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ABSTRACT
Under the severe impacts of climate change, drought has become
one of the most undesirable and complex natural phenomena
with critical consequences for the environment, economy and
society. The orthodox drought monitoring approaches use obser-
vations of meteorological stations, which are typically restricted in
time and space. Remote sensing, conversely, provides continuous
global coverage of a variety of hydro-meteorological variables
that are influential in drought, and data extracted from remote
sensing and modeling missions are now considered more prac-
tical and alluring for researchers. In this study, we applied a com-
bination of field data, remotely sensed data and modeled data to
detect and quantitatively analyze drought phenomena. To achieve
this objective, we utilized Terrestrial Water Storage Anomalies
(TWSA) estimations from GRACE mission, Normalized Difference
Vegetation Index (NDVI) from MODIS mission, Surface Runoff (R)
and Evapotranspiration from ERA5 reanalysis datasets and Soil
Moisture (SM) from GLDAS data model to evaluate their feasibility
in detecting recent droughts over Turkey. We validated the accur-
acy of several remote sensing-based indices (GRACE Drought
Severity Index, Water Storage Deficit Index [WSDI], Soil Moisture
Index, Standardized Runoff Index and NDVI) with the traditional
indices (SPI and SPEI) calculated from in situ observations of pre-
cipitation. The results revealed that the GRACE-based WSDI gave
the best performance with high correlations with the SPI index
both temporally and spatially over Turkey. We also found that
monthly and annual time series of WSDI agreed well with the SPI
index with correlations of 0.69 and 0.73, respectively. The results
of drought analysis also indicated that WSDI could be used as a
proxy to standard meteorological drought indices over Turkey as
it performed well to detect and characterize the recent droughts
of Turkey based on its comparisons to SPI results.

ARTICLE HISTORY
Received 5 June 2021
Accepted 10 April 2022

KEYWORDS
Drought; GRACE; water
storage deficit index;
drought severity
index; Turkey

1. Introduction

Being characterized by terrestrial water deficit (Sun et al. 2018), drought is an undesirable
and complex environmental phenomenon with severe environmental and socio-economic
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consequences (Hosseini-Moghari and Araghinejad 2015). According to Wilhite (2005),
droughts can be classified into four major types based on their causes: (i) meteorological
drought (precipitation loss), (ii) agricultural drought (soil moisture loss), (iii) hydrological
drought (surface runoff, total water and groundwater loss) and (iv) socioeconomic
drought (water supply and demand loss). However, since precipitation is the main input
of the water cycle, all droughts can be associated with precipitation deficiency and/or
evapotranspiration (ET) anomaly. The most direct and obvious manifestation of drought
is reflected in surface and subsurface water resources. Due to the variations in the global
patterns of climatic variables, particularly temperature and precipitation, drought is now
becoming a recurrent natural catastrophe, especially in arid and semi-arid regions of the
world. Compared to other natural hazards, drought has added destructive power because
of its harsh impacts on different aspects of nature and human life especially when it is
prolonged and extensive (Brown et al. 2008). Hence, detection and monitoring of
droughts bear critical importance to provide a means for better management of the lim-
ited water supplies (Khorrami and G€und€uz 2019).

The growing amount of space missions during the recent decades has led to the
increased number of remote sensing (RS) datasets, which provided multiple data sources
for environmental studies. Remotely sensed data and indices as well as modeled variables
are used to evaluate different types of droughts all over the world. For instance, vegetation
indices such as Normalized Difference Vegetation Index (NDVI) (Gu et al. 2007; Klisch
and Atzberger 2016), Vegetation Condition Index (VCI) (Dutta et al. 2015), Vegetation
Temperature Condition Index (VTCI) (Xie et al. 2017), Soil Moisture data (Souza et al.
2021), runoff data (Sattar et al. 2020) are among the most applied drought-related varia-
bles in monitoring and assessing drought conditions in different parts of the world.

One of the recent advances in the RS world is indeed the emergence of The Gravity
Recovery and Climate Experiment (GRACE) twin satellite mission, which initiated its task
in March 2002. The mission’s main goal is to collect gravitational signals of the Earth and
interpret them into the variations of total/terrestrial water storage (TWS) (Ramillien et al.
2008). TWS is a key element of the hydrological water cycle whose variations are used in
different hydro-climatic studies ranging from oceanography to hydrology. GRACE data
have also been used for drought monitoring and water storage analysis all over the world
(Li et al. 2012; Cui et al. 2019; Shah and Mishra 2020; Dharpure et al. 2020). The findings
of these studies suggest that there is no universal GRACE-based drought index suitable to
be applied in any study area around the world. While some studies find a specific method
quite useful and efficient, others cast doubt on the efficiency of that method in another
area, potentially due to the geographic as well as climatic characteristics of the area of
interest. In particular, drought detection and monitoring are challenging because the spa-
tio-temporal variability of drought events and associated hydro-climatic parameters as
well as the characteristics of basins make it literally impossible to formulate and use a
universally applicable drought indicator (Smakhtin and Hughes 2007). Therefore, analysis
and evaluation of different drought-related parameters have been a common research
agenda for many researchers around the world during their search for an appropriate
drought index for a particular region.

Being mostly situated in a semi-arid zone, Turkey also faces numerous challenges
regarding its water resources. To date, droughts in Turkey have been evaluated through
several studies. As examples of the recent studies, S€onmez et al. (2005) investigated
droughts by using SPI and concluded that the severity of the recent droughts had been
critical over the Central Anatolian region. Simsek and Cakmak (2010) evaluated the
impacts of the 2007–2008 agricultural drought in Turkey and reported that the South-
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eastern Anatolia region had experienced the second most severe drought of the last
69 years in 2007–2008 with a harsh impact on the agricultural activities of the region and
serious decreases in yields. Dabanlı et al. (2017) performed an investigation into the long-
term variability of droughts in Turkey. They suggested that the majority of droughts in
Turkey are of moderate severity based on SPI. They also found that while southeastern
and western parts of Turkey were more stable, the central parts and few pockets in north-
ern areas of Turkey showed lower stability against the drought impacts. Dabanlı (2018)
studied the drought risk and vulnerability by using hydro-meteorological and socioeco-
nomic data in Turkey. He found that out of 81 administrative provinces, 73 are exposed
to low drought risk, 6 provinces to moderate risk and 1 province (Konya) to high drought
risk.

While standard applications of drought monitoring and assessment by field data are
quite prevalent (T€urkeş et al. 2009; Evkaya et al. 2019; Katipo�glu et al. 2020), there is no
comprehensive study evaluating the feasibility of RS data and indices for drought analysis
over Turkey. Considering the large and variable climatic regions of the country, remotely
sensed/modeled data coupled with classical techniques seem promising for Turkey where
numerous harsh and extensive droughts have been experienced in its recent history.

Although drought events have so far been evaluated based on a number of RS data
and modeled hydro-meteorological variables (Khorrami and Gunduz 2021b), there is no
comprehensive survey on the feasibility and suitability of the available drought indicators
in the literature. Based on this premise, we investigated the capability of GRACE-driven
hydrological indices to detect and monitor two harsh dry periods (2007/2008 and 2013/
2014) in Turkey. In addition, we made use of other remotely sensed and modeled
drought-related parameters such as NDVI, soil moisture, ET and surface runoff to evalu-
ate their feasibility in assisting drought surveillance over the country. Furthermore, we
aimed to test the applicability and feasibility of GRACE-based indices to detect and assess
the intensity and extent of droughts in semi-arid climates. Finally, we hypothesized that
the GRACE-derived indices can be used to estimate the variations in the hydroclimatic
extremes at large scales, and therefore, can act as surrogate indicators for the traditionally
applied drought indices.

2. Methodology

2.1. Site description

Turkey is located between the latitudes 36� N and 42� N and longitudes 26� E and 45� E.
The country is situated at mid-latitudes that define its climatic characteristics together
with its highly variable topography. Despite its Mediterranean geographic location, where
mild climatic conditions are dominant (Sensoy et al. 2008), the diversity of its topography
as well as proximity to the Black Sea, Aegean Sea and the Mediterranean in the north,
west and south, respectively, lead to significant variations in climatic conditions in seven
different regions of the country (Figure 1). Thus, coastal zones demonstrate different
characteristics from inland plateaus of central, eastern and southeastern Anatolia.

Regardless of the climatic variability of different regions of Turkey, the general climatic
pattern of Turkey follows the characteristics of a generic semi-arid climate, which defines
its water resources potential that in turn shapes its agriculture and industry (Selek and
Aksu 2020). The variability of hydro-climatic parameters in Turkey introduces some chal-
lenges regarding water accessibility at proper times and space all over the country.
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The mean annual precipitation input of Turkey is about 501 billion m3 (639mm),
from which, 274 billion m3 (350mm) is lost via evaporation from the soil, water and
vegetation (Okay Ahi and Jin 2019). In addition, the water demand has skyrocketed dur-
ing the recent decades in the aftermath of the population increase and industrial develop-
ment of the country. Consequently, it is now considered that Turkey is very sensitive to
climate change impacts and is expected to face serious water scarcity problems in near
future (Harmancioglu and Altinbilek 2020).

2.2. Data used

2.2.1. In situ climate data
Turkey benefits from a diverse network of hydro-meteorological stations administrated by
the Turkish Meteorological Service (TMS). According to the TMS, Turkey has a mean
annual temperature of 13.7 �C and a mean annual precipitation of 371mm (MGM 2020).
The geographic and topographic characteristics of different regions in Turkey bring about
variations in the amount and distribution of climatic variables over the country. In Table
1, the basic statistics of precipitation and temperature of Turkey are given with reference
to the seven regions of the country shown in Figure 1.

We used a total of 107 stations’ precipitation observations to calculate traditional
drought indices (Figure 1). In addition, we also utilized the long-term averages of climatic
variables of precipitation (P) and temperature (T) to draw the climate graphs for the
study area, which depicted the general status of the country regarding the dry and wet
periods (Figure 2). According to the ombrothermic graph (Figure 2a), the monthly P of
the country ranges from 18mm (in August) to 86mm (in December) while T ranges
from 2 �C (in January) to 24 �C (in August). The ombrothermic graph also revealed that
from July to August, Turkey experienced its highest T and lowest P, during which the
average T has gone as high as 24 �C and the monthly average P has fallen as low as
18.5mm that was generally ascribed to dry seasons. Figure 2b, conversely, also showed
the annual climatic situation of Turkey during the study period where two recent dry
periods were observed. One of these periods prevailed from 2007 to 2008 and the other

Figure 1. Spatial distribution of the analyzed meteorological stations over regional Turkey.
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period from 2013 to 2014, which corresponded to the two trough points in P variations
(428 and 520mm in 2008 and 2013, respectively) indicating the two harsh drought events
experienced in the country during 2003–2016 period.

2.2.2. Remotely sensed and modeled data
There are varieties of RS and modeled data sources offering global hydro-meteorological
variables with different spatial and temporal resolutions. In this study, some drought-
related parameters were used as drought indicators to evaluate their feasibility in the
detection and monitoring of drought events over Turkey. In essence, data from two satel-
lite missions (GRACE and Terra/Aqua) were utilized to obtain TWSA and NDVI, respect-
ively. Moreover, modeled soil moisture values from Global Land Data Assimilation
System (GLDAS) as well as Runoff (R), ET and Potential Evapotranspiration (PET) data
from the ERA5 atmospheric reanalysis dataset were also used to extract auxiliary climatic
information. As the fifth generation of ECMWF (the European Centre for Medium-Range
Weather Forecasts), the ERA5 reanalysis data project simulates a variety of hydro-
meteorological parameters integrating the historical observations into global estimates by
utilizing sophisticated data assimilation models. More information can be obtained from

Table 1. The zonal statistics of the climatic variables over Turkey.

Variable Zone Avg. Min. Max. Std. Dev.

Monthly statistics Precipitation (mm) Black Sea Region (BSR) 66.56 35.60 192.63 38.75
Eastern Anatolia Region (EAR) 50.30 21.43 101.42 22.04
South-East Anatolia Region (SAR) 47.56 37 59.52 9.13
Central Anatolia Region (CAR) 32.50 26.94 46.87 5.12
Aegean Region (AR) 56 36.70 99.63 19.22
Marmara Region (MAR) 55.50 37.82 70.50 10.50
Mediterranean Region (MER) 62.20 35.5 93.75 20.30

Temperature (�C) Black Sea Region (BSR) 12.58 7.01 14.70 2.15
Eastern Anatolia Region (EAR) 9.96 3.90 15.10 3.42

Figure 2. Climatic graphs of Turkey: monthly (a) and annual (b) variations of precipitation and temperature.
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Mu~noz-Sabater et al. (2021). Table 2 illustrates the details of the datasets utilized for the
analysis of this study.

Considering the different spatial resolutions of diverse datasets used, we were
resampled all data using the bilinear resampling technique (Wu et al. 2008) to match the
0.5-degree resolution of GRACE TWSA in order to draw a rational analogy between the
variables. Through the bilinear interpolation process, the average digital number of four
adjacent cells is assigned to the cell of interest. The use of different resampling techniques
depends on the user’s purpose, where different advantages and disadvantages of each
resampling method are to be taken into account. However, concerning the overall accur-
acy of these techniques, the bilinear resampling technique is known as the most appropri-
ate method with a smoother, more accurate, and without ‘stair-stepped’ effect (Baboo and
Devi 2010).

GRACE processing centers apply a baseline that is the mean TWS values from 2004 to
2009, to generate TWSA data. Therefore, each value represents the deviation of TWS
from this baseline. We derived the anomalies of each variable according to the baseline of
GRACE products.

2.3. Drought indices derived from GRACE

GRACE records the gravitational signals of the Earth with an unprecedented sensitivity,
which paves the way for more accurate estimations of the vertically integrated

Table 2. Specifications of the datasets used in the study.

Data variable Data type

Available Resolution

Description and access linkTemporal Spatial

Terrestrial Water
Storage (TWS)

Satellite Monthly
(2002–2020)

0.5� GRACE JPL Mascon’s
https://earth.gsfc.nasa.gov/geo/
data/grace-mascons

Soil Moisture
Storage (SMS)

Modelled Monthly
(2000–2019)

0.25� GLDAS_NOAH025_M
https://disc.gsfc.nasa.gov/
datasets?keywords=GLDAS

Surface Runoff (SR) Reanalysis Monthly
(1981–2020)

0.1� The Climate Data Source
ERA5-Land Monthly Average
Data:
https://cds.climate.copernicus.eu/
cdsapp#!/search?type=dataset

Precipitation (P) and
Temperature (T)

In situ Monthly
(2002–2016)

– TSMS
https://mgm.gov.tr/

Evapotranspiration
(ET)

Reanalysis Monthly
(1981–2020)

0.1� The Climate Data Source
ERA5-Land Monthly Average
Data:
https://cds.climate.copernicus.eu/
cdsapp#!/search?type=dataset

NDVI Satellite Monthly
(2000–2020)

0.05� MOD13C2 - MODIS/Terra Vegetation
Indices Monthly L3 Global
0.05Deg
https://ladsweb.modaps.eosdis.
nasa.gov/missions-and-
measurements/
products/MOD13C2/

Potential Evapotranspiration (PET)
Reanalysis Monthly (1981–2020) 0.1� The Climate Data Source

ERA5-Land Monthly Average
Data:
https://cds.climate.copernicus.eu/
cdsapp#!/search?type=dataset
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hydrological components of the water cycle over a given area (Sinha et al. 2019). These
signals are recorded and later processed and translated into the variations of the TWS by
three main processing centers: Center for Space Research at University of Texas, Austin
(CSR), Geoforschungs Zentrum Potsdam (GFZ) and Jet Propulsion Laboratory (JPL)
(Chambers 2006). GRACE TWS is a mixture of different hydrological components and is
defined as follows:

DTWS ¼ DGWSþ DSWEþ DSMSþ DSWS (1)

where GWS, SWE, SMS and SWS represent groundwater storage, snow water equivalent,
soil moisture storage and surface water storage, respectively (Khorrami and
Gunduz 2021a).

There are two approaches for translating gravitational records into TWSA values: (i)
spherical harmonics (SP) and (ii) mass concentrations (Mascons). The most significant
difference between these two approaches is that unlike Spherical Harmonics (SH) solu-
tions, which are global, Mascons are regional to global solutions making them more
accurate regarding the number of leakage errors in the signals (Scanlon et al. 2016).

Different techniques have been introduced to extract GRACE-based drought indices
for different study areas so far. While some of the techniques used TWSA values directly
(Zhao et al. 2017; Thomas et al. 2017; Yi and Wen 2016; Sun et al. 2018; Yu et al. 2019;
Hosseini-Moghari et al. 2019; Nemati et al. 2019; Wang et al. 2020a; Liu et al. 2020; Shah
and Mishra 2020; Yang et al. 2020), other methods took benefit of disintegrated TWSA
elements to study drought events (Nair and Indu 2020; Wang et al. 2020b). Among differ-
ent techniques offered by researchers, drought indices extracted directly from TWSA val-
ues are more common due to the simplicity and effectiveness of their application. In this
study, we applied the GRACE TWS anomalies to calculate hydrological drought indices.
We extracted the time series of TWSA using the areal mean values for each month. As
there are some individual gaps in GRACE records, which hamper the continual evaluation
of the values, we used the linear interpolation technique (Long et al. 2015; Yang et al.
2017a) to fill in the gaps in TWSA values.

2.3.1. GRACE drought severity index
GRACE drought severity index (GDSI) is a dimensionless index derived directly from
GRACE TWSA values, which are capable of detecting dry and wet events. GDSI is
defined as the standardized anomalies of GRACE TWSA (Zhao et al. 2017) and is formu-
lated as:

GDSIij ¼
TWSAij� TWSA j

oj
(2)

where i denotes year ranging from 2003 to 2016; j denotes month ranging from January
to December; TWSA j and oj are the mean and standard deviation of TWSA in month j,
respectively.

2.3.2. GRACE water storage deficit index
Water storage deficit (WSD) was developed by Thomas et al. (2014). The deviations of
the water storage from the monthly climatology values (Eq. (3)) given by WSD showcase
the water storage deficit and surplus in terms of negative and positive WSD values,
respectively. GRACE-based water storage deficit index (WSDI) (Sinha et al. 2017; Yu
et al. 2019) is calculated based on WSD values as follows:
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WSDij ¼ TWSAij � TWSAj (3)

WSDIij ¼
WSDij� l

r
(4)

where WSDij and WSDIij represent water storage deficit and its index for the month j of
the year i respectively. TWSAj is the climatology value of month j. l and r denote the
mean and standard deviation of the water storage deficit (WSD) time series, respectively.

2.4. Other RS- and model-based drought-related indices

2.4.1. Soil moisture index
Soil water content reflects the effect of recent precipitation along with the antecedent con-
ditions of the soil layer (Keyantash and Dracup 2002), which indicates the water storage
of soil whose variations can be used as a good indication for drought events (Sheffield
et al. 2004). Soil water deficit manifests itself in crop yield and plants’ conditions; hence,
provides critical implications for both agriculture and water supply (Wang et al. 2011). In
this study, we made use of the modeled soil moisture data from GLDAS-Noah outputs.
GLDAS models soil moisture in four different depths (0–0.1, 0.1–0.4, 0.4–1.0, 1.0–2.0 m).
The accumulated soil moisture of these layers was used and the standardized values as
soil moisture index (SMI) of the study area were calculated using the following equation:

Z ¼ X� l
r

(5)

where Z is the standardized variable, x, l and r denote the variable of interest, the mean
and standard deviation of the variable x, respectively.

2.4.2. Standardized runoff index
Surface runoff accounts for the volume of water that travels over the ground surface to a
river or channel. Standardized runoff index (SRI) is a hydrological drought index (Shukla
and Wood 2008) that is calculated in the same way as standardized precipitation index
(SPI) (Sinha et al. 2019). In this study, we extracted the time series of surface runoff val-
ues from reanalysis data, and then, calculated the SRI values.

SRI ¼ Xi� Xj

r
(6)

where Xi, Xj and 1 denote the recorded runoff in the current time scale, the average and
the standard deviation of the runoff time series, respectively (Dikici and Aksel 2021).

2.4.3. Normalized difference vegetation index
Satellite records provide a very useful dataset of the qualitative and quantitative character-
istics of vegetation coverage across large areas (Brown et al. 2008). Robust interactions
between vegetation indices and climatic factors have been reported in the literature
(Rundquist and Harrington 2000; Ji and Peters 2003) highlighting the effectiveness of
vegetation indices in drought detection and monitoring studies. The NDVI is calculated
using near-infrared and red bands according to the following equation:

NDVI ¼ BandNIR�BandRed
BandNIR þ BandRed

(7)

where NIR and Red subindices stand for near-infrared and red band values, respectively.
In this study, monthly NDVI products from Terra and Aqua satellites that contained the
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MODIS sensors were used. The MODIS sensor on board Terra and Aqua satellites pro-
vides vegetation indices at a variety of spatiotemporal scales. In particular, we used the
MOD13C2 Version 6 product from MODIS sensor, which provides a Vegetation Index
(VI) value at a per pixel basis (Didan et al 2015).

2.4.4. Evapotranspiration
In addition to precipitation, ET is another important component of the hydrological water
cycle. During a dry condition, ET shows variations, which can be used as an indicator for
a drought event. Although ET variations during a drought depend on the prevailing wea-
ther conditions, availability of water storage as well as the severity and duration of the
drought (Hanson et al. 1991), the amount of ET generally shows an increase during
drought periods (Stegehuis et al. 2013).

ERA5 involves the latest reanalysis in the European Centre for Medium-Range
Weather Forecast’s family (ECMWF) and helps to achieve a quality re-analysis of univer-
sal oceanic, atmospheric and land surface fields (Moshir Panahi et al. 2021). We used the
monthly anomalies of ET values from the ERA5 reanalysis dataset as a drought indicator

2.5. Orthodox drought indices

Although different drought indices act as proxies for different drought types, there is a
strong link between them in terms of precipitation deficit, which is a common character-
istic of all drought types (Heim 2002). Traditional drought indices are generally derived
from field observations of hydro-climatic variables. Field measurements guarantee the pre-
cision of these indices, thus can be used as reliable means for local-scale drought detec-
tion and monitoring as well as a robust validation tool for the assessment of the accuracy
of RS and model-based techniques.

Within the scope of our analysis, we used the in situ observations of precipitation were
used to calculate drought indices to detect the droughts over Turkey and to further valid-
ate the accuracy of our RS and model-based drought indices. To this end, we used the
two well-known and commonly used traditional drought indices: (i) SPI and (ii)
Standardized Precipitation-Evapotranspiration Index (SPEI). As PET values are required
for the calculation of the latter, we integrated the ERA5 reanalysis datasets into the ana-
lysis to extract PET values. SPI and SPEI values were calculated in different time intervals
(01, 03, 06, 09, 12 and 24months) and then were associated with RS and model-
based indices.

2.5.1. Standardized precipitation index
SPI is one of the most preferred indices recommended by the ‘Lincoln declaration on
drought indices’ (Stagge et al. 2015). Its use is encouraged by many hydro-meteorological
services and researchers around the world for drought detection and monitoring (Hayes
et al. 2011). SPI is calculated by fitting a gamma distribution (Hosseini-Moghari et al.
2019) to the raw precipitation data and then transforming it to a normal distribution.

SPI ¼ Xi� Xj

r
(8)

where Xi, Xj and 1 denote the recorded precipitation in the current time scale, the aver-
age precipitation of the time series, and the standard deviation of the time series, respect-
ively (Dikici and Aksel 2021). In this study, we calculated the SPI values using the R
studio program.

GEOCARTO INTERNATIONAL 9



2.5.2. Standardized precipitation-evapotranspiration index
SPEI is based on precipitation (P) and PET measurements (Beguer�ıa et al. 2010). Since
there is no access to in situ PET values, a reanalysis dataset was incorporated into the
analysis for obtaining PET values over Turkey. The extracted PET values were first used
to derive the difference between P and PET (D values) according to Eq. (9) and then
SPEI values were calculated in the same way as SPI, transferring D values to the cumula-
tive standard normal distribution with an average and standard deviation of 0 and 1,
respectively (Hosseini-Moghari et al. 2019).

Dk
n ¼

Xk�1

i¼0

Pn�i � PETn�ið Þ (9)

where Dk
n is the aggregated (P-PET) from the month (n – kþ 1) to month (n) on time

scale k (Yang et al. 2017b).

2.6. Drought characterization

Drought can be characterized in terms of drought type, duration, magnitude, frequency,
severity and spatial extent (Thomas et al. 2014). In this study, we characterized the
drought events of Turkey in terms of duration, magnitude and severity. Any dry period
was defined as continuous negative values of the drought index (Evkaya et al. 2019). The
following drought characteristics were used in this study:

� Duration: a period of dry conditions, which lasts for at least three consecutive months
(Thomas et al. 2014).

� Magnitude: the cumulative values of a given drought index within a drought event
(Evkaya et al. 2019).

� Intensity: the ratio of drought magnitude to its extent (Sirdaş and Sen 2003).

Based on this fundamental, we utilized the RS datasets along with in situ observations
to extract different drought indices to detect and characterize the recent drought events in
Turkey. Figure 3 presents the methodology of the current study.

3. Results

3.1. Temporal variations of TWSA over Turkey

The TWSA values for Turkey extracted from GRACE showed a descending trend
(p< .05) suggesting that the total water storage over the country tend to decrease
(Khorrami and Gunduz 2021b). The maximum water deficits over Turkey occurred in
September 2008 and September 2014 with a 19 cm water loss at each time point. Our
findings were found to be consistent with that of Okay Ahi and Jin (2019). The variations
of TWSA indeed resulted from the variations in hydrological water cycle components. To
see the impacts of precipitation, we extracted the anomalies of precipitation using the
same baseline as GRACE (i.e. the mean value from 2004 to 2009) (Moghim 2020). Then,
we compared the TWSA values with Precipitation Anomalies (PA) values (Figure 4). We
found a moderately strong correlation (r¼ 0.64) between the variations of TWS and P
over Turkey with the max PA conforming to the peaks of TWSA, which stressed the
importance of the received precipitation as a major input of the hydrological cycle in the
variations of the total water storage changes. The maximum deficit (39mm) for
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precipitation was seen in September 2008, which corresponded to the maximum loss of
TWSA (17.54 cm) in the study area.

3.2. Time series of RS and model-based drought indicators

We calculated the time series of WSDI, GDSI, SMI, SRI, ET and NDVI by using the
extracted values of the correspondent variables from RS and modeled datasets. Figure 5
illustrates the temporal variations of these indicators for the study area. According to the
graphs, while values fluctuated monthly, the overall trends in the time series of GRACE-
driven indices (GDSI and WSDI) and ET were descending, which are statistically signifi-
cant (p< .05). The descending drought indices of WSDI and GDSI indicated that the
country tends to experience drier conditions during the aforementioned period. While
GDSI had its minimum value recorded in October 2007, WSDI showed the least value in
February 2014.

Figure 3. The graphical flowchart of the methodology.

Figure 4. Temporal interactions between terrestrial water storage (TWSA) and precipitation anomalies (PA).
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Figure 5. Time series of drought related indices derived from Remote Sensing (RS) data: GRACE Drought Severity
Index (GDSI) (a), Water Storage Deficit Index (WSDI) (b), Surface Runoff Index (SRI) (c), Soil Moisture Index (SMI) (d),
Normalized Difference Vegetation Index (NDVI) (e) and Evapotranspiration (ET) (f).

Table 3. Correlation values between monthly and annual values of drought indices at different time scales.

Scale GDSI WSDI SMI SRI ET NDVI

SPI Monthly 01 0.19 0.20 0.17 0.18 –0.19 0.28
03 0.28 0.37 0.18 0.26 –0.28 0.39
06 0.43 0.54 0.11 0.29 –0.19 0.37
09 0.58 0.69 0.14 0.35 –0.13 0.36
12 0.54 0.62 0.11 0.31 –0.20 0.42
24 0.52 0.56 0.05 0.13 –0.03 0.36

Annual – 0.66 0.73 0.75 0.79 –0.46 0.61
SPEI Monthly 01 0.18 0.20 0.17 0.19 –0.19 0.28

03 0.27 0.36 0.17 0.26 –0.28 0.39
06 0.41 0.53 0.11 0.46 –0.19 0.37
09 0.54 0.66 0.12 0.34 –0.13 0.34
12 0.53 0.62 0.10 0.31 –0.21 0.43
24 0.18 0.20 0.17 0.19 –0.19 0.28

Annual – 0.62 0.69 0.74 0.78 –0.31 0.60
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Time series of SMI, SRI and NDVI, conversely, had ascending trends, from which,
only the trend of NDVI was statistically significant (p< .05) suggesting that it tends to
increase. NDVI values manifested dramatic changes in a monthly manner with the sharp-
est trough recorded in February 2008. The minimum values for SMI and SRI were
recorded in July 2004 and July 2008, respectively.

3.3. Validating the drought indices

The performance of the used RS and model-based drought indicators was evaluated in
terms of point-wise linear correlations with the orthodox drought indices of SPI and SPEI
in different time intervals. These well-known drought indices of SPI and SPEI are gener-
ally computed on different time scales to reflect different lags of water cycle response to
precipitation anomalies (Moreira et al. 2008). In this study, we computed the SPI and
SPEI values and evaluated them at different periods (Table 3) so that the drought events
over Turkey were better depicted.

The results indicated that the majority of the indices correlated with SPI better than
SPEI over Turkey. Among the used indicators, while GRACE-based indices (GDSI and
WSDI), SMI and SRI agreed well with SPI-09, ET better agreed with SPI-03. It was also
found that NDVI had its best correlation (0.43) with SPEI-12. Overall, the best perform-
ance among the indices belonged to WSDI with the maximum monthly correlation of
0.69. The differences in the algorithms and hydrologic ingredients (Liu et al. 2020) of the
used parameters may influence their behaviors in detecting drought events.

The results also revealed that the used indices manifested a different behavior in
detecting the annual drought events over Turkey. While WSDI had its best performance
in detecting monthly dry and wet periods, SRI was the leading annual drought detector in
the study area with correlation values of 0.79. The annual correlation for WSDI was also
high (0.73).

3.4. Temporal variability of drought events

Analysis of the temporal associations between drought indices disclosed that for monthly
drought detection and monitoring GRACE-driven WSDI was the best index, while for
annual drought, the best results were obtained for SRI, SMI and WSDI. In this section,
candidate indices for Turkey were used to show the monthly and annual time series along
with SPI. According to the SPI time series (Figure 6), we found that, while there were
some dry periods from 2003 to 2016, Turkey experienced extreme droughts between 2007
and 2008 and in 2014, which corresponded to the droughts detected by annual SPI. These
detected dry periods were in agreement with the climate graph (Figure 2) as well as other
previously published research such as Marım et al. (2008), T€urkeş et al. (2009), Kurnaz
(2014) and Okay Ahi and Jin (2019).

The temporal association between WSDI and the conventional indices of SPI and SPEI
(Figure 6) showed that WSDI was successful in catching the profound dry (2007/2008
and 2014) and wet periods over Turkey. The annual interactions also graphically por-
trayed the best performance of SRI, SMI, GDSI and WSDI in defining the droughts and
wet periods over the country where they were in a good harmony with the peaks and
troughs of the SPI time series.
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3.5. Spatial variability of drought

With the aim of better visualizing the climatic situation in Turkey, we mapped the
extremely dry period of the year 2008 based on WSDI and SPI values (Figure 7). We

Figure 6. Temporal interactions of monthly Water Storage Deficit Index (WSDI) with Standardized Precipitation Index
(SPI) and Standardized Precipitation-Evapotranspiration Index (SPEI) (a and b) and annual SPI and SPEI with WSDI,
GRACE Drought Severity Index (GDSI) and Standardized Runoff Index (SRI) (c and d).
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specifically selected the drought event in 2008 to be visualized on the grounds of the
results obtained through the SPI time series where the harshest dry period belonged to
the year 2008. We generated the spatial map of the SPI based upon the Kriging interpol-
ation technique. The visual interpretation of the maps indicated that WSDI performed
very well in detecting the drought event in Turkey.

Figure 8, conversely, illustrated the interactions between WSDI and SPI indices in
terms of spatial correlation value. This map showed the time series correlations achieved
between the two drought indices over Turkey. The correlation map highlighted that
WSDI correlated very well with SPI in the Aegean and Southeastern Anatolian regions
with a spatial correlation of up to 0.72. While over Istanbul and the Black Sea region, the
lowest correlation values were achieved. The correlation for the Central Anatolian region
especially over the capital city of Ankara in the center was also high. These regions with
high correlations were also known as regions that historically experienced the most sig-
nificant droughts in Anatolia.

Figure 7. Spatial illustration of the drought of Turkey detected by Water Storage Deficit Index (WSDI) and
Standardized Precipitation Index (SPI) in 2008.
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3.6. Assessment of droughts

To characterize the recent drought events in Turkey, we used three descriptive parameters
including drought duration, magnitude and intensity. The drought conditions of the
recent dry periods caught by SPI and WSDI in Turkey were determined according to the
classification given in Table 4.

Tables 5 and 6 portray the recent drought characteristics based on WSDI and SPI indi-
ces, respectively. According to the results, while there were seven droughts detected by
SPI, the GRACE-based WSDI showed six drought events during the same study period.
Furthermore, there were some temporal overlaps among the drought durations, which are
clearly shown in Figure 9.

Figure 8. Spatial correlation between Water Storage Deficit Index (WSDI) and Standardized Precipitation Index (SPI)
over Turkey.

Table 4. Drought magnitude classification based on Standardized Precipitation Index (SPI) and Water Storage Deficit
Index (WSDI) (Sun et al. 2018).

Class Drought condition SPI WSDI

D0 No Drought –0.5< S –1<W < þ1
D1 Mild Drought �1.0< S � � 0.5 –
D2 Moderate Drought �1.5< S � � 1.0 �2.0<W � �1.0
D3 Severe Drought �2.0< S � � 1.5 �3.0<W � �2.0
D4 Extreme Drought S � � 2.0 W � �3.0

Table 5. Summary of characterizations of the drought events caught by GRACE-based Water Storage Deficit
Index (WSDI).

Event no Drought period
Duration
(Months) Magnitude Category Intensity

1 2006/04–2006/07 4 –0.35 D0 –0.09
2 2007/01–2009/11 35 –68.49 D4 –1.96
3 2010/01–2010/08 8 –2.88 D3 –0.36
4 2010/10–2011/03 6 –2.40 D3 –0.40
5 2013/07–2014/12 18 –39.29 D4 –2.18
6 2015/10–2016/12 15 –15.84 D4 –1.06
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Overall, there was no major difference between these two techniques in drought detec-
tion except for the first drought event (2004–2005) detected by SPI and the third event
(2010) detected by WSDI. Thus, WSDI was considered a successful indicator in pinpoint-
ing drought events compared to the SPI results (Table 5).

The magnitude of WSDI-based droughts was almost parallel to that of SPI, which
showed severe to extreme drought conditions over Turkey. The only difference in this
regard was seen for the magnitude of the last drought event from May 2016 to September
2016 determined by WSDI as an extreme drought while SPI defined it as a mild condition
(Figure 9).

4. Discussions

4.1. Evaluation of the GRACE-based drought indices

The GRACE observations are sensitive to the variations in the total water storage of the
Earth, which include the water stored in the soil, aquifers, as well as surface water-bearing
bodies. Therefore, it can be used to analyze different types of droughts (Vishwakarma
2020). Different GRACE-based drought indices are essentially based on the GRACE-
observed TWSA values, thus the characteristics of the TWSA over a region define, to a
great extent, the behavior of the GRACE-based drought indices. The decreasing variations

Table 6. Summary of characterizations of the drought events caught by Standardized Precipitation Index (SPI).

Event no Drought period
Duration
(Months) Magnitude Category Intensity

1 2004/11–2005/08 10 –8.90 D4 –0.89
2 2006/02–2006/11 10 –2.11 D4 –0.21
3 2007/02–2008/01 12 –14.67 D4 –1.22
4 2008/03–2009/03 13 –17.23 D4 –1.33
5 2011/01–2011/06 6 –2.08 D4 –0.35
6 2013/11–2014/11 13 –19.77 D4 –1.52
7 2016/05–2016/09 5 –0.89 D1 –0.18

Figure 9. Temporal illustration of drought extent and intensity derived from Standardized Precipitation Index (SPI)
and Water Storage Deficit Index (WSDI) indices.
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of the GRACE-derived TWSA over Turkey suggest that the country became drier during
the study period between 2003 and 2016 (Figure 4). The overall descending trend of the
TWSA graph is also manifested in the time-series graphs of the GRACE-based drought
indices of WSDI and GDSI (Figure 5). The results of this study reveal that the GRACE-
based indices act quite well in detecting the major drought (Nigatu et al (2021) events
experienced over Turkey. The performance of the WSDI index turned out to be the high-
est among different indices used for this purpose over the study area. This finding is in
accordance with the findings of Sinha et al (2017), Sun et al (2018), Yu et al (2019) and
Nigatu et al (2021).

4.2. The climatic heterogeneity of Turkey and its impacts on the results

Turkey hosts different geographic regions with diverse topographic and climatic features.
This diversity of the climate yields spatio-temporal heterogeneity of different hydrome-
teorological variables over different regions of the country triggering some challenges
when a countrywide study is carried out. Therefore, the climatic differences among differ-
ent regions over the country should be included in the interpretation and discussion of
the results.

The time series of the spectral indices of drought were generated using the area-mean
values for each month. The overall trends for the GRACE-based drought indices (GDSI
and WSDI) were descending suggesting that Turkey tended to lose water storage mainly
due to the climate change impacts (Okay Ahi and Jin 2019; Khorrami and Gunduz 2021a).
The trendlines of the other RS and model-based indices (e.g. NDVI and SMI), however, did
not comply with the GRACE-derived indices in terms of temporal trends where the soil
moisture and vegetation coverage manifest increasing trends, which was against what one
could expect for the study area. These discrepancies may stem from a set of factors such as
the nature of the datasets used in the study as well as the data analysis approaches. From
this viewpoint and considering the characteristics of the study area and the way of data ana-
lysis (point-wise data analysis coupled with spatial interpolation), the mismatches between
the different indices used in this study can be explained. The study was performed in a
very heterogeneous location, where deep discrepancies in the climatic status of different
regions were experienced (T€urkeş et al. 1995) and this approach culminated in the mis-
matches in the overall trends and spatial distribution of indices over Turkey. Moreover, the
applied data with different spatio-temporal characteristics contributed to the variations and
mismatches of the results. It should also be noted that the drought analysis based on
remotely sensed data is to some extent limited by not only the accuracy of the datasets but
also their spatial resolutions. These issues might result in the partial capturing performance
of spatial heterogeneity. Nevertheless, GRACE-like datasets are still invaluable tools in the
large-scale analysis of hydrometeorological events.

4.3. The geographic distribution of the drought event over Turkey

Using the minimum values of the candidate indices, the spatial maps of the 2008 drought
event for Turkey were generated. According to the WSDI map (Figure 7), during the 2008
drought event over Turkey, the most dramatic situation was experienced in the coastal
regions of the Black Sea, Istanbul metropolitan area and a wide area in Central Anatolia
(center of the country) (Khorrami and Gunduz 2021b). Although there were some zonal
mismatches between the distribution of the drought values from SPI and WSDI (Figure 8),
which may stem from the technical issues regarding the resolution of the data as well as
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the data processing and analysis issues (Yu et al. 2019), the overall spatial distribution of
WSDI values corresponded quite well with that of SPI portraying the zonal status of the cli-
matic situation of Turkey during the harshest dry events of the year 2008 (Figure 8).

The dissimilarities of the drought maps may also refer to the way the drought index val-
ues were calculated and visualized. The GRACE-derived WSDI map was generated using the
resampled gridded data, while for generating SPI surface, spatial interpolation was imple-
mented. Resampling and interpolation techniques were associated with different uncertainties
(Gardner 2003), which in turn altered the accuracy level of the analysis and outputs.
Furthermore, for a better depiction of droughts based on SPI, the temporal range of the used
precipitation data is a critical issue where longer data means more accurate results (Svoboda
and Fuchs 2017). Taking these technical issues into account, it can be stated that small mis-
matches observed in the spatial illustration of droughts over Turkey were inevitable.

5. Conclusions

Drought studies are traditionally based on field observations of hydro-meteorological
parameters. These are typically limited in time and geographic space, which lowers the
spatial and temporal accuracy of the studies. In this study, we used the remotely sensed
and simulated data in an integrated manner to evaluate the recent droughts over the
semi-arid climatic region of Turkey, for which there is no comprehensive comparative
study from the viewpoint of the effectiveness of different drought indices available for the
scientific community use.

The results indicated that among different RS indices, notwithstanding its coarse reso-
lution estimates, the GRACE-driven WSDI index had the best performance in detecting the
monthly dry periods while SRI relatively outperformed WSDI in the detection of yearly
droughts in Turkey from 2003 to 2016. The correlations achieved between used indices
indicated that RS and model-based indicators had, in general, better agreement with SPI
rather than SPEI even though the differences between the correlation values achieved for
these two indices were not so high. This can be ascribed to the fact that SPI was more
dependent on precipitation than SPEI and the fluctuations of precipitation were more influ-
ential on the climatic condition of Turkey, which made SPI perform more effectively.

Although GRACE signals were more sensitive to hydrological drought conditions
rather than other types, our findings emphasized the high capability of the GRACE-driven
WSDI for the determination and evaluation of the meteorological droughts in Turkey.
Therefore, it can be claimed that WSDI can be used as a proxy for detecting and assessing
meteorological droughts in Turkey. Especially for local studies over the Aegean and
Southeastern Anatolian regions, GRACE-based WSDI performed very well suggesting that
it can be replaced with traditional SPI and SPEI indices in drought monitoring studies.

The main limitation of the study, however, was associated with the coarse spatial reso-
lution of GRACE grids. This handicap interrupted accurate estimations of TWSA, and
thus, lowered the accuracy of the TWSA related studies using GRACE. GRACE data also
suffer from some errors called ‘leakage errors’, which refer to the leaking signals from the
surrounding areas or water bodies hazing the accuracy of the analysis. Nevertheless, with
the application of streamlined processing techniques by the data producer on one hand
and the use of downscaling techniques by end-users on the other hand, it is believed that
GRACE TWSA estimates will improve significantly so that more precise drought studies
will be possible in the future.

GEOCARTO INTERNATIONAL 19



Author’s contributions

Behnam Khorrami: Conceptualization, Methodology, Data collection and analysis,
Writing; Orhan G€und€uz: Methodology, Review and Editing.

Author’s statements

The authors would like to state that there are no financial interests or connections that
might raise the question of bias in the work reported or the conclusions, implications or
opinions stated.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial or not-
for-profit sectors.

ORCID

Behnam Khorrami http://orcid.org/0000-0003-3265-372X
Orhan G€und€uz http://orcid.org/0000-0001-6302-0277

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reason-
able request.

References

Baboo SS, Devi MR. 2010. An analysis of different resampling methods in Coimbatore, district. Glob J
Comput Sci Technol. 10(15):61–66.

Beguer�ıa S, Vicente-Serrano SM, Angulo-Mart�ınez M. 2010. A multiscalar global drought dataset: the
SPEI base: a new gridded product for the analysis of drought variability and impacts. Bull Am
Meteorol Soc. 91(10):1351–1356.

Brown JF, Wardlow BD, Tadesse T, Hayes MJ, Reed BC. 2008. The vegetation drought response index
(VegDRI): a new integrated approach for monitoring drought stress in vegetation. GISci Remote Sens.
45(1):16–46.

Chambers DP. 2006. Evaluation of new GRACE time-variable gravity data over the ocean. Geophys Res
Lett. 33(17) L17603.

Cui A, Li J, Zhou Q, Wu G, Li Q. 2019. Hydrological drought measurement using GRACE terrestrial
water storage anomaly. IGARSS 2019-2019 Proceedings of the IEEE International Geoscience and
Remote Sensing Symposium. Japan: Yokohama; p. 9914–9917.

Dabanli, I. 2018. Drought hazard, vulnerability, and risk assessment in Turkey. Arab J Geosci. 11:538.
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Sirdaş S, Sen Z. 2003. Spatio-temporal drought analysis in the Trakya region, Turkey. Hydrol Sci J. 48(5):
809–820.

Smakhtin VU, Hughes DA. 2007. Automated estimation and analyses of meteorological drought charac-
teristics from monthly rainfall data. Environ Modell Softw. 22(6):880–890.

S€onmez FK, K€om€usc€u A€U, Erkan A, Turgu E. 2005. An analysis of spatial and temporal dimension of
drought vulnerability in Turkey using the standardized precipitation index. Nat Hazards. 35(2):
243–264.

Souza A, Neto AR, de Souza LL. 2021. Soil moisture-based index for agricultural drought assessment:
SMADI application in Pernambuco State-Brazil. Remote Sens Environ. 252:112124.

Stagge JH, Kohn I, Tallaksen LM, Stahl K. 2015. Modeling drought impact occurrence based on meteoro-
logical drought indices in Europe. J Hydrol. 530:37–50.

Stegehuis AI, Vautard R, Ciais P, Teuling AJ, Jung M, Yiou P. 2013. Summer temperatures in Europe and
land heat fluxes in observation-based data and regional climate model simulations. Clim Dyn. 41(2):
455–477.

Sun Z, Zhu X, Pan Y, Zhang J, Liu X. 2018. Drought evaluation using the GRACE terrestrial water stor-
age deficit over the Yangtze River Basin, China. Sci Total Environ. 634:727–738.

22 B. KHORRAMI AND O. GÜNDÜZ



Svoboda M, Fuchs B. 2017. Handbook of drought indicators and indices. Geneva: Integrated Drought
Management Tools and Guidelines Series; p. 155–208.

Thomas AC, Reager JT, Famiglietti JS, Rodell M. 2014. A GRACE-based water storage deficit approach
for hydrological drought characterization. Geophys Res Lett. 41(5):1537–1545.

Thomas BF, Famiglietti JS, Landerer FW, Wiese DN, Molotch NP, Argus DF. 2017. GRACE groundwater
drought index: evaluation of California Central Valley groundwater drought. Remote Sens Environ.
198:384–392.
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