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ABSTRACT
In estimation and prediction theory, considerable attention is paid to the question of hav-
ing unbiased estimators on a global population level. Recent developments in neural network
modelling havemainly focusedon accuracy on a granular sample level, and the question of unbi-
asedness on the population level has almost completely been neglected by that community.
We discuss this question within neural network regression models, and we provide methods of
receiving unbiased estimators for these models on the global population level.
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1. Introduction

In recent years, neural networks have become state-
of-the-art in all kinds of classification and regression
problems. Snapshots of their history and their success
are illustrated in LeCun et al. (2015) and Schmidhu-
ber (2015). Their popularity is largely based on the facts
that they offer much more modelling flexibility than
classical statistical regression models (such as gener-
alised linearmodels) and that increasing computational
power combined with effective training methods have
become available, see Rumelhart et al. (1986). Neu-
ral networks outperform many other classical statis-
tical approaches in terms of predictive performance
on an individual sample level, they allow to include
unstructured data such as texts into the regression
models, see Lee et al. (2020) for a word embedding
example, and they allow for solving rather unconven-
tional regression problems, see Cheng et al. (2020)
and Gabrielli (2020) for examples. Therefore, our com-
munity has gradually been shifting from a data mod-
elling culture to an algorithmic modelling culture,
we refer the reader to Breiman (2001) and Shmueli
(2010).

A question that is often neglected in neural net-
work modelling is their average predictive perfor-
mance on the global population level, in particular,
their unbiasedness on the global population level. In
insurance, this latter property is implied by the so-
called balance property, see Theorem 4.5 in Bühlmann
and Gisler (2005). The balance property is highly rel-
evant in financial applications. Think of an insurance
portfolio consisting of individual insurance policies.
Granular regression models may provide excellent pre-
dictions on an individual policy level (sample level),
however, the global price level may completely be

misspecified, since adding up numerous small errors
may still result in a big error on a global portfolio level
(population level). Unfortunately, many models suffer
this deficiency if one does not pay sufficient attention
to the balance property during model training. The
purpose of this essay is to explore and improve this
point. For illustrative purposes, we restrict ourselves
to a binary classification problem and the situation of
a feedforward neural network (FNN). However, the
results can (easily) be extended and adapted to other
regression problems andmodels, i.e. they hold in much
more generality.

The rest of this paper is structured as follows. In
the next section, we review classical logistic regression
modelling. This will build the core of our understand-
ing of the balance property. In Section 3, we review
FNNs, and in our discussionwe put special emphasis on
parameter regularisation via early stopping of gradient-
descent algorithms because this is the crucial issue that
causes the problems in FNNmodel fitting. In Section 4,
we discuss two different approaches that help us to dis-
solve the bias problem.The first one is based on the clas-
sical logistic regression approach discussed in Section 2;
the second one uses regularisation in combination with
shrinkage. The latter approach also motivates to regu-
larise neural networkswith classification and regression
tree models. In Section 5, we give an example that
shows the relevance of these considerations. Section 6
concludes.

2. Logistic regression

To discuss the issue of the balance property and to
provide possible solutions for this issue, we start from
classical logistic regression, see Cox (1958). Assume we
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have dataD = {(xi,Yi)}ni=1, where n ∈ N is the sample
size of the data, and where (xi,Yi) are the individ-
ual samples with xi ∈ Rq describing the covariates and
Yi ∈ {0, 1} describing the label of sample i. In logistic
regression, we assume that the labels of these sam-
ples have been drawn independently from Bernoulli
distributions having logistic success probabilities

x ∈ R
q �→ p(x) = σ

⎛⎝w0 +
q∑

j=1
wjxj

⎞⎠ ∈ (0, 1), (1)

with logistic functionσ(t) = (1 + e−t)−1, weightswj ∈
R, j = 1, . . . , q, and intercept w0 ∈ R. In machine
learning, the logistic function is called sigmoid function.

Under these assumptions, we can fit the weightsw =
(w0, . . . ,wq)

′ ∈ Rq+1 to the given data D using maxi-
mum likelihood estimation (MLE), we refer the reader
to McCullagh and Nelder (1983). The corresponding
log-likelihood function is given by

w �→ �(w;D) =
n∑

i=1
Yi log p(xi)

+ (1 − Yi) log(1 − p(xi)). (2)

This log-likelihood function is concave inw and, there-
fore, we find a unique MLE ŵMLE ∈ Rq+1 for w (under
the additional assumption that the corresponding

design matrix X =
(( 1

x1

)
, . . . ,

( 1
xn

))′ ∈ Rn×(q+1) has
full rank q + 1 ≤ n). This MLE ŵMLE is a critical point
of the log-likelihood function w �→ �(w;D), that is,

∂

∂w
�(w;D)

∣∣∣∣
w=ŵMLE

= 0. (3)

This implies the following identity (by considering (3)
with respect to the intercept component w0)

1
n

n∑
i=1

Yi = 1
n

n∑
i=1

p̂MLE(xi)

= 1
n

n∑
i=1

σ

⎛⎝ŵMLE
0 +

q∑
j=1

ŵMLE
j xi,j

⎞⎠ , (4)

if we use estimates ŵMLE for w in the logistic success
probabilities p(x) in (1). Identity (4) is the aforemen-
tioned balance property. Namely, setting correctly the
estimate ŵMLE

0 for the intercept w0 in (4) provides us
with unbiasedness on the population level

1
n

E

[ n∑
i=1

p̂MLE(xi)

]
= 1

n
E

[ n∑
i=1

Yi

]
= 1

n

n∑
i=1

p(xi),

(5)

where we assume that the labels Yi are independent
and Bernoulli distributed with success probabilities
p(xi), for i = 1, . . . , n. This is the crucial global unbi-
asedness property. It tells us, for instance in finan-
cial applications, that the global price level has been
set accurately (in average). We can even quantify the

estimation uncertainty on the global level, similarly
to (5) we have

Var

(
1
n

n∑
i=1

p̂MLE(xi)

)
= 1

n2

n∑
i=1

p(xi)(1 − p(xi)).

Remark 2.1: • The balance property (4) is satisfied
for any generalized linear model (GLM) within
the exponential dispersion family (EDF) under the
choice of the canonical link function, see Section 2.2
in Nelder and Wedderburn (1972).

• Noteworthy, the balance property (4) does not
assume that the model has been correctly specified.
That is, even if we work with a completely wrong
GLM for the responses Yi, identity (4) holds and we
have unbiasedness of the estimated GLM on portfo-
lio level (5).

3. Neural network regressions and early
stopping

A FNN provides a generalisation of the logistic regres-
sion probabilities introduced in (1). Denote the FNN
map that maps the covariates x ∈ Rq (non-linearly) to
the last hidden layer of the FNN by

f θ : Rq → R
d,

x �→ f θ (x) = (f θ1 (x), . . . , f θd (x))′,

where d ∈ N is the dimension of the last hidden layer of
the FNN. The choice of this map f θ involves the choices
of the network architecture, the nonlinear activation
function, etc., for details we refer the reader to Good-
fellow et al. (2016) and to Section 5.1.1 in Wüthrich
and Buser (2016), in particular, the FNNmap f θ corre-
sponds to formula (5.5) in Wüthrich and Buser (2016).
FNNs are universal approximators which means that
the family of FFNs is dense in the class of compactly
supported continuous functions (if we choose a dis-
criminatory activation function), see Cybenko (1989)
and Hornik et al. (1989) for precise statements and cor-
responding proofs. This explains that FNNs provide a
much bigger modelling flexibility over GLMs, in fact,
a GLM can be embedded into a FNN as highlighted in
Wüthrich and Merz (2019).

Each FNNmap f θ involves a corresponding network
parameter θ (collecting all weights and intercepts in the
hidden layers) and, for simplicity, we assume that f θ

is differentiable with respect to θ . This motivates the
definition of the FNN regression probabilities (compare
with (1))

x ∈ R
q �→ p(x) = σ

⎛⎝w0 +
d∑

j=1
wjf θj (x)

⎞⎠ ∈ (0, 1),

(6)

for output intercept and weights w = (w0, . . . ,wd)
′ ∈

Rd+1. We observe that (1) and (6) have the same
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structural form, but the original covariates x ∈ Rq are
replaced by (new) features f θ (x) ∈ Rd. This can be
interpreted that the original covariates have been pre-
processed by the FNN, or that the FNN performs rep-
resentation learning.

Recently, a lot of effort has been put into the devel-
opment of efficient fitting algorithms for these FNNs.
Most calibration methods use variants of the stochastic
gradient descent (SGD) algorithm in combination with
back-propagation for gradient calculations, see Rumel-
hart et al. (1986) and Goodfellow et al. (2016). The
plain-vanilla SGD algorithm improves step-wise locally
the parameter (w, θ) with respect to the chosen loss
function (objective function) by considering the corre-
sponding gradients, see Chapters 6 and 8 of Goodfellow
et al. (2016). In our considerations, the canonical loss
function is given by the deviance loss, which corre-
sponds in the Bernoulli model to twice the average
negative log-likelihood function, see also (2),

(w, θ) �→ L(w, θ ;D) = −2
n
�(w, θ ;D). (7)

For deviance losses, we refer to Section 2.3 in McCul-
lagh and Nelder (1983).

The SGD algorithm calibrates the parameter (w, θ)

adaptively by step-wise locally decreasing loss (7). In
order to prevent thismodel from in-sample over-fitting,
typically, an early stopping rule is exercised, see C.
Wang et al. (1994). This early stopping rule is seen as
a regularisation method, see Section 7.8 in Goodfellow
et al. (2016).

It is exactly this early stopping rule that causes
the failure of the balance property (4). Early stopping
implies that we are not in a critical point of the loss
function w �→ L(w, θ ;D), see also (3). Therefore, an
identity similar to (4) fails to hold.

4. Global bias regularisation

4.1. Logistic regression regularisation

A simple way to achieve the balance property (4) is to
add an additional logistic regression step to the early
stopped SGD calibration. Denote the early stopped
SGDcalibration by (ŵSGD, θ̂SGD). This provides uswith
estimated success probabilities

x �→ p̂SGD(x) = σ

⎛⎝ŵSGD
0 +

d∑
j=1

ŵSGD
j f θ̂

SGD
j (x)

⎞⎠ ,

(8)

and with neuron activations f θ̂SGD(x) ∈ Rd in the last
hidden layer of the FNN, respectively. We freeze these
neuron activations and use them as new covariates
(inputs) in an additional logistic regression step. There-
fore, we replace the original data D by the working
data DSGD = {(f θ̂SGD(xi),Yi)}ni=1, and we assume that

the resulting design matrix has full rank d + 1 ≤ n. An
additional logistic regression MLE step on the work-
ing data DSGD provides us with the (unique) MLE
ŵMLE(d) ∈ Rd for w; this step is similar to Section 2,
but with dimension q replaced by d, see also (3). Note
that this MLE ŵMLE(d) improves (in-sample) the early
stopped SGD estimate ŵSGD with respect to the given
loss function L(w, θ ;D), and we obtain the new FNN
parameter estimate (ŵMLE(d), θ̂SGD).

This establishes us with the GLM improved esti-
mated success probabilities

x �→ p̂SGD+(x)

= σ

⎛⎝ŵMLE(d)
0 +

d∑
j=1

ŵMLE(d)
j f θ̂

SGD

j (x)

⎞⎠ . (9)

These estimated success probabilities satisfy the balance
property

1
n

n∑
i=1

Yi = 1
n

n∑
i=1

p̂SGD+(xi),

which is equivalent to (4) and, henceforth,we obtain the
balance property and global unbiasedness (5), respec-
tively.

We give some remarks.

• The neuron activations f θ̂SGD(xi), i = 1, . . . , n, in the
last hidden layer of the FNN can be understood as
pre-processed covariates, and we perform a logistic
regression on the resulting pre-processed (working)
data DSGD. In machine learning the transforma-
tion from xi to f θ̂SGD(xi) is also called representation
learning.

• The additional logistic regression step is a con-
vex optimisation problem that can efficiently be
solved by Fisher’s scoring method or by the itera-
tively reweighted least squares (IRLS) algorithm, see
Nelder Wedderburn (1972), Green (1984) and the
references therein. Alternatively, we could continue
to iterate the gradient-descent algorithm restricted
to the output parameter w ∈ Rd+1, while keeping
frozen all other network parameters θ̂SGD.

• The additional logistic regression step is optimal
with respect to the chosen objective function for the
given learned representations f θ̂SGD(xi). A less opti-
mal (but simple) way for bias correction is to just
adjust the intercept parameter estimate ŵSGD

0 .
• The additional logistic regression step may lead to

over-fitting. If this is the case we could either exer-
cise a more early stopping rule or we could choose a
FNNarchitecturewith a lowdimensional last hidden
layer, i.e. with a small d. The latter also has a posi-
tive effect on the run-time of the additional logistic
regression step.
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Alternatively, we could apply classical regularisa
tion techniques such as ridge or LASSO regression to
this last optimisation step. Importantly, the intercept
w0 should be excluded from regularisation/penalisa-
tion, otherwise the resultingmodel may not have the
balance property.

4.2. Penalty term and shrinkage regularisation

As a second regularisation approach we introduce a
penalty term. Choose a tuning parameter η > 0 and
define the penalised loss function

L(η)(w, θ ;D) = L(w, θ ;D) + ηR(w, θ ; p̄,I), (10)

where we setI = {1, . . . , n} for the sample indexes, and
for the penalty termRwe choose the Kullback–Leibler
(KL) divergence

R(w, θ ; p̄,I) = p̄ log
(

p̄
pI

)
+ (1 − p̄) log

(
1 − p̄
1 − pI

)
≥ 0,

with empirical average p̄ and model average pI on I
given by, respectively,

p̄ = 1
n

n∑
i=1

Yi and pI = pI(w, θ) = 1
|I|

∑
i∈I

p(xi).

(11)

Remark that the penalty term vanishes if and only if
the two averages are equal, i.e. iff p̄ = pI . This implies
that the penalised version (10) favours gradient-descent
steps that move towards the empirical average p̄ and,
henceforth, tend to be less biased on the population
level compared to the unpenalised version.

There is one issue that has not been mentioned
in (10). Typically, we use SGD methods that act
on randomly selected mini-batches, see Goodfellow
et al. (2016). For this reason (10) cannot be evaluated by
classical SGD software, but only its counterpart on the
selected mini-batch. Thus, for a mini-batch B ⊂ I =
{1, . . . , n} we have to replace (11) in the penalty term
by

p̄B = 1
|B|

∑
i∈B

Yi and

pB = pB(w, θ) = 1
|B|

∑
i∈B

p(xi).

Technically, this is no difficulty, however in practical
applications this has turned out to be not sufficiently
robust, and the penalty term did not provide the antic-
ipated regularisation effect.

A more efficient way is borrowed from shrink-
age regularisation to the global population level; this

approach is similar to empirical Bayesian considera-
tions. We therefore modify for mini-batch B ⊂ I the
penalty term to

R(w, θ ; p̄,B) = p̄ log
(

p̄
pB

)
+ (1 − p̄) log

(
1 − p̄
1 − pB

)
.

(12)

This penalty term shrinks the model averages pB on
the selected mini-batch B towards the global empir-
ical average p̄ and, henceforth, favours SGD steps
that tend to be unbiased on the global population
level.

4.3. Classification tree regularisation

The previous idea of shrinkage regularisation can be
carried forward to classification tree regularisation;
we refer to Breiman et al. (1984) for classification
and regression trees. Classification trees partition the
covariate spaceX ⊂ Rq into a family {Xs}Ss=1 of homo-
geneous subsets, where homogeneity is quantified with
a dissimilarity measure. Denote the sample indexes of
the data D that have covariates xi ∈ Xs by Ts ⊂ I .
The MLE on each subset Xs is given by the individual
empirical average

p̄Ts = 1
|Ts|

∑
i∈Ts

Yi.

The family {p̄Ts}Ss=1 of probabilities describes the
regression tree estimator on the partition {Xs}Ss=1 ofX .

We may now replace the homogeneous regularisa-
tion problem (10) by the regression tree implied regu-
larisation. We choose tuning constants ηs > 0 and set
for the penalty term

S∑
s=1

ηs

[
p̄Ts log

(
p̄Ts

pTs∩B

)

+ (1 − p̄Ts) log
(

1 − p̄Ts
1 − pTs∩B

)]
, (13)

where

pTs∩B = pTs∩B(w, θ) = 1
|Ts ∩ B|

∑
i∈Ts∩B

p(xi).

Regularisation term (13) can go in both ways, namely,
for very large tuning parameters ηs we receive a model
that is regression tree-like, and we use the FNN to
discriminate the samples within the leaves of the regres-
sion tree, this is more in the spirit of Quinlan (1992)
and Y. Wang and Witten (1997). For smaller tuning
parameters ηs (and smaller regression trees), we use
the regression tree to stabilise model averages on the
tree partition {Xs}Ss=1 of the covariate space X , and
because the regression tree has the balance property,
this also helps us to get the right global level of the
success probabilities.



STATISTICAL THEORY AND RELATED FIELDS 5

Listing 1 French MTPL data freMTPL2freq, see [4]
1 > str(freMTPL2freq)
2 ’data.frame’: 678013 obs. of 12 variables:
3 $ IDpol : num 1 3 5 10 11 13 15 17 18 21 ...
4 $ ClaimNb : num [1:678013(1d)] 1 1 1 1 1 1 1 1 1 1 ...
5 ..- attr(*, "dimnames")=List of 1
6 .. ..$ : chr "139" "414" "463" "975" ...
7 $ Exposure : num 0.1 0.77 0.75 0.09 0.84 0.52 0.45 0.27 0.71 0.15 ...
8 $ Area : Factor w/ 6 levels "A","B","C","D",..: 4 4 2 2 2 5 5 3 3 2 ...
9 $ VehPower : int 5 5 6 7 7 6 6 7 7 7 ...
10 $ VehAge : int 0 0 2 0 0 2 2 0 0 0 ...
11 $ DrivAge : int 55 55 52 46 46 38 38 33 33 41 ...
12 $ BonusMalus: int 50 50 50 50 50 50 50 68 68 50 ...
13 $ VehBrand : Factor w/ 11 levels "B1","B10","B11",..: 4 4 4 4 4 4 4 4 4 4 ...
14 $ VehGas : Factor w/ 2 levels "Diesel","Regular": 2 2 1 1 1 2 2 1 1 1 ...
15 $ Density : int 1217 1217 54 76 76 3003 3003 137 137 60 ...
16 $ Region : Factor w/ 22 levels "R11","R21","R22",..: 18 18 3 15 15 8 8 20 20 12 ...

Note that the regularisation approach of Section 4.2
can also be seen as a special case of classification tree
regularisation if we use tree stumps in the latter.

5. Example

5.1. Motor third party liability insurance data

For illustration, we choose the Frenchmotor third party
liability (MTPL) insurance data set called freMTPL2
freq. This data is included in the R package
CASdatasets, see Charpentier (2015).1 An excerpt
of the data is illustrated in Listing 1, and an extensive
descriptive analysis of thisMTPL insurance data is pro-
vided in Section 1 of Noll et al. (2018). We pre-process
this data as described in Noll et al. (2018), this includes
a small data cleaning part; the choices of the learning
data setD and the test data set T are done as in Listing
2 ofNoll et al. (2018). The learning data setD is used for
model calibration (in-sample), and the test data set T is
used for an out-of-sample test analysis (generalisation
analysis). The only difference to Noll et al. (2018) is that
we replace the integer-valued claims counts ClaimNb,
see line 4 of Listing 1, by an indicator variableY ∈ {0, 1}
which showswhether at least one claimhas occurred for
a given policy; this turns our prediction problem into a
binary classification exercise.

5.2. Logistic regression

For the logistic regression model of Section 2 we use
the same covariate pre-processing as described in List-
ing 3 of Noll et al. (2018), and we include the exposure
into the covariate vector.Maximizing log-likelihood (2)
on the learning data D provides the MLE ŵMLE; this
is done by using the R command glm under model
choice family=binomial(). For the resulting
MLE ŵMLE we calculate the in-sample and the out-of-
sample deviance losses on learning dataD and test data
T , respectively, given by

L(ŵMLE, θ ;D) = −2
n
�(ŵMLE, θ ;D) and

L(ŵMLE, θ ;T ) = − 2
|T |�(ŵ

MLE, θ ;T ),

where n = |D| = 610, 212 is the number of learning
samples and |T | = 67, 801 is the number of test sam-
ples, see Section 2.2 of Noll et al. (2018). Note that the
MLE ŵMLE is solely based on the learning dataD.

The results are presented in Table 1. Line (1) presents
the homogeneous model (null model) where we do
not use any covariate information. In the homoge-
neous model, the overall default probability (estimated
on the learning data D) is given by p̄ = ∑

i Yi/n =
5.007276%, see (11). This empirical overall default
probability (given in the last column of Table 1) also
provides the balance property, see (4). Line (2) presents
the logistic regression approach. We see a decrease in
both the in-sample and the out-of-sample losses; this
shows that there are systematic effects (heterogeneity)
in theMTPL portfolio which can (partially) be detected
by the logistic regression approach (1). The last column
of Table 1 confirms that the logistic regression approach
fulfills the balance property (4).

5.3. Early stopping feedforward neural network

In this section, we consider a FNN regression model
with early stopping for model calibration. We choose
a FNN having 3 hidden layers with (20, 15, 10) hid-
den neurons in these hidden layers. We choose the
hyperbolic tangent activation function, the nadam
SGD optimizer, and a mini-batch size of 1,000 poli-
cies; these terms are described in detail in Chapter 5 of
Wüthrich and Buser (2016), and the corresponding R
code (using theR interface toKeras) is a Bernoulli ver-
sion of the R code provided in Listing 5.5 of Wüthrich
and Buser (2016); in particular, we replace in Listing 5.5
of Wüthrich and Buser (2016) the exponential output
function (log-link) of the Poisson regression model by

1 CASdatasets website http://cas.uqam.ca; see also page 55 of the reference manual CASdatasets Package Vignette (2018); we use version 1.0-8 which
has been packaged on 2018-05-20.

http://cas.uqam.ca
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Table 1. Comparison of the homogeneousmodel (null model), the logistic regres-
sion model, the early stopping FNN and the GLM improved/regularised FNN.

In-sample Out-of-sample Balance
learning loss onD test loss on T property (4)

(1) Homogeneous model p̄ 0.3975 0.4070 5.007276%

(2) Logistic regression model p̂MLE 0.3808 0.3901 5.007276%

(3a) Early stopping FNN p̂SGD, seed 1 0.3716 0.3813 5.144375%

(3b) Early stopping FNN p̂SGD, seed 2 0.3707 0.3810 4.803005%

(3c) Early stopping FNN p̂SGD, seed 3 0.3720 0.3824 4.915926%

(4a) Regularised FNN p̂SGD+ , seed 1 0.3711 0.3810 5.007276%

(4b) Regularised FNN p̂SGD+ , seed 2 0.3704 0.3806 5.007276%

(4c) Regularised FNN p̂SGD+ , seed 3 0.3712 0.3815 5.007276%

the sigmoid/logistic output function (logit-link) of the
Bernoulli regression model.

In a preliminary analysis, we explore howmany SGD
steps we need to perform until the FNN starts to over-
fit to the learning data. For this preliminary analysis,
we split the learning data D at random into a training
sample D0 and a validation sample V . As it is com-
mon practice, we choose 80% of the learning dataD as
training samples D0 and the remaining 20% as valida-
tion samples V . We then train the network with SGD
on the training data D0 and we track over-fitting on
the validation data V ; note that this step does not use
the test data T which is only used later on for out-of-
sample testing (a generalisation analysis) of the final
model.

In Figure 1, we illustrate this preliminary analysis
which shows that after roughly 40 epochs the model
starts to over-fit to the training data D0 (because the
validation loss on V starts to increase). For this reason,
we fix the early stopping rule at 40 epochs for all further
network calibrations.

We then fit the FNN regression model over 40
epochs which provides us with an early stopped SGD
calibration (ŵSGD, θ̂SGD). Every SGD calibration needs
an initial value in which the SGD algorithm is started
from. This initial value is usually chosen at random,
in Keras the default is the Glorot uniform initialiser,
see Glorot and Bengio (2010). This initialiser needs
a seed for random number generation and, therefore,
the early stopped SGD calibration (ŵSGD, θ̂SGD) will
depend on this initial seed. On lines (3a) –(3c) we pro-
vide three such early stopped SGD calibrations having
different seeds 1, 2 and 3. We note that all three cal-
ibrations provide lower in-sample and out-of-sample
losses onD and T , respectively, compared to the logis-
tic regression model. This illustrates that the logistic
regression model misses important model structure
that is captured by the FNN. More worrying is that the
balance property (4) fails to hold and the deviations are
substantial, see last column of Table 1.

To receive a better intuition about the potential fail-
ure of the balance property, we run this SGD cali-
bration over 50 different seeds (starting values of the
SGD algorithm). On the left-hand side of Figure 2 the

box plot illustrates the different values we receive for
p̂SGD. They fluctuate between 4.5% and 5.6% (the bal-
ance property is 5.007276%, orange horizontal line).We
conclude that the balance property may substantially
be misspecified by early stopping of SGD calibration
which may lead to a huge bias and a severe global
population (price) misspecification. In Figure 2 (mid-
dle and right-hand side) we illustrate the resulting in-
sample losses and the out-of-sample losses, respectively,
over 50 different seeds of early stopped SGD calibra-
tions. We note that the solutions provided on lines (3a)
–(3c) of Table 1 are part of these plots, i.e., they corre-
spond to the first 3 seeds with corresponding values in
Figure 2.

5.4. Logistic regression bias regularisation

The failure of the balance property as illustrated in
Figure 2 (lhs) motivates us to apply the additional
logistic regression step to the early stopping FNN cal-
ibration. This provides us with the GLM improved
calibrations p̂SGD+, see (9). Table 1, lines (4a)–(4c), pro-
vide the corresponding figures (they use exactly the
same seeds as the ones on lines (3a)–(3c)). We note
that in-sample losses on D decrease (which needs to
be the case), that out-of-sample losses on T decrease
(which shows that the early stopping FNN does not
over-fit, yet), and that the balance property is fulfilled.
The decreases in in-sample and out-of-sample losses
are also illustrated in the red coloured box plots of
Figure 2. From this example, we conclude that the
GLM improved/regularised FNN calibration (9) pro-
vides a substantially improved FNN compared to (8),
and this additional logistic regression step on the
working data DSGD should be explored for a suitable
predictive model.

5.5. Shrinkage regularisation

Our final analysis explores the shrinkage regularisation
approach of Section 4.2 by applying penalty term (12).
The use of this method is more complicated since it
requires more work and fine-tuning. Firstly, we need
to implement a custom-made loss function in Keras
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Figure 1. Preliminary analysis exploring the early stopping rule: model fitting on the training dataD0 (in upper graph) and tracking
over-fitting on the validation data V (in lower graph); note that this is a standard output in Keraswhich (unfortunately) drops the
factor 2 from the loss function (7), thus, the y-axis needs to be scaled with 2.

Figure 2. (lhs) Balance property (4) of the early stopping FNN over 50 different seeds (starting points), the orange horizontal line
shows the balance property of 5.007276%; (middle) in-sample learning losses onD and (rhs) out-of-sample test losses on T of the
early stopping FNN (left box plots in graphs) and the GLM improved/regularised FNN (right box plots in graphs) over the 50 different
seeds (starting values of the SGD algorithm).

adding a KL divergence penalty term to the Bernoulli
deviance loss. Secondly, we need to fine-tune the hyper-
parameters: these are the batch size, the tuning param-
eter η > 0 and the number of epochs. We have per-
formed a grid search to receive good parameters. We
keep the batch size of 1000 samples and 40 epochs as
in the previous calibrations. The tuning parameter is
chosen as η ∈ {10, 100, 250, 1000}.

In Table 2, we present the results. The general obser-
vation is that the shrinkage regularised versions are not
fully competitive. Bias regularisation requires a compa-
rably large tuning parameterη, and having a small batch
size of 1000 this large tuning parameter η negatively
impacts the accuracy of the FNN regression model.
We conclude that the shrinkage regularisation approach
is not fully compatible with SGD fitting because the
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Table 2. Comparison of the homogeneous model (null model), the logistic regres-
sion model, the early stopping FNN and the GLM improved/regularised FNN, shrinkage
regularised versions for different tuning parameters η ∈ {10, 100, 250, 1000}.

In-sample Out-of-sample Balance
learning loss onD test loss on T property (4)

(1) Homogeneous model p̄ 0.3975 0.4070 5.007276%

(2) Logistic regression model p̂MLE 0.3808 0.3901 5.007276%

(3a) Early stopping FNN p̂SGD, seed 1 0.3716 0.3813 5.144375%

(4a) Regularised FNN p̂SGD+ , seed 1 0.3711 0.3810 5.007276%

(5a) Shrinkage regularised with η = 10 0.3718 0.3820 5.207727%

(5b) Shrinkage regularised with η = 100 0.3740 0.3833 5.099347%

(5c) Shrinkage regularised with η = 250 0.3759 0.3849 5.049608%

(5d) Shrinkage regularised with η = 1000 0.3820 0.3911 5.012383%

bias property is a global property whereas SGD acts on
(local) mini batches.

6. Conclusions

We have discussed the important problem of consid-
ering statistical models that provide unbiased mean
estimates on a global population level (balance prop-
erty). Classical statistical regression models like gener-
alised linear model naturally have this balance property
under the canonical link choice because the maximum
likelihood estimator provides a critical value of the
corresponding optimisation problem. In general, early
stop gradient-descent calibrated neural networks fail
to have the balance property, because early stopping
prevents these models from taking parameters in crit-
ical points of the (deviance) loss function. In many
applications, this does not reflect a favourable model
calibration because it may lead to substantial price mis-
specification on a global population level. Therefore, we
have proposed improvements that lead to globally unbi-
ased solutions. These solutions include an additional
generalised linear model optimisation step or shrink-
age regularisation to empirical averages. The numerical
example shows thatwe prefer the additional generalized
linear model optimisation step.
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