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Abstract
In this paper, a competitive energy scheduling strategy game of N -microgrids (MGs) inside
a distributed network is considered. Each microgrid (MG) aims to maximize its profit under
the noncooperative game frame. The strategy-making of each MG depends on its equipment
constraints, the aggregate energy supplies of all MGs, and the energy balance of supplies
and demands. To solve above discussed problem, a noncooperative game with linear coupled
constraints and a distributed neurodynamic algorithm are proposed to seek the generalized
Nash equilibrium (GNE). Besides, the correctness and convergence of the proposed algorithm
are analyzed in detail. The effectiveness and feasibility of the proposed method are also
illustrated via the simulation example.

Keywords Neurodynamic algorithm · Energy scheduling game · Microgrid distribution
network

1 Introduction

Though the advance of industry forces rapid economic development, it also brings many
challenges to the environment and resources. To improve the energy scheduling between
traditional and renewable energy, the construction of the MG becomes vitally significant [1].
It is crucial to develop a safe, stable and efficient modern power system, in which the stability,
flexibility, and the balance of the supply and demand side are guaranteed [2].

Recently, energy management has been investigated widespreadly to allocate energy opti-
mally and construct a safe and stable power grid. A smart energy management system
(EMS) coordinates the working of distributed generators and energy storage system (ESS
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and achieves the maximum benefits of the MG system [3,4]. Typically, the control mode
of EMS is mainly centralized control. To minimize the emission cost of greenhouse gases,
energy costs, and maximize the output of renewable power, a centralized method has been
used to coordinate the energy management between the MG and the main power grid [5].
However, the centralized control can not provide a formidable computing ability to deal with
a volume of data and suffers from single-point fault and privacy disclosure.

Nowadays, numerous studies have been conducted in the distributed optimization of
microgrid energy management. Compare with centralized energy management, the dis-
tributed optimization provides a more efficient and reliable energy management strategy
for the microgrid system (MGS) [6–9]. In [6], a real-time energy market of the multi-MGs
is optimized by a distributed robust algorithm. A distributed algorithm is proposed to solve
the economic dispatch problem, in which some groups of generator units are considered
[7]. Reference [8] proposes a distributed neuro-dynamic optimization algorithm for energy
internet management. In [9], a distributed-consensus based algorithm is proposed to solve
the economic dispatch problem in the MG.

Game theory has been broadly applied in society and resource environment models [10],
network congestion control (NCC) [11–13], and energy management [12,14–16]. In [14], a
cooperative game is applied in Multi-MGs for energy and reserve dispatch. However, indi-
viduals practically care about the maximization of their own interests, which can be fully
illustrated by the noncooperative game. Reference [12] considers a population of noncoop-
erative agents, the cost functions of all competitors are related to the average population
status and the sharing constraints, the proposed method is applied in NCC and demand-side
management. An aggregative game is applied to model and analyze the electric consumption
control in the smart grid [15] and solve a day-ahead electric vehicle charge problem [16].

Consider the distributed optimization ofMG system and game theory approach for energy
management in the exiting works, the main contributions of this paper are given as follows.

(1) A noncooperative game is applied to model the practical relationships of the microgrid
distribution network. Each MG is independent, however, the energy supplies and profits
are closely related to others. Under the coupled constraints, the equilibrium seeking is
completed by the proposed neurodynamic algorithm.

(2) The proposed distributed neurodynamic algorithmcan effectively solve the gameproblem
with linear coupled constraints.

(3) The correctness and convergence of the proposed algorithm are also analyzed by a com-
prehensive theoretical analysis.

The rest is organized below. Section 2 gives some needed preliminaries and related mathe-
matical notations. In Sect. 3, the mathematical models of the basic energy units are described.
Section 4 gives the game model of the discussed problem and the detailed analysis of the
proposed distributed neurodynamic algorithm. The simulation example and conclusion are
given in Sects. 5 and 6, respectively.

2 Notations and Preliminaries

In this section, some notation definitions and preliminary knowledge are given as follows:
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2.1 Notational Conventions

In this paper, Rn and ‖·‖ denote the n-dimensional real column vector and the Euclidean
norm, respectively. 1n = (1, . . . , 1)T ∈ Rn. ζ 1 ± ζ 2 = {

�1 ± �2 |�1 ∈ ζ 1, �2 ∈ ζ 2
}

present the Minkowski sum or minus of the sets ζ 1 and ζ 2. rint (ζ ) presents the relative
interior of the convex set ζ [17].

2.2 Preliminaries

In this section, some basic mathematic descriptions of the graph theory, convex analysis, and
variational inequality are given as follows:

Defining the graphG = (N, E), in whichE ⊆ N×N is the edge set andN = {1, 2, . . . , N }
presents the agents set. If there exists (i, j) ∈ E and ( j, i) ∈ E , G is a connected undirected
graph [18]. In this paper, each MG can exchange information with their neighbors by the
connected undirected graph. LetA be adjacencymatrix and ai j is element of theA, if theMG
i is directly connected with MG j , there is ai j = 1, else, ai j = 0. L is defined as Laplacian

matrix and L = D − A in which the degree matrix D = diag
{∑N

j=1 a1 j , . . . ,
∑N

j=1 aN j

}
.

The projection operation is defined as [19]:

PreΠi (pi ) =

⎧
⎪⎨

⎪⎩

pmin
i , pi < pmin

i

pi , pmin
i ≤ pi ≤ pmax

i

pmax
i , pi > pmax

i .

(1)

where PreΠi denotes the projection operator, Πi = {
pi |pmin

i ≤ pi ≤ pmax
i ,∀i ∈ N

}
and

Π = ∏N
1 Πi denotes the cartesian product space.

Let ζ be a closed convex set, and point x ∈ ζ , then, the tangent cone to ζ is

Γζ (x) �
{
lim

ε→∞
xε − x

tε
|xε ∈ ζ, tε > 0, and xε → x, tε → 0

}
(2)

The normal cone is

Λζ (x) �
{
ϑ ∈ RN

∣∣∣ϑT ( y − x) ≤ 0, for any y ∈ ζ
}

(3)

Lemma 1 There exists two closed convex sets ζ 1, ζ 2 ⊂ RN , If 0 ∈ rint
(
ζ 1 − ζ 2

)
, then,

∀x ∈ ζ 1 ∩ ζ 2, there is Γζ 1∩ζ 2 (x) = Γζ 1 (x) ∩ Γζ 2 (x) [17].

There are a closed convex setΠ and a convex map f : Π → RN . The V I (Π, f ) denotes
the variational inequality (VI), which is to seek the x ∈ RN such that ( y − x)T f (x) ≥
0, ∀ y ∈ Π . The solution of VI is denoted by the set SOL (Π, f ), which can also be equiva-
lently reformed by projection, namely x ∈ SOL (Π, f ) ⇐⇒ x = PreΠ (x − f (x)).

Lemma 2 Consider the VI (Π, f ) based on the Lemma 1, the following two conclusions hold
[20]:

(1) Let Π be compact, then, SOL (Π, f ) is compact and nonempty;
(2) Let Π be closed and f (x) be strictly monotone, then, there is at most one solution for

V I (Π, f ).
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3 Mathmatic Modelling

Consider an energy scheduling MGS, which is constructed by the diesel generator unit, wind
turbine unit and energy storage device. In this paper, we only consider one-hour energy
scheduling and the mathematical cost models of all units are constructed as follows:

3.1 Diesel Generator Unit

Due to the intermittent power output of renewable clean energy, such as wind power gen-
eration, the diesel generator unit is an indispensable segment in the MG. Typically, the
characteristics of the fuel consumption and power output are as follows [21]:

Cdg = cdg,1
(
Pdg
)2 + cdg,2Pdg + cdg,3 (4)

To improve the service life of the diesel generator, the output power Pdg should satisfy the
following constraint:

Pmin
dg ≤ Pdg ≤ Pmax

dg (5)

where Pdg denotes the output power of the diesel generator, cdg,1, cdg,2 and cdg,3 are the cost
parameters. Pmin

dg , Pmax
dg are respectively the minimum and maximum output power.

3.2 Wind Turbine Unit

Compared with diesel power generation, the advantage of wind power generation is the use
of renewable clean energy. That can avoid the use of fossil fuels, reduce greenhouse gases,
and greatly reduce the fuel cost in the process of power generation [22,23]. The wind power
output is mainly dependent on the wind speed, and the available wind power generation P∗

wt
can be quantized by the Weibull distribution curve [24].

P∗
wt =

⎧
⎪⎪⎨

⎪⎪⎩

0, v < vin or v > vout

P∗
(

v−vci
v∗−vci

)3
, vin < v < v∗

P∗, v∗ < v < vout

(6)

where P∗ is the rated power of the wind turbine unit. v, vin , v∗, and vout are the actual, cut-in,
rated, and cut-out wind speed, respectively. Hence, the actual invoked wind power output
Pwt should obey the following constraint.

0 ≤ Pwt ≤ P∗
wt (7)

The maintenance cost of the wind turbine unit is as follows:

Cwt = cwt · Pwt (8)

where cwt denotes the unit maintenance cost.

3.3 Energy Storage Device

The energy storage device plays a key role in MG, which can curb the fluctuations in the
renewable energy and loads. The cost function of the fuel cell can be denoted as:

C f c = c f c Pf c (9)
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Fig. 1 The communication topology structure for the microgrid distribution network

where Pf c, c f c are the power output and maintenance cost of the fuel cell, respectively.
To increase the using time of the battery, we should consider the state of charge (SOC) of

the fuel cell [25]. Then, there is

SOC = SOC0 + η
Pf c

B
(10)

SOCmin ≤ SOC ≤ SOCmax (11)

where SOC0, SOCmin, SOCmax, η, B denote separately the initial, minimum, maximum state
of charge, charge/discharge conversion efficiency and the maximum battery capacity.

4 Energy Scheduling Game for theMicrogrid Distribution Network

In this study, we consider a microgrid distribution network under the noncooperative game
frame, the topological structure is shown in Fig. 1. Suppose that there is a set of the MG
N = {1, 2, . . . , N }, and the energy of the MG i is scheduled by the EMS i . The data
information of each MG is known to neighbors completed by the undirected and connected
graph. Hence, the privacy of the participants can be well protected.

4.1 Game Formulation

The profit function of MG i, i ∈ N is defined as

Fi (Pi , P−i ) = Fs,i (Pi , P−i ) − Ci (Pi ) (12)
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(a) The operating income Fs,i

Fs,i (Pi , P−i ) = MT Pi

(

cs,1

N∑

i=1

MT Pi + cs,2

)

(13)

where M = 13. The item MT Pi presents the total power output of the MG i ,
cs,1

∑N
i=1 M

T Pi + cs,2 denotes the power selling price, which is a function of the aggre-
gate power output [15].

(b) The operating cost Ci

Ci = Cdg,i + C f c,i + Cwt,i

Cdg,i = cdg,1
(
Pdg,i

)2 + cdg,2Pdg,i + cdg,3
C f c,i = c f c Pf c,i

Cwt,i = cwt Pwt,i

(14)

where Pi = (
Pdg,i , Pf c,i , Pwt,i

)T ∈ R3.

Consider the equipment constraint of MG i , there is

Pmin
dg,i ≤ Pdg,i ≤ Pmax

dg,i (15)

SOCi = SOC0,i + ηi
P f c,i

Bi
SOCmin

i ≤ SOCi ≤ SOCmax
i (16)

0 ≤ Pwt,i ≤ P∗
wt,i (17)

Hence, the standard form of the noncooperative game for the proposed problem is as follows
[26]:

G = {
N,Π, {Fi }ni=1

}
(18)

where N = {1, 2, · · · N } is the MG set. Πi is the strategy set of MG i , and there are Πi =
{Pi | (15) − (17)} and Π = Π1 × · · · × ΠN . Fi is the profit function of MG i .

Define the aggregate map of the proposed problem as [27]:

Θ (P) = 1

N

(

cs,1

N∑

i=1

MT Pi + cs,2

)

(19)

where P = (
PT
1 , . . . , PT

N

)T ∈ R3N , Θ : R3N → R.
Then, Θ (P) specifies the profit function Fs,i (Pi , P−i ) as Ψi (Pi ,Θ (P)) : R3N+1 → R.

cs,1
∑N

i=1 M
T Pi + cs,2 presents the local element to the aggregation. In addition, consider

the balance of the power supply and demand, the constraint can be defined as:

K =
{

P ∈ R3N

∣∣∣∣∣

∑

i∈N
MT Pi =

∑

i∈N
Di

}

=
{
P ∈ R3N

∣∣MTP − D = 0
}

(20)

where D presents the total power demand of all users, and there is M = (
MT , . . . , MT

)T ∈
R3N . The feasible strategy set of game G isΠ ∩K,K is a set for the linear coupled constraints.
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Definition 1 For such a game with coupled constraints, the point P∗ =
(
P∗
1
T , . . . , P∗

N
T
)T

is said to be GNE, if and only if, for all i ∈ N, there is

Fi
(
P∗
i , P∗−i

) ≥ Fi
(
x, P∗−i

)
, ∀x ∈ Πi and

(
X , P∗−i

) ∈ Π ∩ K (21)

Remark 1 As Eq. (13) states, the operating income of eachMG is related to the power output.
Under the noncooperative game frame, all MGs only care about their own profitability. They
will comprehensively take their own operating cost and the otherMGs’ power output strategy
into consideration, and schedule their own energy production to make the maximum profits.

4.2 Distributed Neurodynamic Algorithm for Seeking the GNE

In this part, we seek the GNE by a distributed neurodynamic algorithm, meanwhile, the
correctness and convergence of the proposed algorithm will be analysed in the following.

Assumption 1 The Information exchanging between all MGs is allowed by a connected and
undirected graph.

The distributed neurodynamic algorithm is designed to solve the problem, which is for-
mulated as:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ṗi = PreΠi

(
Pi − ∇Pi Fi (Pi , P−i ) − 


N Mλi
)− Pi

λ̇i = γ
∑

j∈N, j �=i sgn
(
λ j − λi

)+ μ
(
MT Pi − Di

)

κ̇i = α
∑

j∈N, j �=i sgn
(
ω j − ωi

)

ωi = κi + MT Pi

(22)

where PreΠi ,∇ and sgn (·) denote the projection operator, the gradient and the sign function,
respectively. λi (t) ∈ R, κi (t) ∈ R. 
, γ and α are positive parameters, which satisfy
α > (N − 1) ψ̃1 and γ > 
 (N − 1) ψ̃2.

The flow diagram of the proposed game algorithm is stated in Fig. 2. Each EMS of the
MG will collect the required data, such as the power demand of all users and the actual wind
speed. Consider the advantage of wind power generation is the use of renewable clean energy,
the wind power output will be scheduled preferentially. Then, the power generation of the
diesel generator and fuel cell as the backup power to compensate the wind power output.
First, initialize the power output strategy P(0), the iteration index L = 1, the small step
size δ and the tolerant rate ε. The invoking of the neurodynamic algorithm can be stated as
follows:

⎧
⎪⎪⎨

⎪⎪⎩

Pi (tL+1) = Pi (tL) + δ Ṗi (tL )

λi (tL+1) = λi (tL ) + δλ̇i (tL)

κi (tL+1) = κi (tL) + δκ̇i (tL)

ωi (tL) = κi (tL ) + MT Pi (tL)

(23)

The iteration will be end until |P (tL+1) − P (tL)| < ε is satisfied, i.e. the strategy of each
MG is unchanged or changed tinily.

For the ψ̃1 and ψ̃2, which are defined as [27]:

ψ̃1 � sup
y,z∈Π

‖y − z‖

ψ̃2 � sup
i∈N

(

sup
Pi∈Πi

‖MT Pi − Di‖
) (24)
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Fig. 2 The optimization process of the proposed game algorithm

The solution of the proposed algorithm (22) i.e., P∗, which can bewell defined in the Filippov
sense [28]. The initial conditions of (22) are given as follows:

Pi (0) ∈ Πi , λi (0) = MT Pi (0) − Di , κi (0) = 0 (25)

Lemma 3 With theAssumption 1 and the conditions ofα, ψ̃1 satisfied, then, limt→+∞ ωi (t)−
1
N

∑N
i=1 M

T Pi (t) = 0 for ∀i ∈ N is exponential convergence for the following system [27].

κ̇i (t) = α
∑

j∈N, j �=i

sgn
(
ω j (t) − ωi (t)

)

ωi (t) = κi (t) + MT Pi , κi (0) = 0

(26)

Proof The proof is given in “Appendix A”. ��
Lemma 4 Consider the algorithm (22) under Assumption 1, and define

λ̃ (t) = 


N

(
M

TP (0) − D +
∫ t

0

(
M

TP (τ ) − D
)
dτ

)
(27)
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Fig. 3 The information
exchanging network for the
microgrid distribution network

Therefor, for ∀i ∈ N, ‖ωi (t) − Θ (P (t))‖ → 0, ‖λi (t) − λ̃ (t)‖ → 0 exponentially [27].

Suppose the set Ξ∗ × Ψ ∗ is the solution of the following equation about
(
P, λ̃

)

0 = PreΠ

(
P − ∇P F − 


N
M λ̃

)
− P

0 = 


N

(
M

TP − D
) (28)

and define the positive limit set of
(
P (t) , λ̃ (t)

)
is Ξ+ × Ψ +.

Lemma 5 Ξ+ × Ψ + ⊆ Ξ∗ × Ψ ∗ is satisfied, if and only if limt→0 Ṗ (t) = 0 and

limt→0
˙̃
λ (t) = 0 [29].

Proof The proof is given in “Appendix B”. ��

Theorem 1 If there exists λ̃∗ ∈ RN and
(
λ̃∗, P∗

)
∈ Ξ∗ × Ψ ∗, then, P∗ is the GNE of this

paper.

Proof The proof is given in “Appendix C”. ��
Theorem 2 With the four conditions stated in Appendix C and Assumption 1 satisfied, the
algorithm (22) is stable and converges to Ξ∗ × Ψ ∗, then,

{
limt→∞‖λi (t) − λ̃ (t)‖ = 0, ∀i ∈ N

limt→∞‖
(
P (t) , λ̃ (t)

)
− PreΞ∗×Ψ ∗

(
P (t) , λ̃ (t)

)
‖ = 0

(29)

Proof The proof is given in “Appendix D”. ��

Remark 2 Recently, the neurodynamic approach has been studied to solve the distributed
optimization problem.Most existing distributed approaches only considered local constraints
[7,30]. However, there is a need for real-time distributed algorithms with globally coupled
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Table 1 The parameter values of
the diesel generator unit in the
simulation

MG i cs,1 cs,2 Diesel generator unit

Pmin
dg,i kw Pmax

dg,i kw cdg,1 cdg,2 cdg,3

1 1.2 8.3 0 850 0.4 3 0

2 1.2 8.3 0 800 0.4 3 0

3 1.2 8.3 0 750 0.4 3 0

4 1.2 8.3 0 650 0.4 3 0

5 1.2 8.3 0 750 0.4 3 0

Table 2 The parameter values of the energy storage device in the simulation

MG i Energy storage device

SOC0,i SOCmin
i SOCmax

i c f c RMB/kwh ηi Bi kwh

1 0.5 0.15 0.95 6 0.85 100

2 0.4 0.15 0.95 6 0.80 150

3 0.7 0.15 0.95 6 0.90 120

4 0.9 0.15 0.95 6 0.85 160

5 0.1 0.15 0.95 6 0.75 100

Table 3 The actual wind speed of
the wind turbine unit in the
simulation

MG i 00:00 00:15 00:30 00:45

1 4.863 4.638 4.324 5.062

2 5.39 5.186 4.943 5.778

3 5.39 5.186 4.943 5.778

4 4.724 4.391 4.515 4.828

5 4.848 5.057 4.905 4.772

constraints. Due to the parallel computation with theoretically certified optimality, neurody-
namic distributed algorithms have the ability to deal with both local constraints and globally
coupled constraints [8]. Hence, a distributed neurodynamic algorithm is designed to solve
the proposed game problem with local constraints Π and a globally coupled constraint K.
Besides, compare with the heuristic algorithm, the advantage of the proposed algorithm is
the theoretically certified optimality.

5 Simulation Example

In this section,we take 5MGs into consideration to analyze the strategy selection of the energy
scheduling game. Suppose that the given energy demands of all users are D = 3500(kwh).
The information exchanging between all MGs is completed by a connected and undirected
graph, see Fig. 3 and we can get the Laplacian matrix L. Each MG presents an agent in
the connected and undirected graph, the neighbor MGs can exchange information, but they
can’t get the information from the other MGs directly. The corresponding parameter values
of the diesel generator and energy storage device are given in Tables 1 and 2 [31]. The rate
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Table 4 The optimization values in the simulation

MG i The optimization values

P∗
dg,i kwh P∗

f c,i kwh P∗
wt,i kwh SOC∗

i F∗
i (106)RMB

1 552.1 −29.8 129.8 0.2471 2.74

2 550.5 −30.0 235.4 0.2400 3.18

3 630.9 −59.4 235.4 0.2545 3.40

4 650.8 −88.4 113.1 0.3304 2.84

5 451.8 5.3 152.3 0.1513 2.56
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Fig. 4 The power output of the diesel generator unit of each MG under the specific strategy set

power, cut-in, rated, and cut-out wind speed are 100(KW), 2(m/s), 6(m/s) and 18(m/s),
respectively [24]. The actual wind speed measurement is in a 15 min time interval, in this
section, the cumulative wind power output in a 1 hour time interval is considered. An actual
wind speed (Time: 00:00, 00:15, 00:30 and 00:45) obtained in Hubei province of China is
shown in Table 3, and we set 10 (m), 30 (m), 30 (m), 50 (m), and 70 (m) anemometer towers
as the wind turbine unit of the 5 MGs. The optimization values are given in Table 4.

L =

⎡

⎢⎢⎢⎢
⎣

2 −1 0 0 −1
−1 2 −1 0 0
0 2 2 −1 0
0 0 −1 2 −1

−1 0 0 −1 2

⎤

⎥⎥⎥⎥
⎦

Consider that the wind power output is scheduled preferentially, the power generation of
the diesel generator and fuel cell as the backup power to compensate the wind power output.
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Fig. 5 The power output of the energy storage device under the specific strategy set
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Fig. 6 The power supplies and demands matching during the optimization process

The cumulative wind power output of the 5 MGs are 129.8(kwh), 235.4(kwh), 235.4(kwh),
113.1(kwh) and 152.3(kwh), respectively. Figure 4 shows the optimization process of the
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diesel generator unit output power through distributed optimization algorithm under the
specific strategy set, and the detailed optimization values are given in Table 4.

Meanwhile, the corresponding constraints for the energy storage device are given in Table
2, i.e., the SOC of the fuel cell. The optimization process of the energy storage device output
power is depicted in Fig. 5. ForMG 5, the initial SOC is dissatisfied with the given constraint,
which is recovered at the GNE. From the optimization values in Table 4, we can get that the
different strategies (the constraints of the output power of diesel generator, initial, minimum,
maximum state of charge of the fuel cell, etc. Each MG will choose different action to seek
the maximum profit in the noncooperation game. With the exception of MG 5, the fuel cells
of all other four MGs are discharging for maximum profit, the fuel cell of MG 5 is charging
to satisfy the constraint. All participants will choose action in their own strategy set to seek
the maximum profits.

Figure 6 gives the the power supplies and demands matching during the optimization
process, the red line denotes the power supplies optimization process, which is fully equal
to the given energy demand of the users. Moreover, the energy matching error tends to zero
at the GNE, which explains the satisfaction of the equality constraint in this paper.

The simulation illustrates the effectiveness and feasibility of the proposed distributed
optimization in addressing the proposed game problem.

6 Conclusion

In this paper, we considered a microgrid distribution network under the noncooperative game
frame, which is an N -MGs competitive game. To maximize its profits, each MG should not
only consider its strategy constraint but also the aggregate energy supplies of all MGs and
the given energy demand of the users. Hence, the game with linear coupled constraints and
distributed neurodynamic algorithm were proposed to seek the GNE. The correctness and
convergence of the proposed algorithm were analyzed and the simulation example illustrated
the effectiveness and feasibility of the proposed method.
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Appendices

Appendix A: Proof of Lemma 3

Proof Since the Assumption 1 and the conditions of α, ψ̃1 are satisfied, and κi (t) is strictly
continuous,

∑N
i=1 κ̇i (t) = 0 is satisfied for all t ≥ 0 such that

∑N
i=1 κ̇i (0) = 0, then, there

is
∑N

i=1 ωi (t) = ∑N
i=1 M

T Pi (t). Furthermore, it is easy to obtain

(1)
N∑

i=1

ωi

∑

j∈N, j �=i

sgn
(
ω j − ωi

) = 1

2

∑

(i, j)∈E(t)

∣∣ωi − ω j
∣∣;

(2)
∣∣κq − κl

∣∣ ≤ 1

2

∑

(i, j)∈E(t)

∣∣ωi − ω j
∣∣ for any q ≥ 1 and l ≤ N ;
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(3)
N∑

i=1

∣∣∣∣ωi − 1

N
1Tω

∣∣∣∣ ≤ 1

N

N∑

i=1

N∑

j=1, j �=i

∣∣ωi − ω j
∣∣

≤ N − 1

2

∑

(i, j)∈E(t)

∣∣ωi − ω j
∣∣.

Let ς (t) � max
∑

(i, j)∈E(t)

∣∣ωi − ω j
∣∣ and ω (t) = 1

2‖ω (t) − 1
N 11Tω (t)‖2. Then, for all

t ≥ 0, there is [32,33]

ω (t) �= 0, ω̇ (t) ≤ −α − (N − 1) ψ̃1

2

∑

(i, j)∈E(t)

∣∣ωi − ω j
∣∣

≤ −
(
α − (N − 1) ψ̃1

)
ς (t) ≤ 0

(30)

where ς (t) ≥ 0 is completely continuous and
(
α − (N − 1) ψ̃1

) ∫ +∞
0 ς (t) ≤ ω (0) <

+∞, ς (t) → 0 as t → +∞. Then, for t ≥ t̂ and t̂ is sufficient large, there is ω (t) ≤ ς (t)

and ω̇ (t) ≤
(
α − (N − 1) ψ̃1

)
ω (t), the prove is completed. ��

Appendix B: Proof of Lemma 5

If there is Ξ+ × Ψ + �= ∅, then, for any
(
P+, λ̃+

)
∈ Ξ+ × Ψ +, {tι}+∞

ι=1 exists such

that limι→+∞ P (tι) = P+ and limι→+∞ λ̃ (tι) = λ̃+ [29,34]. Taking the the limit of tι
into Eqs. (22) and (27), we can get

(
P+, λ̃+

)
is the solution of Eq. (28) according to the

Lemma 2, and the prove is completed.

Appendix C: Proof of Theorem 1

Sufficiency. If
(
λ̃∗, P∗

)
∈ Ξ∗ ×Ψ ∗, then, P∗ ∈ Π according to the definition of projection

in the Sect. 2.2. We can also get P∗ ∈ Π∗ ∩ K∗ since M
TP∗ − D = 0. From Lemma 1,

P∗ ∈ SOL
(
Π, ∇P F + 


N M λ̃∗
)
, i.e., P∗ is the GNE.

Necessity, If the P∗ is the GNE, it seems easy to claim that there exist λ̃∗ and

− ∇P F
(
P∗) ∈ 


N
M λ̃∗ + ΛΠ

(
P∗) (31)

with the following conditions satisfied [35,36]

(1) ∀i ∈ N, Fi is twice continuously differentiable;
(2) ∇P F is strictly monotone;
(3) Π is compact and convex;
(4) 0 ∈ rint (Π − K).

There exist a vector θ ∈ R2N such that

θT∇P F
(
P∗) < 0 (32a)

M
Tθ = 0 (32b)

ϑT θ ≤ 0, ∀ϑ ∈ ΛΠ

(
P∗) (32c)
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then, from (32b) and (32c), θ ∈ ΓΠ (P∗)∩ΓK (P∗) = ΓΠ∩K (P∗). According the definition
of the tangent tone, there exist Pε ∈ Π ∩ K and tε > 0 such that Pε → P∗, tε →
0, and limε→∞ Pε−P∗

tε
= θ . Therefor

θT∇P F
(
P∗) = lim

ε→∞
(Pε − P∗)T ∇P F (P∗)

tε
(33)

which conflicts with (32a), the prove is completed, the P∗ is the unique GNE.

Appendix D: Proof of Theorem 2

For all t > 0, there is Ṗ ∈ ΓΠ (P) , P (t) ∈ Π , and we also get

Ṗi (t) = PreΠi

(
Pi − ∇Pi Fi (Pi , P−i ) − 


N
Mλi

)
− Pi (t) + φi (t) (34)

where

‖φi (t)‖ =
∥∥∥PreΠi

(
Pi − ∇Pi Fi (Pi ,Θ (P)) − 


N
M λ̃i

)

−PreΠi

(
Pi − ∇Pi Fi (Pi , P−i ) − 


N
Mλi

)∥∥∥

≤ α̂
(
‖Θ (P) − ωi (t)‖ + ‖λ̃ (t) − λ (t)‖

)
(35)

for some α̂ > 0 and defining φ (t) = (
φT
1 (t) , . . . , φT

N (t)
)T

, then, φ (t) reduces exponen-
tially based on the Lemma 2.

Let χ (t) =
[
P (t)
λ̃ (t)

]
, ∇P F̃ (χ) =

[ ∇P F + 

N M λ̃

− 

N

(
M

TP − D
)
]
, A = Π × R, ν̃ (χ) =

PreA
(
χ − ∇P F̃ (χ)

)
and χ∗ ∈ Ξ∗ × Ψ ∗. Then, the Lyapunov function can be formu-

lated as:

V (t) = (χ − ν̃ (χ))T ∇P F̃ (χ) − 1

2
‖χ − ν̃ (χ)‖2 + 1

2
‖χ − χ∗‖2 (36)

It is easy to get V (t) ≥ 0. Moreover, the gradient of V (t) is as follows

V̇ (t) = (∇χV
)T

χ̇ (t) = (∇χV
)T

(ν̃ (χ) − χ) + φ̃ (t) (37)

where φ̃ (t) = [
φ (t) , 0

]T ∇χV . Π is bounded and according Lemma 4, φ (t) converges
exponentially, then, ‖λ̃ (t)‖ ≥ α̃1 + α̃2t and ‖φ̃ (t)‖ ≤ (α̃3 + t α̃4) e−α̃5t for some constants
α̃1, α̃2, α̃3, α̃4, α̃5 > 0. Hence,

∫ +∞

0
‖φ̃ (t)‖dt < +∞ (38)

V̇ (t) ≤ − (χ − χ∗)T (∇P F̃ (χ) − ∇P F̃
(
χ∗))+ φ̃ (t) (39)

As t → +∞, limt→+∞ P (t) = P∗ and lim supt→+∞ V (t) < +∞ such that λ̃ (t) is

bounded, consequently, Ξ+ × Ψ + �= ∅. From Eq. (27), there is limt→+∞ ˙̃
λ (t) = M

TP∗ −
D = 0. Because of the trajectory of (22) is completely continuous and the right side of the
(22) about P (t) is consistently continuous in t . For P (t) is convergent, limt→+∞ Ṗ (t) = 0
according the Barbalat lemma, the prove is completed.
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