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Abstract

This paper considers the intelligent reflecting surface-aided MIMO secrecy rate maximization. We apply the alternating optimization to
maximize the secrecy rate of the MIMO wiretap channels. We first provide the closed-form solution to each subproblem of optimizing
reflecting unit coefficient and show that the sequence generated by the coordinate descent method converges to a stationary point of the main
optimization problem. Numerical results show that the intelligent reflecting surface significantly increases secrecy rates in MIMO wiretap
channels.
© 2022 The Author(s). Published by Elsevier B.V. on behalf of The Korean Institute of Communications and Information Sciences. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Intelligent reflecting surface (IRS) is a promising solu-
tion that can cost-effectively and energy-efficiently improve
wireless communication capacity by adjusting a large num-
ber of passive reflecting units to appropriately change signal
propagation [1]. IRS implemented with conventional reflectar-
ray antennas or software defined metamaterials can achieve
passive beamforming for directional signal enhancement or
nulling by adjusting reflecting unit phase and amplitude. Re-
cently, IRS has been considered in physical layer security and
MISO/MIMO systems to improve wireless communication ca-
pabilities [2]. In addition, the benefits of joint non-orthogonal
multiple access and IRS were investigated [3]. However, in
scenarios where the channels of the legitimate communication
link and the channel of the eavesdropping link are spatially
highly correlated, the achievable secrecy rate may be very
limited.

In the literature, there have been many works that tried to
improve achievable secrecy rates in various IRS-aided com-
munication scenarios with an eavesdropper (Eves). Several
researches aim to maximize the secrecy rate of the IRS-
aided MISO channel by jointly optimizing the source transmit
covariance and IRS’s phase shift matrix. To improve the
achievable secrecy rate, an approximate method based on
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semidefinite relaxation (SDR) and Gaussian randomization
methods was proposed in [4]. Since SDR with Gaussian ran-
domization is computationally heavy, [5] replaced it with a
simple neural network at the cost of reduced secrecy rates.
The case where the line-of-sight link between the transmitter
and user/eavesdropper was blocked was considered in [6,7].
An algorithm using fractional programming and majorization
minimization (MM) was proposed in the case of multiple
antennas at the eavesdropper [8]. Bisection search (BS) and
majorization minimization combined with alternating opti-
mization (AO) algorithm was proposed in the case of the
IRS-aided MIMO channel [9].

In this paper, we consider the secure communication from a
multi-antenna transmitter to a multi-antenna legitimate user in
the presence of a multi-antenna eavesdropper, where an IRS is
deployed in the locality of the user and the eavesdropper. First,
we can improve the secrecy rate by adjusting the phase shift
of the IRS reflecting units. Second, the transmit signal can be
designed to balance the signal power towards the IRS and each
user/eavesdropper for signal enhancement/cancellation. Thus,
by jointly optimizing the active transmit signal at the trans-
mitter and the phase of the IRS reflecting units, the secrecy
rate can be maximized. However, this optimization problem
is difficult to solve because it has coupled variables and is
a non-convex problem. We propose an efficient algorithm to
solve this problem based on alternating optimization methods.

Our contributions are summarized as follows: We present
aximization, ICT Express (2022), https://doi.org/10.1016/j.icte.2022.03.009.

a secrecy rate maximization algorithm in IRS-aided MIMO
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iretap channels. We apply the coordinate descent method and
rovide the optimal reflection coefficients in closed-form ex-
ressions. The proposed closed-form expressions can achieve
he maximum secrecy rate faster and more accurately than
he conventional method of applying approximation or solving
he problem with numerical algorithm. To the best of our
nowledge, this paper first provides the closed-form expres-
ion for optimal reflection coefficients without resorting to
ny additional numerical optimization for IRS-aided MIMO
ecrecy rate maximization.

. IRS-aided secrecy rate maximization

We consider an IRS-aided MIMO wiretap channel, where
eceiver 1 is a legitimate user and receiver 2 is an eavesdrop-
er. Fig. 1 depicts the system model for IRS-aided MIMO
iretap channels. The transmitter is equipped with Nt antennas

nd receiver i for i = 1, 2 is equipped with Nr,i antennas. Let
i ∈ CNr,i ×Nt denote the direct channel from the transmitter to

eceiver i . An IRS is equipped with M passive reflecting units
hat can re-scatter the signals with adjustable amplitude and/or
hase. We assume the IRS controller adjusts the phase of the
eflection coefficient αm ∈ C, i.e., |αm | = 1, m = 1, 2, . . . , M .

T ∈ CNt ×M is the channel from the IRS to the transmitter, and
Ri ∈ CNr,i ×M is the channel from the IRS to receiver i . Due
to the channel reciprocity, the channel from the transmitter to
IRS is TH

∈ CM×Nt . Let Φ = diag{α1, α2, . . . , αM} denote
the diagonal reflection coefficient matrix of the IRS.

The received signals are given by yi = H̃i x + zi , i = 1, 2,

where the effective channel from the transmitter to receiver i
is given by H̃i = Hi +RiΦTH . x is the transmitted signal with
the power constraint tr(Q) ≤ P with Q = E[xxH ] ∈ CNt ×Nt

and zi ∼ CN (0, I) is the Gaussian noise vector. Suppose
the IRS reflection coefficients are given. Then, the achievable
secrecy rate of the MIMO wiretap channel is given by [10]

(Q,Φ) = log
⏐⏐⏐I + H̃1QH̃H

1

⏐⏐⏐ − log
⏐⏐⏐I + H̃2QH̃H

2

⏐⏐⏐ , (1)

hich is a function of Q and Φ. Here, |A| denotes the
eterminant of A. We aim to maximize the secrecy rate of the
RS-aided MIMO wiretap channel by jointly optimizing Φ and

P1) max
Q,Φ

log
⏐⏐⏐I + H̃1QH̃H

1

⏐⏐⏐ − log
⏐⏐⏐I + H̃2QH̃H

2

⏐⏐⏐
s.t. Φ = diag{α1, α2, . . . , αM}

|αm | = 1, ∀m

tr(Q) ≤ P, Q ⪰ 0. (2)

Problem (P1) is a non-convex optimization problem, which
is hard to solve in general. Thus, we solve Problem (P1) using
alternating optimization methods. We first optimize Q for a

xed Φ. Then, we optimize Φ for a fixed Q. We repeat this
alternating optimization until convergence. Algorithm 1 sum-
marizes how to solve Problem (P1). More detailed descriptions
are given in the subsequent subsections.
 r

2

Fig. 1. System model for IRS-aided MIMO wiretap channels.

.1. Optimizing Q

If Φ is given, then H̃ is fixed. In this case, Problem
P1) reduces to the conventional MIMO secrecy rate maxi-
ization problem given in (1). In [11], the MIMO secrecy

ate maximization problem was solved using the alternating
ptimization that converges to the KKT point of the problem.
n [12], the original problem was reformulated as a minimax
roblem and its global optimal solution was found using the
arrier method to deal with the minimax problem. We can
pply either algorithm to optimize Q for given Φ. Line 5 in

Algorithm 1 indicates optimizing Q for given Φ.

2.2. Optimizing Φ based on the coordinate descent methods

In this subsection, we focus on how to optimize Φ for
given Q. Since the objective function of Problem (P1) is not a
concave function of Φ, the joint optimization is not easy. Thus,
we apply the coordinate descent methods to optimize {αm}

M
m=1

or given Q. More specifically, we express Problem (P1) into
series of optimization problems for given Q and {α j }

M
j=1, j ̸=m

or m = 1, 2, . . . , M . Then, we apply the coordinate descent
ethod to each subproblem until convergence.
Now we derive a subproblem for the mth reflecting unit

m while Q and {α j }
M
j=1, j ̸=m are fixed. We first express the

ffective MIMO channel as H̃i = H̃i,−m + αmrimtH
m , where

˜ i,−m = Hi +
∑M

j=1, j ̸=m α j ri j tH
j , Ri = [ri1 · · · ri M ] and

= [t1 · · · tM ]. Cim ≡ rimtH
m can be considered as a cascaded

hannel (without taking the effect of IRS reflection yet) that
an be estimated using pilot symbols [13]. Note that H̃i,−m
s independent of αm . For the mth subproblem, we fix H̃i,−m .
hen, for i = 1, 2, we have

log
⏐⏐⏐I + H̃i QH̃H

i

⏐⏐⏐
= log

⏐⏐⏐I + (H̃i,−m + αmrimtH
m )Q(H̃i,−m + αmrimtH

m )H
⏐⏐⏐

= log
⏐⏐Aim + αmBim + α∗

mBH
im

⏐⏐
= log

⏐⏐⏐⏐I + αmA−
1
2

im BimA
−

1
2

im + α∗

mA
−

1
2

im BH
imA

−
1
2

im

⏐⏐⏐⏐
+ log |Aim |, (3)

here Aim = I + rimtH
m QtmrH

im + H̃i,−mQH̃H
i,−m and Bim =

tH QH̃H for m = 1, 2, . . . , M and the last equality in (3)
im m i,−m
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Algorithm 1 Secrecy Rate Maximization Algorithm for
IRS-aided MIMO Wiretap Channels.

1: Input: {Hi }, {Ri }, T, P
2: Initialize Φ
3: Repeat until convergence
4: H̃i = Hi + RiΦTH , i = 1, 2
5: Q = arg maxQ⪰0:tr(Q)≤P C(Q,Φ)
6: Repeat until convergence
7: for m = 1 : M
8: Compute aim , i = 1, 2, in (6)
9: Compute λ in (8)

10: αm = (a1m − λa2m)/|a1m − λa2m |

11: end for
12: end
13: Φ = diag{α1, α2, · · · , αM}

14: end

follows from |XY| = |X||Y| and X = X1/2X1/2 for X ≻ 0.
ote that Aim and Bim are independent of αm . For fixed Q

nd {α1, . . . , αm−1, αm+1, . . . , αM}, the mth subproblem for
ptimizing αm is given by

P1-m) max
αm∈C

log |I + αmp1mqH
1m + α∗

mq1mpH
1m |

− log |I + αmp2mqH
2m + α∗

mq2mpH
2m |

s.t. |αm | = 1, (4)

here pim = A
−

1
2

im rim and qim = A
−

1
2

im H̃i,−mQtm . pim and qim

are independent of αm and satisfy pimqH
im = A−

1
2

im BimA−
1
2

im . We
focus on the case of nonzero pim and qim because it is trivial
when either of pim or qim is zero.

The mth subproblem can be expressed as its equivalent
problem. Instead of directly solving Problem (P1-m), we solve
its equivalent problem

(P2-m) max
αm∈C

1 + Re{a∗

1mαm}

1 + Re{a∗

2mαm}

s.t. |αm | = 1, (5)

where

im = 2(qH
impim)∗/(1 − (∥pim∥

2
∥qim∥

2
− |qH

impim |
2
)). (6)

for i = 1, 2. The equivalence is derived in the following
lemma.

Lemma 1. Problem (P1-m) has the same optimal solution
with Problem (P2-m). In addition, aim satisfies |aim | < 1 for
all i and m.

Proof. The proof is given in the Appendix. □

If a1m = a2m , then any αm satisfying |αm | = 1 is the optimal
solution. Thus, we may exclude the trivial case of a1m = a2m .
In addition, the event of a1m = a2m has Lebesgue-measure
zero when the channel fading has a continuous cumulative
distribution function (CDF). Therefore, we can focus on the

case of a1m ̸= a2m , because we have a1m ̸= a2m almost

3

surely (i.e., with probability 1) when the channel fading has
a continuous CDF.

Lemma 2. For a1m ̸= a2m with |aim | < 1, i = 1, 2, the
optimal solution to Problem (P2-m) is given by

αm = (a1m − λa2m)/|a1m − λa2m | (7)

and the optimal value is λ, where λ is given by

λ =
1

1 − |a2m |
2

(
1 − Re{a∗

1ma2m}

+

√
(1 − Re{a∗

1ma2m})2 − (1 − |a1m |
2)(1 − |a2m |

2)
)

. (8)

roof. We define f (α) = (1 + Re{a∗

1mα})/(1 + Re{a∗

2mα})
nd S = {α ∈ C| |α| = 1}. Let ᾱ be the optimal solution to
roblem (P2-m) and λ = maxα∈S f (α) = f (ᾱ) be the optimal
alue. According to Lemma 1, we have |aim | < 1 for i = 1, 2.
hus, we have 1 + Re{a∗

2mα} > 0 for all α ∈ S. f (α) ≤ λ for
ll α ∈ S is equivalent to

− λ + Re{(a1m − λa2m)∗α} ≤ 0, ∀α ∈ S, (9)

here the equality holds if and only if α is the optimal solution
o Problem (P2-m), i.e., α = ᾱ.

Under the condition |α| = 1, Cauchy–Schwartz inequality
ives

− λ + Re{(a1m − λa2m)∗α} ≤ 1 − λ + |a1m − λa2m ||α|

= 1 − λ + |a1m − λa2m |, (10)

here the equality holds when α =
a1m−λa2m
|a1m−λa2m |

. When λ is the
optimal value in (9), the upper-bound to 1 − λ + Re{(a1m −

λa2m)∗α} is achieved when α = ᾱ. Therefore, α =
a1m−λa2m
|a1m−λa2m |

is the solution to Problem (P2-m). In addition, since the upper-
bound to 1−λ+Re{(a1m −λa2m)∗α} is equal to 0 due to (9), λ

satisfies 1−λ+|a1m − λa2m | = 0 in (10), i.e., (1−|a2m |
2)λ2

−

2(1 − Re{a∗

1ma2m})λ + 1 − |a1m |
2

= 0 and its largest solution
is equal to Eq. (8). Therefore, the lemma follows. □

In summary, combining Lemmas 1–2, we obtain the fol-
lowing optimal solution to Problem (P1-m).

Theorem 1. If a1m = a2m , then all αm satisfying |αm | = 1
is the solution to Problem (P1-m). Otherwise, the optimal
solution to Problem (P1-m) is given by

αm = (a1m − λa2m)/|a1m − λa2m |, (11)

here λ is given by (8).

roof. If a1m = a2m , the solution is trivially any αm satisfying
αm | = 1. Otherwise, we apply Lemmas 1–2 to Problem
P1-m) and then the theorem follows. □

Algorithm 1 summarizes the secrecy rate maximization
lgorithm for IRS-aided MIMO wiretap channels. Line 5 in-
icates optimizing Q while Φ is fixed. In Lines 6–13, the
oordinate descent method optimizes Φ while Q is fixed.
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heorem 2 (Convergence). The coordinate descent methods of
ptimizing Φ using Theorem 1 converges to a stationary point

of Problem (P1).

Proof. If function f : X1×· · ·×XM → R is strict quasiconvex
with respect to xm on Xm , for each m = 1, 2, . . . , M − 2 and
Xm ∈ Rnm is closed, nonempty, and convex for all m, then the
sequence {x(k)

} generated by x(k+1)
m = arg minxm∈Xm f (x(k+1)

1 ,

. . . , x(k+1)
m−1 , xm, x(k)

m+1, . . . , x(k)
M ) with x(k+1)

= (x(k+1)
1 , . . . ,

x(k+1)
M ) has limit points and every limit point is a stationary

point [14].
Instead of maximizing the objective function of Problem

(P1), we equivalently minimize −Em(x1, . . . , xm−1, xm+1, . . . ,

xM ) + log
1+aT

2m xm

1+aT
1m xm

, ∀m, where Em(·) is independent of αm ,

xm = [Re{αm}, Im{αm}]T and aim = [Re{aim}, Im{aim}]T .
Note

1+aT
2m xm

1+aT
1m xm

for all m is strictly quasiconvex [15]. In addition,
it is continuously differentiable and Xm is closed, nonempty,
nd convex. Therefore, the coordinate descent methods of
ptimizing Φ using Theorem 1 converge to a stationary point
f Problem (P1) for given Q. □

.3. Algorithm analysis

In this subsection, we analyze the proposed Algorithm 1
nd compare with conventional algorithms.

.3.1. Generalization of IRS-aided MIMO systems
In case of a1m ̸= 0 and a2m = 0 (or equivalently

2m = q2m = 0), Problem (P1-m) becomes the subproblem of
aximizing the IRS-aided MIMO capacity [16]. Theorem 1

eneralizes the solutions of the subproblems in IRS-aided
IMO channels to the solutions of subproblems in IRS-aided
IMO wiretap channels.

.3.2. Comparison with different formulation
One may obtain the optimal αm in the similar form of (11)

nd find the optimal λ using the Dinkelbach method [9]. OBO
ethod [9] derives optimal αm = e− j arg(s1m−λs2m ), where sim

s the only non-zero eigenvalue of A−1
im Bim and λ is computed

ith the bisection search (BS) algorithm. Note that Theorem 1
omputes λ in a closed form using (8), while OBO [9] finds
using a time-consuming numerical algorithm based on the

isection search. Our closed-form derivation is much better
han the numerical method because it is exact and can be
omputed with much lower complexity. To the best of our
nowledge, Theorem 1 first provides the optimal reflection
oefficients in a closed-form expression without resorting to
ny numerical optimization for IRS-aided MIMO secrecy rate
aximization.

.3.3. Computational complexity
We compare the computational complexity per iteration of

he alternating optimization algorithm. Optimizing Q with a
xed Φ is the common part for all considered algorithms,
here its complexity is O(N 3

t ). In the remaining discussion,
e focus on the complexity of optimizing Φ of each algorithm.
4

n Algorithm 1, the process of calculating αm , ∀m, requires
N 3

r,i + N 2
r,i Nt + Nr,i N 2

t + 2Nr,i Nt + 3N 2
r,i + 2N 2

t + 2Nr,i + Nt

ultiplications. Thus, Algorithm 1 has complexity O(M(N 3
r +

N 2
r Nt + Nr N 2

t )), where Nr = max(Nr,1, Nr,2). On the other
and, OBO [9] has complexity O(M(N 3

r + N 2
r Nt + Nr N 2

t +

og2
1
ϵ
)), where ϵ denotes the required accuracy for the bi-

ection search. If all receiver has one antenna (i.e., Nr,i =

1, i = 1, 2), SDR [4] can optimize Φ with complexity of
O(M3.5

+ M2 Nt + M N 2
t ), while Algorithm 1 and OBO [9]

has complexity O(M N 2
t ) and O(M(N 2

t + log2
1
ϵ
)), respec-

tively. Therefore, Algorithm 1 has the lowest computational
complexity among considered algorithms. Detailed numerical
comparisons will be given in the next section.

3. Numerical results

We performed numerical simulations to evaluate the per-
formance of proposed algorithms in IRS-aided MIMO wire-
tap channels. The distance dependent path loss is L(d) =

ζ (d/d0)−β , where ζ = −30 dB is the path loss at ref-
erence distance d0 = 1 m, d is the distance between two
locations, and β denotes the path loss exponent. For small-
scale fading, we assume the Rician fading channel model
H =

√
κ/(1 + κ)HLoS

+
√

1/(1 + κ)HNLoS, where κ is the
ician factor, and HLoS and HNLoS denote the deterministic
oS and Rayleigh fading components, respectively. We model

ading channels by the spatially correlated Rician fading model
iven in [17]. Unless mentioned otherwise, we set simulation
arameters as shown in Table 1. We repeat the updates until
he secrecy rate increment in an update is less than 10−4

ps/Hz and a maximum of 100 iterations. For performance
enchmarks, we consider following schemes:

• CD (Algorithm 1): It stands for Algorithm 1 that is the
alternating optimization (AO) algorithm with the closed-
form solution by optimizing Φ based on the coordinate
descent (CD) methods. This is our proposed algorithm.

• OBO (Bisection) [9]: It stands for the AO algorithm
composed of the bisection search and one-by-one (OBO)
optimization method in the IRS-aided MIMO wiretap
channel. In fact, OBO is nothing but the CD, but we use
‘OBO’ to distinguish itself from our work.

• SDR (Gaussian randomization) [4]: It stands for the
AO algorithm obtained by applying SDR and Gaussian
randomization in the IRS-aided MISO wiretap channel.

• Exhaustive method: It stands for the ideal algorithm that
try all possible values for all reflection coefficients to
achieve the maximum secrecy rate.

• Without IRS: The system ‘without IRS’ implies that we
do not use IRS and optimizes Q with Φ = 0.

Fig. 2 depicts the secrecy rate versus SNR performance. We
et the bit resolution of αm is 3 in all methods to make a fair
omparison with the exhaustive method. The performance gap
etween the system with IRS and without IRS increases with
he transmit power, which validates the advantages of IRS.
DR achieves nearly the same performance when SNR is low,
ut its performance degrades in the high SNR. The exhaustive
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Table 1
The parameters for simulation.

Parameters Values

The coordinate of node Tx(0, 0), IRS(10, 10),
User(150, 0), Eve(deve, 0)

The number of antenna Nt = 8
Nr,1 = Nr,2 = 1 for MISO systems
Nr,1 = Nr,2 = 4 for MIMO systems

The path loss exponent βT I = βIU = βI E = 3
βT U = βEU = 1.5

The Rician factor κ = 1

The noise power −80 dBm

Fig. 2. Secrecy rate versus SNR in the IRS-aided MISO wiretap channel
(M = 8, deve = 140).

method provides the highest secrecy rate and thus it plays the
role of the upper bound to the all possible algorithms. CD and
OBO achieve nearly the same secrecy rate with the exhaustive
method. This numerically validates the optimality of OBO and
the proposed algorithm.

Fig. 3 depicts the transmitted rate with respect to the
horizontal distance deve between the transmitter and the eaves-
dropper in the IRS-aided MISO wiretap channel. We have
observed the following: (1) The system without IRS is ir-
relevant to the eavesdropper’s location and has the lowest
performance. (2) CD and OBO have only 10% performance
degradation when the eavesdropper is close to IRS. Therefore,
IRS helps to increase the secrecy rate significantly. In addition,
CD and OBO can achieve a high security rate regardless of the
location of the eavesdropper.

Fig. 4 shows the secrecy rates versus the number of IRS’s
reflecting units, M . The solid and dashed lines are the secrecy
rate in the MIMO system and the MISO system, respectively.
We observed that increasing M leads to the significant im-
provement of secrecy rates. The performance of the SDR is
the same as the CD when M is low, however there is perfor-
mance degradation when M is high because SDR produces a

suboptimal solution. In a MIMO channels, as the number of i

5

Fig. 3. Secrecy rate with respect to the location of eavesdropper deve
(M = 32, P = 10 dBm).

Fig. 4. Secrecy rate versus the number of IRS’s reflecting units M (P = 10
dBm, deve = 140).

Table 2
Comparison of average running times.

Algorithms M = 8 M = 32

Exhaustive method 23 min Out of memory
SDR (Gaussian randomization) 1.123 s 2.794 s
OBO (Bisection) 0.057 s 0.725 s
CD (Algorithm 1) 0.039 s 0.147 s
Without IRS 0.288 µs 0.288 µs

the legitimate user’s antennas increases, the sufficient spatial
degree of freedom for transmission also increases. Therefore,
the MIMO channel with Nr,1 = Nr,2 = 4 achieves a higher
ecrecy rates than the MISO channel. We also observe that
D and OBO achieve the same secrecy rate in MIMO/MISO
iretap channels.
Table 2 shows the average running time of different schemes
n the IRS-aided MISO wiretap channel. For a fair comparison,
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e used the same PC with Intel i9 CPU and 32 GB RAM.
he average running time is the overall time that algorithms

ake to optimize Q and Φ. The system without IRS is the
astest because optimizing Q is only performed. If M is

large, exhaustive method does not operate due to insufficient
memory. According to Remark 3, CD has lower computational
complexity than OBO. When M is 8, CD is about 1.5 times
aster than OBO. In addition, as M increases, the gap of
unning time increases. This is because OBO requires com-
utation of bisection search and eigenvalue decomposition in
he optimizing Φ, unlike CD. When M is 32, CD is 5 times
nd 20 times faster than OBO and SDR, respectively.

. Conclusion

In this paper, we presented closed-form expressions for
he optimal IRS coefficient in the IRS-aided MIMO wire-
ap channel. We transformed the IRS coefficient optimization
roblem into an equivalent linear-fractional optimization under
mplitude constraints, which admits the closed-form optimal
olution. In the literature, many IRS optimization problems
sually have been numerically solved approximately using
emidefinite relaxation or majorization minimization. We first
rovided the closed-form expression for optimal reflection
oefficient without resorting to any numerical optimization
or IRS-aided MIMO secrecy rate maximization. Thus, our
erived solution is much better in the sense that it is exact
nd can be computed with much lower complexity and with
ore numerical stability.
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ppendix

We prove Lemma 1 using the Cauchy–Schwartz inequality
or a, x ∈ C, i.e, −|a∥x | ≤ Re{a∗x} ≤ |a∥x |, where the first
nd second equalities hold when x = −ca and x = ca for
ome c > 0, respectively. We define cim = ∥pim∥∥qim∥, δim =
H
impim/cim , p̄im =

1
∥pim∥

pim , q̄im =
1

∥qim∥
qim for i = 1, 2.

Then we have δim = q̄H
im p̄im and pimqH

im = cim p̄im q̄H
im and

αmpimqH
im +α∗

mqimpH
im = UimΛimUH

im, where Uim = [p̄im, q̄im]

and Λim =

[
0 cimαm

cimα∗
m 0

]
. Thus, we have

|I + αmpimqH
im + α∗

mqimpH
im |

= |I + U Λ UH
| = |I + UH U Λ |
im im im im im im

6

=

⏐⏐⏐⏐I +

[
1 δ∗

im
δim 1

]
Λim

⏐⏐⏐⏐
=

⏐⏐⏐⏐[ 1 + cimδ∗

imα∗
m cimαm

cimα∗
m 1 + cimδimαm

]⏐⏐⏐⏐
= |1 + cimδimαm |

2
− c2

im

= 1 − (1 − |δim |
2)c2

im + 2cimRe{δimαm}. (12)

Since the covariance matrix I + H̃i QH̃H
i is positive definite

for any {αm}, the determinants in (3) are strictly positive.
This implies that all αm ∈ S = {α ∈ C ∥ α| = 1} are
feasible for Problem (P1-m) in the sense that the determinants
in Problem (P1-m) are positive for all αm ∈ S . Therefore,
1− (1−|δim |

2)c2
im +2cimRe{δimαm} > 0 for all αm ∈ S. In ad-

dition, Cauchy–Schwartz inequality satisfies 2cimRe{δimαm} ≥

−2cim |δim |. Thus, we have minαm∈S 1 − (1 − |δim |
2)c2

im +

2cimRe{δimαm} = 1 − (1 − |δim |
2)c2

im − 2cim |δim | > 0. This
implies 1 − (1 − |δim |

2)c2
im > 2cim |δim | ≥ 0.

The objective function of Problem (P1-m) is

log |I + αmp1mqH
1m + α∗

mq1mpH
1m |

− log |I + αmp2mqH
2m + α∗

mq2mpH
2m |

= log(1 − (1 − |δ1m |
2)c2

1m + 2c1mRe{δ1mαm})

− log(1 − (1 − |δ2m |
2)c2

2m + 2c2mRe{δ2mαm})

= hm + log
1 + Re{a∗

1mαm}

1 + Re{a∗

2mαm}
, (13)

where hm = log(1− (1−|δ1m |
2)c2

1m)− log(1− (1−|δ2m |
2)c2

2m),
im = 2cimδ∗

im/(1 − (1 − |δim |
2)c2

im), i = 1, 2. As mentioned
bove, we have 1 − (1 − |δim |

2)c2
im > 0 and 1 − (1 −

δim |
2)c2

im + 2cimRe{δimαm} > 0 for all αm ∈ S. Therefore,
roblem (P1-m) has the same solution with Problem (P2-
). In addition, since 1 + Re{a∗

imαm} > 0 for all αm ∈ S,
e have minαm∈S 1 + Re{a∗

imαm} = 1 − |aim | > 0 due to
auchy–Schwartz inequality. This implies |aim | < 1 for i and
.
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