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ABSTRACT
In this paper, we address the issue of disaster damage 
assessments using deep learning (DL) techniques. 
Specifically, we propose integrating DL techniques into 
the Internet of Things Search Engine (IoTSE) system to 
carry out disaster damage assessment. Our approach is to 
design two scenarios, Single and Complex Event Settings, 
to complete performance validation using four 
Convolutional Neural Network (CNN) models. These two 
scenarios are designed with three possible network ser-
vices. Our experimental results confirm that all four CNN 
models can learn each label during the single event set-
ting well. Whereas, with complex event settings, the CNN 
models have learning difficulty because multiple events 
have closely related labels.
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1. Introduction

As technology advances, so does our ability to provide data and deep learning 
(DL)-driven analytics and predictions. ML techniques, especially DL, have 
received growing attention and applied to numerous areas, including image 
and video classification, natural language processing, robotics, networking, 
mobile computing and cybersecurity, among others [1–9]. DL is prominent in 
our daily lives; at home with our digital assistants (Apple’s Siri, Amazon’s Alexa, 
Google Home), within our businesses that forecast finance models, among 
social interactions affording collaboration, and around emerging in autono-
mous vehicles and smart homes with a variety of smart devices (NEST thermo-
stats, Ring cameras) [3,10]. DL techniques work to secure the network with 
anomaly and intrusion detection systems using supervised and unsupervised 
techniques, provide the capability of identifying security breaches that can 
occur on a specific computer or on the network [11–15], and balance privacy, 
utility, safety and reliability [16,17].
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As a viable technique, DL can also positively impact the way emergency 
response teams and humanitarian organisations handle damage assessments 
after natural disasters. DL damage assessments provide these emergency teams 
a way to efficiently respond and effectively determine appropriate resources to 
manage the aftermath, such as getting the Federal Emergency Management 
Agency (FEMA) involved and others. Typically, these agency groups need to assess 
within the first 48 to 72 hours before any resources can be provided [18]. To 
support the rapid response, before a disaster, it is up to the local government to 
have accomplished preliminary damage assessments, acquired a plan of action, 
completed training and conducted exercises to know how to respond when 
a disaster takes place [19,20]. When looming danger is nearing, the local govern-
ment needs to be able to provide a warning that tends to ensure public safety 
[19]. After a disaster, the government must work to provide needed services such 
as water, power, communications, transportation, shelter and any medical care 
[19]. Along with the local government, there are public, military, and private utility 
crews and emergency response teams, including fire and police units, medical 
personnel and rescue workers, who have the responsibility of providing aid and 
restoring essential services [19,20]. Communication is vital for recovery from 
a disaster, which is the reason why many times the local government relies on 
using media to publicise the various assistance available, advertise how everyone 
can access them, and then initialise the damage assessment [19,20].

Generally, there are three ways for damage assessments to be completed by 
these response teams. First, they can gauge the extent of the damage by 
determining how many damaged or flooded buildings there are by performing 
a ground survey. It is important to note that ground surveys are labour- 
intensive, can be time-consuming and are typically done by first-hand sources 
[18,21]. Second, overhead imagery can be used; which has limited knowledge 
due to the pixel resolution of the imagery. Third, distributed computing services 
such as crowd-sensing that engage a number of distributed workers to jointly 
complete sensing and computing tasks [22,23]. Nonetheless, crowd-sensing 
requires that there is a reliable network infrastructure so that the data can be 
updated and analysed [17].

The Internet of Things (IoT), along with the vision of cyber-physical systems 
(CPS), has created a novel ecosystem for sensing and actuation, enabling 
intelligently controlled autonomous systems and resource/data sharing to con-
serve energy, water, crops, manage factories and provide situational awareness 
on an unprecedented scale, leading to next-generation smart-world systems 
[4,13,24–29]. As IoT progresses, it calls for designing efficient and fast IoT search 
engines (IoTSE) to find IoT devices, retrieve IoT data and assess impacts [30,31]. 
While basic examples of IoTSE exist, considerable challenges prevent the full 
realisation of an efficient and intelligent IoTSE that provides universal data 
service, scalable data communication and retrieval, and efficient querying of 
massively distributed heterogeneous IoT devices and data using distributed 
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computing architecture, algorithmic design and optimisation [30,32–34]. In this 
study, we focus on the intelligence aspect of IoTSE and utilise IoTSE with DL 
capability to improve and enhance the efficiency of completing damage 
assessments.

In this study, we make the following two contributions.

● A Framework: We propose a new framework that leverages IoTSE with the
DL capability to carry out disaster damage assessments. To meet different
requirements in the scenarios, the IoTSE framework is demonstrated in
three examples: (i) SERVICE-STABLE: when the network status is still stable
in the damaged area, the whole IoTSE system will collect all the related
information from social media on the related topics; (ii) SERVICE- 
DEGRADED: when people have no access to the network in the damaged
area, the IoTSE system will collect and filter related data from smart IoT
devices (e.g. traffic cameras, cameras in smart cars located in the city), and
those devices that are repeatedly recording images and uploading into
remote server; as well as (iii) SERVICE-OUTAGE: when the damaged area is
entirely out of service, dynamic networking infrastructure formed by
drones as data collectors to transmit data or as remote data analysers,
only sending results back to a data centre.

● Extensive Evaluation: We carry out extensive performance evaluation of
IoTSE to validate the efficacy. We first preprocess the data by mechanisms
such as randomly cropping and obtaining a validated dataset [35]. We then
set two different scenarios for testing four pre-trained DL models: (i) Single 
Event Test (SET): uses only one single event in the validation. Our experi-
mental results show that all of these models can learn well and perform
better when increasing data quality and quantity. (ii) Complex Event Test 
(CET): In this setting, multiple events occur in different locations with
a similar topic. In the CET testing, we find that all models have a hard
time learning the same label across the different events; additionally, when
more similar event topics are fed into the model, the learning performance
becomes worse.

The remainder of this paper is organised as follows: Section 3 briefly 
introduces damage assessment issues, DL and IoTSE. Section 2 reviews 
existing research efforts that are relevant to the paper. Section 4 provides 
the framework design, scenarios and clarifies the reason why these scenar-
ios are essential for validation. Section 5 overviews the methodologies as 
well as analyzes the DL performance in different scenarios. Section 6 dis-
cusses some remaining issues for future research and Section 7 concludes 
the paper, respectively.
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2. Related works

In the following, we review various research efforts that are closely relevant to 
our study.

Recently, there are a number of existing research efforts with DL to 
carry out tasks such as classification in a variety of applications [5,36,37]. 
For example, Mikołajczyk et al. applied a new data augmentation in DL 
training in order to improve performance in image classification [36]. 
Cheng et al. designed a new neutral network structure with a feature 
map over the data set in order to obtain better performance in image 
classification [37]. Likewise, Liang et al. designed a CNN-based scheme to 
automatically recognise industrial components in industrial IoT system [5].

There are also some existing efforts on leveraging DL in IoT systems in 
order to enhance security and improve network performance [12,15,38,39]. 
For example, Li et al. applied DL within IoT-based edge computing to 
improve the performance of information extraction in a complex environ-
ment [38]. Jie et al. proposed a DL approach for the low power IoT products 
in order to gain better performance while using less power consumption 
[39]. Likewise, Xu et al. explored the evolutionary process of data integrity 
threats and defence in CPS and leverages deep neural networks to detect 
attacks [12].

In addition, there are some research efforts on IoTSE [24,30,40]. For example, 
Hatcher et al. applied Long Short-Term Memory (LSTM) machine learning 
scheme in IoTSE in order to predict incoming query volume, which leads to 
query efficiency [30]. Likewise, Cheng et al. designed an IoTSE platform based on 
Constrained Application Protocol (COAP) and conducted experiments on query 
optimisation algorithms [40].

Furthermore, there are some research efforts for public safety and 
related applications [17,42,43]. For example, Yu et al. proposed a user- 
side-based solution for enhancing public safety communications [17]. 
Jarwan et al. used multi narrow bands in Long Term Evolution (LTE) 
network to deal with different kinds of disaster scenarios [43]. Likewise, 
Wang et al. designed several resource allocation schemes for out-of- 
courage device-to-device group communication, which is important to 
public safety.

3. Preliminaries

The following Section discusses the issues related to damage assessment and 
provides an introduction to deep learning and IoTSE.
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3.1. Damage assessment issues

There have been several research efforts on understanding and addressing 
various issues when it comes to completing damage assessments. Existing 
solutions such as utilising satellite images [20,44] or social media [18,21], while 
prior efforts include combing both for physical and human information fusion 
(PHIF) [34]. Generally speaking, damage assessments are carried out by con-
ducting a field evaluation. Experts typically take pictures, complete interviews of 
people in the affected area [18,21] and consult prior imagery. The field assess-
ments have some challenges, such as having limited resources at the site, time- 
consuming and severe living conditions.

There are a number of technologies available to complete damage 
assessments, including remote sensing, mobile surveys, remote validation, 
and others. For example, remote sensing (e.g. aerial imagery) would be 
used to identify damaged homes and infrastructure without having some-
one at the location [20,44]. Nonetheless, utilising remote sensing-based 
schemes can have some issues such as usability due to weather and limited 
network availability [18,20]. Mobile surveys have been used in conjunction 
with field assessments for immediate verification and feedback [20], while 
there are no images to review before the event to do a comparison [21]. In 
addition, remote validation is used when the work has been completed, 
when the damage can be validated easily through photography, or when 
onsite validation is not needed [20]. Utilising remote validation means that 
any privacy and information security during data collection needs to be 
considered, such as personally identifiable information (PII), data accuracy, 
timing and data storage [20]. These challenges delay the process of gather-
ing data and completing the damage assessment, which can hinder the 
arrival of needed relief operations [18].

3.2. Deep learning (DL)

DL can be beneficial to addressing the damage assessment, as shown in the 
xVIEW2 challenge (https://xview2.org/). DL is a type of advanced ML, which is 
closely related to computational statistics, providing the ability of making 
predictions using computers and mathematical models [6]. These DL mathema-
tical models provide ML a way to automatically learn and find patterns in large 
amounts of data [6,45]. ML primarily focuses on classification and regression 
from features that have been learned from training data [6,46].

Nonetheless, traditional ML techniques are limited as pattern-recognition 
required engineers to design a way to extract information and convert the 
raw data into feature vectors, allowing classifiers to identify patterns in the 
input [46]. Deep learning (DL), on the other hand, focuses on establishing 
a neural network for analytic learning allowing for the interpretation of data, 
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such as images, audio and text [2,6]. For our research, we utilise image classifi-
cation, assuming that a label is extracted from a feature set using an algorithm 
[47]. The goal is to determine whether DL could be an efficient way to conduct 
remote damage assessments instead of sending resources onsite to complete 
assessments. To begin the research, we leverage four of the most popular DL 
models (Vgg19 [48], ResNet50 [49], GoogleNet [50], and MobileNetV2 [51] and 
well-defined training sets), which will be discussed in detail in Section 4.3. These 
data sets are pre-processed and fine-tuned for training simulation as discussed 
in Section 5.1. There are a variety of training set sizes, but for DL algorithms, the 
larger the dataset, the more accurate the algorithms become [3].

An example of DL workflow for assessing damage to disaster is shown in 
Figure 1. As shown in the figure, an image related to California Wildfires is used 
as input and DL model (i.e. VGG16 CNN) is adopted to extract features from the 
given image. Via a set of layers in CNN, a list of probability for individual labels is 
computed as results, which are further used to determine that the input image 
belongs to serve damage scene.

There are basic types of paradigms in DL: supervised, semi-supervised, unsu-
pervised, as well as related methods such as transfer, active and reinforcement 
learning [2,3,6,45,52]. Supervised learning requires labelled data. Unsupervised 
learning uses unlabelled (or un-categorised) data but has assumed structural 
properties [6,53]. Unsupervised learning provides the ability to find hidden pat-
terns or data groupings, which can be beneficial when using DL [3,6]. 
Reinforcement learning (RL) is a combination of supervised learning as a goal 
has to be specified and unsupervised learning in the fact that a label is not needed 
for collected [3]. By interacting with the environment, RL uses autonomous agents 
in order to make determination of actions to take in an environment [3,54].

Supervised learning simply means that the data is made up of features 
and a label to attempt to correctly map features to the label. During the 
training phase, the machine is able to adjust parameters as it is learning, 
ultimately reducing the errors or the distance between the provided and 
the desired output [3,46]. Supervised learning is most commonly used 
during training in both ML and DL due to its performance on the available 
training data [3,45,46].

Figure 1. Example of DL for recognising severe damage scene.
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DL has proven to show incredible accuracy due to the computational power 
of the latest processors and the large amounts of existing data that can be used 
[3]. For the purpose of our research, image-based DL is combined with IoTSE.

3.3. Internet of things search engine (IoTSE)

Along with DL, IoTSE also provides solutions in damage assessments. There 
are various reasons why IoT data analytics can support damage assessment. 
Since IoT systems exchange more data between the smart devices versus 
between users and devices, high amounts of data are created. With IoT data 
sharing, from the large amount of data, analytics supports future decisions 
[24,32,55]. Currently, the large amounts of data, data management and 
service become a concern as each IoT system has its own data structure, 
data rate and performance requirements due to the heterogeneous data 
sources [32,55]. Sharing the data also raises a concern due to the different 
standards and settings, making it difficult to share with other devices and 
organisations [24,25,32,56]. Scalability and accuracy are other concerns with 
IoT devices as connecting to the cloud can be much costly for processing 
data, but there can also be time-critical applications that requires timely 
decisions [55].

IoTSE seeks to solve IoT systems’ management and search issues between 
devices and data [32]. The idea behind IoTSE is to mimic a typical Internet 
browser; however, all the IoT data would become a Uniform Resource Locator 
(URL) link, allowing user to be able to view the data based on their queries [32]. 
Like web-based search engines, IoTSE is capable of providing functionalities: 
data collection, indexing and organisation [24,32]. Data collection in IoTSE can 
use a subscription/notification-based scheme to gather data from IoT devices 
instead of having to utilise web servers in a typical web-based search [32]. 
However, IoTSE has some of its own issues that it needs to resolve, including 
performance, multi-system integration, security and privacy [24].

With the capabilities of powerful data analysis tools like ML and DL, the demands 
to access IoT data have increased drastically [24]. DL should be able to provide 
efficiency in an IoTSE architecture as it is capable of improving performance 
computation, reducing workloads and improving decision-making [24,55]. IoTSE 
combined with DL should be able to create a standard format regardless of the 
heterogeneous IoT devices, operational domains and communication systems [32].

4. Our approach

This Section provides an overview of IoTSE that utilises DL for damage assess-
ment. Particularly, the section outlines the framework problem space, presents 
the dataset, analyzes the data labels and evaluates the proposed scenarios.
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4.1 Framework

Based on current damage assessment issues in Section 3.1 and the benefits of DL 
in Section 3.2, this section presents the framework of leveraging DL to support the 
damage assessment as an application of the IoTSE-based architecture. The IoTSE- 
based architecture consists of three major components: (i) Source of the data, (ii) 
IoTSE and (iii) DL applications, as shown in Figure 2. In the DL-IoTSE architecture, 
IoTSE will be considered to be hosted on edge or cloud data centre, where the 
related DL applications are running in the IoTSE at the application layer.

Figure 2. Scenarios of IoTSE for damage assessment.
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In order to address the various network status updates at a specific 
location, the following three methods of data collection are used in the 
possible scenarios accordingly: (i) SERVICE-STABLE when the network envir-
onment of the requested area is operational and stable, IoTSE can utilise 
cross-crawling schemes in order to gather keyword-based information from 
social media platforms (Twitter, Facebook, etc.). (ii) SERVICE-DEGRADED, 
when people are located in a disaster zone with no access to the network, 
IoTSE can collect the related data from IoT devices in the city. This would 
be carried out by IoTSE querying data from servers, which are recently 
updated by smart cars, traffic cameras, and other cameras to find relevant 
data to complete the damage assessment. (iii) SERVICE-OUT, when the 
disaster zone is completely out of all services, which is designated as the 
worst case scenario, we can deploy dynamic network infrastructure deploy-
ment (e.g. drone-based wireless network) [17,57] to cover the area in order 
to gain the data and provide back to the IoTSE for further computing and 
analysis. Nonetheless, if the total damage is massive, meaning the data 
would not be gathered and sent back in a short time, drones in dynamic- 
based network infrastructure can be used as a mobile edge server to carry 
out local analysis and then provide the results back to the IoTSE.

4.2. Problem space

Based on the proposed IoTSE architecture (Figure 1), there are three aspects 
that could affect the efficacy of IoTSE to carry out damage assessments: (i) 
Network Performance: The design of the network topology, any limitations 
of bandwidth and the network protocol chosen could significantly affect the 
delivery latency of required data, the stability of the constructed network and 
the quality of the required data. (ii) IoTSE Management: When massive 
amounts of data streams are coming into the IoTSE, determining how to 
efficiently and swiftly store the data will be critical. When the upper layer of 
IoTSE requests a large amount of metadata from cross-data sets, how the IoTSE 
manages data access efficiently will also play an important role. Furthermore, 
there are a number of computing and network resources in IoTSE, how to 
efficiently conduct computing and network resource management jointly so 
that the overall performance of IoTSE can be maximised. (iii) Machine 
Learning Performance: The ML (especially DL) model size, training time and 
the power consumption, among others (hyper parameters of DL, the architec-
ture of DL, etc.) will determine the ultimate performance of the learning model 
in certain damage assessment tasks.

Thus, the problem space of the IoTSE architecture can be generalised as 
a three-dimensional model, as represented in Figure 3. Each axis represents one 
of the three key indicators generalised from above. For this paper, the focus is 
on the performance of DL models.
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4.3. Data collection and human annotations

For our study, we utilise and leverage the labelled data of natural disaster from 
the Artificial Intelligence for Disaster Response (AIDR) [35] platform. AIDR com-
pletes web-crawls for images posted on social media during natural disasters 
and then manually marks these with labels of the damage level. We choose the 
following disaster events: California Wildfires, Hurricane Harvey [58], Hurricane 
Irma and Hurricane Maria [59]. Table 1 lists all the datasets and provides the total 
number of images that were initially collected in each.

The purpose of data curation is to be able to assess the severity of damage 
shown in an image. In these natural disaster cases, it is all about the physical 
destruction shown in the scene, including broken bridges, buildings that have 
smoke, cracked roads, etc. There are five levels of possible damage: (i) Severe 
Damage: The image shows major destruction of buildings or targets. (ii) Mild 
Damage: Only part of building is missing or damaged in that image but has some 
functionality. For example, only some levels of a building have lost electricity after 
an earthquake. (iii) Little or No Damage: In no-damage, the image shows 

Figure 3. Problem space.

Table 1. Dataset for four disaster events.
Crisis Name Number of Images

Hurricane Irma 4504
Hurricane Harvey 4434
Hurricane Maria 4556
California Wildfires 1589
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buildings are targets that are damage-free. (iv) Can not judge: This case only 
presents some details of large target or area that does not reflect any meaningful 
information, such as taking a picture of a burnt branch that was near a building 
fire, but not of the actual fire. (v) NaN (not related): The context in the image is 
not visually related to any kind of damage, such as the news reporting on damage 
in flooding. Figure 4 shows the examples of aforementioned damage levels.

Using the levels of damage defined above, the number of each level of 
damage that is contained in each dataset is presented in Table 2.

4.4. Damage assessment scenarios

In order to meet the requirement of damage assessments, we design a system 
with two aspects in mind, namely quality and similarity.

● Quality of Image: Since DL models rely on the information within an image,
any images that have more pixels will provide the system with more useful
information. In this case, the system should learn and adapt to the variety
of image quality, while still providing results towards best efforts.

Figure 4. Examples of labelled images in California wildfires.

Table 2. Number of labelled images for each dataset.
Classes California Wildfires Hurricane Maria Hurricane Harvey Hurricane Irma

Severe Damage 465 509 556 316
Mild Damage 51 273 220 229
Little or No Damage 15 80 116 250
Can not judge 14 41 22 19
NaN (not related) 1044 3653 3520 3690
Total 1589 4556 4434 4504
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● Resilience of Same Event but with Different Details in Context: The system
should be able to understand the same damage related information of
similar events that have occurred in a different location. It is critical to be
able to differentiate locations as most data sources come from social media
and are not always clear about where and when the event occurred.

In the following, we design the two types of scenarios in order to evaluate the 
performance of the IoTSE system.

● Single Event Setting: For the Single Event scenario, two datasets are used
from AIDR (Hurricane Harvey and California Wildfires) as shown in Table 3.
Each dataset was run as separate test events in order for the DL model to
train and test. With each event, the original pixel of the image is considered
to be the baseline, and it is compared to the performance of the DL models
that are run with different settings of pixels contained (75%, 50% and 25%).

● Complex Event Setting: In the Complex Event scenario, the labelled data
that is provided is from a similar or related topic, but not the same event.
Obtaining data of a labelled single-event disaster is not possible due to
limited resources or budget. We carry out several complex-event experi-
ments, in which the trained model is used in Hurricanes shown in Table 4.
We consider the whole number of images for Hurricane Harvey as the
baseline. We then use 60% of Hurricane Harvey and 60% of Hurricane
Irma images as the first comparing group. Lastly, we combine 60% of
Hurricane Harvey with 60% of Hurricane Irma and 60% of Hurricane Maria
as the second comparing group. For each group, we provide the four
different image quality pixels contained (100%, 75%, 50% and 25%).

5. Performance evaluation

We have conducted extensive performance evaluations to validate the efficacy 
of the IoTSE approach. In the following, we first introduce our evaluation 
methodology and then present evaluation results.

Table 3. Dataset in single event setting.
Event Combination Name

Group 1 Hurricane Harvey
Group 2 California Wildfires

Table 4. Dataset in complex event setting.
Event Combination Name

Group 1 100% Hurricane Harvey
Group 2 60% Hurricane Irma+ 60% Hurricane Harvey
Group 3 60% Hurricane Harvey + 60% Hurricane Maria + 60% Hurricane Irma
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5.1. Methodology

IoTSE uses Pytorch [60] as the platform to carry out the experiments. The 
following section introduces the dataset, set learning scheme and environ-
ments, and key performance indicators.

5.1.1. Data prepossessing
We use the following four steps shown in Figure 5 to preprocess the dataset by 
resetting image into 256*256, randomly rotating 30°, randomly central cropping 
into 224*224 and normalising image with certain mean value and standard 
deviation recommended by the Pytorch [61].

5.1.2. Learning schemes
Four pre-trained CNN-based deep learning models are used: Vgg19 [48], 
ResNet50 [49], GoogleNet [50] and MobileNetV2 [51]. These pre-trained models 
are well trained in ImageNet [62], which contain ten million images with over 
a thousand categories. For all these models, we re-train the last fully connected 
layer (noted as FC layer) with our own dataset.

5.1.3. Learning settings
For the fine-tuning training, we choose the backpropagation with mini-batch 
stochastic gradient descent with momentum [63]. The IoTSE experiments are set 
with a batch size of 64, momentum of 0.9 and fine tuning with a learning rate of 
10� 3. For training each model, we only provide 25 epochs. The reason why we 
only provide 25 epochs is due to trying to simulate a training status that takes 
a limited time (such as disaster response), which is more fitting to the require-
ment of our framework for damage assessments. We then divide each dataset 
into two subsets: training (60%) and test (40%). We also use two Nvidia GeForce 
RTX 2080 Ti as our computing resource for training.

5.1.4. Key performance indicator
In order to evaluate the performance of the four defined scenarios, six metrics 
were considered: (i) Training Time: It records the training time after the 25 
epochs for each model have been completed. (ii) Best Training Accuracy: 
Each training session keeps a recording of the best training accuracy, learning 
weight and replacing the current one. (iii) Average Testing Accuracy: The test 
session computes the average of whole results to measure the overall accu-
racy. (iv) Average Precision and Average Recall in Testing: The test session 

Figure 5. Data prepossessing.
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records each time test with precision and recall, computing an average result. 
(v) Macro F1-Score: Since this is a multi-classifying problem, macro F1 score 
would be a better metric to determine performance, based on the previous 
two metrics in testing. (vi) Confusion Matrix: which are the statistics to 
compute the precision-recall for each label learning perforce test, the true- 
positive rate and false-positive rate, as well as a matrix with the true label and 
prediction label as the axes.

5.2. Results

The following section analyzes the performance results in the single event 
setting, followed by performance results in the complex event setting.

5.2.1. Single event setting
California Wildfires Event Result: Table 5 shows the best training accuracy and 
time in the training of the models. The macro-averaged testing results show in 
terms of precision, recall, F1 score and the accuracy in the testing phase of the 
models. These results are for those DL models with different ratios of image 
quality in the data set. For the experiment, we use the least amount of data for 
the test event; which is the California Wildfires with almost 1589 images in 
Table 1. When the image quality increased, the accuracy of all models increased 
in training and testing. Nonetheless, these are slight improvements, as less than 
2% each time, the image quality is increased, the accuracy increases. One 
possible reason is that there are not enough data for the training models.

Table 5. California wildfires event result.
Model Training Part Testing Part

Best Training Accuracy Training Time Precision Recall Accuracy F1 Score

(a) 25% Original Image Pixel
Vgg 19 0.767296 2 m 59s 0.380162 0.290064 0.745844 0.291375
ResNet 50 0.75 2 m 56s 0.29499 0.273354 0.734207 0.280902
Googlenet 0.734277 1 m 38s 0.287664 0.255341 0.715113 0.253755
MobileNet V2 0.764151 1 m 36s 0.286096 0.295903 0.750605 0.290608

(b) 50% Original Image Pixel
Vgg 19 0.790881 3 m 46s 0.377322 0.319438 0.776549 0.318176
ResNet 50 0.795597 3 m 36s 0.296463 0.300933 0.768438 0.297597
Googlenet 0.781447 2 m 24s 0.287132 0.280202 0.743879 0.279209
MobileNet V2 0.789308 2 m 23s 0.357223 0.298582 0.763602 0.296436

(c) 75% Original Image Pixel
Vgg 19 0.811321 5 m 12s 0.419531 0.309721 0.778615 0.306255
ResNet 50 0.790881 4 m 51s 0.314056 0.314682 0.776499 0.305996
Googlenet 0.792453 3 m 39s 0.289412 0.287729 0.751033 0.285976
MobileNet V2 0.789308 3 m 25s 0.306893 0.302338 0.768741 0.298715

(d) 100% Original Image Pixel
Vgg 19 0.795597 6 m 21s 0.400919 0.31089 0.78005 0.304696
ResNet 50 0.801887 6 m 9s 0.402287 0.305873 0.772519 0.289224
Googlenet 0.812893 5 m 10s 0.292321 0.283006 0.752116 0.253283
MobileNet V2 0.794025 4 m 58s 0.402216 0.305187 0.770655 0.28926
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Figure 6 highlights that different models have different learning sensitiv-
ities for the labels in the testing as shown with one axis for the different 
models and the other axis is for the different ratios of image quality. Within 
each sub-block of the confusion matrix, the ‘y’ axis is the true label and the 
‘x’ axis is the predicted label. The values then present how much the 
percentage of true label of this category is considered as the current 
category in the ‘x’ axis. In this dataset, the NaN (not related) category is 
the majority labelled; however, it is difficult for all the models to learn. 
Since most of the results for each model in each setting are less than 30%, 
we find that most models are able to mostly recognise the severe damage 
and the can-not-judge labels where the mild damage and the little-or-no 
damage are the most difficult to learn.

Hurricane Harvey Event Result: In this test event, we use a large data 
set, three times the size of the California Wildfires case. In Table 6, as 
compared to Table 5, the larger data set improves the accuracy of the 
training, showing all the models with over 80%. We found that the 
difference in training time is less for all models in each setting, even 
though the data size became three times larger than before. 
Nonetheless, we could find that the improvements in each model for 
different image quality settings are very limited. However, with limited 
epochs, those models could not learn the features well enough, even with 
a large data set.

Figure 6. California wildfires event confusion matrix.
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In Figure 7, the NaN label is the most difficult for VggNet19 and 
ResNet50 to learn. From the beginning, starting with 25% image quality 
setting, these two models are able to learn relatively well. When the image 
quality begins to increase, we find that the result decreased drastically. The 

Table 6. Hurricane Harvey event result.
Model Training Part Testing Part

Best Training Accuracy Training Time Precision Recall Accuracy F1 Score

(a) 25% Original Image Pixel
Vgg 19 0.828636 9 m 2s 0.420888 0.293119 0.820194 0.304696
ResNet 50 0.838219 6 m 12s 0.442552 0.278055 0.819436 0.289224
Googlenet 0.821871 5 m 11s 0.342001 0.250843 0.810972 0.253283
MobileNet V2 0.833145 5 m 7s 0.433586 0.280478 0.819499 0.28926

(b) 50% Original Image Pixel
Vgg 19 0.844419 11 m 12s 0.445209 0.31392 0.831302 0.331795
ResNet 50 0.837655 8 m 58s 0.425043 0.315602 0.832384 0.326473
Googlenet 0.842728 7 m 48s 0.386692 0.267091 0.818624 0.273969
MobileNet V2 0.838782 7 m 32s 0.422264 0.304417 0.82633 0.312939

(c) 75% Original Image Pixel
Vgg 19 0.843856 14 m 3s 0.457888 0.325421 0.834342 0.342907
ResNet 50 0.840474 12 m 23s 0.462851 0.319505 0.834036 0.332098
Googlenet 0.837655 11 m 10s 0.397578 0.282866 0.824516 0.287368
MobileNet V2 0.838219 11 m 18s 0.430023 0.309726 0.829632 0.320808

(d) 100% Original Image Pixel
Vgg 19 0.851184 19 m 44s 0.443432 0.335784 0.835019 0.308308
ResNet 50 0.844983 16 m 25s 0.46543 0.324818 0.837401 0.302018
Googlenet 0.83991 16 m 27s 0.371912 0.278739 0.823659 0.282496
MobileNet V2 0.842728 15 m 49s 0.457641 0.312792 0.831852 0.302472

Figure 7. Hurricane Harvey event confusion matrix.
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performance of GoogleNet and MobileNet V2 both show that they are 
learning well and even when the image quality is increased to 50%, both 
models are able to maintain or improve the performance. Nonetheless, even 
though we continue to increase the image quality from 50% to 75% and 
from 75% to 100% the accuracy in these models continues to decrease. For 
this test event, we also discover that all the models are able to learn the 
labels of mild damage and severe damage well in all settings.

5.2.2. Complex event setting
60% Hurricane Irma and 60% Hurricane Harvey Event Result: In Table 7, 
all models except MobileNet V2 are able to recognise the same damage 
level for the two datasets and are getting better when the image quality 
increases. MobileNet V2, on the other hand, does not do well in the 25% 
setting, but began getting better when image quality increased to 50% and 
75%. Nonetheless, MobileNet V2 begins getting worse in 100% setting. The 
reason for this shown in Figure 8, is that the majority label (NaN label) in 
dataset is not learned well. In detail, in the 25% setting, the result seen is 
58% accurate, but increases to 88% in the 50% setting. In the 75% setting, 
the accuracy is at 84%, but drops to 65% when the image quality is running 
in the 100% setting.

In Figure 8, we find that the mild damage and severe damage label can be 
learned and are well recognised for all the models. The No-damage and can-not- 
judge label are hardest to learn, since these categories look less similar in 
different datasets.

Table 7. 60% Hurricane Irma and 60% Hurricane Harvey event result.
Model Training Part Testing Part

Best Training Accuracy Training Time Precision Recall Accuracy F1 Score

(a) 25% Original Image Pixel
Vgg 19 0.761194 25 m 59s 0.229338 0.230152 0.692657 0.229041
ResNet 50 0.791511 23 m 12s 0.222469 0.230764 0.701164 0.224603
Googlenet 0.816231 22 m 16s 0.192636 0.199168 0.768507 0.189456
MobileNet V2 0.616138 18 m 18s 0.200343 0.203582 0.495687 0.183711

(b) 50% Original Image Pixel
Vgg 19 0.795243 28 m 59s 0.241613 0.238089 0.724448 0.23918
ResNet 50 0.716884 25 m 42s 0.243014 0.249308 0.674896 0.234426
Googlenet 0.806437 25 m 25s 0.199193 0.199783 0.761821 0.191519
MobileNet V2 0.810634 21 m 33s 0.204363 0.203974 0.721463 0.202552

(c) 75% Original Image Pixel
Vgg 19 0.787313 30 m 40s 0.239876 0.246823 0.691119 0.24171
ResNet 50 0.817164 30 m 34s 0.234289 0.247481 0.700836 0.23503
Googlenet 0.79291 30 m 33s 0.211189 0.209797 0.747881 0.205734
MobileNet V2 0.812966 27 m 16s 0.223764 0.210058 0.694007 0.211615

(d) 100% Original Image Pixel
Vgg 19 0.794776 37 m 27s 0.038539 0.234388 0.720754 0.235544
ResNet 50 0.807369 36 m 37s 0.242905 0.253674 0.727455 0.245896
Googlenet 0.821362 37 m 25s 0.194639 0.199275 0.776119 0.188762
MobileNet V2 0.55783 34 m 53s 0.207885 0.208551 0.553925 0.193469
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60% Hurricane Harvey, 60% Hurricane Maria and 60% Hurricane 
Irma Event Result: In this result, three events are combined. The result at 
(25% setting) is very poor from Table 8 when compared with Figure 8 as all 
models at less than 60%. Even when the image quality is increased, most of 

Figure 8. 60% Hurricane Irma and 60% Hurricane Harvey Event Confusion Matrix.

Table 8. Results on 60% Hurricane Harvey, 60% Hurricane Maria and 60% Hurricane Irma.
Model Training Part Testing Part

Best Training Accuracy Training Time Precision Recall Accuracy F1 Score

(a) 25% Original Image Pixel
Vgg 19 0.546943 39 m 39s 0.220723 0.216382 0.448936 0.217579
ResNet 50 0.572884 34 m 29s 0.22699 0.235277 0.451037 0.228706
Googlenet 0.561458 35 m 22s 0.191525 0.197051 0.467649 0.190757
ModelNet V2 0.504324 26 m 29s 0.1953 0.197185 0.410335 0.193445

(b) 50% Original Image Pixel
Vgg 19 0.501235 44 m 28s 0.220723 0.216382 0.414679 0.224466
ResNet 50 0.367202 36 m 40s 0.22699 0.235277 0.392161 0.225728
Googlenet 0.575355 39 m 32s 0.191525 0.197051 0.4809 0.200014
ModelNet V2 0.581223 32 m 26s 0.1953 0.197185 0.465721 0.197299

(c) 75% Original Image Pixel
Vgg 19 0.55281 41 m 19s 0.234211 0.231856 0.459854 0.231559
ResNet 50 0.557134 45 m 20s 0.230168 0.247613 0.434632 0.231482
Googlenet 0.546634 54 m 9s 0.207774 0.202593 0.439778 0.195934
ModelNet V2 0.433601 40 m 41s 0.200774 0.206961 0.36734 0.187354

(d) 100% Original Image Pixel
Vgg 19 0.540766 53 m 27s 0.23401 0.233678 0.456889 0.232647
ResNet 50 0.562075 56 m 55s 0.240333 0.251584 0.448575 0.240366
Googlenet 0.553428 62 m 25s 0.204706 0.202685 0.487888 0.195857
ModelNet V2 0.575973 50 m 59s 0.202201 0.202386 0.479812 0.198143
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the models remain the same. In some cases, they even become worse; such 
as ResNet 50 which drops from 46% in 25% setting to 39% in 50% setting 
during the testing portion. The training time also increases for all models in 
each setting.

From Figure 9, we find that all labels are learned poorly. It seems that it 
was difficult for the models to recognise the same damage level from three 
different datasets. We also find that the severe damage label is more 
recognisable than other labels, due to severe damage being easy to tell 
from context in each image. The mid-damage label is the hardest to learn 
for the models in this test.

Note that those experimental results are conducted under the following 
considerations. First, based on the existing pre-trained CNN models, we 
adopt the fine-tuning as our primary training strategy in all the scenarios 
and only retrain the last layer of all models. It provides a good base for 
further model re-training/tuning. Second, compared to text-based data, 
image is more robust to missing part of data as image itself has a lot of 
redundant information. This is the reason why the high compression ratio 
can be achieved when an image is compressed. Also, it is common practice 
that the context of an image can still be understood when missing even 
75% of pixels. Because of this, we use 25% of image pixels contained as the 
threshold for the lowest image quality, ensuring that IoTSE can obtain 

Figure 9. Confusion matrix with 60% Hurricane Harvey, 60% Hurricane Maria and 60% 
Hurricane Irma Event.
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sufficient quality of image data for accuracy. We expect that when we 
further reduce the amounts of image pixels, the accuracy of learning 
model will be further declined.

6. Discussion

Potential future research directions for DL-based IoTSE for damage assess-
ment concern performance and security.

● Performance issue: After running through the performance evaluation,
we have determined that all of these models are less likely to recognise
the same label in a different but same-topic event. There are two
potential ways to improve this. One is utilising DL models that will
be able to understand the same or similar context from different
datasets. The other is designing a new data pre-processing scheme,
which focuses on the similar topic dataset, making the same label data
easier for the model to know whether they are the same thing. With
respect to the network performance issue, since the whole IoTSE
system may be operated over a constrained network environment,
the more queries sent to IoTSE, more overhead occurs. To deal with
a large number of queries (the cost for responding some queries could
be high), we can not only develop the multi-class scheduling algo-
rithms to handle queries with different priorities but also enhance the
design of IoTSE architecture to reduce the time taken for processing
queries [40 41]. In addition to use the traditional scheduling and
optimisation techniques to efficiently manage resources in IoTSE, the
new data-oriented network architectures such as Named Data Network
(NDN) [64] could be considered.

● Security issue: IoTSE, as a critical infrastructure to carry out disaster
assessment based on collected sensory data, it can be subjected to
a variety of attacks. The adversary can launch attacks against the key
components in IoTSE (e.g. data collection, data transmission and data
analysis). For example, when the data collection process is compro-
mised, the adversary could launch data poisoning attacks by injecting
malicious image samples so that the accuracy of assessment decision
of IoTSE can be affected. When the data transmission process is under
attack, it will affect the availability of network transmission and the
timely decision of IoTSE. Furthermore, the ML/DL as the essential part
of data analysis component can be targeted by different attacks (e.g.
model training/testing-based attacks, generative adversarial network
(GAN)-based attacks, model function/performance-based attacks and
others) [1,2,15,65]. Thus, it is critical to investigate the security of
model training and testing process subject to different threats and
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design corresponding countermeasures [1,66]. Also notice that since 
CNN models that we investigate in this paper did not understand the 
same label in different datasets well, there could be an attack, in 
which similar topic contexts are fed to the model so that the accuracy 
of learning model can be reduced. To deal with this issue, a Siamese 
network could be used as a data filter within the learning scheme 
5.1.2. The Siamese network would be able to tell whether the incom-
ing data is the required dataset for the training by comparing it with 
previous data.

7. Final remarks

This paper has addressed performance issues of damage assessment and 
proposed DL-based techniques to support an IoTSE-based solution. The 
paper has presented two types of scenarios for four popular DL models 
dealing with images that have different quality ratios. Our experimental 
results have confirmed that, in the single event setting, all the models were 
able to learn well for each label and with the increased dataset size and 
image quality, the better performance could be achieved. With the complex 
event setting, we have observed that the performance of the models has 
been reduced when learning the labels that are closely related topics. 
Future directions to enhance the performance and security issues with DL- 
based IoTSE to complete damage assessments include methods of domain 
adaptation and transfer learning to understand the same or similar context 
from different datasets.
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