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ABSTRACT
A hierarchical energy optimization management model is established and a multi-microgrid 
operation strategy that mixes the battery and the power interaction designed to strengthen 
the system output capability. This study carries out dynamic optimization to achieve optimal 
economic benefits of active distribution network with multi-microgrid system. An improved 
sparrow search algorithm is developed to achieve an optimal energy configuration by inte-
grating Bernoulli chaotic mapping, Lévy flight, mutation, crossover and competition. The 
superiority of the improved sparrow search algorithm is demonstrated by the results of 
different test functions and evaluation indicators. The effectiveness of the proposed method 
is verified by solving and analyzing the optimal configuration of energy management model. 
Case study results reveal that the active distribution network with multi-microgrid system has 
good economic and environmental benefits under various scenarios. The methods proposed 
are of great significance for the economic operation and environmental protection of multi- 
microgrid active distribution network.
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1. Introduction

With the rapid development of human society, the 
problems caused by the energy crisis have become 
increasingly prominent in recent years [1–3]. Under 
environment protection, the use of clean energy such 
as wind energy and solar energy has developed rapidly 
[4,5]. The microgrid (MG) system based on wind power 
generation system and photovoltaic power generation 
system has become an effective means to manage the 
distributed generation (DG) because the uncertainty of 
the DG with renewable energy [6–8]. The output sta-
bility of power generation system is improved to 
a certain extent by MG, and self-control and protection 
is realized by utilizing the complementary characteris-
tics between wind and solar resources and combining 
with the power control strategy of power generation 
system [9,10]. An effective energy optimization man-
agement model is usually with hierarchy structure and 
a multi-microgrid (MMG) operation strategy needs to 
design to mix the battery and power interaction 
designed to strengthen the system output capability.

As a large number of independent microgrids are 
connected to the Active distribution network (ADN), 
a complex ADN with MMG system is gradually formed 
[11]. The ADN adopts a more flexible network topology 
to actively manage the local DG due to the rapid 
development of distributed power generation technol-
ogy and microgrid technology [12,13]. In the high 
coupling and complexity of the MMG system, emer-
ging optimization algorithms may achieve a faster 
optimization process for power scheduling arrange-
ment [14], and the intelligent optimization algorithms 
in solving various complex problems of microgrid sys-
tem operation have been studied for achieving the 
optimization development [15]. The sparrow search 
algorithm (SSA) is a new heuristic method inspired 
using sparrow foraging and vigilance behaviors [16], 
and various improved algorithms are beginning to be 
used for energy optimization management [17, 18].

A reasonable power distributed supply is needed 
with a large amount of clean energy entering the MMG 
system [19]. The capacity configuration of the DG 
inside the system affects a series of issues such as 
economic cost, environmental pollution and opera-
tional reliability [20]. Therefore, reasonable optimiza-
tion of the ADN with MMG system based on intelligent 
optimization algorithms is meaningful. It helps to actu-
ally adjust the dispatch plan of the entire network, 
effectively reduce the energy fluctuation caused by 
renewable energy output and improve the quality of 
power supply and effectively reduce the operating 
cost and improve the clean energy utilization.

The main contributions of this study are as follows. 
(1) An improved sparrow search algorithm (ISSA) is 
proposed by introducing the Bernoulli chaotic map-
ping, Lévy flight and the operations of mutation, 

crossover and competition to develop the global 
search capability of the original SSA, and different 
classical test functions are used to test the various 
ability of the proposed ISSA; (2) The ADN model with 
MMG system is divided into the MMG system layer and 
the ADN layer, and adaptive weight coefficients are 
used to transform the multi-objective problem into 
a single-objective problem under dynamic program-
ming; (3) A MMG operation strategy is proposed for 
strengthening the power supply capacity of the sys-
tem; and (4) The performance of ISSA in the practical 
application is verified by considering the economic 
and environmental benefits in the ADN with MMG 
system.

The remaining sections are arranged as follows. 
Section 2 reviews traditional energy optimization man-
agement strategies in the MMG system. Section 3 
introduces the principle of the ISSA and verifies its 
performance. Section 4 describes the structure of the 
ADN with MMG system model based on ISSA for 
energy optimization management. Section 5 is a case 
study. Section 6 is the main innovation of this study 
and its impact on industry, environment and society. 
Some meaningful conclusions and future work direc-
tion are summarized in Section 7.

2. Literature review

The energy management of the MMG system is 
mainly divided into two structures, i.e., centralized 
structure and distributed structure [21]. The centra-
lized structure uses a control strategy to communi-
cate with each microgrid central controller (MGCC) 
and the underlying electrical equipment, and sends 
control commands. The distributed structure relies 
on a multi-agent system for operation management 
and decision-making, and realizes stable operation 
of the MMG system through communication and 
coordination among agents [6, , 22]. To achieve 
the coordination and optimization of the distribu-
tion network and the MMG system, bi-level pro-
gramming theory is gradually used to connect the 
distribution network to distributed power sources 
through MMG system[23, 24].

In the hierarchical energy optimization manage-
ment model, the independent microgrid system 
usually takes its own cost as the optimization goal, 
and finally makes the MMG system obtain the overall 
profit [6,25,26]. 3,proposed a bi-level coordinated con-
trol model for the energy management optimization of 
the ADN with MMG. The lowest operating cost is the 
optimization goal of the low-level model. The output 
of the microgrid equipment is reasonably allocated, 
and the control of the upper-level model is realized. 
27,proposed a bi-level distributed optimized operation 
method for interconnected microgrid system. The 
interconnected microgrid system of the upper level 
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optimizes the trading power with microgrids to max-
imize revenue, and the lower level optimizes the out-
put and energy storage of distributed energy sources 
with the goal of lowest cost. In addition to the system 
cost, the evaluation indicators of the microgrid system 
also include transmission efficiency, power quality and 
system reliability [28–30]. 31,proposed a distributed 
voltage control model and control strategy based on 
a new network partition method to solve the capacity 
curves of distributed power sources and the stability of 
the energy storage system. 32,took the minimum net-
work loss as the goal of the upper model, which rea-
lized the optimal power distribution of the microgrid, 
and reduced the power consumption of the energy 
mutual assistance between microgrids.

Intelligent optimization algorithms are crucial 
methods to maximize the benefit of the operation 
scheduling. 33, used particle swarm optimization to 
optimally dispatch the distributed microgrid, which 
minimized carbon emissions and the cost of each 
microgrid. 34, improved the shuffled complex evolu-
tion algorithm, making it a multi-objective optimiza-
tion algorithm with a higher coverage rate and 
a higher search success rate, and used for the 
energy optimization management. 35, proposed 
a multi-dimensional firefly algorithm used to solve 
the day-ahead scheduling optimization problem in 
the microgrid, and it is concluded that multi- 
dimensional firefly algorithm exhibited high perfor-
mance in terms of convergence speed and reliability 
of optimization through comparative analysis.

In this process, existing research is mostly aimed at 
optimizing the internal operation of the system, while 
there are few studies on the energy interaction of the 
hierarchical structure, and the improvement of the 
operating strategy is neglected. In addition, the per-
formance of the intelligent optimization algorithm 
itself has an important impact on the final optimization 
result, and the algorithm used has problems such as 
slow convergence speed and easy to fall into local 
convergence. Aiming at solving the above problems, 
this study develops the ISSA to optimize the ADN with 
MMG system. The Bernoulli chaotic mapping, Lévy 
flight and the operations of mutation, crossover and 
competition are integrated to the traditional sparrow 
search algorithm for further improving its global 
search capability. In addition, an MMG operation strat-
egy with energy storage system and the ability to 
interact with the power grid is proposed to consolidate 
the MMG system output capability. The experimental 
results verify the superiority of the proposed algorithm 
and the effectiveness of the proposed strategy. This 
study effectively ensures the operation stability of 
microgrid, and brings both good economic and envir-
onmental benefits.

3. Model of improved sparrow search
algorithm

The principles of the original sparrow search algorithm 
and the ISSA are mainly introduced section.

3.1. Sparrow search algorithm

Producers and beggars are important components of 
the SSA model. Producers tend to have high energy 
reserves and are responsible for finding rich food 
source areas. The energy reserve represents the fitness 
value of sparrows. The producers provide foraging 
directions for the beggars who join later to obtain 
better fitness values. In addition, if the beggars who 
join later can find better food sources, they become 
producers. The identities of producers and beggars in 
the population change dynamically, and the sum of 
their numbers remains constant. Beggars monitor the 
feed of producers and nearby areas in a reasonable 
manner. In addition, alerting mechanisms were added 
in the late foraging period to prevent predators from 
attacking. In SSA, an n-row d-dimensional variable 
matrix is used as an optimized space with sparrows. 
The position of sparrows is expressed as follows. 

X ¼

x1;1 x1;2 . . . x1;d
x2;1 x2;2 . . . x2;d
. . . . . . . . . . . .

xn;1 xn;2 . . . xn;d

2

6
6
4

3

7
7
5 (1) 

The producer usually accounts for 20% of the total 
number of sparrows, and the position updates as: 

Xmþ1
i;j ¼

Xm
i;j � expð � i

α�Mmax
ÞR2 < ST

Xm
i;j þ Q � LR2 � ST

�

(2) 

where m indicates the current iteration number. Xm
i;j is 

the value of the i-th sparrow in the j-th dimension, 
j = 1,2, . . ., d. Mmax is the maximum number of itera-
tions. Q represents a random value in a normal distri-
bution. L is a matrix of size 1 × d for which element 
inside is one. R2∈[0, 9] is the warning value. 
ST∈[0.5, 1] is the safe value. When the warning value 
is less than the safety value, it indicates no predators 
appear around. Then, the producer can search the safe 
areas with higher fitness values. On the contrary, if the 
warning value is greater than the safe value, the popu-
lation needs to fly to other safe areas as predators may 
appear there.

The remaining sparrows serve as scroungers, and 
their locations update as: 

Xmþ1
i;j ¼

Q � expð
Xt

w� Xt
i;j

i2 Þi > n=2

Xmþ1
b þ Xm

i;j � Xmþ1
b

�
�
�

�
�
� � Aþ � Lotherwise

8
<

:
(3) 
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where Xb is the optimal position of the discoverer 
under the current iteration number. Xw is the worst 
position in the current population. A+ = AT(AAT)−1, 
where A is a matrix of size 1 × d for which internal 
element randomly takes the value 1 or −1. When i > n/ 
2, these sparrows are extremely hungry, and their fit-
ness values are poor. Therefore, their foraging posi-
tions need to change to obtain higher energy.

Assume that vigilant sparrows account for 10% to 
20% of the total population, and such sparrows is 
randomly generated among individuals in the popula-
tion. The position update Eq. is expressed as: 

Xmþ1
i;j ¼

Xm
b þ β � ðXm

i;j � Xm
b Þotherwise

Xm
i;j þ K � ð

Xm
i;j � Xm

wj j
ðfi � fwÞþσÞfi ¼ fb

(

(4) 

where β is the step length control parameter that is 
a random value, a mean as 0 and a variance as 1, under 
a normal distribution. K∈[−1, 1] is a random value, 
which is used to control the sparrow moving direction. 
σ is a very small constant used to prevent the denomi-
nator from being zero. fw and fb represent the worst 
and best individual fitness values in the current popu-
lation, respectively. fi represents the fitness value of the 
i-th sparrow. When fi = fb, the individual sparrow is 
located in the center of the entire population. Other 
individual sparrows can approach it in time when 
facing the danger of predators. However, sparrow indi-
viduals located at the edge of the population need to 
move closer to the optimal position, being away from 
predators.

3.2. Improvement of sparrow search algorithm

The proposed ISSA model is developed to resolve the 
problems such as easily falling into a local minimum 
and slow convergence speed. First, a Bernoulli chaotic 
mapping is added to the population initialization to 
improve the spatial distribution of the initial sparrow 
population. Secondly, the mutation, hybridization and 
competition strategies in the differential evolution 
algorithm (DE) are used to enhance the sparrow’s 
diversity and randomness during the foraging process. 
Finally, the sparrow in the central position performs 
Lévy flight process to update its current position to 
explore a better position, thus achieving the global 
optimal solution in the later stage.

3.2.1. Bernoulli chaotic mapping
The chaotic mapping is used to replace the random 
generation number, and the chaotic sequence has the 
characteristics of nonlinearity, ergodicity and unpre-
dictability. Several chaotic mapping analyses with 
parameters settings can refer to [36].

Figure 1 showed the uniformity of Bernoulli chaotic 
mapping is found better. To improve the spatial dis-
tribution of sparrows and enhance the global optimal 
solution, the Bernoulli chaotic mapping is selected to 
initialize the population. The Bernoulli chaotic map-
ping Eq. is given as follows. 

rnþ1 ¼
rn=ð1 � pÞrn 2 ð0; 1 � p�
ðrn � 1þ pÞ=prn 2 ð1 � p; 1Þ

�

(5) 

Figure 1. The histograms of chaotic mappings under the same iteration number.
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where rn is the n-th chaotic number. p is a chaotic 
parameter. The steps for population initialization are 
listed as follows.

(1) Set parameter (p) and maximum iteration 
number.

(2) Randomly generate initial values of chaotic 
variables.

(3) Substitute Eq. (6) to iterate and update the num-
ber of iterations.

(4) If the maximum iteration number is met, go to 
step (5). Otherwise, return to step (3).

(5) End of iteration. The hybrid sequence is obtained 
and remapped to the individuals.

3.2.2. Mutation, hybridization and competition 
strategies
Three different individuals are randomly selected from 
the population. One of them is selected as the indivi-
dual to be mutated, and the other two individuals are 
combined with the individual to be mutated after the 
vector difference scaling operation. It is expressed as 
follows. 

Viðtþ1Þ ¼ Xq1ðtÞ þ F � ½Xq2ðtÞ � Xq3ðtÞ� (6) 

where q1, q2 and q3 represent three different random 
positions.

A dynamic mutation operator F is introduced to 
balance the convergence speed and accuracy. 
Therefore, the population diversity is assured in the 
early iteration stage, and the optimal solution is 
achieved in the later iteration stage. The dynamic 
mutation operator F is expressed as follows. 

F ¼ F0 � 2τ

τ ¼ expð1 � Mmax
1þMmax� tÞ

�

(7) 

where F0 is the mutation rate of the population.
The cross individual isobtained from the target indi-

vidual and the mutant individual after the crossover 
strategy is performed, which is expressed as: 

Ui;jðt þ 1Þ ¼
Vi;jðt þ 1Þrandð0; 1Þ � CR
Xi;jðtÞotherwise

�

(8) 

where CR∈[0.8, 1] is a random hybridization 
parameter.

The current target individual and the crossover indi-
vidual are made to compete, and then the next- 
generation population individual becomes the one 
with the better fitness value, which is expressed as: 

Xi;jðt þ 1Þ ¼
Ui; jðt þ 1Þf ½Ui;jðt þ 1Þ� � f ½Xi;jðtÞ�
Xi;jðtÞotherwise

�

(9) 

3.2.3. Lévy flight
The Lévy flight mechanism is added to enhance the 
ability to escape from a local minimum. The individual 
position updates based on Lévy flight, which is 
expressed as 

Xi;jðt þ 1Þ ¼ Xi;jðtÞþL� LðλÞ
L ¼ 0:01 � ½Xi;jðtÞ � Xt

b�

�

(10) 

step ¼ u= vj j1=γ (11) 

σu ¼
Γð1þγÞ�sinðπγ=2Þ

γ�Γ½ð1þγÞ=2��2ðγ� 1Þ=2

n o

σv ¼ 1

(

(12) 

where ⊕ is the point multiplication operation. L is the 
step-length control coefficient. L (λ) is the Lévy flight 
path function based on the Mantegna algorithm. step 
is the random step. γ is a constant selected as 1.5. 
u and v are random values that obey a normal distribu-
tion. σu and σv are respective variances.

3.2.4. The performance process
The flowchart of ISSA is shown in Figure 2. Its process is 
carried out as follows.

(1) Determine the maximum number of iterations, 
population size, search space range, dimension, and 
the ratio of producers and scroungers.

(2) Initialize population position based on the 
Bernoulli chaotic mapping. Calculate the fitness values, 
and record the current individual positions and their 
corresponding fitness values.

(3) Execute mutation, hybridization and competi-
tion strategies, and calculate the current individual 
position and fitness value.

(4) Update the location of the producers and 
scroungers, and calculate the current individual loca-
tion and fitness value.

(5) Determine and update the position, and then 
perform a Lévy flight.

(6) After each iteration is completed, the fitness 
value and the average fitness value in the population 
are recalculated to update the proportion of producers 
and scroungers.

(7) Update the optimal and worst individual posi-
tions in the new population individual. If the fitness 
value is better than the original value, the individual 
position is replaced. If the maximum number of itera-
tions is reached, the optimal sparrow position and 
fitness value is output. Otherwise, return to step (2) 
to repeat the same procedure.

3.3. Evaluation of model performance test

The performance efficiency comparison using ISSA, 
sparrow search algorithm (SSA), particle swarm opti-
mization (PSO), differential Evolution (DE), gray wolf 
optimizer (GWO), whale optimization algorithm 
(WOA) and harris hawk optimizer (HHO) is implemen-
ted [37–39]. The search population number (N) is set as 
50, and the search maximum number (M) is set as 500.
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Detailed parameter settings are shown in Table 1. c1 
and c2 are the learning coefficients in the PSO algorithm, 
wmax and wmin are the maximum and minimum 
weights. F0 and CR are the mutation rate and hybridiza-
tion parameter in DE algorithm. A and C are synergy 
coefficients in GWO algorithm, which decrease linearly 
from 2 to 0. b is the spiral coefficient in the WOA. E0 is the 
initial energy in the HHO algorithm. P and ST are the 
proportion of discoverers and the safety value in the SSA, 
respectively. In the ISSA, p and r0 are initialization para-
meters of the chaotic mapping. In Table 2, there are 12 

typical standard functions employed to verify the effec-
tiveness of the ISSA [16,40]. The unimodal function has 
one global optimal solution, which is used to test the 
convergence speed and the local search ability. On the 
other hand, the multimodal function has multiple local 
optimal solutions, which are used to test the global 
search ability.

In the performance test, the minimum (Min), average 
(Avg) value and standard deviation (Std) values 
obtained from 30 times implementation are compared 
between all algorithms. The test results are shown in 
Table 3. According to the average value in Table 3, the 
results of all algorithms in each test function are com-
pared and sorted. The last row in Table 3 is the average 
ranking result of each algorithm. When the average 
value is the same, the standard deviation is compared.

In the unimodal function, ISSA present the best 
results, compared with the PSO, DE, GWO and WOA. It 
indicates that the PSO and DE have worst optimization 
capability, showing large average and standard devia-
tion values. In contrast, the ISSA has lower minimum, 

Figure 2. The flow chart of the ISSA.

Table 1. Algorithm parameters settings.
Algorithm Parameters

PSO c1 = c2 = 1.49; wmax = 0.9, wmin = 0.1
DE F0 = 0.5, CR = 0.9
GWO A = 2a*rand(0, 1)-a, C = 2*rand(0, 1)
WOA b = 1
HHO E0 = 2*rand(0, 1)-1
SSA P = 0.2, ST = 0.8
ISSA F0 = 0.5, CR = 0.5*[1+ rand(0, 1)], P = 0.2, ST = 0.8, p = 0.4,  

r0 = 0.152
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average and standard deviation values than GWO, WOA 
and HHO. It is found that only SSA and ISSA achieve the 
optimal value, i.e. 0, in F1-F4 function. Particularly, the 
optimization ability of the ISSA in the unimodal function 
is an order of magnitude higher than other algorithms. 
However, the ISSA performs poorly in F7 function.

In the multimodal function, the GWO, WOA, HHO, 
SSA and ISSA can find the best value in both F8 and F10 

functions. The ISSA can find the better value in F11 

function, and its overall average and standard devia-
tion results are superior than others. In F12 function, 
the results from the ISSA are superior to other algo-
rithms except the SSA.

4. The active distribution network with
multi-microgrid system

4.1. The structure of the active distribution 
network with multi-microgrid system

he ADN model with MMG system is constructed as 
shown in Figure 3, which is divided into the MMG 
system layer and the ADN layer. It is managed by the 
Energy Decision Center (EDC) of the distribution net-
work and the Energy Management Center (EMS) of 
each microgrid.

The MMG system considered in this study 
includes three independent microgrids, and there 
is no power transaction between each other. The 
lower-level MMG system is mainly composed of 
wind power generation system (WT), photovoltaic 
power generation system (PV), diesel engines (DIE), 

batteries (BAT), related inverters, controllers and 
user loads [41]. MG1 contains WT, MG2 contains 
PV, and MG3 contains both WT and PV.

Each microgrid combined wind or photovoltaic 
needs to reasonably configure the internal distribu-
ted power capacity and output, coordinate the 
power exchange with the upper distribution net-
work, and reduce the cost while meeting the elec-
trical load demand. The upper-level ADN contains 
power generator units. According to the electric 
power demand of the lower system and the 
demand of independent loads in the distribution 
network, a power generation plan is formulated to 
meet various needs while coordinating the optimal 
output of each unit.

4.1.1. Wind power generation system
The output of the wind power generation system is 
closely related to the wind speed, and the wind speed 
is easily affected by environmental factors and has 
great randomness. The output model of the wind 
power system is expressed as follows. 

PWT¼

00 � v< vin
PN

WTv3� PN
WTv3

in
v3

N� v3
in

vin � v< vN

PN
WTvN � v< vout

0vout � v

8
>>><

>>>:

(13) 

where PWT is the output power of wind power. PN WT is 
the rated power. v, vin and vout are the rated wind 
speed, cut-in wind speed and cutout wind speed, 
respectively.

Table 2. Standard test functions.
Function Expression Dim Fmin Range

Unimodal F1 ¼
Pd

j¼1 x
2
j

30 0 [−100, 100]

F2 ¼
Qd

j¼1 jxjj þ
Pd

j¼1 jxjj 30 0 [−10, 10]

F3 ¼
Pd

j¼1 ð
Pd

j¼1 jxjjÞ
2 30 0 [−100, 100]

F4 ¼ maxjfjxjj; 1 � j � dg 30 0 [−100, 100]

F5 ¼
Pd

j¼1½100ðxjþ1 � x2
j Þ

2
þ ðxj � 1Þ2� 30 0 [−30,30]

F6 ¼
Pd

j¼1 ð½xj þ 0:5�Þ
2 30 0 [−100, 100]

F7 ¼
Pd

j¼1 jx
4
j þ random½0; 1Þ 30 0 [−1.28, 1.28]

Multimodal F8 ¼
Pd

j¼1ðx
2
j � 10 � cosð2πxjÞ þ 10Þ 30 0 [−5.12, 5.12]

F9 ¼ � 20 � expð� 0:2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
d

Pd
j¼1 x

2
j

q

ÞÞ � expð1d
Pd

j¼1 cosð2πxjÞÞ þ 20þ e 30 0 [−32, 32]

F10 ¼
Pd

j¼1
x2
j

4000 �
Qd

j¼1 cosð xj ffi
j
p Þ þ 1 30 0 [−600, 600]

F11 ¼
π
n
f10sinðπy1Þ þ

Xd� 1

j¼1

ðyj � 1Þ2½1þ 10sin2ðπyj þ 1Þ� þ ðyd þ 1Þ2g

þ
Xd

j¼1

uðxj; 10; 100; 4Þ

yj ¼ 1þ
xj þ 1

4
; uðxj; a; k;mÞ ¼

kðxj � aÞm; xj > a
0; � a< xj < a

kð� xj � aÞm; xj < � a

8
><

>:

30 0 [−50, 50]

F12 ¼ 0:1 sin2ð3πx1Þ þ
Xd

j¼1

ðxj � 1Þ2
1þ sin2ð3πxj þ 1Þ

þðxd � 1Þ2½1þ sin2ð2πxdÞ�

" #( )

þ
Xd

j¼1

uðxj; 5; 100; 4Þ

30 0 [−50, 50]
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Table 3. Test results.
Function Stats PSO DE GWO WOA HHO SSA ISSA

F1 Min 1.6569E-02 8.5201E-01 5.6481E-39 3.8667E-94 9.1182E-157 0.0000E+00 0.0000E+00
Avg 7.6801E-02 1.9246E+00 1.2437E-33 5.9183E-85 3.8835E-116 2.3017E-146 9.7291E-149
Std 4.0773E-02 7.3410E-01 1.9249E-33 2.4038E-84 1.4380E-115 1.2311E-145 5.3285E-148
Rank 6 7 5 4 3 2 1

F2 Min 9.5944E-01 1.5048E-02 4.4721E-23 3.3074E-60 1.0534E-79 0.0000E+00 0.0000E+00
Avg 2.0744E+00 2.2620E-02 4.8804E-20 1.8637E-54 7.6171E-56 9.8676E-67 6.1445E-70
Std 5.3988E-01 4.8919E-03 5.9373E-20 5.2329E-54 2.9563E-55 5.4046E-66 3.3655E-69
Rank 7 6 5 4 3 2 1

F3 Min 3.3364E-01 1.2821E+00 8.0936E-12 5.3127E-06 5.5729E-112 0.0000E+00 0.0000E+00
Avg 6.2620E-01 2.7081E+00 4.0671E-08 5.2195E+02 4.4708E-94 1.5355E-79 3.0332E-96
Std 2.5455E-01 9.6754E-01 9.6918E-08 1.1736E+03 2.4408E-93 8.3275E-79 1.6547E-95
Rank 5 6 4 7 2 3 1

F4 Min 1.9323E-01 1.0363E-02 1.1828E-10 4.0463E-09 6.0682E-81 0.0000E+00 0.0000E+00
Avg 3.1913E-01 1.7467E-02 3.2897E-06 2.2065E-01 2.5602E-69 9.5821E-72 2.5134E-83
Std 5.3028E-02 3.4446E-03 1.1764E-05 6.8649E-01 1.1669E-68 5.2482E-71 1.0446E-82
Rank 7 5 4 6 3 2 1

F5 Min 3.1553E+01 8.0373E+01 1.1356E-01 7.3065E-02 2.7720E-11 5.2349E-08 4.6295E-10
Avg 4.2094E+01 3.4253E+02 2.5748E+01 1.3815E+01 4.5239E-03 2.2941E-05 6.8485E-06
Std 8.7117E+00 1.9229E+02 4.8812E+00 1.3861E+01 1.3095E-02 3.4534E-05 2.0009E-05
Rank 6 7 5 4 3 2 1

F6 Min 3.4979E-02 9.6260E-01 3.5248E-05 3.5683E-08 3.8769E-12 8.6448E-15 2.1991E-16
Avg 1.3849E-01 2.2277E+00 4.2465E-01 2.4953E-02 1.0829E-05 2.1560E-11 1.0975E-11
Std 6.1884E-02 9.3911E-01 3.2170E-01 3.9624E-02 2.4786E-05 4.9167E-11 3.5317E-11
Rank 6 7 5 4 3 2 1

F7 Min 1.2080E-01 1.1948E-04 3.0793E-04 2.4731E-05 5.5699E-06 3.1102E-05 2.0904E-05
Avg 1.0785E+00 2.6369E-04 9.3291E-04 8.7598E-04 8.8957E-05 5.4489E-04 6.3096E-04
Std 1.2132E+00 1.1981E-04 4.7178E-04 1.0840E-03 1.3149E-04 5.3399E-04 5.9645E-04
Rank 7 2 6 5 1 3 4

F8 Min 2.1749E+01 1.7778E-01 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
Avg 3.5393E+01 2.1179E-01 1.3217E+01 1.8948E-15 0.0000E+00 0.0000E+00 0.0000E+00
Std 1.0977E+01 1.7282E-02 4.1813E+01 1.0378E-14 0.0000E+00 0.0000E+00 0.0000E+00
Rank 7 6 5 4 1 1 1

F9 Min 1.4926E-01 7.2524E-03 3.2863E-14 8.8818E-16 8.8818E-16 8.8818E-16 8.8818E-16
Avg 8.8982E-01 9.5177E-03 6.6685E-01 4.6777E-15 8.8818E-16 8.8818E-16 8.8818E-16
Std 4.8287E-01 1.0623E-03 3.6525E+00 2.6279E-15 0.0000E+00 0.0000E+00 0.0000E+00
Rank 7 5 6 4 1 1 1

F10 Min 1.1651E-03 8.2348E-03 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
Avg 5.9972E-03 1.8545E-02 2.5907E-03 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
Std 3.0646E-03 6.9387E-03 6.5483E-03 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
Rank 6 7 5 1 1 1 1

F11 Min 2.8620E-03 4.0943E-03 6.5932E-03 2.7018E-08 1.9336E-15 1.6271E-15 3.8925E-17
Avg 1.4022E-02 9.0381E-03 5.6412E-01 1.6170E-03 1.1672E-06 3.3048E-12 8.7533E-13
Std 9.1045E-03 3.6374E-03 2.3485E-03 2.9384E-09 3.9327E-06 9.6184E-12 3.4793E-12
Rank 6 5 7 4 3 2 1

F12 Min 6.6589E-02 2.9500E-02 8.0311E-05 5.5972E-09 1.9565E-11 2.2883E-15 1.0901E-14
Avg 3.1852E-01 4.5673E+01 3.0377E-01 2.9185E-02 6.2954E-06 9.4817E-11 4.2519E-11
Std 2.5665E-01 9.6892E+01 1.7311E-01 6.0898E-02 1.4203E-05 3.3902E-10 1.1277E-10
Rank 6 7 5 4 3 2 1

Mean rank 6.31 5.92 5.15 4.08 2.15 2.00 1.46

Figure 3. Hierarchical structure model of ADN with MMG system.
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4.1.2. Photovoltaic power generation model
Generally, the output power of the photovoltaic power 
generation system is affected by a variety of environ-
mental factors, among which the ambient temperature 
and light intensity are key factors in the output of 
photovoltaic power generation systems. The simplified 
output power model is given as follows. 

PPV ¼ PSTCGC½1þ kðTC � TSTCÞ�=GSTC
TC ¼ Tt þ 30 � GC=1000

�

(14) 

where PPV is the output power of photovoltaic power 
generation system. PSTC is the standard rated output 
power of the photovoltaic power generation system. Tt 

is the ambient temperature in the current environment. 
k is the power temperature coefficient. TSTC and GSTC are 
the standard ambient temperature and light intensity, 
respectively. Under the standard condition, TSTC and 
GSTC are 25°C and 1000 W/m2, respectively. TC and GC 

are the temperature and light intensity of the photo-
voltaic panel in the current environment, respectively.

4.1.3. Diesel engine model
The output power of diesel engines has a certain 
restriction range, which should not be lower than the 
minimum operating power. The relationship between 
the actual output power of the diesel engine and the 
consumption of fuel is shown as follows. 

FDIE ¼ α1PN
DIE þ α2PDIE (15) 

where FDIE is the fuel consumption. PN DIE is the rated 
output power of the diesel engine. PDIE is the output 
power. α1 and α2 are constants.

4.1.4. Energy storage system model
The capacity of the battery fluctuates in a small range as 
the surrounding temperature changes. According to the 
different operating status, the battery is divided into 
charging state, discharging state and static state. The 
battery energy storage system is expressed as follows. 

EBAT;CðtÞ ¼ ð1 � ηÞEBAT;Cðt � 1Þ þ PcðtÞΔtηc=EcðtÞ
EBAT;DðtÞ ¼ ð1 � ηÞEBAT;Dðt � 1Þ � PdðtÞΔt=EcðtÞηd
EcðtÞ ¼ ESTC½1þ δbðTðtÞ � TSTCÞ�

8
<

:

(16) 

where EBAT,C(t-1) and EBAT,D(t-1) are the remaining power 
in the battery charging and discharging states at time 
t-1, respectively. EBAT,C(t) and EBAT,D(t) are the remaining 
power in the battery charging and discharging states at 
time t, respectively. ESTC and TSTC are the battery capa-
city and ambient temperature under standard condi-
tions, respectively. Ec(t) is the actual capacity of the 
battery. Pc(t) and Pd(t) are the charge and discharge 
power of the battery, respectively. ηc and ηd are the 
charge and discharge efficiency of the battery, respec-
tively. T(t) is the ambient temperature. η is the self-loss 
coefficient of the battery. δb is the capacity temperature 
coefficient of the battery. Δt is the time interval.

4.2. Hierarchical energy optimization 
management model

In the hierarchical energy optimization management, it 
is necessary to determine the management mode of 
the ADN with the internal MMG system. The distribu-
tion network EDC and the microgrid EMS are coordi-
nated and controlled, and the entire ADN is globally 
optimized under the conditions of stable operation of 
the MMG system. It achieves the purpose of making 
full use of clean energy and peak-shaving and valley- 
filling in the system, and reduces the energy demand 
of the entire ADN on the main grid.

4.2.1. Multi-microgrid system layer
The MMG system layer includes three independent 
microgrids. The internal wind power generation sys-
tem, photovoltaic power generation system, diesel 
engines, batteries and user load are controlled by 
microgrid EMS as the lower layer of hierarchical opti-
mization management. Besides, power interaction 
with the ADN is required.

Each independent microgrid of the MMG system 
layer takes the lowest economic cost (g1) and environ-
mental cost (g2) as the objective function, and takes 
the installed quantity and rated capacity of wind 
power generation system, photovoltaic power genera-
tion system, diesel engines and batteries as the deci-
sion variable X of the lower model.

(1) Economic objective function
The economic objective function (g1) includes CFuel 

(fuel consumption cost), CM (facility installation invest-
ment cost, operation and maintenance cost, replace-
ment cost), CT (cost for interacting with the grid), and 
CP (energy penalty cost). CM needs to be converted into 
daily value according to the discount rate and life cycle 
of the equipment, including the initial investment cost, 
the subsequent maintenance cost and the replace-
ment cost. It is expressed as follows. 

ming1 ¼ CFuel þ CM þ CT þ CP (17) 

μðr; lÞ ¼ r � ð1þ rÞl=½ð1þ rÞl � 1� (18) 

CFuel ¼ cf
PT

t¼1
FDIEðtÞ

CM ¼ μðr; lÞ
PNDG

m¼1
½ðcI

m þ cM
m þ cR

mÞNmPN
m=365l�

CT ¼
PT

t¼1
½cbuyðtÞPbuy tð Þ � csellðtÞPsell tð Þ�

CP ¼ �
PT

t¼1
½PvðtÞ þ PwðtÞ�

8
>>>>>>>>>>><

>>>>>>>>>>>:

(19) 

where NDG is the type of equipment, m = 1,2,3,4. cf is the 
fuel price. μ(r,l) is the system depreciation coefficient. r is 
the discount rate of the equipment. l is the life cycle of 
the equipment. cI d, cM d and cR d are the investment, 
operation and maintenance and replacement costs of 
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the m-th equipment, respectively. Pbuy(t) and Psell(t) are 
the power purchased and sold by MMG system to the 
ADN at time t. cbuy(t) and csell(t) are the unit price of 
electricity purchased and sold by MMG system to the 
ADN at time t. Pv(t) and Pw(t) are the short and wasted 
parts of electric power. ξ is the penalty coefficient.

(2) Environmental objective function

Clean energy does not produce pollutants such as 
carbides, sulfides and nitrides, while diesel engines 
produce a certain amount of pollutants. Also, the elec-
tricity purchased by the MMG from the ADN produces 
pollutants. Therefore, the cost of treating these pollu-
tants determines the environmental objective function 
(g2), which is expressed as follows.

ming2 ¼
XT

t¼1

XK

k¼1

ck½χDIEkPDIEðtÞ þ χgridkPbuyðtÞ� (20) 

where K∈{COx, SOx, NOx} is the type of pollutant, 
k = 1,2,3. ck is the cost of the MMG system to treat 
each gram of the k-th pollutant. χDIEk is the emission 
coefficient of diesel engines to the k-th pollutant. χgridk 

is the emission coefficient of the k-th pollutant when 
the MMG system purchases electricity from the ADN.

(3) System constraints
The constraints in the MMG system include load 

balance constraints, energy storage system capacity 
constraints, equipment output constraints, and trans-
action constraints with the ADN.

Load balance needs to meet the load balance con-
straints. The output electric power of each micro- 
source in the MMG is the same as the electric load 
demand. 

PWTðtÞ þ PPVðtÞ þ PdðtÞ þ PDIEðtÞ þ PbuyðtÞ
¼ PULoadðtÞ þ PcðtÞ þ PsellðtÞ (21) 

where PULoad is the user load in the MMG system.
The expression of the battery constraints and the 

facility output constraints are given as follows. 

Emin
BAT � EBATðtÞ � Emax

BAT
Pmin

c � PcðtÞ � Pmax
c

Pmin
d � PdðtÞ � Pmax

d
Pmin

DIE � PDIEðtÞ � Pmax
DIE

8
>><

>>:

(22) 

where Pmin
c and Pmax

c are the minimum and maximum 
charging power of the battery, respectively. Pmin

d and 
Pmax

d are the minimum and maximum discharge power 
of the battery, respectively. are given as follows. Emin

BAT 

and Emax
BAT are the minimum and maximum storage 

capacity of the battery, respectively. Pmin
DIE is the mini-

mum output power of diesel engines. On the contrary, 
Pmax

DIE is the maximum output power of diesel engines. 
The trading constraints with the ADN are given as 
follows. 

Pmin
buy � PbuyðtÞ � Pmax

buy

Pmin
sell � PsellðtÞ � Pmax

sell

�

(23) 

where Pmin
buy and Pmax

buy are the minimum and maximum
power purchases for the MMG system, respectively. 
Pmin

sell and Pmax
sell are the minimum and maximum electri-

city sales, respectively.
(4) Decision variable
Wind power generation system and photovoltaic 

power generation system are important sources of 
renewable energy. Their capacity determines the out-
put of clean energy in the MMG system. However, 
excessive capacity leads to excessively high costs. The 
battery acts as an energy buffer in the MMG system 
through charging and discharging. If the capacity con-
figuration is too low, the stored energy is not enough 
to meet the load demand, which will cause a shortage 
of load demand. The capacity configuration is large 
and causes power waste. Diesel engine is used as 
a backup power source, and its capacity configuration 
must be reasonable to ensure the reliable power sup-
ply of the system.

The quantity and installed capacity of the above 
four types of equipment are selected as the decision 
variable X of the system model. 

X ¼ ½NWT;NPV;NDIE;NBAT; PWT; PPV; PDIE; PBAT� (24) 

where NWT, NPV, NDIE and NBAT are the number of wind 
power generation system, photovoltaic power genera-
tion system, diesel engines and batteries, respectively. 
PWT, PPV, PDIE and PBAT are the capacity of four devices, 
respectively.

4.2.2. Active distribution network layer
Each microgrid EMS sends the power interaction infor-
mation of the lower system to the distribution network 
EDC. As the upper layer of hierarchical optimization 
management, ADN layer realizes the decision-making 
and management of the energy flow within the 
network.

The ADN layer takes the lowest operating cost of 
the power generation units (g3) as the objective func-
tion, and uses the output ratio between the units as 
decision variable of the upper-level model. Unit One 
(PG1) undertakes the main power generation task and 
has a minimum proportion of 0.3, while the remaining 
units have a minimum proportion of 0.05. The output 
of each power generation unit is within the range. At 
the same time, the independent load power shortage 
rate (fLPSP) is used as the evaluation index. 

ming3 ¼
XT

t¼1

XNG

j¼1

½ajP2
G;jðtÞ þ bjPG;jðtÞ þ cj� (25) 

fLPSP ¼
XT

t¼1

½PvðtÞ=PILoadðtÞ� (26) 

where NG is the number of units. PG,j(t) is the output 
power of the j-th unit. aj, bj and cj are operating para-
meters. PILoad[t) is the independent load in the ADN.
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4.3. System adaptive weight coefficients

42,proposed an adaptive dynamic weight factor model 
that used the objective function to measure economic 
cost and environmental cost. At each optimization 
cycle, the economic objective function (g1] and the 
environmental objective function (g2) are subjected 
to per-unit calculation to obtain G1(t) and G2(t), where 
the adaptive weight coefficients ω1 and ω2 are con-
structed. The comprehensive objective function F is 
defined as follows. 

min g ¼
PT

t¼1
½ω1G1ðtÞ þ ω2G2ðtÞ�

ω1 þ ω2 ¼ 1; ω1 ¼ n1 þ n2G1ðtÞ

8
<

:
(27) 

where G1(t) represents the unit value of the economic 
objective function (g1) at time t. n1 and n2 are linear 
correlation coefficients, and the sum of ω1 and ω2 is 
a constant, i.e. 1. In the process of algorithm optimiza-
tion, the ω1 and ω2 are dynamically selected. When G1 

decreases, ω1 decreases correspondingly. Meanwhile, 
ω2 increases, and the proportion of environmental cost 
optimization increases. When G1 increases, ω1 

increases correspondingly, where the economic cost 
is regarded as a relatively large proportion.

4.4. The operation strategy of the hierarchical 
energy optimization management model

In the traditional operation strategy, the MMG system 
preferentially consumes the electric power generated 
by wind power generation system and photovoltaic 
power generation system. When the output of renew-
able energy is insufficient, the remaining load demand 
has two compensation methods. The first method is 
provided by battery discharge first, and then purchase 
electricity from the upper-level distribution network. 
The second method is to purchase electricity from the 
upper-level distribution network first, and then dis-
charge from the battery. When there is a surplus of 
renewable energy output, there are also two methods 
to deal with the surplus power. The first method is to 
charge the battery first, and then sell electricity to the 
upper-level distribution network. The second method 
is to sell electricity to the upper-level distribution net-
work first, and then charge the battery.

Long-term charging and discharging of the battery 
affect its life, and the power interaction with the upper 
distribution network affect the economic cost of the 
lower microgrid. Therefore, a MMG operation strategy 
that mixes the battery and the power interaction is 
designed. By calculating the unbalanced power when 
the wind and solar output exceeds or is less than the 
load demand at a certain time, the proportion of the 
“storage-network” configuration proportion is used as 
an optimization variable to find the optimal ratio. The 

flow of the specific operation strategy of the hierarchical 
energy optimization management model is shown in 
Figure 4.

5. Performance results and discussions

5.1. Model test environments

Two typical days in spring and summer are selected to 
represent the load demand of the MMG system under 
different conditions throughout the year. The data of 
user load in microgrid and independent load in ADN is 
collected from New York Independent System 
Operator (NYISO), as shown in Figure 5.

In addition, two typical days weather conditions are 
shown in Figure 6. The corresponding local meteoro-
logical data, such as wind speed, temperature and light 
intensity, used the Meteonorm 7 within 24 hours per-
iod. Each independent microgrid is in the same area, so 
the environmental factors that affect the output of 
wind and photovoltaic power at the MMG system 
layer are the same.

The entire tests were performed using MATLAB 
R2016a software under Microsoft Windows 10 operat-
ing system. The computer configuration is described 
as: Core i5-5200 U, 2.20 GHz, 4 GB RAM. The 
summer day has higher temperature and light inten-
sity than the spring day, which causes more photovol-
taic system output. In addition, the spring day has 
higher wind speed than the summer day, which causes 
more wind power system output.

The parameters of each power generation unit in 
the ADN layer refer to 43, as shown in Table 4. PG3 only 
runs on the summer day. The specifications of the 
facilities used in the MMG are shown in Table 5 [41]. 
The maximum remaining capacity in the battery are set 
as 90% in the rated capacity. The maximum output of 
the battery is 0.75 of the maximum capacity.

Besides, the facilities depreciation coefficient is 
assumed as 0.08. The unit prices of each pollutant 
treatment and the pollutant emission amount [g/ 
kWh) in COx, NOx, and SOx refer to 44, as shown in 
Table 6. Time-of-use price of electricity interacting with 
the main grid refers to 45, as shown in Table 7. The 
price of diesel is 6.11 RMB/L. Note that 1 
RMB � 0.15 USD.

5.2. System operation optimization analysis 
using ISSA

In this part, the system operation optimization analysis 
is carried out based on the model proposed in the 
Section 4. Chapter 5.2.1 is the ADN layer, and 
Section 5.2.2 is the MMG system layer. The system 
operation strategy is the improvement strategy pro-
posed in the Section 4.4, and the model solution 
method is ISSA proposed in the Section 3.
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5.2.1. Active distribution network layer
The power generation units’ output of the ADN in two 
typical days and the power transactions with each 
microgrid are shown in Figure 7 and 8.

Figure 7, the overall output of each power genera-
tion unit changes with the fluctuation of the indepen-
dent load. PG1 is the main power generation unit, and 
there is no unit saturation. Due to the electric load 
balance constraint in the ADN, the power transaction 

of the MMG system to the ADN is in the state of selling 
electricity, during the period of 8:00–11:00 and 14:00– 
16:00 in the spring day, and the output of each unit 
showed a downward trend. During the time period of 
8:00–12:00 in the summer day, the output of each unit 
also showed a significant downward trend.

Figure 8 indicated during the time period of 1:00– 
7:00 and 21:00–24:00 in the spring day, the multi-micro 
grid system has a greater demand for power purchase 

Figure 4. The operational strategy flowchart of hierarchical optimization model.

Figure 5. The load demand curves of two typical days.
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from the ADN. Due to the large wind and solar output, 
the sales of electricity to the ADN are large at 9:00– 
13:00 and 16:00–18:00. During the time period of 1:00– 
6:00 and 18:00–24:00 in the summer day, due to the 
limited output of wind and solar, the power purchase 
demand of the MMG system from the ADN reaches the 
upper limit of power trading. Only in the period of 
9:00–15:00, there are electricity sales to the ADN.

5.2.2. Multi-microgrid system layer
The operation of MG1 in two typical days is shown in 
Figure 9. In the spring day, the wind power generation 
system produces more power throughout the entire 
time period. During the period of 19:00–24:00, due to 
the low wind speed, it is necessary to discharge the 
battery or purchase electricity from the upper ADN. 
The diesel engine has almost no output. During the 
time period of 11:00–18:00, the battery charging and 
the sale of electricity to the upper ADN are relatively 
large. In the summer day, affected by the wind speed, 
the wind power generation system only produces 
much power during the time period of 9:00–13:00. At 
this time, the battery is charged and the electricity is 
sold to the upper ADN. During the rest of the time 
period, the power purchases from the upper-level ADN 

Figure 6. The weather conditions of two typical days.

Table 4. Parameters of each power generation unit.

Power generation 
unit

Lower 
output 

(kW]

Upper 
output 

(kW)

Operating 
parameters

a b c

PG1 200 3500 0.0004 0.25 40
PG2 100 2500 0.0006 0.20 30
PG3 300 1200 0.0450 6.00 15
PG4 100 1500 0.0360 5.00 18
PG5 100 1500 0.0280 3.75 18

Table 5. Facilities specifications.

Facilities
Maximum capacity 

(kW)
Investment cost (RMB/ 

kW)
Operation and maintenance cost (RMB/ 

kW)
Replacement cost (RMB/ 

kW)
Life 

(years)

Wind power 25 4535 35.4 0 20
Photovoltaic 

power
15 5000 88.7 0 25

Diesel engine 25 1283 25.7 1000 9
Battery 5 567 5.7 453 2.5

Table 6. Pollutant emission amount (g/kWh).
Pollutant Diesel engine Main grid

COx

649
889

NOx

9890
1.6

SOx

0.206
1.8

Table 7. Time-of-use price of electricity interacting.
Period Time kbuy (RMB/kWh)ksell (RMB/kWh)

Peak 6:00–11:00, 19:00–23:00
1.21 1.02

Valley 23:00–6:00
0.43 0.27

Balance 11:00–19:00
0.69 0.50
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reached the peak value, and the diesel engine output 
was relatively large and made up for the power 
shortage.

The operation of MG2 in two typical days is shown 
in Figure 10. Affected by environmental factors, the 
photovoltaic power generation system has a large 

Figure 7. Two typical daily output curves of power generator units.

Figure 8. Power trading curves.

Figure 9. MG1 operation optimization results.

Figure 10. MG2 operation optimization results.
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output during the time period of 8:00–16:00, and the 
power in summer is greater than the power in spring. 
During 9:00–11:00 in the spring day and 9:00–15:00 in 
the summer day, the battery is charged and power is 
sold to the upper ADN. In two typical days, the power 
purchase from the upper ADN and diesel engines will 
be greater during the time periods of 1:00–7:00 and 
17:00–24:00.

The operation of MG3 in two typical days is shown 
in Figure 11. Since the MG3 includes wind power gen-
eration system and photovoltaic power generation 
system, wind resources are fully utilized in the 
spring day, and wind power is relatively large. While 
in the summer day, photovoltaic power is mainly relied 
on. In two typical days, the battery is replenished 
accordingly, and the MG3 sells more power to the 
upper ADN, resulting in a small output of the diesel 
engine during the whole time period.

5.3. Energy optimization management analysis in 
typical days

In the optimization model, the upper layer takes the 
lowest operating cost of the generator power unit as 
the optimization goal, and the lower layer takes the 
lowest economic cost and environmental cost as the 
optimization goal, which is finally expressed as the 
total cost of the entire system. The comparison results 
of two typical days are shown in Table 8.

The ISSA, SSA, WOA and GWO models are used to 
evaluate the optimization effectiveness of the hier-
archical energy optimization management model 
using the parameter settings shown in Table 1. The 
comparison results in two typical days are concluded 

in Table 7, where C1 and C2 are obtained from Eq.(17), 
Eq.(21) and Eq.(25), respectively. Note that the value C1 

is the sum of g1 and g2 of the MMG system, which 
indicates the total cost of the economy and environ-
ment, and the value C2 is the lowest operating cost of 
the power generation units (g3). The value C is the sum 
of C1 and C2. which indicates the total cost of the entire 
system.

The value C using ISSA has a better optimization 
effect than others in two typical days. Both ISSA, SSA 
and GWO have similar results that are slightly better 
than WOA. It is clear that the overall optimization 
results of the ISSA are generally superior to SSA, 
WOA and GWO, which can effectively reduce the eco-
nomic cost and environmental cost. In addition, the 
independent load power shortage rate (fLPSP) is at 
a normal value, and the value fLPSP of the ISSA is at 
the minimum.

The total economic and environmental costs in 
summer are higher than those in spring due to the 
large daily load demand in summer. Besides, renew-
able energy output in summer is less than the 
spring day, and the demand for electricity load in 
the summer day is large, which can increase the 
total cost.

The convergence curves of the four algorithms per-
formance in two typical seasons are shown in Figure 12. 
The initial optimal value in the early stage of the itera-
tion from the WOA is larger, and its convergence speed 
is slow. The convergence accuracy of the GWO, WOA 
and SSA is lower than ISSA. The convergence speed of 
the GWO and WOA is slower than SSA and ISSA. The 
ISSA achieves better convergence rate and result than 
others at the range of 50–100 iterations. In conclusion, it 

Figure 11. MG3 operation optimization results.

Table 8. Comparison results of two typical days.
Typical days Models C1/RMB C2/RMB C/RMB fLPSP

Spring GWO 4.5484 × 106 1.1293 × 106 5.6778 × 106 7.4435 × 10−4

WOA 1.2305 × 107 7.8856 × 105 1.3093 × 107 3.0481 × 10−3

SSA 4.6510 × 106 1.2046 × 106 5,8556 × 106 4.7415 × 10−15

ISSA 4.3486 × 106 8.8824 × 105 5.2369 × 106 0
Summer GWO 1.8390 × 107 1.6062 × 106 1.9996 × 107 1.4828 × 10−15

WOA 2.4972 × 107 1.6926 × 106 2.6665 × 107 6.6305 × 10−4

SSA 1.7262 × 107 1.6052 × 106 1.8867 × 107 1.2975 × 10−15

ISSA 1.6968 × 107 1.5935 × 106 1.8526 × 107 0
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is obvious that the ISSA model is superior in terms of the 
convergence speed and convergence accuracy in the 
MMG system operation optimization.

5.4. Performance comparison of different control 
strategies

Using the ISSA, the improved operation strategy in 
Section 4.4 is compared with the two traditional strate-
gies. The output sequence of Strategy I is WT-PV-BAT- 
AND-DIE, and the output sequence of Strategy II is WT- 
PV-AND-BAT-DIE. Strategy III is the improved operation 
strategy. The optimization results are shown in Table 9.

The total cost of the entire system (C) with Strategy 
I and Strategy II has higher cost than Strategy III. 
Compared with Strategy III, C using Strategy I increases 
15.81% in the spring day. On the other hand, it increases 
2.36% in the summer day. Compared with Strategy III, 
C using the Strategy II increases 28.75% in the 
spring day, and it increases 8.79% in the summer day. 
In addition, Strategy III can effectively reduce the inde-
pendent load power shortage rate (fLPSP).

In the Strategy III, the optimal result of the “storage- 
network” configuration proportion of the MMG is 
shown in Figure 13. The overall “storage-network” con-
figuration proportion change trend is in line with the 
operational optimization results shown in.

Figure 12. Convergence curves of the four algorithms in two typical days.
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In the spring day, the wind power generation 
system has a larger output, so the power interaction 
value is larger. The battery can provide part of the 
power after being charged, and it accounts for 
a relatively large amount at this time. In the 
summer day, the amount of power purchased from 
the upper ADN during the time periods of 1:00–8:00 
and 17:00–24:00 is relatively large, and the propor-
tion of power interaction is greater than the propor-
tion of the battery. During the time period of 19:00– 
21:00, due to battery discharge and increased diesel 
engine output, the power interaction ratio 
decreases. During the time period of 9:00–14:00, 
the large amount of photovoltaic power generation 
promotes the decrease in electricity sales level and 
the increase in the battery charging, resulting in the 
fluctuation of “storage-network” configuration 
proportion.

5.5. Adaptive weight coefficients analysis in 
typical days

In the MMG system, the adaptive weight coefficients 
dynamically measure the economic objective function 
(g1) and the environmental objective function (g2) of 
each time period in the optimization cycle. The optimiza-
tion results are shown in Figure 14. The change trend of 
the adaptive weight coefficients is in line with the opera-
tional optimization results shown in Figure 9.

In the spring day, for MG1, the environmental 
cost weight is greater in the time periods of 2:00– 
6:00 and 10:00–18:00, which are used to limit pollu-
tant treatment costs. The economic cost weight 
increases in the time periods of 7:00–9:00 and 
19:00–24:00 to limit the power interaction cost. In 
the summer day, due to the small output of the 
wind power generation system, the economic cost 
weight is greater than the environmental cost 

Table 9. Comparison results of two typical days.
Typical days Strategy C1/RMB C2/RMB C/RMB fLPSP

Spring I 5.1402 × 106 9.2468 × 105 6.0649 × 106 6.0822 × 10−7

II 5.6330 × 106 1.1093 × 106 6.7423 × 106 2.5583 × 10−7

III 4.3486 × 106 8.8824 × 105 5.2369 × 106 0
Summer I 1.7435 × 107 1.5281 × 106 1.8963 × 107 1.1121 × 10−15

II 1.8631 × 107 1.5248 × 106 2.0155 × 107 1.4828 × 10−15

III 1.6968 × 107 1.5935 × 106 1.8526 × 107 0

Figure 13. Optimization results of the “storage-network” configuration proportion.
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weight in the whole time period, realizing the 
dynamic optimization of the economic objective 
function in the whole cycle.

For MG2, the output of photovoltaic power genera-
tion system is greatly affected by environmental fac-
tors. In the whole time period, the output of renewable 
energy is limited, and the power purchase from the 
upper ADN and the output of diesel engines increase, 
resulting in the economic cost weight is greater than 
the environmental cost weight.

For MG3, the environmental cost weight is greater 
in the time periods of 1:00–20:00 and 23:00–24:00. The 
economic cost weight increases in the time periods of 
21:00–22:00. In the summer day, the environmental 
cost weight is greater in the time periods of 1:00– 
18:00 and 23:00–24:00. The economic cost weight 
increases in the time periods of 19:00–22:00.

6. Discussion

This study has a positive impact in industry, environ-
ment and society perspectives [46, 47]. The pro-
posed ADN model with MMG system model can 
effectively reduce operating costs while ensuring 
the safety and stability of the system. The proposed 
ISSA can increase the utilization rate of renewable 
energy and reduce the emission of system pollu-
tants while reducing economic costs. It has an 
important impact on the realization of 

environmental protection and the promotion of 
social benefits. Meanwhile, the ISSA could develop 
the global search capability of the original sparrow 
search algorithm, and the proposed ISSA is used in 
other fields to achieve optimal solutions.

This study proposes a hierarchical energy optimiza-
tion management method for the ADN with MMG 
system, and its scientific novelty is as follows. (1) The 
ADN model with MMG system is divided into the MMG 
system layer and the ADN layer, and adaptive weight 
coefficients are used to transform the multi-objective 
problem into a single-objective problem under 
dynamic programming; (2) An ISSA is proposed by 
introducing the Bernoulli chaotic mapping, Lévy flight 
and the operations of mutation, crossover and compe-
tition; and (3) A MMG operation strategy is proposed 
for the sake of strengthening the power supply capa-
city of the system.

7. Concluding remarks

The energy used to support the MMG system may 
come from renewable energy sources, like wind 
power, solar power, etc. The ADN with MMG system 
is therefore under a big threat due to their fluctuat-
ing nature. The models and methods proposed are 
of great significance for the economic operation 
and environmental protection of MMG ADN, and 
the major conclusions are concluded as follows.

Figure 14. Optimization results of the adaptive weight coefficients.
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● The hierarchical energy optimization management 
of the ADN with MMG system can not only reduce 
the generating cost of power generator units at 
the ADN layer, but also reduce the economic and 
environmental costs of the MMG system layer.

● The multi-objective problem is transformed into
a single-objective problem by introducing adap-
tive weight coefficients in the proposed model.
Therefore, the control strategy and decision vari-
ables in the MMG operation is determined to
achieve both economic cost and environmental
cost more reasonably.

● The ISSA has presented better optimization ability
in accuracy and convergence process than tradi-
tional methods. The GWO, WOA, SSA and ISSA are
tested under two typical days such as spring and
summer. The results verify that the ISSA presents
the best power capacity configuration.

● The operation strategy for the interactive
hybrid configuration of the battery and the
power interaction can strengthen the “storage- 
network” joint output capability and effectively
improve the system structure. The mixed con-
figuration operation strategy improves the fixed
output sequence mode of distributed power
generation, and reduces the system cost under
the same conditions compared with the tradi-
tional operation strategy [48–49].

This study only involves two types of renewable 
energy, namely wind energy and solar energy, which 
has certain limitations. In the future work, the multiple 
time scales, trading mechanism and more types of 
renewable energy are fully considered to further system-
atically establish the power operation scheduling model 
of MMG system.

Disclosure statement

No potential conflict of interest was reported by the 
author(s).

Funding

This work was supported by the Natural Science Foundation 
of Tianjin [19JCZDJC32100].

ORCID

Ming-Lang Tseng http://orcid.org/0000-0002-2702-3590

References

[1] Li LL, Zhao X, Tseng ML, et al. Short-term wind power 
forecasting based on support vector machine with 
improved dragonfly algorithm. J Clean Prod. 
2020;242:118447.

[2] Wang SX, Zhang XY, Wu L, et al. New metrics for 
assessing the performance of multi-microgrid systems 
in stand-alone mode. Int J Electr Power Energy Syst. 
2018;98:382–388.

[3] Xu YC, Zhang J, Wang P, et al. Research on the bi-level 
optimization model of distribution network based on 
distributed cooperative control. IEEE Access. 
2021;9:11798–11810.

[4] Arefifar SA, Ordonez M, Mohamed YAI. Energy man-
agement in multi-microgrid systems—Development 
and Assessment. IEEE Trans Power Syst. 2017;32 
(2):910–922.

[5] Mokryani G, Hu YF, Papadopoulos P, et al. 
Deterministic approach for active distribution net-
works planning with high penetration of wind and 
solar power. Renewable Energy. 2017;113:942–951.

[6] Chen CW, Chen WK, Chen CW, et al. An empirical study 
of willingness to renewable energy installation using 
importance-performance analysis: the case of Taiwan. 
J Ind Prod Eng. 2019;36(7):451–460.

[7] Luo YH, Nie QB, Yang DS, et al. Robust optimal opera-
tion of active distribution network based on minimum 
confidence interval of distributed energy beta 
distribution. J Mod Power Syst Clean Energy. 2021;9 
(2):423–430.

[8] Zeng B, Wen JQ, Shi JY, et al. A multi-level approach to 
active distribution system planning for efficient 
renewable energy harvesting in a deregulated 
environment. Energy. 2016;96:614–624.

[9] Aghdam FH, Kalantari NT, Mohammadi-Ivatloo B. 
A stochastic optimal scheduling of multi-microgrid 
systems considering emissions: a chance constrained 
model. J Clean Prod. 2020;275:122965.

[10] Cong PW, Tang W, Zhang L, et al. Day-ahead active 
power scheduling in active distribution network con-
sidering renewable energy generation forecast errors. 
Energies. 2017;10(9):1291.

[11] Khavari F, Badri A, Zangeneh A. Energy management 
in multi-microgrids considering point of common cou-
pling constraint. Int J Electr Power Energy Syst. 
2020;115:105465.

[12] Xiang Y, Liu JY, Li FR, et al. Optimal active distribution 
network planning: a review. Electr Pow Compo Sys. 
2016;44(10):1075–1094.

[13] Zubo RHA, Mokryani G. Active distribution network 
operation: a market-based approach. IEEE Syst J. 
2020;14(1):1405.

[14] Tang Y, Liu Z, Li L. Performance comparison of 
a distributed energy system under different control 
strategies with a conventional energy system. 
Energies. 2019;12(24):4613.

[15] Li LL, Yang YF, Wang CH, et al. Biogeography-based 
optimization based on population competition strat-
egy for solving the substation location problem. 
Expert Syst Appl. 2018;97:290–302.

228 S. WENZHI ET AL.



[16] Xue J, Shen B. A novel swarm intelligence optimization 
approach: sparrow search algorithm. Syst Sci Contr 
Eng. 2020;8(1):22–34.

[17] Liu YW, Feng H, Li HY, et al. An improved whale algorithm for 
support vector machine prediction of photovoltaic power 
generation. Symmetry. 2021;13(2):212.

[18] Tian H, Wang KQ, Yu B, et al. Hybrid improved 
Sparrow Search Algorithm and sequential quadratic 
programming for solving the cost minimization of 
a hybrid photovoltaic, diesel generator, and battery 
energy storage system. Energy Sources Part A. 
2021;1–17. DOI:10.1080/15567036.2021.1905111

[19] Cheng S, Su GC, Zhao LL, et al. Dynamic dispatch 
optimization of microgrid based on a QS-PSO 
algorithm. J Renewable Sustainable Energy. 2017;9 
(4):045505.

[20] Karimi H, Bahmani R, Jadid S, et al. Dynamic transactive 
energy in multi-microgrid systems considering inde-
pendence performance index: a multi-objective opti-
mization framework. Int J Electr Power Energy Syst. 
2021;126:106563.

[21] Sun YY, Cai ZX, Zhang ZY, et al. Coordinated energy 
scheduling of a distributed multi-microgrid system 
based on multi-agent decisions. Energies. 2020;13 
(16):4077.

[22] Wu KM, Li Q, Chen ZY, et al. Distributed optimization 
method with weighted gradients for economic dis-
patch problem of multi-microgrid systems. Energy. 
2021;222:119898.

[23] Liu ZH, Yi YQ, Yang JH, et al. Optimal planning and 
operation of dispatchable active power resources for 
islanded multi-microgrids under decentralised colla-
borative dispatch framework . IET Gener Transm 
Distrib. 2020;14(3):408–422.

[24] Wang LL, Zhu Z, Jiang CW, et al. Bi-level robust opti-
mization for distribution system with multiple micro-
grids considering uncertainty distribution locational 
marginal price. IEEE Trans Smart Grid. 2021;12 
(2):1104–1117.

[25] Funde N, Dhabu M, Deshpande P. CLOES: cross-layer 
optimal energy scheduling mechanism in a smart dis-
tributed multi-microgrid system. J Ambient Intell 
Humaniz Comput. 2020;11(11):4765–4783.

[26] Ge LJ, Song ZS, Xu XD, et al. Dynamic networking of 
islanded regional multi-microgrid networks based on 
graph theory and multi-objective evolutionary 
optimization. Int Trans Electr Energy Syst. 2020;31(1): 
e12687.

[27] Kong XY, Liu DH, Wang CS, et al. Optimal operation 
strategy for interconnected microgrids in market 
environment considering uncertainty. Appl Energy. 
2020;275:115336.

[28] Jin SP, Wang SP, Fang F. Game theoretical analysis on 
capacity configuration for microgrid based on 
multi-agent system. Int J Electr Power Energy Syst. 
2021;125:106485.

[29] Lainfiesta M, Zhang XW. Frequency stability and eco-
nomic operation of transactive multi-microgrid sys-
tems with variable interconnection configurations. 
Energies. 2020;13(10):2485.

[30] Qiu HF, Gu W, Xu YL, et al. Robustly multi-microgrid 
scheduling: stakeholder-parallelizing distributed 
optimization. IEEE Trans Sustainable Energy. 2020;11 
(2):988–1001.

[31] Ruan H, Gao HJ, Liu YB, et al. Distributed voltage 
control in active distribution network considering 
renewable energy: a novel network partitioning 
method. IEEE Trans Power Syst. 2020;35(6):4220–4231.

[32] Lyu ZL, Yang X, Zhang YY, et al. Bi-level optimal strategy of 
islanded multi-microgrid systems based on optimal power 
flow and consensus algorithm. Energies. 2020;13(7):1537.

[33] Yousif M, Ai Q, Gao Y, et al. An optimal dispatch 
strategy for distributed microgrids using PSO. CSEE 
J Power Energy System. 2020;6(3):724–734.

[34] Bayat P, Afrakhte H. A purpose-oriented shuffled com-
plex evolution optimization algorithm for energy man-
agement of multi-microgrid systems considering 
outage duration uncertainty. J Intell Fuzzy Syst. 
2020;38(2):2021–2038.

[35] Yang Y, Qiu J, Qin Z. Multidimensional firefly algorithm 
for solving day-ahead scheduling optimization in 
microgrid. J Elect Eng Technol. 2021;16(4):1755–1768.

[36] Yu Y, Gao SC, Cheng S, et al. CBSO: a memetic brain 
storm optimization with chaotic local search. Memet 
Comput. 2018;10(4):353–367.

[37] Heidari AA, Mirjalili S, Faris H, et al. Harris hawks opti-
mization: algorithm and applications. Future Gener 
Comput Syst. 2019;97:849–872.

[38] Mirjalili S, Lewis A. The whale optimization algorithm. 
Adv Eng Software. 2016;95:51–67.

[39] Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. 
Adv Eng Software. 2014;69(3):46–61.

[40] Zhang CL, Ding SF. A stochastic configuration network 
based on chaotic sparrow search algorithm. 
Knowledge-Based Syst. 2021;220(10):106924.

[41] Zhang HJ, Feng YB, Lin KP. Application of multi-species 
differential evolution algorithm in sustainable micro-
grid model. Sustainability. 2018;10(8):2694.

[42] Wu Y, Lyu L, Xu LX, et al. Optimized allocation of 
various energy storage capacities in a multi-energy 
micro-grid considering electrical/thermal/gas cou-
pling demand response. Power Syst Prot Control. 
2020;48(16):1–10.

[43] Ye L, Lyu ZL, Wang M, et al. Bi-level programming 
optimal scheduling of ADN with a multi-microgrid 
based on optimal power flow. Power Syst Prot 
Control. 2020;48(18):27–37.

[44] Ding M, Liu XY, Xie JL, et al. Optimal planning model of 
grid-connected microgrid considering comprehensive 
performance. Power Syst Prot Control. 2017;45(19):18–26.

[45] He H, Lei X, Huang T, et al. Coordinated and autono-
mous optimal operation strategy of multi-microgrid 
system under the guidance of price. Power Syst Prot 
Control. 2019;47(16):17–26.

[46] Zhou B, Zou JT, Chi YC, et al. Multi-microgrid energy 
management systems: architecture, communication, 
and scheduling strategies. <jtl>j Mod Power Syst 
Clean Energy. 2021;9(3):463–476.

[47] Yang DF, Zhang CX, Jiang C, et al. Interval method 
based optimal scheduling of regional 
multi-microgrids with uncertainties of renewable 
energy. IEEE Access. 2021;9:53292–53305.

[48] Liu YS, Chen X, Li B, et al. State of art of the key 
technologies of multiple microgrids system. Power 
Syst Technol. 2020;44(10):3804–3820.

[49] Wang P, Zhang Y, Yang HW. Research on economic optimiza-
tion of microgrid cluster based on chaos sparrow search 
algorithm. Comput Intell Neurosci. 2021;2021(3):1–18.

JOURNAL OF INDUSTRIAL AND PRODUCTION ENGINEERING 229

https://doi.org/10.1080/15567036.2021.1905111

	Abstract
	1. Introduction
	2. Literature review
	3. Model of improved sparrow search algorithm
	3.1. Sparrow search algorithm
	3.2. Improvement of sparrow search algorithm
	3.2.1. Bernoulli chaotic mapping
	3.2.2. Mutation, hybridization and competition strategies
	3.2.3. Lévy flight
	3.2.4. The performance process

	3.3. Evaluation of model performance test

	4. The active distribution network with multi-microgrid system
	4.1. The structure of the active distribution network with multi-microgrid system
	4.1.1. Wind power generation system
	4.1.2. Photovoltaic power generation model
	4.1.3. Diesel engine model
	4.1.4. Energy storage system model

	4.2. Hierarchical energy optimization management model
	4.2.1. Multi-microgrid system layer
	4.2.2. Active distribution network layer

	4.3. System adaptive weight coefficients
	4.4. The operation strategy of the hierarchical energy optimization management model

	5. Performance results and discussions
	5.1. Model test environments
	5.2. System operation optimization analysis using ISSA
	5.2.1. Active distribution network layer
	5.2.2. Multi-microgrid system layer

	5.3. Energy optimization management analysis in typical days
	5.4. Performance comparison of different control strategies
	5.5. Adaptive weight coefficients analysis in typical days

	6. Discussion
	7. Concluding remarks
	Disclosure statement
	Funding
	ORCID
	References

