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ABSTRACT With distributed sensor systems commonly found in Wireless Sensor Networks or the Internet
of Things, knowing the location sensor data was acquired from is very important, especially in scenarios
with mobile sensors. Range-free Monte Carlo Localization based approaches are very energy efficient and
do not require additional hardware beyond a radio, which is found on sensor nodes anyways. However,
the use of motion sensor data based dead reckoning greatly improves the accuracy of location estimates
and increases robustness against faulty or malicious actors within the network. In this work, we propose
Robustness Enhanced Sensor Assisted Monte Carlo Localization (RESA-MCL). We show RESA-MCL’s
effectiveness with respect to both general localization accuracy and robustness against malicious attacks
or malfunctioning nodes. To evaluate and compare our scheme against existing approaches, we introduce
three attack models based on malicious anchor nodes. The performance of RESA-MCL is evaluated under
these attack models and our approach outperforms existing schemes in both very low and higher anchor
node density environments, achieving a localization error of 0.5 with an anchor density of 0.33. Overall,
RESA-MCL outperforms comparable approaches at lower anchor densities with up to 48% lower local-
ization error and demonstrates strongly increased robustness against attacks with minimal computational
overhead.

INDEX TERMS Localization, wireless sensor networks, security, Internet of Things, Monte Carlo localiza-
tion, range-free localization.

I. INTRODUCTION
In today’s world, more and more Internet of Things (IoT)
devices with various types of sensors, as well as Wireless
Sensor Networks (WSN), are getting deployed to cover a
wide range of scenarios, from smart homes [9], decentralized
initiatives by volunteers for measuring air quality [2], [17],
over industrial uses [10] to wildlife monitoring [16]. To make
sense of the gathered data, it is important to know where it
was measured. In the case of, for example, a WSN with fixed
nodes, the installation points of each sensor can be noted,
but many applications rely on mobile sensors, which makes
it necessary for sensor nodes to be able to determine their
locations dynamically.

The most common approach to this is the use of the Global
Positioning System (GPS). However, the use of GPS has
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a number of disadvantages. The sensors are relatively costly
and consume high amounts of power. They also rely on
being able to receive satellite signals, which makes indoor
operations impossible and also leads to reduced accuracy in
certain outdoor environments. Tomitigate the first two points,
a solution is to equip only a small subset of nodes with GPS
sensors. These nodes then act as so-called seed or anchor
nodes, which assist other nodes in localizing themselves.
Instead of using mobile anchor nodes equipped with GPS
sensors, the use of static anchors with preset locations is also
a common approach.

Different types of localization algorithms exist. They can
be mainly divided into range-based [4], [12], [18], [19], [21]
and range-free approaches [6]–[8], [15]. In range-based
approaches, unknown nodes (non-anchor nodes trying to
localize themselves) must actively determine the distance
to anchor nodes or the angles of incoming radio signals.
Common measurements used in such approaches include
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Time of Arrival (ToA) [21], Time Difference of Arrival
(TDoA) [22], Angle of Arrival (AoA) [4], and Received
Signal Strength (RSS) [20].

A popular technique is to use RSS along with an appro-
priate propagation model to estimate the distance between an
unknown node and an anchor node. This solution is based on
the assumption that the RSS decreases proportionally with
increasing distance from the transmitter. However, certain
limitations need to be considered. For example, in TDoA-
based solutions highly precise clock synchronization between
nodes must be guaranteed; it’s important to consider the
multipath, Non-Line-of-Sight (NLoS) conditions and array
calibration in AoA-based solutions; radio noise levels, multi-
pathing andmeasurement errors can affect the performance of
RSS-based solutions [21]. Generally speaking, range-based
approaches typically require additional, specialized hard-
ware, clock synchronization and have higher power consump-
tion, which enables the active measurements that have to be
performed by unknown nodes. In addition, the inherent lim-
itations of each type of measurement can affect localization
accuracy in certain situations.

In order to reduce complexity, hardware dependency and
energy costs, research is conducted on range-free solutions
which are usually based on connectivity alone. Since no
active measurements are required from the unknown nodes,
these approaches are easier to implement and also have lower
deployment costs. A well-known representative approach in
this category is the Monte Carlo Localization (MCL) algo-
rithm, which was adapted for localization in mobile WSNs
by Hu and Evans in 2004 [8]. Unlike approaches designed for
partially or fully static networks, MCL allows all nodes in the
network to move arbitrarily over time and uses the movement
to improve localization performance. The probability distri-
bution of each node’s current position is represented as a set
of weighted samples (particles) in MCL. Impossible samples
which are outside the communication range of anchor nodes
are eliminated by a Bayesian filtering process. The estimated
node’s location is the average of all remaining samples after
the filtering process. MCL requires no additional hardware
and is suitable for both mobile and static scenarios. However,
MCL’s performance quickly degrades in situations where
connectivity between unknown nodes and anchor nodes only
occurs rarely. Therefore, guaranteeing a high anchor node
density is very important when applying MCL.

The various approaches presented so far have not consid-
ered the security aspects of localization. If malicious nodes
that publish erroneous locations are present in the network,
these approaches may not work as well as shown in their
experiments. Even in the absence of malicious nodes, per-
formance degradation or even collapse of the entire system
may occur if a subset of the anchor nodes does not function
properly. For example, in approaches where anchor nodes are
statically distributed in the environment, if one or multiple of
the anchor nodes do not work, normal nodes in the vicinity of
these anchor nodes will not be able to obtain the information
required for localization such as RSS, TDoA, etc., which will

eventually lead to localization failure. Therefore, to make the
proposed approaches more suitable for real-world scenarios,
anchor node malfunctions need to be considered in the devel-
opment of the localization algorithms.

In this work, we propose Robustness Enhanced Sensor
Assisted Monte Carlo Localization (RESA-MCL), which
both achieves a higher localization accuracy compared to pre-
vious schemes and also improves the localization scheme’s
robustness against incorrect information being broadcast
by malicious anchor nodes. To achieve this, RESA-MCL
continuously employs dead reckoning, as described by
Hartung et al. [7], instead of only using it when out of anchor
range like the original SA-MCL scheme. RESA-MCL detects
malicious anchor nodes through motion-based plausibility
checks and limits the influence that malicious nodes can exert
on the location estimate through a novel particle subsetting
technique.We thoroughly analyze the performance of RESA-
MCL under different attack models with up to 90% of anchor
nodes acting maliciously and motivate parameter choices in
data-driven manner.

The contributions of our paper can be summarized as
follows: (1) We propose the RESA-MCL scheme, which
achieves higher localization accuracy (up to 48% lower
error than comparable recent approach) in fully mobile low
anchor density situations than comparable schemes with low
computational complexity while also including robustness
enhancements to mitigate attacks. (2) Specific attack models
for scenarios with malicious or malfunctioning anchor nodes
are defined. (3) RESA-MCL and previous approaches are
evaluated and compared under three different attack scenar-
ios. (4) Robustness enhancements in RESA-MCL greatly
improve its performance in all attack models compared
to approaches without robustness enhancements. (5) Thor-
ough experimental evaluation including ablation experiments
are used to verify the favorable properties of the scheme,
such as low localization error at low anchor densities and
resistance against attacks. (6) An optimized version of the
original MCL [8] simulator—including implementations of
SA-MCL [7] and RESA-MCL—is provided to ease future
evaluation and comparison with other approaches.

The structure of this paper is organized as follows:
Section II reviews related works. In Section III, we describe
our proposed scheme in detail. Our evaluation methodology
and results are shown in Section IV. Finally, we present
conclusions and future works in Section V.

II. RELATED WORKS
Various localization algorithms forWSNs/IoT have been pro-
posed in recent years. Concerning our work, the consideration
of security aspects in localization is the most relevant factor.
Therefore, we present overviews of related works classified
into four groups: range-based, range-free, Artificial Intelli-
gence (AI)-based and security-aware approaches.

A. RANGE-BASED APPROACHES
As introduced in section I, many range-based localization
approaches have been proposed. Luo et al. proposed an
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RSS-based Localization using Uncertain Data Mapping
(LUDM) for WSN [12]. Simulation results show that the
proposed approach outperforms other solutions in terms
of the absolute mean localization error. However, the four
anchor nodes are statically fixed at the corners of the
experimental area. Moreover, the localization accuracy may
decrease greatly when resorting to the RSS attenuation
model to improve the generality in unknown localization
environments.

In 2019Wang et al. proposed a Time of Flight (ToF)-based
localization algorithm for asynchronous WSN [18]. The sim-
ulation results show that the proposed approach outperforms
conventional algorithms in terms of localization accuracy.
However, again the anchor nodes are statically deployed in
the network and localization depends on a centralized server,
which must provide sufficient computational capacity for
estimating clock skews and performing the localization pro-
cedure. This can cause the entire localization process to break
down due to a single point of failure if server issues occur.

In 2020, the same authors proposed another time-based
joint synchronization and localization algorithm for asyn-
chronous WSN which utilizes TDoA [19]. It also relies on a
centralized server for launching the localization procedures.
Simulation results show that this new approach is superior
in scenarios where anchor positions are imperfectly known.
However, its centralized structure means that there is a single
point of failure.

In 2021, Ding et al. proposed an indoor localization algo-
rithem based on Error variance and measurement Noise
Weighted Least Squares, named ENWLS [4], which is
a weighted algorithm for localization in 3D WSN based
on RSS/AOA measurements. Simulation results show that
ENWLS outperforms other existing hybrid RSS/AOA local-
ization algorithms when there are more than three anchor
nodes in the scenario. This implies that ENWLS is not reli-
able in case of malfunctioning of anchor nodes. Moreover,
multipath effects and NLoS are not considered.

Range-based approaches aim at enhancing localization
accuracy by measuring ranges between unknown nodes and
anchor nodes. However, to perform such measurements, they
often require strict clock synchronization or special hardware.
Additionally, multipathing or other environmental conditions
may interfere with such systems. This makes them harder and
more expensive to deploy.

B. RANGE-FREE APPROACHES
As presented in Section I, MCL [8] is a representative range-
free localization approach that requires no additional hard-
ware. More importantly, MCL allows all nodes including
anchors in the network to move arbitrarily over time. Node
mobility is leveraged to further increase localization accuracy
through the use of a particle filter. Strong mobility support is
one of the outstanding features of MCL-based approaches.

Inspired by MCL, many range-free approaches have been
proposed, improving localization accuracy and sampling effi-
ciency [15], [25]. However, these solutions cannot solve the

problem of localization failure due to connectivity loss caused
by dynamic changes in the network topology and low anchor
node density. In order to solve this problem, Hartung et al.
proposed the Sensor-Assisted Monte Carlo Localization
(SA-MCL)method in [7]. The algorithm can specifically han-
dle the temporary loss of all connectivity to anchor nodes in
the network, which greatly improves the shortcomings of the
original MCL algorithm. Low-cost 9-axis Inertial Measure-
ment Unit (IMU) sensors are used to perform dead reckoning
to bridge periods without connectivity to anchor nodes.

In order to improve localization accuracy under low anchor
node density, Qin and Zhu [15] adapted MCL through the
use of the Differential Evolution optimization algorithm
(MCL-DE). Instead of using the regular sample filtering and
resampling algorithms, MCL-DE selects the sample weight
as the objective function for optimization and implements
the differential evolution algorithm to obtain valid samples
for location prediction. The authors found that MCL-DE has
enhanced localization accuracy. However, the computational
and communication costs of the proposed scheme are not
studied and no security implications are considered.

Range-free localization approaches not based onMCL also
exist. One common group of range-free approaches are those
based on DV-Hop. In 2020, Gui et al. [6] introduced a decen-
tralized, range-free approach based on the DV-Hop family
of localization approaches. Centralized Connectivity based
DV-Hop (CCDV-Hop) and Distributed Connectivity based
DV-Hop (DCDV-Hop) have relatively low computational
complexity and achieve low localization error. However, mal-
functioning or malicious anchor nodes are not considered and
simulation results are provided only for small and medium-
sized networks of up to 30 nodes. Additionally, it was only
evaluated with relatively high numbers of anchor nodes
(50% of unknown nodes in the small network of 6 unknown
nodes, 33.3% in the medium network of 9 unknown nodes)
with high communication ranges relative to the small sim-
ulation areas (20m in a 40× 40m2 or 60× 60m2 areas),
allowing each anchor node to cover a high percentage of the
experimental area. The authors do not provide an anchor node
density measure.

Overall, range-free approaches trade off some localiza-
tion accuracy for ease of deployment, cost-effectiveness and
more generalized applicability. Since the only requirement to
deploy common range-based localization approaches is the
ability to decide whether a node is within radio range or not,
this type of approach can be employed even with very basic
hardware.

C. AI-BASED APPROACHES
Along with range-based and range-free localization algo-
rithms, researchers have also applied artificial intelli-
gence (AI) techniques to develop new indoor and outdoor
localization solutions. Chen et al. proposed ConFi, the first
Convolutional Neural Network (CNN)-based indoor Wi-Fi
localization method, in 2017 [3]. It uses Channel State Infor-
mation (CSI) to build a time-frequency matrix that is utilized
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as the feature for localization. The authors conducted exten-
sive experiments to select the parameters for the CNN and
also show that ConFi outperforms the existing solutions.
However, the amount of samples required to train the CNN
is high. To apply ConFi in a new environment that is not
comparable to the current one, the model must be trained with
a new dataset from that environment.

Gharghan et al. [5] proposed an adaptive neural fuzzy
inference system to estimate the distance between a moving
bicycle (i.e., player) and a static coordinator node (i.e., coach)
for the indoor and outdoor velodromes. Simulation results
show that the proposed approach outperforms other state-of-
the-art systems in terms of mean absolute error. However,
the offline phase for Adaptive Neural Fuzzy Inference
System (ANFIS) training is time-consuming and depends
heavily on the complexity of the fuzzy inference system.
Furthermore, the current approach requires the training of two
ANFIS systems for the localization coordinates seperately
which increases the overall training cost.

Besides using CSI and RSS to train the neutral model,
researchers have also proposed approaches that apply AI
techniques based on Wi-Fi fingerprints, such as HybLoc [1],
which is a hybrid indoor localization system for both room-
level and latitude-longitude predictions. Simulation results
show that HybLoc has better performance in terms of accu-
racy and precision. However, the hardware requirements for
the sensor nodes to achieve a short response time in the
prediction phase, which is very important to evaluate whether
HybLoc is applicable in real scenarios, are not presented.
In addition, without re-training the model, HybLoc is not
applicable for localization in a new environment, such as a
building that is not in the dataset.

Munadhil et al. [14] proposed a neural network-based
localization system for WSNs in an indoor environment
that is specially designed to determine the position of an
Alzheimer’s patient. It utilizes the RSS with respect to the
anchor nodes. Simulation results show that the proposed
approach outperforms other previous techniques in terms
of mean localization error. However, in the experiment, the
mobile node carried by the patient must be connected to a
laptop to record the RSS samples, configure the wireless con-
nection, and supply power. This is an impractical hardware
requirement for most real-world scenarios. Moreover, due to
the static anchor nodes and the offline training phase, the
approach cannot simply be transferred to other environments
or mobile scenarios.

Overall, these AI-based approaches are computationally
intensive and usually only apply to specific environments
they were trained for. Furthermore, all anchor nodes in these
approaches are positioned in static locations. Additionally,
they do not consider security implications of malfunctioning
or malicious anchor nodes, which may pose issues in real-
world applications. In the end, the system complexity and
the high offline training cost of these AI models should not
be underestimated. However, more general and lightweight

approaches also exist, which are more suitable for environ-
ments like WSNs.

D. SECURITY-AWARE APPROACHES
Besides improving localization accuracy, sampling effi-
ciency, and coping with transient connectivity loss, address-
ing security aspects of localization is also an active research
topic. Many security-aware localization algorithms have
been proposed. In [21], Xie et al. proposed a lightweight
secure ToA-based localization algorithm in WSNs, exploit-
ing the noise features caused by external distance attacks.
This approach aims mainly to defend against impersonation
attacks launched by external attackers.

Liu et al. proposed a Malicious Node Detection
algorithm based on Clustering and consistency evalua-
tion (MNDC) along with an enhanced secure localization
version called EMDC, both of which are range-based local-
ization schemes [11]. They use density-based spatial clus-
tering to detect the abnormal clusters of nodes. A sequential
probability ratio test is then used to identify malicious nodes
that compromise the networks. The conducted simulations
show that the proposed algorithms outperforms other state-
of-art schemes in terms of detection accuracy and effec-
tiveness. However, the computational overhead caused by
the clustering algorithm and the sequential probability ratio
test is not explained. In addition, there is no mechanism
for anchor nodes that are identified as malicious to recover
their reputations. As a range-based scheme, it also has addi-
tional requirements for deployment compared to range-free
schemes.

Yuan et al. [24] proposed a secure APIT-based range-free
scheme in 2018, which attempts to detect Sybil nodes inside
the network. Sybil-free APIT (SF-APIT) is evaluated with a
relatively low number of anchor nodes compared to unknown
nodes (10%), but relatively high communication ranges
(60m in a 300× 300m2 area). Under these conditions,
it achieves low localization errors. However, SF-APIT is only
applicable to static networks and no consideration is given to
anchor nodes that behave in malicious ways without perform-
ing Sybil attacks. No anchor density measure as defined by
Hu and Evans [8] is provided.

Existing security-aware approaches often focus on network
structure-based attacks (e.g. wormhole or Sybil attacks), have
high computational requirements, assume static networks
or make strong assumptions (e.g. trustworthiness of anchor
nodes) that may not be true in real-world scenarios. In many
cases, where anchor or unknown nodes are assumed to behave
maliciously, no specific attack model for the behavior of
malicious nodes is given or such malicious nodes are only
detected, but no further handling of the detected nodes is
specified.

We propose RESA-MCL, which combines the advantages
of range-free approaches, such as low cost and ease of deploy-
ment, with the enhanced robustness against attacks of secure
localization schemes while still being very lightweight with
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TABLE 1. Symbols with references to sections and listings.

respect to computation. Our scheme is fully decentralized,
meaning that there are no infrastructure requirements beyond
the nodes themselves and that no single point of failure
exists. Malfunctioning or malicious anchor nodes can be
detected and their effect on localization accuracy is mitigated.
We define three different attack models for anchor nodes and
evaluate our proposed scheme, as well as previous schemes,
under these conditions. As the approach is based on MCL,
RESA-MCL fully supports mobility for both unknown nodes
and anchor nodes. There is no offline training phase or depen-
dence on any location-specific data, meaning that RESA-
MCL can be used in arbitrary environments, rather than being
dependent on a fixed location. Our approach performs well
with low numbers of anchor nodes (less than 5% of unknown
nodes) and low communication ranges relative to the experi-
mental area (50m in a 500× 500m2 area).
Overall, RESA-MCL can be deployed with minimal hard-

ware requirements. It leverages sensor data from low cost
and low powered 9-axis Inertial Measurement Unit (IMU)
sensors, similar to SA-MCL, to both enhance localiza-
tion accuracy and allow the detection of malfunctioning or
malicious anchor nodes. As RESA-MCL mainly consists
of computationally inexpensive modifications to SA-MCL,
the real-world power measurements presented by
Hartung et al. [7] apply to RESA-MCL as well, demon-
strating that its deployment on low powered IRIS sensor
nodes [13] based on an 8 bit microcontroller and XBee
(2.4 GHz 802.15.4) radio is feasible. In addition, since

LISTING 1. MCL algorithm.

RESA-MCL does not make any assumptions about the area
it is deployed in, it is suitable for both mobile and stationary
networks as well as indoor and outdoor environments.

III. LOCALIZATION SCHEME
RESA-MCL uses the idea of the SA-MCL scheme introduced
byHartung et al. [7] as a basis and adds a number of improve-
ments, which both increase its overall accuracy and make
it more robust in networks with faulty or malicious nodes.
SA-MCL itself is based on the MCL [8] approach. In the
following, we shortly reiterate these approaches and finally
detail the improvements made in RESA-MCL.

A. NOTATION
This section provides an overview of all symbols used in
the sections detailing our scheme. Table 1 provides short
explanations, references to where each symbol is first used
and, where applicable, values of constants. The ‘‘First use’’
column specifies which section (S.) or listing (L.) the symbol
is used in first.

B. MCL
The MCL algorithm [8] is made up of two phases. The first
phase is network communications and the second phase is a
particle filter used for location estimation.

The necessary information to update location information
is gathered during a phase of network communications. Here,
anchor nodes broadcast their locations. Unknown nodes that
receive this information directly from an anchor node broad-
cast it again, marking it as a rebroadcast. Nodes that receive
either type of broadcast store the received location data and
node IDs. In regular intervals, the nodes use this collected
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LISTING 2. Particle filter condition function.

information to update their location estimates by using a
particle filter.

The particle filter itself is split into two steps: prediction
and filtering. Initially, each unknown node initializes N par-
ticles. These particles are points in 2D space and represent
possible locations of the unknown node. They are distributed
randomly over the area of possible locations. These particles
are an approximation of the probability distribution of possi-
ble node locations. During the prediction step, each particle is
reassigned to a new location within the radius corresponding
to the maximum speed of the node. This mechanism ensures
that, if no observations are made to constrain the distribution,
its uncertainty grows over time in accordance with the node’s
movement. In the filter step, the resampled particle is checked
against received broadcasts from anchor nodes and forwarded
2-hop retransmissions of such broadcasts. If the particle is
not within the radio range of all anchor nodes, from which
transmissions are received, or within the ring between one
and two radio ranges in the case of 2-hop retransmissions, it is
discarded and a new particle is sampled instead, restarting the
process.

Since the original description of the algorithm leaves some
room for interpretation, Listing 1 gives a more detailed
description, following the actual code given in the simulator
released by the authors, which contains additional detail, such
as a relaxed acceptance criterium for particles during the
filter step.

The ‘‘attempts’’ parameter determines howmany iterations
and thereby time should be spent on trying to find a set
of particles fulfilling the range MCL criteria while resam-
pling. When running the algorithm for the first time, the
‘‘attempts’’ parameter is given as 10000, while subsequent
runs use an ‘‘attempts’’ value of 200. Additionally, during
the more thorough initialization run, the while loop is run
through first fully discarding relaxed samples and then once
more, if necessary, keeping them. For the sake of simplicity,

LISTING 3. SA-MCL algorithm.

LISTING 4. Particle dead reckoning.

this additional behavior for the initialization is not described
in Listing 1.

The original MCL algorithm uses a meetCondition func-
tion (shown in Listing 2) without the additional particle
subsetting (see Section III-D2) introduced for RESA-MCL.
To avoid having two slightly different copies of the pseu-
docode, we introduce the ‘‘enableSubset’’ parameter to MCL
and meetCondition. For the original MCL approach the
‘‘enableSubset’’ parameter is always ‘‘false’’ in both MCL
and meetCondition. The meetCondition function determines
whether a given sample passes the filter criterium fully, only
in a relaxed manner or not at all. If enough samples are found
to fully fulfill the strict range criterium, the relaxed condition
is not used. Otherwise, the range is extended by δ meters and
particles fulfilling this relaxed condition are accepted as well.

For a given point p and radius r , the function
resampleInRadius(p, r) returns a random, new point around
that point p within a radius of r , but still within the bounds
of the experimental area. Given a set S and N ∈ N, the
choose(S,N ) function randomly selects at most N elements
from a set S, but never returns more than |S| elements.

C. SA-MCL
The main addition to MCL contributed by SA-MCL is that
dead reckoning is used to update node locations when no
anchor nodes are within communication range. This allows
it to bridge the time between encountering anchor nodes
with enhanced localization accuracy compared to the original
approach. However, since this process is only run when no
anchor nodes are within range, in denser networks its perfor-
mance is not improved over that of MCL.

As shown in Listing 3, in SA-MCL, particle positions are
updated according to the direction of the node as measured by
the IMU sensor installed on it. The deadReckoning procedure
described in Listing 4 performs these updates to the particle
positions. This procedure is run instead of the regular particle
resampling and filtering if both AD and AI are empty sets.
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FIGURE 1. Example illustrating the particle subsetting process (S.III-D2)
with two anchors, one unknown node U and k ∈ {1,2, . . . ,8}, t = 5,
j ∈ {1,2}.

In a real-world test bed implementation, SA-MCL uses
low-cost MPU-9150 9-axis IMU sensors with low power
consumption [7]. The authors show that the use of this type
of sensor is feasible in WSN localization approaches, both
from a cost (monetary and power) as well as from an accuracy
perspective.

D. RESA-MCL
RESA-MCL introduces three modifications to the SA-MCL
algorithm, making it more accurate and improving its
resilience to adversarial network conditions. Each of the
improvements by itself is both effective and can be imple-
mented efficiently even on low powered hardware such as
8 bit microcontroller-based IRIS sensor nodes.

1) MOTION-BASED PARTICLE UPDATES
As detailed in Section III-C, SA-MCL leverages dead reck-
oning to update particle positions when no anchor nodes
are within communication range. RESA-MCL goes one step
further and also applies these motion-based particle updates
even when anchor nodes are within range. In RESA-MCL,
the deadReckoning procedure is executed before the loop
of prediction and filtering operations, leading to two dif-
ferences. Firstly, RESA-MCL always updates its position
estimate according to the sensed motion data. Secondly, if no
anchor nodes are within range, both 1-hop or 2-hop, particle
resampling is still performed after the motion-based position
updates.

2) PARTICLE SUBSETTING
To prevent a single malicious node from completely throwing
off the position estimate of a node by providing misleading
positional information, in RESA-MCL anchor node informa-
tion is only applied to a subset of particles.

The particle subsetting is implemented in the form of an
additional condition that allows skipping the MCL range
criterium check with respect to a certain anchor node. In the

original MCL, a particle that is not within the range of
an anchor node that was heard by the unknown node is
filtered. With RESA-MCL’s particle subsetting, the particle
may instead be kept, even if it is not within the radio range
of that specific anchor node. More specifically, a particle pk
is subject to filtering at time t with respect to anchor ajt ,
only if k + t + j mod sφ < sλ. Here k + t + j mod sφ
functions in a hash-like manner to pseudo-randomly select
different particles at each time step and for each anchor node.
If this condition is not true, the given particle pk is not be
affected by the anchor ajt ’s positional information at the given
time step.

Figure 1 shows an example at time t = 5 with eight
particles pk , k ∈ {1, 2, . . . , 8}, two anchor nodes ajt , j ∈
{1, 2} and an unknown node U . The particles represent the
position estimate of the unknown node. For each particle, the
MCL range condition is checked with respect to both anchor
nodes. Particles are color-coded according towhether they are
kept (blue), filtered (red) due to not fulfilling the MCL range
criterium. Green means that particle subsetting prevented
them from being filtered despite the fact that they would fail
an MCL range condition check. Particles p1 and p2 fall into
the intersection of a1t ’s and a

2
t ’s radio ranges and are there-

fore kept. The filtered particles p3, p4, p6, p7 are removed,
because they fail the range MCL criterium; p3, p4 are outside
of both radio ranges, p6 is not inside the radio range of a1t and
p7 is not inside the radio range of a2t .
Finally, p5 and p8 are kept only because the particle sub-

setting. Specifically, p5 fulfills the range condition for a2t , but
would be filtered due to failing it with respect to a1t . This
is because 5 + 5 + 1 mod 4 = 3, which is not less than
sλ = 3. Since the result of the modulo operation is not less
than the threshold value sλ, the range criterium is not checked
for p5 with respect to a1t and the particle is not filtered out.
In the case of p8, it fulfills the range criterium for a1t , but it
would be filtered due to failing it with respect to a2t . However,
for this particle holds that 8+5+2mod 4 = 3, which is again
not less than the threshold value sλ. Therefore the particle
p8 is kept because the range criterium is ignored.
The particle subsetting functionality is added in RESA-

MCL’s meetCondition function, which is shown in Listing 2.
Its general operation matches that of MCL’s meetCondition,
other than the addition of the particle subsetting mechanism
through the additional conditions on lines 4 and 10. The
additional ‘‘enableSubset’’ parameter allows disabling this
new functionality and makes the given function equivalent to
the original MCL meetCondition function.

Particle subsetting can prevent potentional malicious nodes
in the network from strongly affecting location estimates, but
it also leads to a lower rate of information use in the case that
all provided information is legitimate. However, the use of
dead reckoning already improves the accuracy of the particle
filter-based location estimation significantly, making up for
the lower rate of positional correction through anchor node
information.
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LISTING 5. Anchor position plausibility check function.

LISTING 6. Anchor distrust point update function.

3) ANCHOR POSITION PLAUSIBILITY CHECK
RESA-MCL nodes also apply a plausibility check to received
positional information, using the checkAnchor function
(Listing 5). When receiving position information from an
anchor node, from which previously position information has
already been received, a movement vector is calculated from
the difference in positions (ait − a

i
tlast ) and compared with the

movement of the node (1pos) trying to localize itself accord-
ing to its IMU sensedmovement data. The difference between
both movement vectors is then calculated and compared to
the radio range multiplied by a factor rf , which relaxes the
condition to allow for inaccuracies in radio range and motion
detection. The idea is that, if the anchor node and unknown
node can hear each other before and after moving, and have
a radio range of r , then rf is chosen, such that they cannot
have moved by a distance greater than r · rf . Specifically, the
factor rf is chosen as rf = 2 · hops + 0.5, where the hop
count hops determines the maximum distance between nodes
and both the factor of 2 and the additive term of 0.5 are a
safety margins to reduce false positives with respect to the
plausibility check. Therefore, in the 1-hop case, rf = 2.5,
which corresponds to the diameter of the circles representing
the radio ranges around nodes, plus the safety margin of 0.5.
As the total distance between nodes may be doubled in the
2-hop case, rf is chosen as 4.5 following the same formula
and reasoning. In the 2-hop case, the maximum distance
between anchor and unknown node can be twice that of the
1-hop case. Due to that, rf is also chosen to be higher to
make up for the increased variance in movement and range
introduced by the retransmission of anchor information.

If implausible information is detected, the anchor node is
removed from the sets of anchor nodes used in meetCondi-
tion and added to a list of untrustworthy anchor nodes. The
updatePoints (Listing 6) procedure assigns distrust points to
such anchor nodes with implausible positions and reduces
distrust points for anchor nodes with plausible positions. This
allows trustworthy anchors, which were mistakenly classi-
fied as non-trustworthy, to recover over time and allows its

LISTING 7. RESA-MCL algorithm.

location information to be used for localization, once its
distrust points fall back to 0. At the same time, nodes that
consistently misbehave are not be used for localization.

This functionality synergizes well with particle subsetting.
If an anchor node broadcasts positional information which
would greatly impact localization accuracy, this is likely to
be detected the second time location information is received.
At the same time, particle subsetting limits the impact of the
inaccurate information received in the first time step.

4) PLAUSIBILITY CHECKING OF 2-HOP FORWARDING
Applying the same plausibility check described for anchor
nodes in the 2-hop case to unknown nodes is also considered,
but not used in RESA-MCL. The idea of this approach is to
disable all 2-hop data reception when implausible forwarded
data is received following a similar points system as described
for anchor plausibility checking. However, during the abla-
tion experiments in Section IV-E, we find limited benefits of
this mitigation strategy in our considered attack models and
therefore do not employ it as a part of RESA-MCL. We plan
to reevaluate this method in the future under different attack
models.

5) PUTTING EVERYTHING TOGETHER
The full algorithm can be described as given in Listing 7. First
particle positions are updated according to dead reckoning,
then heard anchor lists are filtered according to the posi-
tional plausibility check and their distrust points are updated.
Finally, the basic MCL algorithm is run with particle subset-
ting enabled and anchor sets AD,AI containing only anchor
nodes with zero distrust points.

The estimated position is the average position of the parti-
cles in Lt after running the MCL function.

IV. EVALUATION
In this section, we introduce our methodology for evaluating
RESA-MCL. First, we introduce our experimental setup and
simulation parameters. Following that, we show and discuss
our experimental results with respect to baseline perfor-
mance, motivate parameter choices and demonstrate RESA-
MCL’s robust behavior under three different types of attacks.

A. EXPERIMENTAL SETUP
All experiments are done using an extended and improved
version of the Java-based simulator originally developed and
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FIGURE 2. Comparison at different communication ranges without attack.

used for the evaluation MCL and also used in the evaluation
of SA-MCL. The source code of our version of the simulator
as well as simulation results are publicly available on Code
Ocean.1 This simulator is used to ensure the comparability
of results to other MCL-based algorithms (e.g. SA-MCL),
which commonly also use the same code base.

All experiments are run with 300 nodes. Initial positions
are chosen randomly at the start of each run. Of these, unless
otherwise specified, 10 are used as anchor nodes. The exper-
imental area is 500× 500m2 with a radio communication
range of of 50m. Simulations are run for 1000 steps, with
each step representing a time interval of 1 s and one itera-
tion of the localization algorithm. Each such run is repeated
10 times with a different random seed. Nodes follow a mod-
ified random waypoint movement model, where a minimum
movement speed of VMin and a maximum path segment dura-
tion constraint are applied to prevent movement from degrad-
ing to low average speeds as described by Yoon et al. [23].
Specifically, movement speeds are randomly selected from
the range of 10m s−1 to 20m s−1 and a limit of at maximum
five time steps per path segment is imposed. An error of
20% is applied to both the sensed speed and direction to
include the effect of noisy sensors in the evaluation of our
scheme and enable a fair comparison to SA-MCL. RSS or
link quality between nodes is not considered beyond basic
connectivity, which is all that is required in range-free local-
ization schemes.

Hu and Evans [8] define the anchor density as the average
number of anchor nodes within a 1-hop distance to unknown
nodes. Due to node mobility and random initialization, it is
not possible to give a fixed anchor density with this defini-
tion. With the given experimental parameters, we measure a
mean anchor density of 0.327 with a standard deviation of
0.054 over ten runs of 1000 steps each. Localization error
in all figures is given as the error in meters divided by the
radio range, which is the common measure for range-free
approaches.

1https://codeocean.com/capsule/5799c9e7-22c4-450a-8783-
a3e3eb2b5829/tree/v1

FIGURE 3. Evaluation of particle subset sizes without attacks and sφ = 16.

Due to the results shown in Section IV-C, the particle
subsetting parameters are chosen as sλ = 3, sφ = 4
(equivalent to sλ = 12, sφ = 16) for all experiments other
than those specifically varying those parameters. This mostly
avoids impacting the localization performance in attack-free
scenarios while still mitigating the impact of malicious nodes.

The behavior of four range-free localization algorithms
(Centroid, MCL, SA-MCL, RESA-MCL) under three differ-
ent attack models is evaluated. In the following, we analyze
the results of our experiments.

B. BASELINE
Figure 2 shows a comparison of RESA-MCL with previous
approaches in a scenario with no attacks over different radio
ranges. Since only 10 anchor nodes are used for an area of
500× 500m2, in scenarios with very low communication
ranges, nodes rarely encounter an anchor node. In this case,
RESA-MCL and SA-MCL behave quite similarly, as both
use sensor data for dead-reckoning. Since SA-MCL has no
built-in detection of malfunctioning or malicious nodes, it can
make full use of the very limited information it receives, let-
ting it perform slightly better than RESA-MCL in scenarios
with extremely low communication ranges and thus anchor
density.

As communication range increases, the performance of
SA-MCL approaches that of MCL, because nodes almost
always have at least one anchor node within range, making
it disregard its motion sensor data. RESA-MCL meanwhile
keeps employing dead-reckoning to improve its localization
accuracy even further in comparison to other approaches.

C. OPTIMAL PARTICLE SUBSETTING
In this section we determine the optimal parameters for the
particle subsetting process given in Section III-D2. Figure 3
shows the performance of RESA-MCL in a scenario without
attacks, different values for sλ (threshold) with sφ = 16 (mod-
ulus). The case of sλ = sφ = 16 is equivalent to no particle
subsetting, while sλ = 1 means that only 1 in 16 particles is
affected by an anchor node. It can be seen that for sλ < 8, the
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FIGURE 4. Evaluation of particle subset sizes under fixed position attack
with sφ = 4.

FIGURE 5. Biased position attack.

localization error sharply increases with declining sλ, while
above sλ = 12 the localization performance is barely affected
by particle subsetting.

Figure 4 shows that more restrictive particle subsetting
makes RESA-MCL more resilient against attacks. The fixed
position attack, which is shown to be the most effective attack
in Section IV-D3, is chosen for this evaluation. Due to the
results from Figure 3 and to increase the legibility of the
figure, we divide sλ and sφ by 4 and show results for sλ ∈
{1, 2, 3, 4}, representing the most relevant tradeoff points.
As per Section IV-B, the least subsetting performs the best
in the scenario with no attacks, but sλ = 3 performs almost
equally as well. In scenarios with 10% to 40% malicious
anchor nodes, sλ = 3 performs the best with more aggressive
subsetting being more effective in scenarios where half or
more anchor nodes are malicious. As a network where the
majority of nodes is malicious seems less likely, we decide
on sλ = 3 as a reasonable trade-off between robustness and
localization accuracy in networks without attacks. Therefore,
sλ = 3 is used for all further experiments.

D. PERFORMANCE UNDER ATTACKS
In the following, we present results showing the perfor-
mance of RESA-MCL under three different types of attack
models.

FIGURE 6. Random position attack.

FIGURE 7. Fixed position attack.

1) BIASED POSITION ATTACK
In the biased position attack, malicious anchor nodes send
their true locations, with an offset of (50, 50) (in meters)
added to it. This type of attack is harder to detect for RESA-
MCL, because the movement vectors of anchor nodes match
their true movement, thereby usually satisfying the plausibil-
ity check. At the same time, since only an offset is added on
top of the real position, the effect of the attack is also lower
than that of other attacks, as the malicious data still contains
real information.

Figure 5 shows the performance of MCL, SA-MCL and
RESA-MCL, as well as Centroid, which serves as a baseline.
It can be seen that all approaches are affected by the attack,
but as expected, the effect of the attack is relatively low.
RESA-MCL performs the best in all cases, due to its overall
superior localization accuracy capabilities granted through its
use of dead reckoning.

2) RANDOM POSITION ATTACK
Malicious anchor nodes send out completely random, freshly
chosen positions in the random position attack. The effect of
this attack is stronger than that of the biased position attack
as no real data is part of the malicious broadcasts.

The results in Figure 6 show that in this attack, the same rel-
ative ordering between approaches is maintained as with the

VOLUME 10, 2022 33417



A. Bochem, H. Zhang: RESA-MCL for Wireless Sensor Networks and Internet of Things

FIGURE 8. Fixed position attack with 50 anchor nodes.

biased position attack. However, RESA-MCL performsmuch
better, with only a slight increase in its location estimation
error up until about 50% malicious anchor nodes. The other
approaches are affected much more strongly. This shows that
anchor position plausibility checks and particle subsetting are
effective at mitigating this attack.

3) FIXED POSITION ATTACK
The fixed position attack is found to have the strongest effect
of all three attacks. Malicious anchor nodes broadcast their
position as a fixed point of (70, 70) (in meters) on the map.
This pulls location estimates towards one corner of the map.
Its effect is stronger than that of the random position attack
because in the random position attack positions closer to the
actual position of a node may be sent at random.

One obvious difference to the previous attacks, which is
clearly visible in Figure 7, is that after 50% of anchor nodes
are malicious, MCL and SA-MCL start being affected more
strongly by the attack than Centroid. This is likely the case
due to the low anchor density (0.327) in this scenario. When
Centroid localization is not within range of any anchor nodes,
which according to the anchor density measurement is the
case for 67% of location estimates, it will assume a location
in the center of the map, which is an averagely bad estimate
for all points of the map. The other approaches are stateful
and their current estimate is influenced by past information
received from anchor nodes. With a majority of anchor nodes
being malicious, these estimates will be negatively affected
at nearly all times, rather than just in 32.7% of the time as is
the case with Centroid.

RESA-MCL’s robustness features can once again be seen
to be effective in this scenario, with its error rate remaining
way below Centroid even at 90% of malicious anchor nodes.
Up until 30% of anchor nodes being malicious, the increase
in localization error is very small.

Figure 8 shows the same type of results for a scenario with
300 nodes in total, of which 50 nodes are chosen as anchor
nodes, leading to a much higher anchor node density. As most
unknown nodes are in the range of at least one anchor node
almost all the time, SA-MCL andMCL fall onto one line here,

FIGURE 9. Ablation experiments.

because SA-MCL will not perform its dead reackoning while
within range of an anchor node. RESA-MCL outperforms
all other approaches despite being optimized for low anchor
node densities.

E. ABLATION EXPERIMENTS
Taking inspiration from the field of machine learning, we per-
form ablation experiments to evaluate the performance of
RESA-MCL with certain components disabled. This exper-
iment includes the 2-hop plausibility check described in
Section III-D4 as one component, and the anchor position
plausibility check from Section III-D3 as the second com-
ponent. Particle subsetting is not included as results from it
being disabled can also be seen in Section IV-C.
Figure 9 shows the results of disabling either or both of the

components under a fixed position attack in comparison with
full RESA-MCL. It can be seen that 2-hop plausibility checks
only provide a benefit with 70% or more malicious anchor
nodes and otherwise worsen performance. For this reason,
we do not include this component in RESA-MCL, although it
may be useful under specific circumstances. Blocking mali-
cious anchor nodes however, is shown to be highly beneficial
under attack.

F. COMPARISON UNDER ANCHOR DENSITY
In the earlier parts of this section, we have thoroughly com-
pared the localization accuracy of Centroid, MCL, SA-MCL
and RESA-MCL. In the following, we provide a com-
parison of RESA-MCL and MCL-DE [15], another recent
MCL-based approach.

For RESA-MCL, we measure an anchor density of
0.327 with a standard deviation of 0.054 over ten runs of

TABLE 2. Error comparison between RESA-MCL and MCL-DE without
attacks.
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1000 steps each in scenarios with 300 nodes, of which
10 nodes are anchor nodes. In the scenario is presented in
Figure 8, with 300 nodes in total, of which 50 nodes are
anchor nodes, we measure an average anchor density of
1.63 with a standard deviation of 0.09. As can be seen in
Table 2, MCL-DE achieves a localization error of approxi-
mately 1.0 at an anchor density of 0.5 and an error of approx-
imately 0.5 at an anchor density of 1.5.

Our measured anchor densities in RESA-MCL do not per-
fectly match up with those of MCL-DE. However, with an
error of 0.54 at anchor density 0.33, RESA-MCL achieves
an error comparable to that of MCL-DE at anchor density
1.5 and 45% lower than the error of 1.0 achieved byMCL-DE
at the closer anchor density value of 0.5. Similarly, with an
error of 0.26 at an anchor density of 1.63, RESA-MCL’s error
is 48% lower than the error of 0.5 at MCL-DE’s comparable
anchor density of 1.5. In both cases, RESA-MCL achieves
significantly lower localization errors (up to 48%) at com-
parable anchor densities or, conversely, requires significantly
less anchor nodes to achieve a given localization accuracy.

V. CONCLUSION AND FUTURE WORKS
In this work, we introduce RESA-MCL, a novel MCL-based,
range-free, security-aware localization algorithm for WSNs
and the IoT that strongly outperforms comparable approaches
both in safe situations and under attack by malicious anchor
nodes. Without attacks, it outperforms a recent compara-
ble approach with 48% lower localization error at similar
anchor densities. RESA-MCL employs three techniques to
both enhance general localization accuracy and robustness
against malicious anchor nodes. Localization accuracy is
enhanced both in very sparse networks with low numbers of
anchor nodes and in very dense networks with high numbers
of anchor nodes.

Additional contributions include the introduction of three
different attack models against localization approaches in
WSNs and the IoT, based on the assumption of malicious
or malfunctioning anchor nodes. We evaluate the previous
approaches Centroid, MCL and SA-MCL under these attack
models and find them to be strongly affected by the attacks.
In contrast, we demonstrate RESA-MCL’s resilience against
attacks under all three attack models and show that its local-
ization error only increases slightly even with 30%malicious
anchor nodes under themost effective ‘‘fixed position’’ attack
model.

Furthermore, we introduce the idea of 2-hop plausibility
checking, which may increase resilience against malicious
unknown nodes and provide a highly detailed reformalization
of the original MCL approach through pseudo-code. This
reformalization includes implementation details previously
found only in the original author’s simulation. To facili-
tate easier future investigations of MCL-based approaches,
we also publish an optimized version of the simulator with
performance optimizations and bug fixes.

To ease future works comparing these approaches, we opti-
mize and improve the original simulation software provided

by Hu and Evans [8] and Hartung et al. [7] and make it
available on CodeOcean (see Section IV).

In the future, we plan to investigate further attack models,
such as mixed attack strategies, malicious unknown nodes,
as well as the effectiveness of refined versions of the 2-hop
plausibility check functionality. We also plan to investigate
ways of increasing the effectiveness of implausible location
data checking while reducing false positives. Furthermore,
we also plan to evaluate our approach in a real-world testbed,
to validate simulation results. Finally, making the approach
topology-aware, allowing it to exclude impassable terrain
from particle locations is another avenue of enhancing local-
ization accuracy that we plan to explore.
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