 
deployed to disaggregate the controllable load patterns. Then flexibility 
characterization is determined considering the consumers’ usage 
behavior. The proposed method is verified in an individual building 
level and aggregated level including 50 residential buildings. The au
thors of [35] propose a NILM-assisted demand response program. 
Operation information of controllable loads, which are air conditioning 
units and EVs, is extracted by NILM. The obtained results are sent to the 
utility as feedback showing whether the enrolled appliances comply 
with the demand response signals or not. 

As seen in the above-mentioned studies, NILM is basically a signal 
processing problem, where most of the studies have focused on 
increasing its analysis accuracy. However, how to benefit from NILM, 
where and how to use the results have not been adequately addressed. 

In this paper, an advanced system-level NILM-assisted EMS is 
designed for hybrid AC/DC residential MGs. The goal is to automate the 
load profile characterization by learning occupants’ power consumption 
patterns and preferences and maximize the consumers’ benefits using 
the maximum available flexibility sources. The main contributions of the 
paper are as follows:  

• Designing an online two-level HEMS for reducing the consumers’ 
electricity bill and the power consumption peaks while considering 
occupants’ preferences by exploiting different flexibility sources in 
residential MGs.  

• Identification of different flexibility sources in a residential MG 
including the flexible loads and their power consumption and 
preferred usage intervals with the help of a non-intrusive tool to 
minimize sensor cost and user intervention.  

• Integrating a deep learning-based NILM algorithm with the HEMS to 
automate extracting the occupants’ power consumption patterns and 
preferences.  

• Analyzing the performance of the proposed NILM-assisted HEMS in a 
hybrid AC/DC MG taking into account the increasing use of flexible 
units such as home appliances, WTs, PVs, and EVs.  

• Validating the coordination of optimization and forecast systems 
with NILM modules in a real-time EMS at the system level with HIL 
tests in a laboratory environment. 

2. The architecture of the residential AC/DC MG 

MGs are known as small-scale power systems including different 
types of distributed generation units and storage devices that are used in 
many different areas such as aviation, automotive, military, and 
households [36]. Considering that 27.4% of the electrical energy 
generated worldwide is consumed by households, it is understood that 
households have great potential in terms of energy savings [37]. By 
using small capacity RESs and ESSs, each house becomes a small MG, 
being able to meet its energy needs on its own, and become an active 
participant in the energy sector. Another advantage of households is that 
there are a large number of controllable loads inside. Shifting the 
operation time of appliances according to electricity price signals pro
vides a financial gain to the consumers. In addition, it may positively 
contribute to the peak load problem faced by the distribution network in 
the evening hours. In this regard, EMSs play an important role, espe
cially for residential MGs. By having information such as power con
sumption profiles of households, available power generation of RESs, 

and real-time electricity prices, more effective EMSs can be designed. In 
this paper, considering that the households have a great potential in 
energy saving, a residential AC/DC MG which is shown in Fig. 1 is 
analyzed [38]. 

The analyzed MG includes more than one apartment. Therefore, the 
WT, PV, ESS, and EV charging station belong to the entire building. The 
reason why a hybrid MG is analyzed is the advantages of DC-based 
power systems in terms of simplicity and efficiency [39]. If PVs and 
ESSs are connected to the DC bus, there will be no need for an extra DC/ 
AC conversion process, so the cost is reduced and efficiency is increased 
by using fewer power converters. In addition, the increase in the use of 
EVs and the fact that most of the charging units are DC is another 
advantage. However, it does not seem possible for now to use only DC in 
residential buildings. The reason is that DC systems to be used in 
buildings are not yet subject to a standardized regulation in terms of 
protection, control, and operation. For this reason, the MG is designed 
by using a DC and an AC bus so that the apartments in the building are 
fed without extra design. The AC and DC buses are connected by a 3- 
phase interlink converter. With the help of an interlink converter, 
power transfer between busbars is regulated. 

3. Proposed energy management system 

3.1. Introduction of EMS architecture 

EMSs can be defined as computer-aided systems that monitor MGs 
and enable them to operate in an economical, reliable, and sustainable 
manner. The energy management algorithm of the EMS tries to deter
mine the optimum operating points of MGs equipment considering their 
technical and operational constraints as well as information of elec
tricity demand and market prices to ensure optimal system operation. 
Many different operation management strategies such as generation 
planning, energy-saving, reactive power support, and frequency regu
lation have been implemented before [40]. Although EMS can be 
designed for different purposes, in this paper, it is aimed to achieve the 
optimum generation-consumption balance by monitoring and coordi
nating all units in a residential MG in an online framework. To achieve 

Fig. 1. The architecture of the residential AC/DC MG.  
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this goal, an online EMS, which is shown in Fig. 2, is proposed. 
The proposed EMS consists of 5 different modules. The first of these 

is the Data storage and Data Acquisition / Human-Machine Interface (DAQ/ 
HMI). Bidirectional communication is established with the MG, and data 
exchange is provided through this module. HMI allows all the data 
collected from the MG to be visualized. If needed, input values can be 
modified based on the required data. This module reads the necessary 
measurements from the MG, shares them with other modules, and sends 
back the output signals of EMS to the MG. Moreover, all the collected 
data are stored in this module. 

The second module is the Data Preprocessing module that enables 
data received from the storage module to be converted into the required 
structure before being distributed to other modules. Since the NILM, 
Forecast, and Optimization modules need different data structures, using 
a preprocessing module will facilitate appropriate coordination and data 
sharing. 

The third module is the NILM module which uses the smart meter 
signals of the apartments as input. The read signals are analyzed using 
various mathematical or pattern recognition methods and appliance- 
level data are extracted, which enables the analysis of the energy con
sumption behavior of each apartment. Thus, considering the preferences 
of the consumers, their electricity bills can be reduced and their comfort 
level can be maximized. 

The Forecast module provides the necessary generation and con
sumption forecasts for the operation planning of the MG. Some variables 
such as renewable energy generation, household electricity demand, 
and the use of EV charging stations have a probabilistic nature. How
ever, to operate the MG in an optimum way, it is necessary to know the 
generation and consumption information of all units in the system in 
advance. This module helps the Optimization module to make a more 
efficient energy management strategy by making forecasts. As the error 
of the forecasts decreases, the efficiency of the EMS will increase. 

The last module is the Optimization module in which the optimization 
process is performed for a previously determined horizon and the 
operating set-points of the MG units are determined. It is aimed that the 
MG will be operated optimally by ensuring that the units will follow the 
set-points. 

3.2. Interaction of modules 

The operation principle and interaction of different modules are 
shown in Fig. 3. First of all, with the help of the DAQ/HMI module, the 
necessary measurements are collected from the MG and stored in the 
database. In the next step, forecasting and NILM are performed simul
taneously. The Forecast module requests the data from the Preprocessing 
module and makes power generation-consumption estimations. NILM is 
performed only at the beginning of the day and it analyzes the con
sumer’s preferences. After the forecasting and NILM processes are 
completed, the obtained data are concatenated and sent to the Optimi
zation module through the Data Preprocessing module. At this stage, an 
optimization process is carried out by taking into account the 
generation-consumption forecast, electricity price, state-of-charge (SoC) 

of battery, and system constraints. Optimization is performed for a 
period defined as the optimization horizon (H) with a time step of Δh, 
which is shown in Fig. 4. Once the optimization is completed, the 
operating set-points are sent back to the MG through DAQ/HMI module. 

For an online EMS, all operation steps described above are repeated 
after waiting a user-specified time which is called the optimization step 
(topt). For each iteration, the necessary sensor measurements are ob
tained, new forecasts are made, and the optimization process is per
formed again. In this way, the inconsistency between forecasted and 
actual values is minimized as it will be easier to forecast the near future. 
This process continues until a user-defined time (tlimit). 

3.3. NILM 

NILM, also referred to as energy disaggregation, is the process of 
obtaining appliance-level data by disaggregating the total household 
electricity consumption measured by the main meter using various 
signal processing or pattern recognition methods [9]. Rather than using 
a separate sensor for each appliance, the aggregated signal which is the 
total energy consumption of a household is monitored. Since the main 
meter data is only needed for analysis, it is less costly than the other 
monitoring systems [10]. NILM can also be thought of as a filter as 
shown in Fig. 5. 

The NILM problem is formulated as follows: 

psm(t) =
∑

n ∈ N
sn(t)⋅pn(t) + e(t) (1) 

Fig. 2. The architecture of the proposed EMS.  

Fig. 3. Operation flowchart of the proposed EMS.  

Fig. 4. Optimization windows.  
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where psm(t) indicates the aggregated active power consumption 
read from the smart meter at time instant t, sn is a binary variable 
showing whether appliance n is running, and pn indicates the active 
power consumption of appliance n. e(t) is the measurement error and N 
is the total number of appliances in the household. As a result of NILM 
analysis, sn and pn are expected to be extracted with high accuracy. 

By using NILM, statistical data about appliances (usage frequency, 
consumed energy, usage time, etc.) can be obtained, and this informa
tion can be used for appliance scheduling, thereby energy saving. With 
the integration of the NILM in EMS, consumers’ electricity consumption 
habits can be extracted. Considering these habits, customers can 
participate in various demand response applications that will be offered 
by the utility grid. One of the easiest ways to reduce the electricity bill is 
to shift the use of appliances to periods where the price of electricity is 
cheaper. However, it is not always possible for customers to manually 
program their consumption by following the variation of electricity 
prices. Studies show that consumers who want to change their energy 
consumption behaviors to reduce their bills are either the elderly or 
prudential people [41]. Other consumers are either too busy or are 
unsure of how to respond to grid signals. For this reason, automation has 
a big role in demand response applications. The lifestyles of each con
sumer must be taken into account to design and implement an auto
mated management strategy for different households. By using the 
NILM, the life habits and consumption behaviors of each customer can 
be learned and consumer-specific optimization can be made. In this way, 
both energy costs can be reduced and consumer comfort can be 
maximized. 

The aggregated signal is sufficient to extract appliance-level infor
mation and it can be easily obtained with the help of smart meters. The 
widespread use of smart meters means that the data that can be used for 
analysis is abundant. Therefore, data-driven techniques can be a viable 
solution to solve this problem. In this paper, the energy consumption 
behavior of the consumers in the apartment is analyzed using a Multi- 
task neural network model which extracts both power consumption 
profiles and the status of appliances. Since the main purpose of this 
paper is to explain the operation principle of the proposed online EMS 
and to implement it in real-time, the deep learning model will not be 
explained in detail. However, the NILM model was presented and 
implemented in our previous paper [32].  

1) Extracting of appliance parameters 

Once the NILM analysis is complete, some appliance parameters 
need to be extracted for use in the EMS. These are the average power 

consumption (PC), the average operation time (OT), the average number 
of daily uses (NU), and the most preferred operation interval (POI). 
These parameters are extracted by analyzing the NILM outputs using the 
following formulas: 

PCn =

∑
un ∈ Un

[(
∑βun

t = αun
p̂n(t))/(βun

− αun )]

Un
(2)  

OTn =

∑
un ∈ Un

(βun
− αun )

Un
(3)  

NUn =
Un

AP
(4) 

where Un is the total number of uses for appliance n detected during 
the analysis period. [αun, βun] indicates the time interval the appliance n 
is actively operating in the uth usage. The PC is calculated by dividing the 
sum of the average power consumed by the appliance during each 
operating period by the total number of uses Un. ̂pn(t) indicates the NILM 
estimation of active power consumption of appliance n for time t. Similar 
to the PC, the OT is calculated by dividing the sum of each run time by 
the total number of uses. The NU is obtained by dividing the total use 
number of the appliance by the daily analysis period AP. The NU is an 
important parameter because the usage number of appliances used in an 
apartment with five people and an apartment with a single person can be 
significantly different. The POI, which indicates the period in which the 
appliances are used most frequently, is a statistical value spread over 24 
h. Therefore, the POI will be defined with a probability density function 
(PDF). 

3.4. Optimization procedure 

In this paper, a two-level optimization problem for AC/DC residen
tial MGs is proposed and it is mathematically modeled. In this way, it is 
aimed to meet the demands of both the distribution system operator and 
the customers at the same time.  

1) Level 1 - local optimization 

The first level of optimization aims to minimize the electricity bills of 
the apartments in the building individually by shifting the usage time of 
the appliances. For this reason, the objective function of Level 1 is 
defined as follows: 

Min

{

OF1, d =
∑24

t = 1
RTP(t)⋅Pload, d (t)

}

(5) 

where RTP stands for the real-time price of the utility grid, Pload,d(t) 
indicates the active power consumption of apartment d at time t and it is 
determined by scheduling the runtime of appliances. Before starting the 
optimization, consumers who accept the scheduling of the appliances in 
the home, i.e., those who want to participate in the EMS, should be 

Fig. 5. NILM process.  

Fig. 6. Level 1 - Local optimization.  
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determined. Therefore, local optimization is applied only for consumers 
who want to participate in the EMS, as shown in Fig. 6. Local optimi
zation is applied separately since consumer behavior can be significantly 
different. 

First, the smart meter signals of the consumers are read through 
DAQ/HMI module and analyzed with the help of the NILM module. 
Following this analysis, the appliance-level energy consumption infor
mation of the consumers is obtained. 

The appliances in the apartments are divided into two categories as 
non-shiftable and shiftable loads. Non-shiftable loads such as ovens and 
hair dryers are devices that the consumer should use whenever they 
need. However, the run time of shiftable loads such as washing machines 
and dishwashers can be shifted. Another example is thermostatically- 
controlled loads such as air conditioners and refrigerators which can 
be controlled to maintain the temperatures within certain limits [42]. 
Significant energy savings can be achieved by shifting the runtime of 
shiftable appliances according to RTP and user preferences. Shiftable 
tasks can be planned according to several operating requirements. The 
required constraints are defined as follows [43]: 

∑24

t = 1
sn(t) = OTn (6)  

∑24

t = 1
| sn(t) − sn(t − 1) |⩽2 (7)  

∑24

t = 1
sm(t)⋅γ(λ − OTn +

∑t

t = 1

sn(t)) = OTm (8)  

Pload(t) =
∑

k ∈ NN
Pk(t) +

∑

l ∈ NS
Pl(t)⋅sl(t)⩽Pmax

load (9) 

where s is a binary variable showing that the appliance is operating 
or not. Equation (6) ensures that appliance n finishes its operation 
within the determined OT, while (7) ensures that uninterruptible ap
pliances such as washing machines and dishwashers operate without 
interruption. The operation of some appliances, such as a dryer, depends 
on the washing machine running before it. Equation (8) ensures the 
operation order of such dependent appliances. γ indicates a unit step 
function while λ defines a positive number less than one. Besides, 
equation (9) guarantees that the instantaneous power consumption is 
below the upper limit, taking into account the capacity of the protection 
equipment. Here, NN and NS refer to the number of unshiftable and 
shiftable loads in the household, respectively. 

The local optimization phase is completed by applying (5)-(9) 
separately for each user participating in the EMS. Thus, the scheduled 
consumption profiles for the participating users (PPa) during the next 24- 
hour scheduling interval are obtained. The consumption profiles of non- 
participating users (PNPa) are determined by the Forecast module. The 
output of Level 1 is an aggregated consumption profile, which is the sum 
of the next day 24-hour consumption profiles of all apartments as fol
lows. Therefore, Level 1 is performed only once a day to plan the next 
day’s power consumption. 

Pagg(t) = PPa(t)+PNPa(t) t = 1, ..., 24 (10)    

2) Level 2 - global optimization 

At this level, the problem is viewed from a broader perspective. 
Details regarding the operation of the MG, such as generation planning 
of the units, evaluation of SoC of the batteries and charge status, and 
power exchange with the grid, are handled at this stage. The architec
ture of the secondary level optimization is shown in Fig. 7. 

At this stage, the result of the optimization performed at Level-1 is 
transmitted to the global optimization unit. In addition, the power 
generation and consumption estimations obtained from the Forecast 

module are also sent to the Optimization module and the optimization 
process is performed for the MG. Two different objective functions are 
taken into account for the operation cost of the MG (F1) and grid power 
Peak-to-Average Ratio (PAR) which is modeled with the standard de
viation (std) of the received power from the main grid (F2) [5]. The first 
objective function is minimized to reduce the operating cost of the MG, 
and the second objective deals with the new peaks which may appear 
after power scheduling. These two functions are expressed as follows: 

F1 =
∑

h ∈ H
RTP(h)⋅Pgrid(h) (11)  

F2 = std(Pgrid) (12) 

where H indicates the optimization horizon shown in Fig. 4, Pgrid(h) 
is the power exchanged with the utility grid at a given time h. By opti
mizing the operation cost, the consumers residing in the building can get 
the maximum economical benefit from the MG. The second term is 
defined as the std of the power drawn from the grid. The smaller the F2 
value, the smoother the power exchange profile. By considering these 
two functions, a multi-objective optimization problem is defined for the 
global optimization as follows: 

Min Fi(x) i = 1 : Nobj (13) 

where Fi is the ith objective function and Nobj shows the number of 
objectives which is two in this case. Unlike single-objective optimization 
problems, which result in a single optimal solution, multi-objective 
optimization problems lead to a set of optimal solutions called Pareto 
optimal set or non-dominated solutions. Considering two feasible solu
tions of × and y, it is said that × dominates y if Fi(x) ≤ Fi(y) for all i = 1: 
Nobj and Fj(x) < Fj(y) for at least one objective in a minimization prob
lem. In order to explore the Pareto optimal set, the weighted sum 
objective function of OF2 is formed as follows: 

Min{OF2 = w1⋅F1 + w2⋅F2} (14) 

The coefficients w1 and w2 are weighting coefficients that are used to 
assign the relative importance of different objectives. After finding the 
Pareto optimal set, a compromise solution can be found considering the 
decision-maker preferences. In this paper, the value of a linear fuzzy 
membership function is calculated for all non-dominated solutions as 
follows: 

μi =

⎧
⎪⎨

⎪⎩

FMax
i − Fi

FMax
i − Fmin

i
Fmin

i ⩽Fi⩽FMax
i

0 otherwise

(15) 

in which, Fi
min and Fi

Max are the minimum and the maximum values 
of the ith objective function, respectively [44]. The final solution is 
selected from the point of view of a conservative decision-maker that 
tries to maximize the minimum satisfaction of all objective functions 
considering the Ns non-dominated solutions as represented below [45]: 

Fig. 7. Level 2 - Global optimization.  
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max
k=1:Ns

min
i=1:Nobj

μk
i (16) 

The multi-objective optimization problem is subjected to several 
constraints. The first of these constraints is the power generation- 
demand balance of the MG. This balance should be maintained sepa
rately for AC and DC busbars with the help of the following equations: 

PWT(h)+PPV(h) − Pbat(h) − PEV(h) − PLL(h) − PIC(h) = 0 (17)  

Pgrid(h)+PIC(h) − Pagg(h) = 0 (18) 

Equation (17) is defined for the energy balance of the DC bus. The 
aim is to ensure that the power injected and drawn from the busbars at 
time h is equal, according to Kirchoff’s current law. The wind turbine 
(PWT) and solar panels (PPV) inject current into the DC bus, while the 
electric vehicle (PEV) and lift/lighting (PLL) draw power from the DC bus. 
The sign of the interlink converter (PIC) is considered negative when it 
draws power from the DC bus. Similar to the DC bus, the energy balance 
of the AC bus is ensured by (18). 

The next constraint is the upper and lower operating limits of the 
units. The power generation of wind turbine and solar power plant, the 
power drawn from and sold to the main grid is limited by the following 
constraints: 

Pmin
WT (PV)⩽PWT (PV)(h)⩽Pmax

WT (PV) (19)  

Pgrid buy(h)⩽ugrid(h)⋅Pmax
grid buy (20)  

Pgrid sell(h)⩽(1 − ugrid(h))⋅Pmax
grid sell (21)  

Pgrid(h) = Pgrid buy(h) − Pgrid sell(h) (22) 

where Pmin (max)
WT (PV) indicates the minimum (maximum) power that can be 

obtained from the wind turbine (solar panels). Pmax
grid buy (sell) indicates the 

upper limit of power that can be drawn (sold) from (to) the main grid. 
The point to be taken into consideration here is the criteria for avoiding 
buying and selling power simultaneously. The binary variable ugrid is 
used to fulfill this requirement. If ugrid = 1, the power is drawn from the 
grid and vice versa. 

The energy storage unit, which is the most important component of 
residential MGs, can provide reliable energy during a power outage or 
store excess energy generated by renewable sources. Batteries are 
operated according to certain constraints. The first of those is the battery 
SoC level calculated as follows: 

SoC(h + 1) = SoC(h)+ (Pbat(h)⋅Δh/Ebat) (23) 

where Δh is the timestep of the simulation, Ebat is the capacity of the 
battery. To prolong the battery lifetime, the SoC must be kept within 
certain limits as follows: 

SoCmin⩽SoC(h)⩽SoCmax (24) 

where SoCmin(max) indicates the minimum (maximum) charge per
centage of the battery. Similarly, the charging and discharging powers of 
the battery should be limited by the following equations: 

Pch
bat(h)⩽ubat(h)⋅Pmax ch

bat ⋅ηch (25)  

Pdch
bat (h)⋅ηdch⩽(1 − ubat(h))⋅Pmax dch

bat (26)  

Pbat(h) = Pch
bat(h) − Pdch

bat (h) (27) 

where Pch (dch)
bat indicates the active power that the battery draws (in

jects) during charging (discharging), Pmax ch (dch)
bat indicates the maximum 

charging (discharging) power of the battery, and ηch(dch) indicates the 
charge (discharge) efficiency. The point to be taken into consideration 
here is the criteria for avoiding charging and discharging simulta
neously. The binary variable ubat is used to satisfy this requirement. If it 

is 1, the battery is charging and vice versa. 
The last constraint ensures that the SoC value of the battery at the 

end of each day is equal to its initial value. Thus, a more sustainable EMS 
can be achieved. 

SoC(H) = SoCinitial (28)  

4. Case study 

4.1. Operation of the residential MG 

The analyzed residential MG, which is shown in Fig. 1, consists of 
two busbars, AC and DC. Since the WT and PV are renewable-based 
generation units, power converters are designed to extract the 
maximum power. With the help of maximum power point tracking al
gorithms such as Perturb&Observe, the maximum power point is 
determined and appropriate control signals are sent to converters. 
Therefore, renewable power generation can be estimated by using the 
solar irradiation, temperature, and wind speed data of the region. The 
battery is used to ensure the power quality of the DC bus. The voltage 
level of the DC bus tends to fluctuate due to the connection of RESs and 
their power variations. To handle this problem, the battery is controlled 
to keep the voltage of the DC bus constant at 700 V. It has been shown in 
previous studies that this level is a good compromise in terms of effi
ciency, safety, and compatibility with the AC grid [46]. In addition, the 
surplus energy can be stored in the battery and the power exchange with 
the main grid can be economically realized. The electric vehicle 
charging station and lift/lighting units, which are the consumption 
units, can be considered as DC loads. The last unit is the interlink con
verter which is controlled by the EMS since it regulates the power ex
change with the main grid. The values of parameters for the MG and 
EMS are given in Table 1. 

4.2. Operation of EMS 

As explained in Section III, the modules within the EMS produce the 
outputs required for the optimal operation of the MG by using various 
inputs. These inputs and outputs are shown in Fig. 8. 

The NILM module uses the smart meter signals of the participating 
apartments as the input and extracts the appliance-level data. These data 
are sent to the Optimization module through the Data Preprocessing 
module and then used for Level-1 optimization. Thus, the electricity bill 
is reduced by considering consumer comfort. 

The Forecast module estimates renewable energy generation, electric 
vehicle and lift/lighting power consumption, and consumption of non- 
participating apartments. These forecasts are sent to the Optimization 
module through the Data Preprocessing module and used for Level-2 
optimization. Consumption estimates have been obtained using proba
bilistic models. Renewable generation forecasts were made using his
torical weather data measured by a weather station, located in the AAU 
Energy Department at Aalborg University. Undoubtedly, there will be 
differences between estimates and actual values. This difference has 
been taken into account during real-time implementation. The actual 

Table 1 
parameters of the mg and ems [38]  

Parameters Value Unit Parameters Value Unit 

PWT  5 kWp Ebat  80 kWh 
PPV  8 kWp SoCmax (min) 90 (30) % 
PEV  2 kW SoCinitial  50 % 
Vdc bus  700 V Pmax ch (dch)

bat  
10 (10) kW 

Δt  1 hour ηch (dch) 87 (90) % 
topt  15 min H 6, 12, 24 hour 
w1  0.60  w2  0.40  
Number of Apartments 16      
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generation and consumption profiles have been emulated and sent to the 
test-bed by adding random errors within ±30% of the forecasted value. 

Fig. 9 represents the Pareto front of the Level-2 optimization problem 
and the best compromise solution from the point of view of a conser
vative decision-maker as discussed in Section III-D-2. The minimum and 
maximum values of F1 and F2 used for linear fuzzy membership function 
calculation are empirically determined as 1100–1500 and 0–10, 
respectively. The weighting coefficients related to the best compromise 
solution (w1 = 0.60, w2 = 0.40) are then used in the experimental test to 
validate the performance of the proposed EMS framework. 

To observe the effect of different optimization horizons (H) on the 
proposed EMS performance, horizons of 6, 12, and 24 h with a time slot 

Δh = 1 h were chosen for optimization. As shown in Fig. 4, the opti
mization process is performed every topt = 15 min and new set-points are 
sent to the MG. Therefore, optimization inputs need to be updated 
accordingly. It was assumed that the RTP information is shared with 
consumers the day before by the utility grid operator. 

5. Experimental results 

5.1. System description 

The residential MG and the proposed EMS have been tested in real- 
time at Aalborg University, AAU Energy, AC/DC Microgrid Labora
tory. The experimental setup, which is shown in Fig. 10, has been used to 
test the proposed EMS. The real-time platform consists of a 3-phase 
isolation transformer (12.5kVA, 400 V) for grid connection, four 2.2 
kW 3-phase AC/DC power converters for power conversion, four LCL 
filters (8.6mH, 4.5µF, 1.8mH), and a dSPACE DS1006 processor board. 
Since the analyzed MG is grid-connected, it has been assumed that the 
voltage and frequency values of the AC busbar are regulated by the main 
grid. Due to the hardware limitations, the DC part of the MG is emulated 
in the laboratory environment using four AC/DC inverters, which are 
connected to the same DC bus. While one of the inverters emulates 
renewable energy generation (PPV + PWT), another represents the con
sumption of the electric vehicle and lift/lighting (PEV + PLL). These in
verters operate in grid-feeding mode. By following the active and 
reactive power reference values, they can inject/absorb current into/ 
from the grid. The third inverter is responsible for emulating the battery 
to regulate the DC bus voltage. For this reason, it’s designed as a grid- 
forming inverter. The last inverter is used as an interlink inverter to 
emulate the power exchange between the AC and DC buses. In case the 
SoC is below the lower limit, the grid regulates the DC bus voltage 
through the interlink inverter. The inverters are controlled using nested 
control loops, where the inner current loop controls the output current 
of the inverter and the outer control loop is responsible for generating 
reference current values I*α,β as a function of voltage, active, and reac
tive power references (V*, P*, Q*). To generate a reference current value 
synchronized with the main grid, Clarke transformation is applied by 
using the phase angle of the grid voltage obtained from the phase-locked 
loop, and the reference current values are obtained within the αβ static 
reference frame [47]. 

All local controllers for inverters are designed with Matlab/Simulink 
on a control station. Moreover, the EMS is coded and implemented in a 

Fig. 8. Data flow between EMS modules.  

Fig. 9. Pareto front for the Level-2 optimization.  Fig. 10. Experimental setup.  
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Matlab script. For the optimization process, the general algebraic 
modeling language (GAMS) is used. The EMS sends the required data to 
GAMS every 15 min, requesting optimization to be performed. The 
outputs of GAMS are read by Matlab and sent to the test-bed. The 
communication between the control station and the real-time platform is 
provided through a User Datagram Protocol over ethernet. Due to the 
hardware limitations, all the power values (generation, consumption, 
etc.) used in the EMS process were scaled down by a factor of 30. In 
addition, the time was scaled down such that 1 h:2 min for applicability. 

5.2. NILM outputs 

In this module, the smart meter signals of the apartments are 
analyzed and the consumption habits of the users are extracted. The 
energy consumption of the 16 apartments in the residential MG is 
modeled using the consumption data in the REFIT dataset [48]. The 
REFIT dataset includes the total consumption and appliance-level con
sumption data of twenty different households measured in watts at 8- 
second intervals. For the simplicity of the study, three of the houses 
which are specified as House 2, 3, and 15 in the data set were chosen for 
analysis considering the number of occupants, the shiftable appliances 
in the house, and the recording quality of the data. The consumption 
profiles of the 16 houses in the residential MG were generated by 
randomly shifting the consumption profiles of these three houses for
ward or backward on the time axis. For the analysis, only high power 
devices such as washing machines (WM), dishwashers (DW), and dryers 
(DR) were considered. House 3 and 15 have all three appliances, while 
House 2 has only WM and DW. A deep learning model was trained for 
each appliance. It is assumed that half of the apartments participate in 
appliance scheduling and the smart meter signals of these consumers 
were analyzed. Following this analysis, the energy consumption habits 
of the users were obtained. After the analysis for House 2, the POI 
parameter which shows the most frequently used periods of the device 
was obtained by using a probability density function as shown in Fig. 11. 

The blue line in Fig. 11 is obtained using actual data, showing which 
time of day the appliance is preferred to be used. The yellow line shows 
the result obtained from the NILM analysis. As seen in Fig. 11, the 
probability of daily use was obtained with high accuracy. The peaks in 
the curve indicate the periods in which the device is used most 
frequently. However, many different peaks can be found in the figure. In 
this paper, peaks that are less than 50% of the maximum peak are not 
considered. The dashed red lines describe the period interval in which 
the device is used most frequently. The same graph for House 3 and 15 is 
shown in Fig. 12. 

Other parameters required to schedule the appliances were obtained 

as shown in Table 2. 
When Table 2 is examined, it is observed that the OT, NU, and PC 

were estimated with 96%, 78%, and 94% accuracy, respectively. All 
these results show that NILM analysis can be useful to obtain the 
appliance-level parameters. By using this data, it is possible to create a 
more advanced and autonomous EMS. When the NU values are exam
ined, it is seen that House-15 rarely uses home appliances (Dryer-almost 
once in 5 days). This is because there is only one occupant in House-15 
while there are more occupants in other houses. To use NU within EMS, 
the real-time application should be done at least for one week. However, 
in this paper, real-time implementation was carried out only for 24 h. 
For this reason, the NU value is determined as 1 for all devices. 

5.3. EMS outputs 

As explained in Section D, the consumption profiles of the partici
pating apartments are scheduled by performing local optimization. The 
consumption profiles of non-participant users are determined with the 
help of the Forecast module. Since the main purpose is to determine the 
consumption profile of the next day, this process is applied only once 
each day. The total consumption data of 16 flats are shown in Fig. 13 (a), 
while the RTP used in the optimization is shown in (b). For the RTP 
graph, T1 indicates the periods when the price of electricity is low and 
T2 is the high-price interval. Renewable energy generation forecasts and 
actual values are shown in Fig. 14. 

For the real-time test, generation and consumption values are 
modeled by converters at intervals of 5 min (10 s with scaling). The 
forecasted load and generation profiles of the MG represented in Fig. 13 
and Fig. 14 are used for optimization, while the actual data are used for 
real-time implementation. Therefore, the differences that may occur 
between the forecast and real-time measurements are also taken into 
account. These differences are compensated by the battery. Another 
important parameter for EMS is the optimization horizon H. In this 
paper, 3 different horizons, 6, 12, and 24 h, have been considered to 
observe the effect of H on the results. 
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Fig. 11. Preferred operational intervals of House-2.  
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Fig. 12. Preferred operational intervals of House-3 and 15.  

Table 2 
Appliance parameters of Houses 2, 3, and 15  

Houses App. OT (min) NU PC (W) 

Actual NILM Actual NILM Actual NILM 

House 2 WM 107 108  0.5  0.5 275 261 
DW 115 114  0.7  0.65 704 680 

House 3 WM 81 70  0.875  0.685 435 385 
DW 73 72  0.8  0.725 1083 1041 
DR 80 79  0.35  0.25 1387 1538 

House 15 WM 99 105  0.4  0.35 552 606 
DW 95 92  0.2  0.1 554 582 
DR 90 93  0.2  0.1 1475 1537  
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In addition, a peak shaving strategy is implemented as a benchmark. 
This strategy ensures that the power drawn from the grid remains below 
a threshold level. As long as the absorbed power is below the threshold, 
there will be no power exchange between the AC and DC buses. When 
the threshold is exceeded, the required amount of energy is transferred 
from the DC bus to the AC bus. Meanwhile, if the SoC of the battery goes 
beyond the limit values in (24), the required amount of power will be 
transferred from the AC bus to the DC bus (in case of SoC < SoCmin) or 
vice versa, and constraint (24) is guaranteed. In this paper, the threshold 
value is set to 16 kW. It is worth mentioning that the Level-1 optimi
zation is also implemented in the peak-shaving strategy. 

The obtained results were compared by considering the average time 
spent for each optimization, operation cost F1, std F2, and the Level-2 
multi-objective function OF2 values as shown in Table 3. 

In Table 3, the second column related to the optimization time shows 
the average time of solving the optimization problem every 15 min. It is 
observed that the shorter the horizon, the shorter the average optimi
zation time. Since a 24-hour optimization has a wider search space, the 
calculation time is longer as expected. The average calculation time of 
the 24-hour horizon was measured as 0.539 s, which is good enough for 
a real-time application. 

When the F1 values obtained in the experiments are compared, it is 
seen that the optimal cost is $1416.49 for the 24-hour horizon. In 
contrast, the higher cost was achieved with the peak shaving strategy 
due to the operation without optimization. The proposed EMS provides a 
12.36% reduction in operating cost compared to the peak shaving 
strategy. As can be seen in Table 3, in 24-hour optimization, the total 
objective value (OF2) value is less than other horizons. The reason lies in 

the fact that the operating schedules are made based on a longer view, 
thereby more information about the future operating conditions are 
considered. If electricity price of the next 24 h is taken into account 
while optimizing, the cheapest hours of the day can be determined and 
the battery can be charged at those hours, and the stored energy can be 
used during the hours when the RTP is high. However, if only the RTP of 
the next 6 h is available, the optimization is made by ignoring the 
cheaper periods. For this reason, the battery may be charged in expen
sive periods, and the cost and hence the total objective value increases. 
However, as the horizon gets longer, the accuracy of the forecasts may 
decrease, which may prevent the optimization to find a global optimum 
solution. For this reason, the extension of the optimization horizon may 
not always constitute an advantage and a satisfactory trade-off is 
required. According to Table 3, the best std value for the received power 
from the grid belongs to the case with 12-hour optimization horizon. It is 
worth noticing that there is a difference between the cost of the best 
compromise solution and the cost values obtained in the experimental 
tests. The reason is that the Pareto front in Fig. 9 is obtained with offline 
simulation considering forecasted values for consumer load and 
renewable power generation and the power loss of converters is 
neglected. While in the experimental tests, the realized values are taken 
into account and there is power loss in the system. 

Fig. 15 shows the EMS outputs obtained for each experiment. In the 
first row of Fig. 15, the power exchange with the main grid, in the 
second row the power exchange of the interlink converter, and in the last 
row the SoC value of the battery are represented. Undoubtedly, the most 
important factor affecting the operation cost of the MG is RTP. Power 
exchange with the main grid will be regulated according to RTP and the 
battery will be operated in an optimum way. Therefore, the charging 
and discharging state of the battery will significantly affect the operating 
cost. 

In Fig. 15, T1 and T2 represent the periods when the electricity price 
is cheap and expensive, respectively. In the first column of Fig. 15, the 
results of the peak shaving strategy, which operates independently from 
RTP (since no optimization is applied), are depicted. In this strategy, the 
battery is charged or discharged according to the generation/con
sumption power values in the DC bus. As seen in Fig. 15, the battery is 
discharged in the T1 period because there is not enough renewable 
generation. However, as the generation increases with the sunrise, the 
battery starts to be charged. Since the SOC exceeds the limit value at the 
beginning of the T2 period, the surplus energy is transferred to the AC 
bus via the interlink converter. Meanwhile, when the power drawn from 
the grid exceeds the threshold of 16 kW, peak shaving is applied by 
drawing the necessary power from the DC bus. The power exchange 
between the DC and AC buses can be observed from the second row of 
Fig. 15. 

When the optimization-based EMSs implemented for 6 h, 12 h, and 
24 h horizons are examined, different charge/discharge characteristics 
are observed for the battery depending on the horizon. If the SoC vari
ation of the 6-hours horizon is analyzed, it is observed that the SOC 
value of the battery is stable during the T1 period and increases in the T2 
period, which means the battery is charged during the expensive period. 
The main reason is that RTP information for the whole day is not 
available for the optimization process. Therefore, the algorithm cannot 
distinguish between cheap and expensive electricity price periods. 
Considering the 12-hour optimization, it is observed that the battery is 
utilized better comparing to the 6-hour case because the RTP for the next 
12 h is available. While the battery is partially charged during the T1 
period, it desires to increase its SOC value as it gets closer to the T2 
period. However, the fact that the SoC value does not reach the upper 
limit of 90% indicates that the EMS cannot utilize the battery with its 
best performance. 

When 24-hour optimization is evaluated, it is seen that the battery is 
almost fully charged during the T1 period, which is the best way to 
reduce the operation cost of the MG. The SOC of the battery remains 
relatively stable between the T1 and T2 periods and reaches a high SOC 

Fig. 13. Total power consumptions of apartments and RTP.  

Fig. 14. Renewable energy generation.  

Table 3 
Experimental results for a residential mg  

Opt. Horizon Opt. time (s) F1 (cent) F2 (watt) OF2 

Peak Shaving  –  1616.21  4.068  0.937 
6 h  0.377  1496.05  4.112  0.759 
12 h  0.380  1492.37  3.525  0.729 
24 h  0.539  1416.49  4.301  0.647  
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value at the beginning of T2 period. Since RTP for the next 24-hour is 
available, cheap and expensive electricity price periods are distin
guished by EMS, and a proper charging strategy is implemented. 

In the last hours of the day, the terminal constraint defined by (28) is 
activated to ensure that the battery starts the next day with the same SoC 
level as SoCinitial. 

6. Conclusion 

Energy management strategies are of great importance for the 
optimal operation of MGs. In this paper, an advanced system-level EMS 
designed for a hybrid AC/DC residential MG has been proposed and 
experimentally validated to efficiently operate a residential MG. Since 
the analyzed MG has individual households, the smart meter signals of 
each household have been analyzed with NILM algorithm to extract the 
consumption profiles of the customers. By using this information, con
sumers’ daily energy costs were minimized at the first level of optimi
zation, by considering their consumption habits. In this way, it was 
ensured that both consumers’ bills were reduced and their comfort levels 
were not affected. In the second level of optimization, optimum opera
tion of MG was ensured by considering the generation and consumption 
units of MG. Real-time test results have proven that a 24-hour optimi
zation horizon provides more optimal operation than 6 and 12-hour 
horizons. Experiments have shown that the battery cannot be fully 
charged when using a 6-hour horizon, thus increasing the operating cost. 
In the 24-hour horizon, the battery could be fully charged, thus mini
mizing the operating cost of the MG. In addition, thanks to the PAR 
function included in the multi-objective optimization problem, the 
power drawn from the utility grid is smoothed. 

As a limitation of the proposed method, deep learning-based ap
proaches require large amounts of labeled data in case they are trained 
in a supervised manner. However, obtaining labeled data may not al
ways be practical. To mitigate this problem, new approaches trainable 
with limited data should be developed. Another limitation of the pro
posed NILM strategy is the lack of an updating mechanism. Some 
appliance parameters such as the average number of daily uses (NU) and 
the most preferred operation interval (POI) should be continuously 

updated since these parameters may vary depending on the seasonality 
and other factors. This limitation will be addressed in future work of the 
authors. 

CRediT authorship contribution statement 

Halil Cimen: Conceptualization, Methodology, Software, Valida
tion. Najmeh Bazmohammadi: Conceptualization, Formal analysis, 
Software, Validation. Abderezak Lashab: Validation, Investigation. 
Yacine Terriche: Writing – review & editing, Visualization. Juan C. 
Vasquez: Supervision, Project administration. Josep M. Guerrero: 
Supervision, Project administration. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

This work was supported by VILLUM FONDEN under the VILLUM 
Investigator Grant (no. 25920): Center for Research on Microgrids 
(CROM); www.crom.et.aau.dk and the AAU Talent Project-The Energy 
Internet-Integrating Internet of Things into the Smart Grid (771116) and 
The Scientific and Technological Research Council of Turkey BIDEB- 
2214 International Doctoral Research Fellowship Programme. 

The authors thank Emilio José Palacios-García and Enrique 
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