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A B S T R A C T   

Autism spectrum disorder (ASD) is a collection of neurological disabilities marked by difficulties with behavior, 
speech, language, and interaction. It is a complicated and behaviorally defined static disorder of the developing 
brain. Recently it has become a serious concern across the world. The goal of this project was to use bioinfor-
matics tools and network biology to uncover the molecular signatures and pathways of ASD. We investigated 
brain transcriptomics gene expression datasets and determined 47 dysregulated differentially expressed common 
genes. Several kinds of crucial neurodegeneration-related molecular mechanisms in the signaling structures were 
determined as a result of these investigations. We implemented gene set enrichment analysis (GSEA) using 
bimolecular pathways and gene ontology (GO) terms to determine the role of these differentially expressed genes 
(DEGs), as well as protein-protein interactions (PPI), transcriptional factor interactions, and post-transcriptional 
factor interactions. PPI network collected the top ten hub genes including KIT, PIN1, GATA1, GRIN2A, PBX2, 
BLK, ATP6V1B1, TCF7L1, TRAF1, and HSPG2. The PPI network also revealed the existence of two sub-networks. 
Moreover, several transcription factors (NFIC, USF2, TFAP2A, RELA, FOXL1, GATA2, YY1, FOXC1, NFKB1, and 
E2F1) and post-transcription factors (mir-335-5p, mir-26b-5p, mir-124-3p, mir-192-5p, mir-1-3p, mir-215-5p, 
mir-6825-5p, mir-146a-5p, mir-8485, and mir-93-5p) were found throughout this study. Some drug-like mole-
cules were also predicted that might have a beneficial effect against ASD. We detected potentially novel links 
between pathogenic conditions in ASD patient’s brain tissues. This work offers molecular biomarkers at the gene 
expression level and protein bases that could aid in a better understanding of molecular pathways, as well as 
potential pharmacological approaches and therapies for developing effective ASD treatments.   

1. Introduction 

Autism spectrum disorder (ASD) is a term that has been accustomed 
to characterize a collection of initial socialization deformities and 
repeated neural activities that are linked to both a significant hereditary 
component and external factors. Kanner was the first who defined 
autism in 1943 through the study of 11 youngsters with comparable 
their odd behaviors [1–3]. The “American Psychiatric Association” 
changed the word ‘Autistic’ to Autism Spectrum Disorders (ASD) in 2013 

[4]. ASD is a complicated mental condition indicated by problems in 
three areas: socializing, interaction, and confined as well as repetitious 
activity [5]. It has a significant genetic component with a complicated 
inheritance pattern [6–8]. ASD is four times as prevalent in men than it 
is in women (1 out of 34 men vs. 1 out of 144 women) [9]. Children with 
ASD may develop normally for the first few months or even years of their 
lives, but later on, they may become reclusive, aggressive, or lose lan-
guage abilities that they had previously acquired [10,11]. Generally, the 
brain shapes and organization of autistic children differ from 
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neurotypical children [12]. According to the experts, autistic children 
have an overgrowth of synapses or linkages throughout brain cells, and 
this overgrowth is caused by a disruption in the usual trimming mech-
anism that happens throughout brain growth [13]. 

At present, ASD is predicted to affect 1 out of every 160 children all 
over the world [14,15]. In Bangladesh, Bangabandhu Sheikh Mujib 
Medical University (BSMMU) recently verified that about 2 out of every 
1000 children in Bangladesh is a victim of ASD [16]. Furthermore, one 
in fifty-nine American children was identified with ASD according to the 
CDC (centers for disease control) [17]. Since the 1960s, the number of 
diagnoses has risen substantially, possibly due to improvements in 
diagnostic procedures [18]. The rate of diagnoses of ASD has become 
more than in the last two decades [19]. The autism rights movement 
advocates the notion of neurodiversity, which sees autism as a normal 
variety of the brain rather than a disease that can be treated. 

A mixture of hereditary and environmental variables has been linked 
to autism. Though no confirmed reasons for ASD have been identified, it 
is commonly thought that ASD is caused by anomalies in the central 
nervous system. Genetic mutations may enhance the risk of ASD [20]. 
ASD in children can be recognized by many symptoms. Generally, ASD 
symptoms are visible by the age of two [21–23]. These symptoms are 
including less eye contact, facial expression, a paucity of responsiveness 

towards their name, apathy about their caretakers, repetitive motions 
(waving their hands, twisting fingers, or swaying their body), not talking 
as much as other youngsters, repeating the same sentences, etc., [24,25]. 
Moreover, people who are diagnosed with ASD can cause self-harm, 
injure themselves by hitting their head on solid objects or punching 
their arms or clawing their skin [26–28]. Hence people with ASD always 
need special care. They should be kept under observation. 

Besides, there are several problems and challenges in diagnosing 
ASD and caring for an ASD patient. Only 10% to 20% of ASD patients 
with comparable pathogenic variants might be detected at various de-
grees of the spectrum. Detection is restricted in terms of sensitivity and 
specificity [29]. Moreover, it is a costly process to take care of an ASD 
patient. It is now associated with a significant financial strain. In 2015, 
the cost of caring for persons having ASD was 268 billion in the USA, 
according to statistics [30]. By 2025, this figure is anticipated to rise to 
461 billion [31]. 

ASD is the world’s most rapidly increasing developmental impair-
ment. Early diagnostic and therapeutic innovations have been proven in 
studies to improve autistic people’s long-term problems. Many therapies 
have been developed for Autistic children. According to research, the 
use of complementary and alternative medicine (CAM) for autistic 
symptoms in children was very common [32]. CAM was frequently 
viewed as “organic,” with none of the negative side effects associated 
with traditional medical therapies [32,33]. CAM treatments are pro-
vided to 2%–50% of ASD children in the United States, according to 
estimates [33]. However, adults and children are becoming more 
familiar with complementary and alternative medicine (CAM) day by 
day. Moreover, electrophysiological biomarkers indicate medical pro-
gression for autism treatment. Electrophysiological biomarkers have 
been used in observational studies to determine the spatiotemporal 
anomalies in children and adults with ASD, along with newborns at risk 
for having ASD [34]. According to the researchers, many people with 
ASD are fascinated and driven by computers and computer-assisted 
learning can address a variety of academic and support needs, 
including emotion detection, communication, and social contact [35]. 
Effective computing technology can detect ASD person’s emotional 
states and provide appropriate psychological treatment. 

Though there is a plethora of scientific evidence demonstrating the 
over-representation of several conditions with ASD and a variety of 
treatments for this problem, there is still a lack of understanding of the 
mechanisms and molecular pathways that underpin ASD [36]. As a 
result, the number of ASD patients grows at an alarming pace year after 
year [37]. Nowadays, it has become a source of great concern among 
doctors. New technologies have a lot of promises in terms of offering 
unique and personalized solutions [38]. But still, there is a need for 
additional intervention research that can benefit persons with autism, 
their caretakers, and educators. 

In our ongoing study, we wanted to find molecular signatures and 
pathways at transcriptional and post-transcriptional stages so that we 
can learn more about the pathogenic processes that cause ASD and find 
possible biomarkers for early detection. By knowing the processes un-
derlying multiple signaling mechanisms in the genesis of autism might 
aid in the discovery of novel targeted therapies and the development of 
new pharmacological treatments. Here, we used statistical approaches 
to analyze transcriptome data set linked to ASD to predict hub genes, 
gene set variability, and other pathological changes using differentially 
expressed genes (DEGs). Furthermore, we also confirmed the interaction 
of proteins with one another, the transcriptional and post- 
transcriptional processes, as well as the selection of small pharmaco-
logical molecules. 

2. Materials and methods 

The schematic diagram in Fig. 1 depicts the whole method of the 
integrated systems biology and analytical technique to discover molec-
ular markers and pathways in brain tissues of ASD. 

Fig. 1. This workflow depicts the whole work of this study.  
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2.1. Data collection 

We attempted to obtain some datasets relevant to ASD at the start of 
our research. We sought relevant datasets in the GEO (Gene Expression 
Omnibus) collection of the NCBI (National Center for Biotechnology 
Information)1 [39,40]. The following keywords were used to search 
these datasets: ”Autistic spectrum disease,” ”Blood,” ”Brain,” and ”Homo 
sapiens”. From there, we collected two RNA sequence datasets, 

GSE30573 [41] and GSE62098 [42]. In the GSE30573 dataset, samples 
were collected from brain region BA41 (temporal cortex), brain region 
BA09 (frontal cortex) and brain region BA22 (temporal cortex) and in 
the GSE62098 dataset, samples were collected from frozen postmortem 
brain. The GSE30573 dataset had 6 samples (3 cases, 3 controls), 
whereas the GSE62098 dataset had 12 samples (6 cases, 6 controls). 
Then, examined these datasets and identified differentially expressed 
genes (DEGs) that were common in both datasets. These DEGs were used 
for the next processes. 

2.2. Screening of DEGs 

To bring out the significant DEGs, GSE30573 and GSE62098 datasets 
were analyzed through a statistical tool, GREIN2 [43]. We adjusted 
p-value < 0.05 and |logF C| > 1.0 and |logF C| < − 1.0 (large scale Fold 
change) to find statistically significant DEGs, applying Benjami-
ni–Hochberg (BH) technique [44]. For the resultant DEGs we carried out 
a Venn analysis,3 a bioinformatics web tool to compare two datasets and 
uncover the shared DEGs [45,46]. 

2.3. Functional enrichment of gene sets 

Using the online bioinformatics tool Enrichr,4 the KEGG (Kyoto 
Encyclopedia of Genes and Genomes) pathway, Reactome pathway, and 
the Gene Ontology (GO) of the DEGs were annotated. Enrichr is a major 
platform with several distinct genetic engineering libraries to examine 
gene enhancement across the whole genome [47]. GO is vital for bio-
informatics to attempt to unify the representation of gene and gene 
product properties across all species as well as functional enrichment 
(biological process, cellular component, and molecular activities) [48, 
49]. It’s a common method for studying the functional aspects of 
large-scale transcription or genomic data. To understand cellular 
metabolism, the KEGG pathway, and the Reactome pathway are usually 
applied [50]. 

2.4. Protein-protein interaction analysis and hub protein extraction 

Protein-protein interaction (PPI) refers to the interactions between 
proteins in a biological process. Proteins enter a cell with a comparable 
affliction, which is produced by a protein-protein network. The assess-
ment and study of the PPI network and its functions are necessary for 
understanding and gaining insights into cellular machinery activities. It 
is a fundamental goal in cellular and system biological studies [51,52]. 
In this study, the PPI network of proteins encoded by DEGs was built, 
using the STRING database [53]. In the STRING intercom, a median 
confidence score of 600 was used. NetworkAnalyst was used to do the 
topological analysis [54]. The PPI network was formed by nodes, edges, 
and connections with the nearly entangled nodes being referred to as 
hub genes. Then, we used the CytoHubba plugin [55] in Cytoscape 
software5 [56] to visualize the target network. The degree method was 
used to discover the hub Genes. CytoHubba provides 11 methods for 
topological analysis of networks from different perspectives. Thus, the 

Table 1 
Overview and the quantitative measurements of datasets used in this study.  

SL No GEO accession GEO Platform Sample Sample Size Control Case Number of DEGs 

Up Down Total 

1. GSE30573 GPL9115 6 3 3 2142 1543 3685 
2. GSE62098 GPL11154 12 6 6 577 93 670  

Fig. 2. Identification of common DEGs. (a) Upregulatory common DEGs. (b) 
Downregulatory common DEGs. 

1 https://www.ncbi.nlm.nih.gov/geo/. 

2 http://www.ilincs.org/apps/grein/.  
3 http://bioinformatics.psb.ugent.be/webtools/Venn/.  
4 https://maayanlab.cloud/Enrichr.  
5 https://cytoscape.org/. 
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Fig. 3. Hierarchical heat map clustering of gene expression. (a) GSE30573 (b) GSE62098. In these graphs, upregulated gene expressions are denoted by yellow, 
downregulated gene expressions are denoted by blue, and insignificant gene expressions are denoted by black. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.) 
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top ten hub genes from the PPI network were recognized. By using the 
MCODE plugin [57] in Cytoscape, the top two PPI network modules 
were discovered. The enrichment studies were used to further examine 
and describe the top two modules of the PPI network. 

2.5. Identification of transcriptional factors and post-transcriptional 
factors 

A transcription factor (TF) is a protein that binds to a specific gene 

and regulates the pace at which genetic information is transcribed. 
Connections between transcriptional regulatory proteins and their gene 
products are described by transcriptional regulatory circuits [58,59]. 
Post-transcriptional factors or miRNAs are tiny internal RNA molecules, 
present in mammals, trees, and certain viruses around [60,61]. They can 
lower the stabilization and translational activities of messenger RNAs 
(mRNAs) with completely or substantially similar sequences to regulate 
post-transcriptional gene expressions [60,62]. These TFs and miRNAs 
may influence relevant DEGs. So, to investigate the TFs interactions and 
miRNAs interactions among DEGs, we used the JASPR [63] and miR-
tarbase database [64] respectively in NetworkAnalyst [54]. 

2.6. Candidate drugs identification 

Based on the DEGs of ASD, we identified therapeutic targets utilizing 
the drug signature database (DSigDB) [65] by using Enrichr. DSigDB is a 
worldwide database for identifying targeted messages. It is a novel gene 
set resource that plays an important role in the analysis of new genes 
that connects drug molecules with their target genes. DSigDB presently 
has 22527 gene sets, 17389 distinct chemicals, and 19531 genes [65]. 
DSigDB gene sets eventually merge with GSEA software, allowing for the 
linking of transcriptional activation with drugs for therapeutic appli-
cations and research programs. Differentially expressed genes are 
associated with the drug signature database. These drugs might have 
inhibitory properties against ASD [66]. 

2.7. Verification of biomarkers 

Biomarkers comprise components or processes which are statistically 
detectable and medically verified to indicate descriptive, preventive, as 
well as a potential role with a standard and disordered physical situation 
[67]. To confirm our potential biomarkers, we performed a 
literature-based analysis. We have gone through ASD-related literature 
that supports the findings of our study. These literature analyses can 
make a valuable contribution to our identified potential biomarkers, 
which we’ve uncovered. 

3. Results 

3.1. DEGs identification 

We retrieved two high-performance sequencing RNA datasets from 
the NCBI-GEO database. The GSE30573 dataset revealed 3685 DEGs 
that included 2142 upregulated and 1543 downregulated DEGs and the 
GSE62098 dataset revealed 670 DEGs including 577 upregulated DEGs 
and 93 downregulated DEGs (Table 1). We used the Venn diagram tool 
to find common differentially expressed genes between two datasets. A 
total of 47 common DEGs (39 upregulated and 8 downregulated) were 
figured out (Fig. 2). Furthermore, we found 713 DEGs when we stratified 
our study into the temporal and frontal cortex of the brain from the 
GSE30573 dataset. Among them, 196 genes were upregulated DEGs and 
517 genes were downregulated DEGs (S1). Here, Fig. 3 shows the heat 
map cluster of the top 100 upregulated genes and downregulated genes. 
Table 1 represents the datasets and quantitative measurements of this 
study. We have stratified the analysis into the temporal cortex and 
frontal cortex to see the differences in the differentially expressed genes 
which is shown in Table A in the supplementary file. 

3.2. Identification of gene ontology and pathway enrichment 

Enrichr was used to find out the GO terms and pathway enrichment 
analysis to determine the biological relevance and enriched pathways 
associated with this present study. GO analysis was used to determine 
the molecular functions, biological roles, and cellular activities of the 
DEGs. Table 2 displays the list of top ten keywords in the categories of 
biological processes, molecular activities, and cellular functions. We 

Table 2 
The functional enrichment analysis to uncover the most important GO terms of 
DEGS.  

Category GO ID GO Terms p-Value 

GO Biological 
process 

GO:0071357 cellular response to type I interferon 2.85 ×
10− 05 

GO:0060337 type I interferon signaling pathway 2.85 ×
10− 05 

GO:1903363 negative regulation of cellular 
protein catabolic process 

8.63 ×
10− 05 

GO:0048568 embryonic organ development 3.45 ×
10− 04 

GO:0003181 atrioventricular valve 
morphogenesis 

6.55 ×
10− 04 

GO:0060317 cardiac epithelial to mesenchymal 
transition 

7.66 ×
10− 04 

GO:0061515 myeloid cell development 7.66 ×
10− 04 

GO:0032803 regulation of low-density 
lipoprotein particle receptor 
catabolic process 

8.18 ×
10− 04 

GO:0043062 extracellular structure organization 8.65 ×
10− 04 

GO:0045229 external encapsulating structure 
organization 

8.91 ×
10− 04 

GO:0005887 integral component of plasma 
membrane 

7.75 ×
10− 04 

GO Cellular 
Process 

GO:0042612 MHC class I protein complex 2.85 ×
10− 05 

GO:0008076 voltage-gated potassium channel 
complex 

4.517 ×
10− 03 

GO:0034705 potassium channel complex 6.248 ×
10− 03 

GO:0044295 axonal growth cone 6.248 ×
10− 03 

GO:0032279 asymmetric synapse 6.248 ×
10− 03 

GO:0030670 phagocytic vesicle membrane 8.066 ×
10− 03 

GO:0062023 collagen-containing extracellular 
matrix 

8.477 ×
10− 03 

GO:0014069 postsynaptic density 8.852 ×
10− 03 

GO:0031901 early endosome membrane 1.215 ×
10− 02 

GO:0005251 delayed rectifier potassium channel 
activity 

2.26 ×
10− 04 

GO Molecular 
Function 

GO:0022843 voltage-gated cation channel 
activity 

2.68 ×
10− 04 

GO:0005249 voltage-gated potassium channel 
activity 

9.38 ×
10− 04 

GO:0004936 alpha-adrenergic receptor activity 1.219 ×
10− 03 

GO:0005267 potassium channel activity 9.774 ×
10− 03 

GO:0005261 cation channel activity 1.2578 ×
10− 02 

GO:0050750 low-density lipoprotein particle 
receptor binding 

1.857 ×
10− 02 

GO:0070325 lipoprotein particle receptor 
binding 

2.6931 ×
10− 02 

GO:0005546 phosphatidylinositol-4,5- 
bisphosphate binding 

3.1483 ×
10− 02 

GO:0001540 amyloid-beta binding 3.7072 ×
10− 02  
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also used functional enrichment analysis to find molecular pathways 
that were enriched by the common DEGs. From the KEGG pathway, we 
identified that the significant pathways were mostly connected to 
Epstein-Barr virus infection, antigen processing, and oxidative phos-
phorylation and Reactome pathways were mainly connected with 
interferon signaling and neuronal system. Fig. 4 represents the KEGG 
pathway and Table 3 represents the significantly enriched Reactome 
pathway. 

3.3. Development of the PPI network and determination of hub genes 

We operated STRING at NetworkAnalyst to find PPI networks for 
both up and down-regulated genes to evaluate the PPI among DEGs. The 
PPI network is a scale-free architecture made up of a few highly linked 
proteins known as hub genes. KIT, PIN1, GATA1, GRIN2A, PBX2, BLK, 
ATP6V1B1, TCF7L1, TRAF1, and HSPG2 were identified as hub genes by 
topological analysis (Fig. 5). Among these hub genes, KIT, GRIN2A, BLK, 
and TRAF1 had been strongly associated with ASD, which we explained 
with relevant references in the biomarkers validation section. These hub 
genes might be used as biomarkers, which could lead to novel treatment 
approaches for the illnesses being studied. Table 4 represents the degree 
of the top ten hub genes. 

In addition, the modular structure of the PPI network revealed the 
existence of two strongly linked modules (Fig. 6), according to the 
research. There were three nodes and three edges in these two modules. 
These two modules can assist us in comprehending their proximity and 
connection. 

3.4. Determination of regulatory biomolecules 

We used a network-based method to detect significant alterations at 
the transcriptional and post-transcriptional levels. These transcriptional 
and post-transcriptional regulatory networks of corresponding DEGs 
uncovered the interactions between transcriptional factors (TFs) and 
post-transcriptional factors (miRNAs). Fig. 7 represents the TFs-DEGs 
network. This network revealed the top ten transcriptional factors 
which were associated with ASD. They were NFIC, USF2, TFAP2A, 
RELA, FOXL1, GATA2, YY1, FOXC1, NFKB1, and E2F1. 

Furthermore, Fig. 8 shows the miRNAs-DEGs interactions network. 

Fig. 4. Significantly enriched KEGG pathway.  

Table 3 
Significantly enriched Reactome pathway.  

Reactome pathway P-value 

Interferon alpha/beta signaling Homo sapiens R-HSA-909733 3.70 ×
10− 05 

Interferon Signaling Homo sapiens R-HSA-913531 4.57 ×
10− 04 

Neuronal System Homo sapiens R-HSA-112316 4.71 ×
10− 04 

Voltage gated Potassium channels Homo sapiens R-HSA-1296072 6.33 ×
10− 04 

Antigen Presentation: Folding, assembly and peptide loading of class I 
MHC Homo sapiens R-HSA-983170 

1.49 ×
10− 03 

Potassium Channels Homo sapiens R-HSA-1296071 2.17 ×
10− 03 

Interaction between L1 and Ankyrins Homo sapiens R-HSA-445095 2.31 ×
10− 03 

Adrenoceptors Homo sapiens R-HSA-390696 2.87 ×
10− 03 

ER-Phagosome pathway Homo sapiens R-HSA-1236974 2.97 ×
10− 03  
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The top ten miRNAs were mir-335-5p, mir-26b-5p, mir-124-3p, mir- 
192-5p, mir-1-3p, mir-215-5p, mir-6825-5p, mir-146a-5p, mir-8485, 
and mir-93-5p. 

3.5. Identification of candidate drugs and small molecules 

This study revealed some candidate drug molecules. We used the 
DsigDB database to figure out the molecular interactions between drug- 
like molecules and DEGs. Based on their p-value, the top ten chemical 
compounds were retrieved. This allowed us to suggest viable medicines 
and pharmacological targets. Table 5 represents candidate drug com-
pounds along with their chemical formula and chemical structure. 

3.6. Potential biomarkers verification 

We did literature research to verify our suggested possible goals in 
our research. Our investigation included ten hub genes (KIT, PIN1, 
GATA1, GRIN2A, PBX2, BLK, TCF7L1, TRAF1, and HSPG2) which were 
connected with ASD (Table 4). The dysregulation of these genes can 
cause the severe neurodevelopmental disorder. KIT mutation has been 
shown to cause intellectual disability [68]. It has been also shown as a 
candidate gene for the lack of communication in ASD [59]. A. J. Kilsby 
et al. [58] and A. Ben’ıtez-Burraco et al. [69] identified the KIT gene as a 
biomarker in their research that is associated with our study. Mutations 
in the PIN1 gene can cause neural diseases. Many findings show that a 
decrease of PIN1 activity may rise to synaptic plasticity depletion in the 
development of Alzheimer’s disease [70]. Mutations in the GATA1 can 
cause down syndrome [71,72] and research studies indicated ASD, 
behavioral, and mental problems are all common in persons with Down 

Fig. 5. PPI network of DEGs. In the figure, DEGs are shown by the nodes, while interactions among genes are shown by the edges. The highlighted nodes are 
indicating the top 10 hub genes. 

Table 4 
The ten putative HUB genes of the PPI network in topological attributes  

Rank Hub genes Full form p- 
Value 

Degree Regulation 

1 KIT Proto-Oncogene, 
Receptor Tyrosine 
Kinase 

5.67 ×
10− 04 

132 Down 

2 PIN1 Peptidylprolyl Cis/ 
Trans Isomerase, 
NIMA-Interacting 1 

2.86 ×
10− 02 

68 Down 

3 GATA1 GATA Binding Protein 
1, Erythroid 
transcription factor 

8.41 ×
10− 03 

61 Up 

4 GRIN2A Glutamate Inotropic 
Receptor NMDA Type 
Subunit 2 A) 

1.96 ×
10− 04 

59 Down 

5 PBX2 Pre-B-cell leukemia 
transcription factor 2 

1.76 ×
10− 07 

55 Up 

6 BLK Proto-Oncogene, Src 
Family Tyrosine Kinase 

1.27 ×
10− 02 

52 Up 

7 TRAF1 TNF receptor- 
associated factor 1 

1.92 ×
10− 03 

51 Up 

8 ATP6V1B1 ATPase H +
Transporting V1 
Subunit B1 

1.42 ×
10− 03 

51 Up 

9 TCF7L1 Transcription factor 7- 
like 1 

1.17 ×
10− 2 

51 Up 

10 HSPG2 Heparan sulfate 
proteoglycan 2 

4.6 ×
10− 3 

43 Up  
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syndrome [73]. So indirectly, the GATA1 gene may control ASD. 
GRIN2A has been proven as a candidate gene for ASD [74,75]. Muta-
tions in the GRIN2A gene are the reason for learning disabilities and 
cognitive problems [76,77]. BLK has been linked to the processes of ASD 
genesis in the cross-tissue study [78]. C. Rodriguez-Fontenla and A. J. T. 
p. Carracedo proved BLK as an ASD biomarker that is associated with 
our study [78]. The functionality of PBX2 in ASD has yet to be discov-
ered. Furthermore, dysregulation of TCF7L1 and FATP6V1B2 gene is 
linked with intellectual impairments, but ATP6V1B2 is yet to be proof of 
its association with Autism [79]. TRAF1 is a protein complex that par-
ticipates in a variety of signal transduction and physiological functions 
[80]. M. R. Rahman et al. Identified TRAF1 as a biomarker of ASD in 
their research [81]. It is linked with our present study. The previous 
study suggests that the HSPG2 factor is associated with Alzheimer’s 
disease, although its function in ASD is still unclear [82]. Table 6 rep-
resents only those biomarkers that were associated with previous 

ASD-related literature as well as associated with our current study. 

4. Discussions 

ASD is a complicated and medically diverse condition distinguished 
by a wide range of symptoms. Doctors, educators, and support organi-
zations all around the world have documented substantial growth in the 
number of children diagnosed with ASD. Despite extensive study, mo-
lecular signatures and pathways of this disorder remained unclear, 
hence the number of ASD sufferers is expanding bit by bit [83]. While 
ASD mostly impacts the operation of the brain, notably its effects on 
social functionality and comprehension, we do not know the full extent 
to which other organisms and processes are affected by it. The published 
studies have revealed extensive alterations both in systemic and intra-
cellular immune systems of children with autism [36]. ASD brain sam-
ples show evidence of severe, continuing inflammation, as well as 
changes in immunological transmission of gene pathways. Furthermore, 
several genetic investigations have found a connection between autism 
and genes involved in both the neurological and immunological systems 
[84]. Both systems can be affected by the changes in these pathways. To 
discover these pathways and molecular signatures that might serve as 
possible treatment targets or biomarkers for ASD, we analyzed regula-
tory patterns, molecular key pathways, PPI interactions, TFs-DEGs in-
teractions, miRNAs-DEGs interactions to look at differential gene 
expression of this disorder. 

We worked with differentially expressed genes which were common 
between the two datasets. From there, we identified some substantial 
GO terms in the biological process including cellular response to type I 
interferon, negative regulation of cellular protein, and atrioventricular 
valve morphogenesis. These were the top GO terms. The synthesis of 
type I interferon is a frequent cellular response to viral infections and 
connects to a common, heterodimeric cellular receptor and triggers the 
production of antibodies through signaling pathways [85,86]. Then, 
negative regulation of cellular protein can appear under different types 
of physiological complications [87]. The atrioventricular valves divide 
atria and ventricles from each other and control blood flow during the 
heart pump [88]. Then in the section of cellular component, we deter-
mined the major GO terms which were an integral component of the 
plasma membrane and MHC class I protein complex. Here, plasma 
membrane functions like power and metabolic capacitor [89], and MHC 
class I protein complex functions effectively in the immune response 
[90]. Moreover, the most important molecular activities in the DEGs 
were delayed rectifier potassium channel activities, activities of 
voltage-gated cation channels, and alpha-adrenergic receptor activity. 
Mutations in the potassium channel might play a pivotal part in ASD 
etiology [91]. It is proven that genes associated with voltage-gated 
cation channel activity have been linked to different types of neuro-
developmental disorder [92]. Furthermore, alpha-adrenergic receptors 
are commonly utilized as a stimulant to boost the stimulant’s effec-
tiveness [93]. It controls the neurotransmission process and central 
nervous system by engaging and stimulating norepinephrine and 
epinephrine hormones [94]. 

On the other hand, we also identified KEGG and Reactome pathways. 
Pathway studies demonstrate how the organism reacts to its intrinsic 
changes. Pathway analysis is a model approach for illustrating the 
interplay of multiple illnesses via fundamental molecular or biological 
mechanisms. To find out a systematic investigation of genetic functions, 
the KEGG pathway database can hold a higher level of functional in-
formation [95]. Again, the Reactome pathway connects human proteins 
to their molecular activities. It enables the creation of a resource that 
serves as both a repository for living organisms as well as a technique for 
identifying unanticipated functional connections in datasets like gene 
regulation surveys [96]. The KEGG pathway analysis revealed the ma-
jority of the pathways were associated with Epstein-Barr virus infection, 
oxidative phosphorylation, and natural killer cell-mediated cytotoxicity. 
The Epstein-Barr virus is a human pathogen. It is one of the most 

Fig. 6. Top two modules (a, b) of PPI network. The DEGs are represented by the 
nodes, while the connections between two Genes are shown by the edges. 
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prevalent viruses. This viral infection can cause cerebellitis encephalitis, 
radiculopathy, meningitis, and other brain disorders [97]. Then, 
oxidative phosphorylation deficiencies in people can cause significant 
developmental issues [98]. Natural killer cells perform an essential role 
in the immunological regulation of the human body. They have a great 
effect on brain regulation. Immunological dysfunction like inappro-
priate immune responses or autoimmunity can cause neurodegenerative 
problems, particularly in the initial phases of brain growth and devel-
opment [99]. On the other hand, the Reactome pathway is mostly 
associated with interferon-alpha/beta signaling. The major role of 
interferon-alpha/beta signaling is to inform the cell when it is infected 
with a virus [100]. Analysis of the PPI network is a potential method for 
determining the disease’s underlying processes [101]. As a result, we 
looked at the protein intercom to find hub genes. We have already dis-
cussed these hub genes and their dysregulation in the biomarkers vali-
dation part. As these hub genes play a fundamental role in the 
pathogenic mechanisms of ASD, we recommend more basic experi-
mental studies to uncover the probable relevance of these genes. The 
regulatory biomolecules (TFs and miRNAs) were also discovered. As a 
result, biomolecule alternation may give crucial information about ASD 
gene expression. Regulatory transcription factors (NFIC, USF2, TFAP2A, 
RELA, FOXL1, GATA2, YY1, FOXC1, NFKB1, and E2F1) might be linked 
to ASD and central cellular processes. NFIC, FOXL1, and FOXC1 dysre-
gulation were connected with ASD [81]. Here, FOXC1 duplication or 
deletion has been linked to cerebellar malformation, indicating that 
mutations in the FOXC1 are involved in neurodevelopmental disorders 
[102]. GATA2 regulates GABAergic neuron growth, motility, and 
neuron-specific gene expression [103]. In development and neurological 
disorders, YY1, E2F1, and USF2 were overrepresented [104–106]. 

Mutations of these transcription factors can cause neurodevelopmental 
disorder. TFAP2A transcription controls neural crest patterning and 
mutation of TFAP2A causes neuroblastoma [107]. However, this factor 
is not associated with any brain disorder. An analysis found that NFKB1 
provides an important role in the progression of treatment-resistant 
schizophrenia in the Chinese Han community [108]. According to 
literature reviews, the function of RELA was not linked with ASD but in 
our current study, we marked RELA as a new ASD-related regulatory 
transcription factor. As in 70% of the central nervous system, miRNAs 
are present, so dysregulation of miRNAs might be used as biomarkers 
[109]. mir-335-5p, mir-26b-5p, mir-124-3p, mir-192-5p, mir-1-3p, 
mir-215-5p, mir-6825-5p, mir-146a-5p, mir-8485, and mir93-5p were 
the first ten miRNAs which were visualized in miRNA-DEGs network. 
Mutations in the mir-335-5p link with a serious neurodevelopmental 
Rett syndrome [110]. mir-26b-5p was identified as a potential 
biomarker in neurological disorder [111]. mir-93-5p was scientifically 
proven ASD-related miRNA [112]. miR-1-3p was proven as a potential 
biomarker in amyotrophic lateral sclerosis/motor neuron disease [113]. 
mir-124-3p and mir-192-5p were not linked to ASD according to other 
literature but in our study, we found that mir-124-3p and mir-192-5p 
were related to ASD. mir-146a-5p controls the growth and activities of 
cancer cells [114] and mir-215-5p acts as a tumor suppressor [115]. 
However, they were not related to any neurodevelopmental disorder. 

Furthermore, we had identified candidate drug molecules. They 
were retinoic acid, pyrrolidine dithiocarbamate, silica, trichostatin A, 
cytarabine, zinc sulfate, 8-Bromo-cAMP, decitabine, valproic acid, 
guanidine hydrochloride. It has been proven that greater risk for ASD 
and mild ASD in a Chinese population was related to decreased serum 
retinoic acid [116]. Reduced CD38 transcription is upregulated by 

Fig. 7. The regulatory network of TFs-DEGs interactions. In the figure, DEGs are shown by the black nodes, while TFs are shown by the red nodes. The highlighted 
nodes are indicating the top 10 TFs. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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all-trans retinoic acid in lymphoblastic cell lines from autism spectrum 
disorder patients [117]. So, retinoic acid can be considered a significant 
therapy for the treatment of ASD. Pyrrolidine dithiocarbamate di-
minishes surgical inflammation and cognitive impairments [118]. 
Cytarabine was identified as a novel drug for Alzheimer’s disease [119]. 
Valproic acid (VPA) is a contraceptive and a behavioral stabilizer drug. 
Language impairments and the increase of ASD are related to it. Medical 
data suggested a connection between VPA and the development of ASD 
risks [120]. 

Our research different from previous research on ASD patients. It is 
believed that genes regulated in multiple tissues have a significant role 
in the transmission of complicated illnesses including ASD. Despite the 
strong hereditary basis of ASD, several dysfunctional neuro-
developmental processes could reappear in leukocytes on a regular 
basis, allowing postpartum studies in easily obtainable tissues [70,81]. 
Numerous organics in brain cells from ASD children are disrupted, 
including cell growth, maturation, and microtubule architecture, which 
is consistent with some dysfunctional mechanisms previously identified 
in pluripotent stem cells of people with ASD [81]. Furthermore, the 
examination of brain cells cannot reveal key facts on dysfunctional 
biological activities that happen in ASD blood cells regardless of the 
existence of congenital and genetic anomalies. 

However, more investigations will be required to confirm these 
findings. We anticipate that our procedure can assist the researchers not 
just with their study, but also with early detection and directing suitable 
treatment measures. 

5. Conclusion 

One of the most prevalent neurodegenerative disorders in the world 
is ASD. It is a multifaceted disorder with a wide range of clinical and 
genetic variability. Approximately hundreds of genes have been 
discovered in recent decades that contribute to severe communication, 
social cognitive, and behavior impairments. In this study, we used a 
network-based method to identify important pathways and bio-
molecules in ASD to find common DEGs. These DEGs were used in 
pathway analysis and also used to uncover protein-protein interactions, 
transcription factors, post-transcriptional factors, and potential thera-
peutic compounds. We had collected some differentially expressed 
common genes. Between them, Several TFs and miRNAs have been 
discovered as candidate transcriptional and post-transcriptional factors 
of the DEGs. As a result, we identified some possible molecular signa-
tures and pathways that are often dysregulated in ASD brain tissues. 
However, we hope that our observations will provide new insights on 
the molecular basis of ASD and aid in the identification of prospective 
medicines. 
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