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A B S T R A C T

Urban sustainability is a significant factor in combating climate change. Replacing polluting by renewable
energies is fundamental to reduce the emission of greenhouse gases. Photovoltaic (PV) facilities harnessing
solar energy, and particularly self-consumption PV facilities, can be widely used in cities throughout most
countries. Therefore, locating spaces where photovoltaic installations can be integrated into urban areas is
essential to reduce climate change and improve urban sustainability. An open-source software (URSUS-PV)
to aid decision-making regarding possible optimal locations for photovoltaic panel installations in cities is
presented in this paper. URSUS-PV is the result of a data mining process, and it can extract the characteristics
of the roofs (orientation, inclination, latitude, longitude, area) in the urban areas of interest. By combining this
information with meteorological data and characteristics of the photovoltaic systems, the system can predict
both the next-day hourly photovoltaic energy production and the long-term photovoltaic daily average energy
production.
1. Introduction

Cities have become a determining factor in climate change, as they
are the place where much energy is consumed (64% of global primary
energy use) and high levels of greenhouse gases emitted (70% of the
global total), due to the use of fossil fuels as energy sources (In-
ternational Energy Agency, 2016). There is a great opportunity for
citizens to reduce these emissions. Replacing polluting energy sources
by renewable energies that respect the environment and do not com-
promise future generations is one of the essential requirements to
achieve energy-sustainable cities and favour the fight against climate
change. Additionally, switching to renewable energy sources as a detri-
ment to polluting energies could improve health and quality of life.
Precisely, one of the goals proposed in the 2030 Agenda for Sustain-
able Development by UN is making cities inclusive, safe, resilient and
sustainable (United Nations, 2015).

Solar energy has seen a large increase among renewable energies.
According to the International Energy Agency (IEA), there was a 22%
growth up to 720 TWh (representing 3% of global electricity gener-
ation) in 2019 (International Energy Agency, 2020). Although large
photovoltaic infrastructures are away from cities, there has been an
exponential rise in distributed installations in buildings, industry and
houses in Europe, the United States and Japan (International Energy
Agency, 2020). This is very important since local production reduces
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transportation losses and enhance citizen’s responsibility because of
inspiration for searching for energy self-sufficiency. In recent years,
a new type of building, based on that type of installation, has been
proposed as an evolution of Zero Energy Building (ZEB): the Positive
Energy Building (PEB) (Magrini et al., 2020).

Land availability in urban areas is limited. Roofs are estimated to
account for between 20% and 25% of urban surface (Akbari & Rose,
2008). They are therefore an excellent resource to be exploited by in-
stalling photovoltaic systems. Having tools that help in decision making
to increase an area’s energy production (neighbourhood or building
complex) would be beneficial in order to pinpoint the most appropriate
places for such an intervention. Predictions about the expected energy
production in the long-term are also very convenient to assess the
suitability of installing these infrastructures. The same occurs with
short-term estimations of photovoltaic production. These predictions
can help owners of self-consumption installations with better load
management (passive or active) and managers of extensive facilities to
improve their integration into the power grid.

Collecting data from urban areas and conducting a data mining
process are an appropriate way to develop the necessary models and
tools. Numerous data sources can currently be used in the design of
intelligent decision support systems in the scope of that work. These
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include: (a) maps of the cities showing the location of buildings and
vegetation; (b) LiDAR images (3D point clouds) that allow height
models of urban objects to be determined (Sharma et al., 2021); and (c)
information provided by Meteorological Agencies, including radiation,
temperature and precipitation values.

In addition to information sources, a data mining process, with
algorithms and tools to automate processing data tasks and discover
new knowledge, needs to be correctly conducted. Thus, in the geo-
computational field, information can be obtained from urban images (in
two or three dimensions) on, for example, the location of the available
roofs, their orientation and inclination (also known as aspects and
slopes) or their sizes. Such information, conveniently combined with
other sources, can be used to predict new variables that will affect
the produced energy calculation. Moreover, learning patterns can be
established to model the problem. Artificial intelligence tools, such as
machine learning algorithms, will be needed to carry out those tasks.
Extracted knowledge can then be used and channelled into software
tools to help the installation potential of an area for photovoltaic
systems in urban areas.

This research’s main objective is to generate knowledge to eval-
uate the expected energy production by photovoltaic infrastructures
installed in urban areas. This evaluation will allow the potential energy
production to be established for the long and short-term, depending
on the usable surface in each area and the orientation, inclination and
size of the different roofs and rooftops. A methodology based on a data
mining process is proposed to achieve this objective. The knowledge
from the last phase of the data mining process (deployment phase) can
enhance the experts’ skills. It has been incorporated into an intelligent
decision support system.

The methodology developed and its implementation are of inter-
est to both private users and local administrations, corporations or
neighbourhood communities. Thanks to that methodology, zones can
be delimited in cities or urban areas and the potential energy produc-
tion by the photovoltaic system known for the long and short time.
This knowledge may be of particular interest to public administrations
or large corporations with limited resources to carry out a series of
installations and which have to choose the most suitable locations from.

The rest of the paper is organized as follows. Section 2 describes
the data mining methodology selected for the development of the tool,
along with the tool itself and the technology used for its development.
Section 3 describes the results obtained using the tool in an urban area
of the city of Málaga (Spain). Section 4 concludes.

2. Methods

Building software that can help experts in their decision making is
essential nowadays. Knowledge extracted from different data sources
can be used in its development and additional intelligent characteristics
added. A data mining process is the most systematic way of achieving
worthy results that transfer knowledge to real applications.

Fig. 1 schematically shows the main stages that are defined in
CRISP-DM methodology (Chapman et al., 2000), one of the most widely
used and extended for data mining projects. Section 2.1 presents how
all phases have been developed to implement URSUS-PV with such
methodology. Some stages require more focus and they are described
in detail in successive points (from 2.1.1 to 2.1.4).

Finally, Section 2.2 describes different technologies used to imple-
ment the software presented in this paper.

2.1. URSUS-PV: Tool for estimating the solar energy produced in areas of
interest

The development of URSUS-PV has followed different phases. Some
of them are simple to be described, such as Phases 1 or 2, but some
others require more detailed explanations that are presented separately.
Fig. 2 shows a diagram where the phases are schematically represented.
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Table 1
Dataset description.

Meteorological data (long term) LiDAR image

Radiation and clearness index (hourly) Resolution (0.5 point/m2)
Temperature (hourly) Size (2 × 2 km)

Meteorological data (short term)

Radiation and clearness index (daily)
Temperature (daily and 2 short consecutive periods during the day)
Humidity (daily and 2 short consecutive periods during the day)
Prediction for temperature (daily and 2 short consecutive periods during the day)
Prediction for humidity (daily and 2 short consecutive periods during the day)
Prediction for cloudiness (daily and 2 short consecutive periods during the day)

Photovoltaic facility data (PV)

Inclination (slope) Latitude
Orientation Longitude
Surface (available)

Business understanding (Phase 1) established the objective for this
tool, namely, to evaluate the potential energy production that can
be generated by photovoltaic infrastructures installed in urban areas.
Estimations must be performed from a double long and short-term
perspective.

During the data understanding step (Phase 2), we worked with
both meteorological data and LiDAR aerial images of the urban ter-
rain covering the entire geographic area of interest for the study.
Meteorological data are of high enough quality when they provide
measurements (such temperature or humidity) with daily updates (even
hourly) and predictions for the following day (such as cloudiness).
LiDAR images are usually available for most cities and they facilitate
the semantic segmentation of urban objects, making it easier to focus
on the rooftops. In such segmentation, every point in the image is
automatically assigned to a specific class (such as building, vehicles or
vegetation). LiDAR images also provide models of the heights of urban
objects, which allows the roof orientations and inclinations in areas
of interest to be obtained. A description of the data used is given in
Table 1.

Data integration and their preparation (Phase 3) mainly consists of
two steps that have been automated to great extent: selection of the
area of interest (see 2.1.1) and roof segmentation for feature extraction
(see 2.1.2).

In the modelling phase (Phase 4), two different models are needed
to satisfy the data mining goals established in the first phase: one model
for long-term predictions and another for short-term predictions. Al-
though the second one is taken from an existing paper (del Campo-Ávila
et al., 2021), both are described in 2.1.3.

The evaluation (Phase 5) was conducted by checking the results
obtained by our system for specific points in different areas with the
results obtained by other systems. Such other systems use manual
processes to calculate the photovoltaic production for a specific system.
A correct evaluation allows the models generated in the previous step
(Phase 4) to be integrated in the final product (Phase 6).

As regards deployment (Phase 6), the tool can estimate the solar
energy produced in areas of interest inside urban zones in the long
and short-term. This is the result of integrating a photovoltaic energy
estimation model (long-term) with an existing hourly solar radiation
predictor system (short-term). This integration is not aimed at im-
proving accuracy, but rather at increasing functionality: long term
prediction allows users to assess the suitability of a location to install
a new facility, while short term prediction allows users to decide on
the expected performance for the next day. In 2.1.4, details about the
integration of the results achieved in previous phases are given.

2.1.1. Selection of the area of interest
Studying all the possible locations for photovoltaic systems in a

city is unusual because users are mainly interested in specific and
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Fig. 1. CRISP-DM methodology outline. Six phases are defined, and most relevant generic tasks are enumerated under each phase.
Fig. 2. Scheme of the data understanding and preparation phases that uses some of the models generated allow the potential photovoltaic energy produced in an urban area to
be estimated.
delimited areas. That behaviour can benefit the system performance
as there are fewer computational requirements, while maintaining the
same functionality. Therefore this data selection is necessary and must
be automated.

The system accesses the geographic information that was previously
downloaded and create a map with a grid that delimits the areas
available for energy estimation. It allows the user to select the area of
interest by defining a polygon on the map. The system then loads the
image covering the area delimited by the user’s coordinates through
the polygon on the map. Subsequent processing steps only take into
account the data filtered in this step.

In addition to the geographic information, meteorological data cap-
tured in the city or close to the city are needed. However, the proximity
to the area of interest is enough and information from the closest
weather stations is used.
3

2.1.2. Image processing for roof segmentation and feature extraction
Two aspects are involved in locating roofs where photovoltaic in-

frastructures can be installed: first, the detection of roofs in a city
and, second, the determination of their characteristics to generate an
accurate assessment.

The first step processes a 3D LiDAR image covering the area of
interest of the city selected by the user. All urban elements such
as vegetation or vehicles are removed, keeping only the ground and
rooftops.

In the next step, the normalized height model (CHM or NDSM) is
obtained by eliminating the ground height. In this 2D model, the height
of the objects is measured at the same level. After this transformation,
the system can determine the available roofs and the heights of the
different buildings detected. For more details about roof and ground
segmentation, and CHM calculation (functions and libraries used), see
3.1.1.
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At this point, the system allows the user to select different ranges
of interest for different slope and orientation values. For more details
see 3.1.2.

A raster layer with the connected components of the roofs can then
be created. Each connected component consists of contiguous pixels of
roofs that meet the user’s criteria for slopes and orientations. For energy
calculations, when talking about a roof, it actually means the connected
component of the roof. For more details see Section 3.1.3.

The next step is to calculate its mean inclination, orientation, size
and latitude for every connected component. All these data will be
required to estimate new values that allow the generation of new
information to be used in the software proposed. More details about
such estimations and the induction of models to make predictions are
given below.

2.1.3. Calculation of solar energy potential
The estimation of energy received in each roof depending on the

size, orientation, inclination and location, can be modelled by using
the expressions proposed by A. Coronas (1983) and Iqbal (1983). In
this phase, the actual inclination of roofs has been used. It would be
also possible to estimate the optimal inclination, for instance using
the proposal made by Chang (2010), but it will require the individual
evaluation of the integration of photovoltaic facilities (PV) into the
buildings envelope.

The energy that a photovoltaic system could produce in the long-
term is estimated using the model proposed by Osterwald (1986),
taking into account the information from the previous step. For this
estimation, first, the hourly energy produced by each system is cal-
culated using both meteorological data and data from the roof. The
meteorological data used are hourly global solar radiation and hourly
temperature. The data of the roof are the size, latitude, longitude,
inclination, and orientation. The power generated by the system is
estimated using the expression:

𝑃 = 𝑃𝑆𝑇𝐶
𝐺𝛽,𝛼

1000
(1 + 𝛾(𝑇𝑚𝑜𝑑 − 25))𝐺𝐿

where 𝑃𝑆𝑇𝐶 is the power of the system in standard conditions, 𝐺𝛽,𝛼 is
the global irradiance on the surface of the modules, 𝛽 is the inclination
of the modules, 𝛼 is the orientation, 𝛾 is the temperature coefficient of
he maximum power of the modules, 𝑇𝑚𝑜𝑑 is the module temperature,
nd 𝐺𝐿 is the global losses coefficient of the system. This expression
as been obtained from the expression proposed by Osterwald (1986)
nd includes not only the losses produced by temperature but also
ther losses (soiling, spectral losses, and so on). The daily radiation is
alculated as the sum of the estimated hourly values.

Therefore, the daily average energy production can be estimated for
very roof, and the estimation for the roofs in a desired area can be
alculated by aggregation.

On the other hand, in a short-term scenario, the photovoltaic energy
roduced can be estimated one-day-ahead. Using the model proposed
y del Campo-Ávila et al. (2021) the next-day prediction of hourly solar
adiation is calculated. The RMSE of this model is 97 Wh∕m2 and 63
h∕m ∗ 2 that are similar to the errors estimated using other data
ining models such as in Cannizzaro et al. (2021) where are 107 and
8 respectively. This model uses as independent variables most of the
ignificant input variables selected in the proposal by Castangia et al.
2021). This model takes as input meteorological data registered during
he current day and certain meteorological forecasts, and predicts
he type of radiation expected for the following day (sunny, cloudy,
artially sunny, etc.). The model selects from 14 types of radiation,
hat were identified in the induction phase of the model, and provides
he hourly transparency index expected for each hour between 9:00
nd 16:00 for the following day. The prediction process is summarized
n the right side of Fig. 2. As it is explained in del Campo-Ávila
t al. (2021) using the meteorological data available for a day, the
4

eveloped system responds with the type of day estimated for the
ext day. The hourly global solar radiation is estimated using the
entroid that contains the hourly values of clearness index for that day,
nd the values of hourly extraterrestrial radiation. This conveniently
ransformed estimation gives the potential solar energy calculated for
ext day for every roof, and, by aggregation, for the area of interest.

.1.4. Integration and operation
In addition to the image processing model and extraction of the

haracteristics of the roofs, photovoltaic energy calculation models, and
he previously presented predictor system are needed for the system to
perate correctly, along with a series of scripts for automating daily
ownloads of radiation, meteorological and forecast data.

Although the processing of images can be applied to all the ele-
ents, the user could select the characteristics of interest (like a specific

rientation or the maximum or minimum inclination) to reduce the
omputational effort. The estimated energy is calculated for each roof
hat meets the user’s requirements (daily average for long-term pre-
iction or hourly energy for short-term prediction). Their aggregated
alculation will then constitute the estimated photovoltaic energy in
he urban area of interest.

The tool’s general operating scheme with the integration is shown
n Fig. 3.

The general operation of the system is now presented. The user
nteracts with the system by selecting the preferences, identified with
pper-case letters in this description:

A. Selection of the area of interest

A.1. System performs the roof segmentation.

B. Selection of roofs with desired orientation and inclination

B.1. System extracts roof’s features (size, latitude, longitude,
mean orientation, mean inclination).

C. Selection between long-term or short-term solar energy calcula-
tion:

C.1. Long-term:

C.1.1. Calculate daily average solar energy for each roof.
C.1.2. Calculate total daily average solar energy in the area.

C.2. Short-term:

C.2.1. Obtain data from meteorological observations, radia-
tion and hourly forecasts that are downloaded daily.
If meteorological information system offers an API,
automatization is easier.

C.2.2. Calculate the radiation expected for one-day-ahead
using a prediction system that analyse previous data.
For every roof, short-term photovoltaic energy esti-
mation is performed.

C.2.3. Calculate next-day solar energy expected to be pro-
duced in the area of interest.

URSUS-PV is offered as a free web tool available to individuals,
municipalities, neighbourhood communities or companies in the pho-
tovoltaic sector (see Code Availability Section). It is also supplied as
a package that can be altered to be adapted to specific scenarios or

improved with new features.
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Fig. 3. General diagram of the tool with its integrations.
2.2. Technologies for implementation

Some of the tools now most commonly used to analyse and process
urban images are the Geographic Information System (GIS) (Li et al.,
2019). Some of the most popular tools used for this purpose are QGIS
and ArcGIS. Image processing of this type with data science languages
such as R (R Core Team, 2020) has recently been gaining momentum
thanks to the development of libraries such as lidR, rspatial
or raster. These include a large number of functions that greatly
facilitate working with 2D and 3D urban images to obtain the necessary
information by processing them.

The main technologies used to develop the tool are based in R
language. They can be grouped according to the phase of the data
mining process where they have been intensively used.

In first phases, like data acquisition and transformation, dplyr
package (Wickham et al., 2020) was used to obtain core knowledge.
cronR package (Wijffels, 2020) has been used to automate the daily
download of meteorological and radiation data.

For data preparation some other R packages were used like rspa-
tial (Hijmans, 2018), raster (Hijmans, 2020) and lidR (Roussel
& Auty, 2021; Roussel et al., 2020). lidR processes 3D LiDAR models
and classifies the urban objects in it (buildings, ground, or vegeta-
tion) while raster allows the calculation of height, orientation, or
inclination.

R libraries for Machine Learning such as RWeka package (Hornik
et al., 2009), that integrates algorithms implemented in Weka (Witten
et al., 2016), or caret package (Kuhn, 2020) have been used to
automatize part of the process that creates predictive models.

Finally, the shiny package (Chang et al., 2021) offers a framework
for the development of the DashBoard or web application for calculat-
ing photovoltaic energy in urban areas of interest. A Linux server has
been configured for the app deployment.

3. Results

This section shows an example of an actual use case of the tool
developed to estimate photovoltaic energy in an area of urban interest.
The estimation was performed for the long-term (daily average pro-
duction). The short-term (one-day-ahead) estimation would follow an
identical process.

Comparisons to previous methods and tools are enumerated too at
the end of this section. There, the advantages presented in the proposed
system (URSUS-PV) are highlighted.
5

3.1. Validation example

Once URSUS-PV was implemented, it was used in a real scenario to
test its capacities. We selected the city of Málaga, in Spain, and data
were collected: (a) meteorological data for 10 years (from the Spanish
Meteorological Agency, AEMET1), and (b) LiDAR aerial images of the
urban terrain covering the entire geographic area of interest for the
study (from National Geographic Information Center, CNIG2).

The usage of the application is described below.

3.1.1. Selection of the area of interest and roof segmentation
The first step was to select the urban area of interest for photovoltaic

energy estimations. A polygon draw tool integrated into the map tool
area was used to define that input. The map shows the LiDAR images
available for that city as a overlapped grid. The user could zoom and
scroll the city map to locate the area of interest (AOI). The system
processed the LiDAR 3D image of the selected area, filtered out urban
objects that were not of interest (water, vegetation), leaving only the
ground and roofs or terraces. The lidR library includes some functions
that allow the extraction of different information. The roofs and ground
were calculated using lasfilter. The lasNormalize function was
used to remove the ground. To get the 2D normalized roof height model
gridCanopy was used. Finally, the system showed the roofs of the
area of interest and the height of every roof pixel. Figs. 4(a), 4(b), 4(c)
shows information calculated at different moments during the selection
of AOI and its segmentation.

3.1.2. Filtering roofs with desired orientation and inclination
The user could select the orientation and the inclination (or slopes)

of the potential roofs and rooftops for installing photovoltaic systems.
The system allowed the user to select ranges of interest for slopes and
orientations grouped from 10 to 10 degrees. Once the slope ranges of
interest were selected, the system could display two raster layers; one
with the slope value of each pixel of the roof, and another with the
slope range of interest to which each pixel belongs. Fig. 5 shows UI for
selected slope ranges. In this example, the user is interested in slope
ranges: 1.[0,10), 2.[10,20), …, 7.[60–70]. Fig. 5(a) shows slope values

1 http://www.aemet.es.
2 http://centrodedescargas.cnig.es.

http://www.aemet.es
http://centrodedescargas.cnig.es
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Fig. 4. Roof Segmentation: (a) Select the urban area of interest, (b) LiDAR 3D model with roof segmentation, (c) Normalized roof heights model.
Fig. 5. Inclination selection: (a) Inclination values for each pixel, (b) User selected inclination range for each pixel.
for each pixel. Fig. 5(b) shows the discretized values corresponding
to the slope ranges in which the user is interested. The process for
orientation is the same.

The function terrain in the raster library calculates the orien-
tations and slopes of the roofs of a normalized model.

3.1.3. Photovoltaic energy estimations
At this point, the user, depending on their objectives, could select

whether to make short- or long-term estimations. In our example, pre-
sented in Fig. 6 the system made a long-term estimation. The first step
was to calculate the connected components of the roofs. The connected
components (CC) of the roofs are pieces composed of contiguous pixels
of roofs that satisfy the orientation and inclination criteria. Each CC
has a unique ID. A raster layer of connected components was created.
The raster library function for generating the connected component
raster layer is clump(formask, directions=8), where formask
is a raster layer with value 1 for pixels that satisfy the orientation and
slope conditions (pixels that for the discretized layer of orientations and
slopes have a value other than null). That means the user selected that
range for the orientation or slope. The rest of the pixels of formask
are identified as null values. From this point on, when we refer to a
roof, we mean a connected roof component.

For each connected component of the roofs, the system calculated
the mean latitude, mean orientation, mean inclination, and size (area
in m2). With the roof features extracted for every available roof, the
necessary meteorological and radiation data of the municipality and the
weather station closest to it was added. Using the photovoltaic system
characteristics, the system determined the average daily energy (kWh)
for each roof. Finally, the sum of the daily energy estimated for each
roof would be the daily energy estimated for every day in the urban
area. In the energy estimation panel (see Fig. 6), the tool displayed a
map with the rooftops that met the orientation and inclination user’s
requirements. Additionally, two labels displayed the number of roofs
that satisfied the requirements and the photovoltaic energy estimation
for the urban area initially selected. The system also showed detailed
information about the roofs processed.
6

3.2. Comparison to previous methods

In this section, the main models, technologies, and tools identified
for estimating solar energy in cities are described. Finally, a compara-
tive of these tools is shown in Table 2, in which the differences provided
by URSUS-PV are revealed.

In Freitas et al. (2015), a literature review of solar estimation
models in cities is carried out. Different alternatives are analysed, from
integrating numerical radiation algorithms into GIS tools to Web-based
solar maps or from simple 2D visualizations to 3D representation. One
of its objectives, as in this paper, is the communication of the benefits
achieved by using solar energy.

In Liang et al. (2015), a framework is proposed to be used with
applications that integrate 3D models with geographic data for solar
estimations tasks in cities. It highlights its potential for calculating
projected shadow models taking advantage of the GPU computation
and displaying the radiation data reproduced in buildings interactively.
Another alternative, like (Radosevic et al., 2020), combines KNIME
(open-source scientific workflow management system) with Solar An-
alyst (proprietary tool for assessing solar energy potential) to show
how a data science workflow can be used to improve the reproducibil-
ity and verifiability of modelling. However, one of its handicaps is
that the system cannot be utterly open-source as one component is
closed-source.

As noted earlier, the proposed tool will work with the roofs in
an area of interest. Semantic segmentation techniques of urban im-
ages are usually used to identify those roofs. The main technolo-
gies available are: (a) supervised learning using artificial neural net-
works (Khoshboresh-Masouleh et al., 2020; Pan et al., 2020), and (b)
unsupervised learning with clustering techniques using algorithms such
as k-means (El Joumani et al., 2017; Gavankar & Ghosh, 2019).

The main problem encountered with supervised learning techniques
and artificial neural networks is related to the overfitting problem.
Models are trained with aerial images of specific cities, with particular
characteristics (resolution of images, shooting angle, types of roofs or
kind of vegetation) and those models cannot be extended to other cities.
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Table 2
Comparative of solar estimation tools.

Estimation (long-term) Prediction
(short-term)

Updatable data source Domain Access

Deep photovoltaic
nowcasting

Short-term (one-minute-ahead) Not available Research installation in
Japan

Not available

DeepRoof Long-term (daily peak sun hours for the
year)

Not available Few cities in USA Web (not referenced in
paper)

Google Sun Roof Long-term (daily average for the year) Not available Many cities in USA/any
location

Web

PVWatts Calculator Long-term (daily average for the month
or the year)

Not needed World Web

Huella Solar Long-term (daily average for the month
or the year)

Yes, but not simple, neither
intuitive

Few cities in Spain Web (requires
registration)

URSUS-PV Short-term (hourly for one-day-ahead)
long-term (daily average for the year)

Yes, only needs LiDAR images
and meteorological data

Any city loaded in the
system (for now Spain)

Web
Fig. 6. Energy estimation panel showing the number of roofs that meet user’s requirements and daily average photovoltaic solar energy estimation.
This is mainly as the context is different and the quality of images to
retrain the models are available only for very few cities in the world.
The problem encountered with unsupervised learning techniques is the
lack of precision in the segmentation of buildings.

These problems do not allow the automatic segmentation of build-
ings in urban areas and other information sources are therefore needed.
LiDAR technology offers 3D images (taken by drones or aeroplanes)
with information on the height of urban objects and can be used to
segment objects in urban areas (Awrangjeb et al., 2013). Additionally
to the segmentation, other features such as orientation or inclination
can be easily calculated for every roof in the area.

The main tools related to prediction of potential solar energy to be
generated on roofs are as follows:

• Deep photovoltaic nowcasting (Zhang et al., 2018). Tool that makes
predictions of energy produced in a photovoltaic system for a
very immediate term (one-minute-ahead). The technology used
is based on artificial neural networks trained with aerial images
of the sky and associated energy values. The system works with
the photovoltaic panels and cameras previously installed that take
photos of the sky. Learning is based on the energy obtained and
the photos of the state of the sky, so it does not help to establish
optimal location of facilities, as is the aim of our system.

• DeepRoof (Lee et al., 2019). This tool has been developed at the
University of Massachusetts and uses data from six different USA
cities, focusing on one city in Framingham (Massachusetts). It
uses satellite images and real estate data to estimate the size and
7

geometry (orientation and inclination) of the roofs. In addition,
these images need to be labelled by experts to create the training
set. The system uses a deep learning approach to estimate the
solar potential of the roof. It takes 5 s to process each image,
so the authors propose to use a cluster of servers that can speed
up the process. Buildings are selected individually through a web
interface or can be enumerated for batch processing, but cannot
be automatically identified in a region of interest. The main
problem is that public access is currently not available.

• Google Sun Roof (Google, 2021). Tool developed by Google that
allows the average daily solar energy production that would be
achieved in the roof of a specific building manually selected in
the map of a city to be estimated for the long-term. It currently
is available for cities in the United States of America. The system
uses Google satellite images to calculate the characteristics of the
roofs and meteorological information to make energy predictions.
Our proposal would differ in that we provide the concept of work-
ing with areas, with the system being the one that determines the
available roofs, and estimates the energy that can be produced
in the long-term (daily for every day in the year) and short-term
(hourly for next day).

• PVWatts Calculator (Dobos et al., 2019; NREL, 2022). PVWatts
calculator estimates the energy production of grid-connected PV
energy systems. It has been developed by NREL laboratory of
the U.S. Department of Energy, Office of Energy Efficiency and
Renewable Energy. It uses hourly typical meteorological year
(TMY) data from the NREL National Solar Radiation Database. In
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this case, the user defines the size of the installation and manually
enter the orientation and inclination of the roof; it is not possible
to extract information about the available surface in the buildings.
As for the Google Sun Roof, the main difference is that it does not
work with working areas.

• Huella Solar (HuellaSolar, 2021). It allows areas in a city to be
selected and performs the monthly and yearly energy estimation.
Calculation is made for the whole area depending on radiation.
Building segmentation is therefore not automatic and needs to be
performed manually if only roofs are desired. A positive point
is that it considers shadowing and provided a tool to estimate
energy produced by facades. Cities offered are limited in the free
version and new ones can be included in the registered version
but it requires advanced knowledge about maps and images to be
provided.

The contributions that our tool offers with respect to others, such
s those described above, are summarized in Table 2 and described in
he following paragraphs:

• URSUS-PV uses LiDAR images that allow the urban elements of
an area to be determined precisely. Those images are easy to be
downloaded for many countries and the availability is increasing.
Meteorological data needed in the system are also common (such
as temperature or humidity) and they are commonly registered
by national agencies. Therefore, URSUS-PV is very flexible in the
incorporation of new urban areas. The process to include new
cities is easy (and it is documented in the software distribution).

• The tool is open-source and free. It can be used by anyone: public
administrations, cooperatives, photovoltaic systems distribution
companies or individuals. The system can be easily personalized
for any set of cities. Users can work in local mode, but they also
can make results available via a web application (as showed in
Section 3.1).

• Roofs are automatically segmented in the area of interest and they
are aggregated in the global estimation attending to the user’s
orientation and inclination requirements.

• Short-term photovoltaic energy predictions (one-day-ahead) of a
urban area of interest is calculated in addition to a long-term
estimation.

The differentiating element that characterizes the developed system
s that it allows this information to be obtained for larger areas, and
ore easily as it has an automated process.

. Conclusions

An open-source tool, URSUS-PV, has been built to estimate potential
lectricity that can be generated in photovoltaic (PV) facilities in the
hort-term (one-day-ahead) and in the long-term (daily average) in an
rban area of interest (neighbourhoods, streets, complex buildings).
t could be potentially useful for multiple types of users, including
unicipalities, public administrations, companies in the photovoltaic

ector, cooperatives or neighbourhood communities.
One of the tools’ most significant benefits is the automation of the

omplex process. It initially had to be performed manually to obtain
lobal results in urban areas of interest to produce short-term or long-
erm photovoltaic energy estimations. After conducting a data mining
rocess, such manual processing has now been computerized. CRISP-
M methodology has supported the process. We have executed all

he steps from the business understanding to the final deployment,
hich includes models discovered in intermediate phases. Therefore,

ollowing such methodology, once the data sources (meteorological and
eographical data) have been identified, its acquisition and integration
re automated. Transformations done in the preprocessing stage are
lso programmed, meaning that segmentation of the roofs available in
rban areas of interest and extraction of their features can be easily
8

U

computed. The calculating photovoltaic energy potential phase has also
been fully automated using meteorological data of the city and the
configuration of PV facility that could be integrated into each roof.

URSUS-PV can be easily extended to include as many cities as
needed. Only LiDAR images and meteorological data from the city are
needed and such data are commonly available from National Agencies.
The use of this software could improve urban energy sustainability and
help in the fight against climate change. It provides long-term produc-
tion information (daily average), which is essential when determining
whether or not it is worth integrating PV facilities. Therefore, prior to
embarking on installing any PV unit, it could estimate whether daily
energy requirements demanded can be satisfied in an area. Short-term
information will help managers of large facilities to improve their inte-
gration into the power grid. It can also help owners of self-consumption
facilities to determine when they will have energy generated by their
facilities and shift their consumption to these hours.

This tool offers excellent opportunities because it can be easily
updated with new features made by the same developers or new
contributors. After all, the source code is released. Those new features
could include focusing on new types of elements in a city or performing
a more precise estimation of the energy potential. Many other surfaces
apart from roofs could be considered in cities, mainly by the local
administration, to install PV facilities. Plots without buildings or main
streets with proper PV installations can exploit solar energy while
simultaneously generating shades for pedestrians.

Shadowing between buildings is another point not considered in this
version. Even though it is not essential because shadowing occurs in
extreme hours of the day and PV facilities get maximum performance
in central hours of the day, there is some margin for improvement.

Code availability

The URSUS-PV software is available in two different ways: (1)
A free web application can be accessed at http://ursus-shiny.uma.es
where the system is loaded with the maps of Málaga, the city used
in the validation example (all steps described in Section 3.1 can be
executed in this web version), and (2) the source code of the tool
released under the GNU General Public License v3.0 is available at
https://github.com/ursusdm/ursusdm_pv.
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